51
|
Hong WC, Yano H, Hiranita T, Chin FT, McCurdy CR, Su TP, Amara SG, Katz JL. The sigma-1 receptor modulates dopamine transporter conformation and cocaine binding and may thereby potentiate cocaine self-administration in rats. J Biol Chem 2017; 292:11250-11261. [PMID: 28495886 DOI: 10.1074/jbc.m116.774075] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/10/2017] [Indexed: 11/06/2022] Open
Abstract
The dopamine transporter (DAT) regulates dopamine (DA) neurotransmission by recapturing DA into the presynaptic terminals and is a principal target of the psychostimulant cocaine. The sigma-1 receptor (σ1R) is a molecular chaperone, and its ligands have been shown to modulate DA neuronal signaling, although their effects on DAT activity are unclear. Here, we report that the prototypical σ1R agonist (+)-pentazocine potentiated the dose response of cocaine self-administration in rats, consistent with the effects of the σR agonists PRE-084 and DTG (1,3-di-o-tolylguanidine) reported previously. These behavioral effects appeared to be correlated with functional changes of DAT. Preincubation with (+)-pentazocine or PRE-084 increased the Bmax values of [3H]WIN35428 binding to DAT in rat striatal synaptosomes and transfected cells. A specific interaction between σ1R and DAT was detected by co-immunoprecipitation and bioluminescence resonance energy transfer assays. Mutational analyses indicated that the transmembrane domain of σ1R likely mediated this interaction. Furthermore, cysteine accessibility assays showed that σ1R agonist preincubation potentiated cocaine-induced changes in DAT conformation, which were blocked by the specific σ1R antagonist CM304. Moreover, σ1R ligands had distinct effects on σ1R multimerization. CM304 increased the proportion of multimeric σ1Rs, whereas (+)-pentazocine increased monomeric σ1Rs. Together these results support the hypothesis that σ1R agonists promote dissociation of σ1R multimers into monomers, which then interact with DAT to stabilize an outward-facing DAT conformation and enhance cocaine binding. We propose that this novel molecular mechanism underlies the behavioral potentiation of cocaine self-administration by σ1R agonists in animal models.
Collapse
Affiliation(s)
- Weimin Conrad Hong
- From the Department of Pharmaceutical Sciences, Butler University, Indianapolis, Indiana 46208,
| | - Hideaki Yano
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Takato Hiranita
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Frederick T Chin
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, California 94305
| | - Christopher R McCurdy
- the Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida 32610, and
| | - Tsung-Ping Su
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| | - Susan G Amara
- the Laboratory of Molecular and Cellular Neurobiology, National Institute of Mental Health, Bethesda, Maryland 20892
| | - Jonathan L Katz
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, Maryland 21224
| |
Collapse
|
52
|
Gur M, Cheng MH, Zomot E, Bahar I. Effect of Dimerization on the Dynamics of Neurotransmitter:Sodium Symporters. J Phys Chem B 2017; 121:3657-3666. [PMID: 28118712 PMCID: PMC5402697 DOI: 10.1021/acs.jpcb.6b09876] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
![]()
Dimerization
is a common feature among the members of the neurotransmitter:sodium
symporter (NSS) family of membrane proteins. Yet, the effect of dimerization
on the mechanism of action of NSS members is not fully understood.
In this study, we examined the collective dynamics of two members
of the family, leucine transporter (LeuT) and dopamine transporter
(DAT), to assess the significance of dimerization in modulating the
functional motions of the monomers. We used to this aim the anisotropic
network model (ANM), an efficient and robust method for modeling the
intrinsic motions of proteins and their complexes. Transporters belonging
to the NSS family are known to alternate between outward-facing (OF)
and inward-facing (IF) states, which enables the uptake and release
of their substrate (neurotransmitter) respectively, as the substrate
is transported from the exterior to the interior of the cell. In both
LeuT and DAT, dimerization is found to alter the collective motions
intrinsically accessible to the individual monomers in favor of the
functional transitions (OF ↔ IF), suggesting
that dimerization may play a role in facilitating transport.
Collapse
Affiliation(s)
- Mert Gur
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States.,Department of Mechanical Engineering, Istanbul Technical University (ITU) , Istanbul 34437, Turkey
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | - Elia Zomot
- Department of Biomolecular Sciences, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
53
|
Uemura T, Ito S, Ohta Y, Tachikawa M, Wada T, Terasaki T, Ohtsuki S. Abnormal N-Glycosylation of a Novel Missense Creatine Transporter Mutant, G561R, Associated with Cerebral Creatine Deficiency Syndromes Alters Transporter Activity and Localization. Biol Pharm Bull 2017; 40:49-55. [PMID: 28049948 DOI: 10.1248/bpb.b16-00582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cerebral creatine deficiency syndromes (CCDSs) are caused by loss-of-function mutations in creatine transporter (CRT, SLC6A8), which transports creatine at the blood-brain barrier and into neurons of the central nervous system (CNS). This results in low cerebral creatine levels, and patients exhibit mental retardation, poor language skills and epilepsy. We identified a novel human CRT gene missense mutation (c.1681 G>C, G561R) in Japanese CCDSs patients. The purpose of the present study was to evaluate the reduction of creatine transport in G561R-mutant CRT-expressing 293 cells, and to clarify the mechanism of its functional attenuation. G561R-mutant CRT exhibited greatly reduced creatine transport activity compared to wild-type CRT (WT-CRT) when expressed in 293 cells. Also, the mutant protein is localized mainly in intracellular membrane fraction, while WT-CRT is localized in plasma membrane. Western blot analysis revealed a 68 kDa band of WT-CRT protein in plasma membrane fraction, while G561R-mutant CRT protein predominantly showed bands at 55, 110 and 165 kDa in crude membrane fraction. The bands of both WT-CRT and G561R-mutant CRT were shifted to 50 kDa by N-glycosidase treatment. Our results suggest that the functional impairment of G561R-mutant CRT was probably caused by incomplete N-linked glycosylation due to misfolding during protein maturation, leading to oligomer formation and changes of cellular localization.
Collapse
Affiliation(s)
- Tatsuki Uemura
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | | | | | | | | | | | | |
Collapse
|
54
|
Sweeney CG, Tremblay BP, Stockner T, Sitte HH, Melikian HE. Dopamine Transporter Amino and Carboxyl Termini Synergistically Contribute to Substrate and Inhibitor Affinities. J Biol Chem 2016; 292:1302-1309. [PMID: 27986813 DOI: 10.1074/jbc.m116.762872] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/09/2016] [Indexed: 11/06/2022] Open
Abstract
Extracellular dopamine and serotonin concentrations are determined by the presynaptic dopamine (DAT) and serotonin (SERT) transporters, respectively. Numerous studies have investigated the DAT and SERT structural elements contributing to inhibitor and substrate binding. To date, crystallographic studies have focused on conserved transmembrane domains, where multiple substrate binding and translocation features are conserved. However, it is unknown what, if any, role the highly divergent intracellular N and C termini contribute to these processes. Here, we used chimeric proteins to test whether DAT and SERT N and C termini contribute to transporter substrate and inhibitor affinities. Replacing the DAT N terminus with that of SERT had no effect on DA transport Vmax but significantly decreased DAT substrate affinities for DA and amphetamine. Similar losses in uptake inhibition were observed for small DAT inhibitors, whereas substituting the DAT C terminus with that of SERT affected neither substrate nor inhibitor affinities. In contrast, the N-terminal substitution was completely tolerated by the larger DAT inhibitors, which exhibited no loss in apparent affinity. Remarkably, all affinity losses were rescued in DAT chimeras encoding both SERT N and C termini. The sensitivity to amino-terminal substitution was specific for DAT, because replacing the SERT N and/or C termini affected neither substrate nor inhibitor affinities. Taken together, these findings provide compelling experimental evidence that DAT N and C termini synergistically contribute to substrate and inhibitor affinities.
Collapse
Affiliation(s)
- Carolyn G Sweeney
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| | - Bradford P Tremblay
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| | - Thomas Stockner
- the Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald H Sitte
- the Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Haley E Melikian
- From the Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604 and
| |
Collapse
|
55
|
Nishijima H, Tomiyama M. What Mechanisms Are Responsible for the Reuptake of Levodopa-Derived Dopamine in Parkinsonian Striatum? Front Neurosci 2016; 10:575. [PMID: 28018168 PMCID: PMC5156842 DOI: 10.3389/fnins.2016.00575] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022] Open
Abstract
Levodopa is the most effective medication for motor symptoms in Parkinson's disease. However, various motor and non-motor complications are associated with levodopa treatment, resulting from altered levodopa-dopamine metabolism with disease progression and long-term use of the drug. The present review emphasizes the role of monoamine transporters other than the dopamine transporter in uptake of extracellular dopamine in the dopamine-denervated striatum. When dopaminergic neurons are lost and dopamine transporters decreased, serotonin and norepinephrine transporters compensate by increasing uptake of excessive extracellular dopamine in the striatum. Organic cation transporter-3 and plasma membrane monoamine transporter, low affinity, and high capacity transporters, also potentially uptake dopamine when high-affinity transporters do not work normally. Selective serotonin reuptake inhibitors and serotonin norepinephrine reuptake inhibitors are often administered to patients with Parkinson's disease presenting with depression, pain or other non-motor symptoms. Thus, it is important to address the potential of these drugs to modify dopamine metabolism and uptake through blockade of the compensatory function of these transporters, which could lead to changes in motor symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Haruo Nishijima
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Aomori Prefectural Central HospitalAomori, Japan; Department of Neurophysiology, Institute of Brain Science, Hirosaki University Graduate School of MedicineHirosaki, Japan
| |
Collapse
|
56
|
Grañé-Boladeras N, Spring CM, Hanna WJB, Pastor-Anglada M, Coe IR. Novel nuclear hENT2 isoforms regulate cell cycle progression via controlling nucleoside transport and nuclear reservoir. Cell Mol Life Sci 2016; 73:4559-4575. [PMID: 27271752 PMCID: PMC11108336 DOI: 10.1007/s00018-016-2288-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 10/25/2022]
Abstract
Nucleosides participate in many cellular processes and are the fundamental building blocks of nucleic acids. Nucleoside transporters translocate nucleosides across plasma membranes although the mechanism by which nucleos(t)ides are translocated into the nucleus during DNA replication is unknown. Here, we identify two novel functional splice variants of equilibrative nucleoside transporter 2 (ENT2), which are present at the nuclear envelope. Under proliferative conditions, these splice variants are up-regulated and recruit wild-type ENT2 to the nuclear envelope to translocate nucleosides into the nucleus for incorporation into DNA during replication. Reduced presence of hENT2 splice variants resulted in a dramatic decrease in cell proliferation and dysregulation of cell cycle due to a lower incorporation of nucleotides into DNA. Our findings support a novel model of nucleoside compartmentalisation at the nuclear envelope and translocation into the nucleus through hENT2 and its variants, which are essential for effective DNA synthesis and cell proliferation.
Collapse
Affiliation(s)
- Natalia Grañé-Boladeras
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain.
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada.
| | - Christopher M Spring
- Research Core Facilities, Keenan Research Centre, Li Ka Shing Knowledge Institute, Saint Michael's Hospital, Toronto, ON, M5B 1T8, Canada
| | - W J Brad Hanna
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Marçal Pastor-Anglada
- Department of Biochemistry and Molecular Biology, Institute of Biomedicine (IBUB), University of Barcelona, 08028, Barcelona, Spain
- Oncology Program, CIBER EHD, Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Imogen R Coe
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
57
|
Bermingham DP, Blakely RD. Kinase-dependent Regulation of Monoamine Neurotransmitter Transporters. Pharmacol Rev 2016; 68:888-953. [PMID: 27591044 PMCID: PMC5050440 DOI: 10.1124/pr.115.012260] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Modulation of neurotransmission by the monoamines dopamine (DA), norepinephrine (NE), and serotonin (5-HT) is critical for normal nervous system function. Precise temporal and spatial control of this signaling in mediated in large part by the actions of monoamine transporters (DAT, NET, and SERT, respectively). These transporters act to recapture their respective neurotransmitters after release, and disruption of clearance and reuptake has significant effects on physiology and behavior and has been linked to a number of neuropsychiatric disorders. To ensure adequate and dynamic control of these transporters, multiple modes of control have evolved to regulate their activity and trafficking. Central to many of these modes of control are the actions of protein kinases, whose actions can be direct or indirectly mediated by kinase-modulated protein interactions. Here, we summarize the current state of our understanding of how protein kinases regulate monoamine transporters through changes in activity, trafficking, phosphorylation state, and interacting partners. We highlight genetic, biochemical, and pharmacological evidence for kinase-linked control of DAT, NET, and SERT and, where applicable, provide evidence for endogenous activators of these pathways. We hope our discussion can lead to a more nuanced and integrated understanding of how neurotransmitter transporters are controlled and may contribute to disorders that feature perturbed monoamine signaling, with an ultimate goal of developing better therapeutic strategies.
Collapse
Affiliation(s)
- Daniel P Bermingham
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| | - Randy D Blakely
- Department of Pharmacology (D.P.B., R.D.B.) and Psychiatry (R.D.B.), Vanderbilt University Medical Center, Nashville, Tennessee; and Department of Biomedical Sciences, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida (R.D.B.)
| |
Collapse
|
58
|
Ganapathy K, Datta I, Sowmithra S, Joshi P, Bhonde R. Influence of 6-Hydroxydopamine Toxicity on α-Synuclein Phosphorylation, Resting Vesicle Expression, and Vesicular Dopamine Release. J Cell Biochem 2016; 117:2719-2736. [DOI: 10.1002/jcb.25570] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Kavina Ganapathy
- School of Regenerative Medicine; Manipal University; Bengaluru Karnataka India
| | - Indrani Datta
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Sowmithra Sowmithra
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Preeti Joshi
- Department of Biophysics; National Institute of Mental Health and Neurosciences, an Institute of National Importance; Bengaluru Karnataka India
| | - Ramesh Bhonde
- School of Regenerative Medicine; Manipal University; Bengaluru Karnataka India
| |
Collapse
|
59
|
German CL, Baladi MG, McFadden LM, Hanson GR, Fleckenstein AE. Regulation of the Dopamine and Vesicular Monoamine Transporters: Pharmacological Targets and Implications for Disease. Pharmacol Rev 2016; 67:1005-24. [PMID: 26408528 DOI: 10.1124/pr.114.010397] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine (DA) plays a well recognized role in a variety of physiologic functions such as movement, cognition, mood, and reward. Consequently, many human disorders are due, in part, to dysfunctional dopaminergic systems, including Parkinson's disease, attention deficit hyperactivity disorder, and substance abuse. Drugs that modify the DA system are clinically effective in treating symptoms of these diseases or are involved in their manifestation, implicating DA in their etiology. DA signaling and distribution are primarily modulated by the DA transporter (DAT) and by vesicular monoamine transporter (VMAT)-2, which transport DA into presynaptic terminals and synaptic vesicles, respectively. These transporters are regulated by complex processes such as phosphorylation, protein-protein interactions, and changes in intracellular localization. This review provides an overview of 1) the current understanding of DAT and VMAT2 neurobiology, including discussion of studies ranging from those conducted in vitro to those involving human subjects; 2) the role of these transporters in disease and how these transporters are affected by disease; and 3) and how selected drugs alter the function and expression of these transporters. Understanding the regulatory processes and the pathologic consequences of DAT and VMAT2 dysfunction underlies the evolution of therapeutic development for the treatment of DA-related disorders.
Collapse
Affiliation(s)
- Christopher L German
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Michelle G Baladi
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Lisa M McFadden
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Glen R Hanson
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| | - Annette E Fleckenstein
- School of Dentistry (C.L.G., M.G.B., G.R.H., A.E.F.) and Department of Pharmacology and Toxicology (L.M.M., G.R.H.), University of Utah, Salt Lake City, Utah
| |
Collapse
|
60
|
Structure of eukaryotic purine/H(+) symporter UapA suggests a role for homodimerization in transport activity. Nat Commun 2016; 7:11336. [PMID: 27088252 PMCID: PMC4837479 DOI: 10.1038/ncomms11336] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/16/2016] [Indexed: 02/03/2023] Open
Abstract
The uric acid/xanthine H+ symporter, UapA, is a high-affinity purine transporter from the filamentous fungus Aspergillus nidulans. Here we present the crystal structure of a genetically stabilized version of UapA (UapA-G411VΔ1–11) in complex with xanthine. UapA is formed from two domains, a core domain and a gate domain, similar to the previously solved uracil transporter UraA, which belongs to the same family. The structure shows UapA in an inward-facing conformation with xanthine bound to residues in the core domain. Unlike UraA, which was observed to be a monomer, UapA forms a dimer in the crystals with dimer interactions formed exclusively through the gate domain. Analysis of dominant negative mutants is consistent with dimerization playing a key role in transport. We postulate that UapA uses an elevator transport mechanism likely to be shared with other structurally homologous transporters including anion exchangers and prestin. UapA is a uric acid/xanthine H+ symporter from a filamentous fungus. Here, the authors solve the crystal structure of the transporter in complex with xanthine revealing it to be a dimer, and this homodimerisation is proposed to be important for function.
Collapse
|
61
|
Li Y, Cooper A, Odibo IN, Ahmed A, Murphy P, Koonce R, Dajani NK, Lowery CL, Roberts DJ, Maroteaux L, Kilic F. Discrepancy in Insulin Regulation between Gestational Diabetes Mellitus (GDM) Platelets and Placenta. J Biol Chem 2016; 291:9657-65. [PMID: 26921319 DOI: 10.1074/jbc.m116.713693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Indexed: 11/06/2022] Open
Abstract
Earlier findings have identified the requirement of insulin signaling on maturation and the translocation of serotonin (5-HT) transporter, SERT to the plasma membrane of the trophoblast in placenta. Because of the defect on insulin receptor (IR) in the trophoblast of the gestational diabetes mellitus (GDM)-associated placenta, SERT is found entrapped in the cytoplasm of the GDM-trophoblast. SERT is encoded by the same gene expressed in trophoblast and platelets. Additionally, alteration in plasma 5-HT levels and the 5-HT uptake rates are associated with the aggregation rates of platelets. Therefore, here, we investigated a novel hypothesis that GDM-associated defects in platelet IR should change their 5-HT uptake rates, and this should be a leading factor for thrombosis in GDM maternal blood. The maternal blood and the placentas were obtained at the time of cesarean section from the GDM and non-diabetic subjects (n = 6 for each group), and the platelets and trophoblasts were isolated to determine the IR activity, surface level of SERT, and their 5-HT uptake rates.Interestingly, no significant differences were evident in IR tyrosine phosphorylation or the downstream elements, AKT and S6K in platelets and their aggregation rates in both groups. Furthermore, insulin stimulation up-regulated 5-HT uptake rates of GDM-platelets as it does in the control group. However, the phosphorylation of IR and the downstream elements were significantly lower in GDM-trophoblast and showed no response to the insulin stimulation while they showed 4-fold increase to insulin stimulation in control group. Similarly, the 5-HT uptake rates of GDM-trophoblast and the SERT expression on their surface were severalfold lower compared with control subjects. IR is expressed in all tissues, but it is not known if diabetes affects IR in all tissues equally. Here, for the first time, our findings with clinical samples show that in GDM-associated defect on IR is tissue type-dependent. While IR is impaired in GDM-placenta, it is unaffected in GDM-platelet.
Collapse
Affiliation(s)
- Yicong Li
- From the Departments of Biochemistry and Molecular Biology, and
| | - Anthonya Cooper
- From the Departments of Biochemistry and Molecular Biology, and
| | - Imelda N Odibo
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Asli Ahmed
- From the Departments of Biochemistry and Molecular Biology, and
| | - Pamela Murphy
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Ruston Koonce
- From the Departments of Biochemistry and Molecular Biology, and
| | - Nafisa K Dajani
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Curtis L Lowery
- Obstetrics and Gynecology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Drucilla J Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts 02114, and
| | - Luc Maroteaux
- UMR-S839 INSERM, Université Pierre et Marie Curie, Institut du Fer a' Moulin, 75005 Paris, France
| | - Fusun Kilic
- From the Departments of Biochemistry and Molecular Biology, and
| |
Collapse
|
62
|
Long-term controlled GDNF over-expression reduces dopamine transporter activity without affecting tyrosine hydroxylase expression in the rat mesostriatal system. Neurobiol Dis 2016; 88:44-54. [PMID: 26777664 DOI: 10.1016/j.nbd.2016.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.
Collapse
|
63
|
Verma V. Classic Studies on the Interaction of Cocaine and the Dopamine Transporter. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2015; 13:227-38. [PMID: 26598579 PMCID: PMC4662164 DOI: 10.9758/cpn.2015.13.3.227] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/18/2022]
Abstract
The dopamine transporter is responsible for recycling dopamine after release. Inhibitors of the dopamine transporter, such as cocaine, will stop the reuptake of dopamine and allow it to stay extracellularly, causing prominent changes at the molecular, cellular, and behavioral levels. There is much left to be known about the mechanism and site(s) of binding, as well as the effect that cocaine administration does to dopamine transporter-cocaine binding sites and gene expression which also plays a strong role in cocaine abusers and their behavioral characteristics. Thus, if more light is shed on the dopamine transporter-cocaine interaction, treatments for addiction and even other diseases of the dopaminergic system may not be too far ahead. As today's ongoing research expands on the shoulders of classic research done in the 1990s and 2000s, the foundation of core research done in that time period will be reviewed, which forms the basis of today's work and tomorrow's therapies.
Collapse
Affiliation(s)
- Vivek Verma
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
64
|
Martzoukou O, Karachaliou M, Yalelis V, Leung J, Byrne B, Amillis S, Diallinas G. Oligomerization of the UapA Purine Transporter Is Critical for ER-Exit, Plasma Membrane Localization and Turnover. J Mol Biol 2015; 427:2679-96. [DOI: 10.1016/j.jmb.2015.05.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/27/2015] [Accepted: 05/28/2015] [Indexed: 11/29/2022]
|
65
|
De Gois S, Slama P, Pietrancosta N, Erdozain AM, Louis F, Bouvrais-Veret C, Daviet L, Giros B. Ctr9, a Protein in the Transcription Complex Paf1, Regulates Dopamine Transporter Activity at the Plasma Membrane. J Biol Chem 2015; 290:17848-17862. [PMID: 26048990 DOI: 10.1074/jbc.m115.646315] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Indexed: 01/01/2023] Open
Abstract
Dopamine (DA) is a major regulator of sensorimotor and cognitive functions. The DA transporter (DAT) is the key protein that regulates the spatial and temporal activity of DA release into the synaptic cleft via the rapid reuptake of DA into presynaptic termini. Several lines of evidence have suggested that transporter-interacting proteins may play a role in DAT function and regulation. Here, we identified the tetratricopeptide repeat domain-containing protein Ctr9 as a novel DAT binding partner using a yeast two-hybrid system. We showed that Ctr9 is expressed in dopaminergic neurons and forms a stable complex with DAT in vivo via GST pulldown and co-immunoprecipitation assays. In mammalian cells co-expressing both proteins, Ctr9 partially colocalizes with DAT at the plasma membrane. This interaction between DAT and Ctr9 results in a dramatic enhancement of DAT-mediated DA uptake due to an increased number of DAT transporters at the plasma membrane. We determined that the binding of Ctr9 to DAT requires residues YKF in the first half of the DAT C terminus. In addition, we characterized Ctr9, providing new insight into this protein. Using three-dimensional modeling, we identified three novel tetratricopeptide repeat domains in the Ctr9 sequence, and based on deletion mutation experiments, we demonstrated the role of the SH2 domain of Ctr9 in nuclear localization. Our results demonstrate that Ctr9 localization is not restricted to the nucleus, as previously described for the transcription complex Paf1. Taken together, our data provide evidence that Ctr9 modulates DAT function by regulating its trafficking.
Collapse
Affiliation(s)
- Stéphanie De Gois
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada
| | - Patrick Slama
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Nicolas Pietrancosta
- Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; CNRS, UMR 8601, 75006 Paris, France
| | - Amaia M Erdozain
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Franck Louis
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | - Caroline Bouvrais-Veret
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France
| | | | - Bruno Giros
- INSERM U952, 75005 Paris, France; CNRS UMR 7224, 75005 Paris, France; Université Pierre et Marie Curie, Neuroscience Paris Seine, 75005 Paris, France; Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal H4H 1R3 Quebec, Canada.
| |
Collapse
|
66
|
Dopamine transporter is enriched in filopodia and induces filopodia formation. Mol Cell Neurosci 2015; 68:120-30. [PMID: 25936602 DOI: 10.1016/j.mcn.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/03/2015] [Accepted: 04/21/2015] [Indexed: 11/24/2022] Open
Abstract
Dopamine transporter (DAT, SLC6A3) controls dopamine (DA) neurotransmission by mediating re-uptake of extracellular DA into DA neurons. DA uptake depends on the amount of DAT at the cell surface, and is therefore regulated by DAT subcellular distribution. Hence we used spinning disk confocal microscopy to demonstrate DAT localization in membrane protrusions that contained filamentous actin and myosin X (MyoX), a molecular motor located in filopodia tips, thus confirming that these protrusions are filopodia. DAT was enriched in filopodia. In contrast, R60A and W63A DAT mutants with disrupted outward-facing conformation were not accumulated in filopodia, suggesting that this conformation is necessary for DAT filopodia targeting. Three independent approaches of filopodia counting showed that DAT expression leads to an increase in the number of filopodia per cell, indicating that DAT can induce filopodia formation. Depletion of MyoX by RNA interference resulted in a significant loss of filopodia but did not completely eliminate filopodia, implying that DAT-enriched filopodia can be formed without MyoX. In cultured postnatal DA neurons MyoX was mainly localized to growth cones that displayed highly dynamic DAT-containing filopodia. We hypothesize that the concave shape of the DAT molecule functions as the targeting determinant for DAT accumulation in outward-curved membrane domains, and may also allow high local concentrations of DAT to induce an outward membrane bending. Such targeting and membrane remodeling capacities may be part of the mechanism responsible for DAT enrichment in the filopodia and its targeting to the axonal processes of DA neurons.
Collapse
|
67
|
Kovtun O, Sakrikar D, Tomlinson ID, Chang JC, Arzeta-Ferrer X, Blakely RD, Rosenthal SJ. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant. ACS Chem Neurosci 2015; 6:526-34. [PMID: 25747272 PMCID: PMC5530757 DOI: 10.1021/cn500202c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The presynaptic, cocaine- and amphetamine-sensitive dopamine (DA) transporter (DAT, SLC6A3) controls the intensity and duration of synaptic dopamine signals by rapid clearance of DA back into presynaptic nerve terminals. Abnormalities in DAT-mediated DA clearance have been linked to a variety of neuropsychiatric disorders, including addiction, autism, and attention deficit/hyperactivity disorder (ADHD). Membrane trafficking of DAT appears to be an important, albeit incompletely understood, post-translational regulatory mechanism; its dysregulation has been recently proposed as a potential risk determinant of these disorders. In this study, we demonstrate a link between an ADHD-associated DAT mutation (Arg615Cys, R615C) and variation on DAT transporter cell surface dynamics, a combination only previously studied with ensemble biochemical and optical approaches that featured limited spatiotemporal resolution. Here, we utilize high-affinity, DAT-specific antagonist-conjugated quantum dot (QD) probes to establish the dynamic mobility of wild-type and mutant DATs at the plasma membrane of living cells. Single DAT-QD complex trajectory analysis revealed that the DAT 615C variant exhibited increased membrane mobility relative to DAT 615R, with diffusion rates comparable to those observed after lipid raft disruption. This phenomenon was accompanied by a loss of transporter mobilization triggered by amphetamine, a common component of ADHD medications. Together, our data provides the first dynamic imaging of single DAT proteins, providing new insights into the relationship between surface dynamics and trafficking of both wild-type and disease-associated transporters. Our approach should be generalizable to future studies that explore the possibilities of perturbed surface DAT dynamics that may arise as a consequence of genetic alterations, regulatory changes, and drug use that contribute to the etiology or treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Oleg Kovtun
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- McCoy & McCoy Laboratories, Inc, Madisonville, Kentucky 42431, United States
| | - Dhananjay Sakrikar
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Ian D. Tomlinson
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jerry C. Chang
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065, United States
| | - Xochitl Arzeta-Ferrer
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Randy D. Blakely
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Sandra J. Rosenthal
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
68
|
Sitte HH, Schütz GJ, Freissmuth M. Cooperativity between individual transporter protomers: new data fuelling old complexes. J Neurochem 2015; 133:163-6. [PMID: 25772534 DOI: 10.1111/jnc.13086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/02/2015] [Indexed: 01/01/2023]
Abstract
Neurotransmitter transporters are arranged in an oligomeric quaternary structure as evidenced by crosslinking or fluorescence resonance energy transfer (FRET)-microscopy. In a study by Zhen and colleagues highlighted by this Editorial in the current issue of Journal of Neurochemistry, the combination of mutant and wild-type dopamine transporter (DAT) has been used to establish the cooperation between transporter protomers; the DAT mutant version has an altered affinity for the radiolabelled inhibitor [³H]CFT. Zhen and colleagues predict how saturation-binding curves ought to look, if the two binding sites (i.e. of the wild type and the mutant DAT) operated independently. The results are clear-cut: the experimental observations are inconsistent with curves obtained by mixing independent binding sites. Thus, by definition, the binding sites cooperate. Read the full article 'Dopamine transporter oligomerization: impact of combining protomers with differential cocaine analog binding affinities' on page 167.
Collapse
Affiliation(s)
- Harald H Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University Vienna, Vienna, Austria
| | | | | |
Collapse
|
69
|
Huot P, Fox SH, Brotchie JM. Monoamine reuptake inhibitors in Parkinson's disease. PARKINSON'S DISEASE 2015; 2015:609428. [PMID: 25810948 PMCID: PMC4355567 DOI: 10.1155/2015/609428] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/26/2014] [Indexed: 12/13/2022]
Abstract
The motor manifestations of Parkinson's disease (PD) are secondary to a dopamine deficiency in the striatum. However, the degenerative process in PD is not limited to the dopaminergic system and also affects serotonergic and noradrenergic neurons. Because they can increase monoamine levels throughout the brain, monoamine reuptake inhibitors (MAUIs) represent potential therapeutic agents in PD. However, they are seldom used in clinical practice other than as antidepressants and wake-promoting agents. This review article summarises all of the available literature on use of 50 MAUIs in PD. The compounds are divided according to their relative potency for each of the monoamine transporters. Despite wide discrepancy in the methodology of the studies reviewed, the following conclusions can be drawn: (1) selective serotonin transporter (SERT), selective noradrenaline transporter (NET), and dual SERT/NET inhibitors are effective against PD depression; (2) selective dopamine transporter (DAT) and dual DAT/NET inhibitors exert an anti-Parkinsonian effect when administered as monotherapy but do not enhance the anti-Parkinsonian actions of L-3,4-dihydroxyphenylalanine (L-DOPA); (3) dual DAT/SERT inhibitors might enhance the anti-Parkinsonian actions of L-DOPA without worsening dyskinesia; (4) triple DAT/NET/SERT inhibitors might exert an anti-Parkinsonian action as monotherapy and might enhance the anti-Parkinsonian effects of L-DOPA, though at the expense of worsening dyskinesia.
Collapse
Affiliation(s)
- Philippe Huot
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Department of Pharmacology and Division of Neurology, Faculty of Medicine, Université de Montréal and Centre Hospitalier de l'Université de Montréal, Montréal, QC, Canada
| | - Susan H. Fox
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
- Division of Neurology, Movement Disorder Clinic, Toronto Western Hospital, University Health Network, University of Toronto, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| | - Jonathan M. Brotchie
- Toronto Western Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Toronto, ON, Canada M5T 2S8
| |
Collapse
|
70
|
Cocaine-induced locomotor activity in rats selectively bred for low and high voluntary running behavior. Psychopharmacology (Berl) 2015; 232:673-81. [PMID: 25106389 DOI: 10.1007/s00213-014-3698-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/28/2014] [Indexed: 02/06/2023]
Abstract
RATIONALE The rewarding effects of physical activity and abused drugs are caused by stimulation of similar brain pathways. Low (LVR) and high (HVR) voluntary running lines were developed by selectively breeding Wistar rats on running distance performance on postnatal days 28-34. We hypothesized that LVR rats would be more sensitive to the locomotor-activating effects of cocaine than HVR rats due to their lower motivation for wheel running. OBJECTIVES We investigated how selection for LVR or HVR behavior affects inherited activity responses: (a) open field activity levels, (b) habituation to an open field environment, and (c) the locomotor response to cocaine. METHODS Open field activity was measured for 80 min on three successive days (days 1-3). Data from the first 20 min were analyzed to determine novelty-induced locomotor activity (day 1) and the habituation to the environment (days 1-3). On day 3, rats were acclimated to the chamber for 20 min and then received saline or cocaine (10, 20, or 30 mg/kg) injection. Dopamine transporter (DAT) protein in the nucleus accumbens was measured via Western blot. RESULTS Selecting for low and high voluntary running behavior co-selects for differences in inherent (HVR > LVR) and cocaine-induced (LVR > HVR) locomotor activity levels. The differences in the selected behavioral measures do not appear to correlate with DAT protein levels. CONCLUSIONS LVR and HVR rats are an intriguing physical activity model for studying the interactions between genes related to the motivation to run, to use drugs of abuse, and to exhibit locomotor activity.
Collapse
|
71
|
Zhen J, Antonio T, Cheng SY, Ali S, Jones KT, Reith MEA. Dopamine transporter oligomerization: impact of combining protomers with differential cocaine analog binding affinities. J Neurochem 2015; 133:167-73. [PMID: 25580950 DOI: 10.1111/jnc.13025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 11/17/2014] [Accepted: 12/16/2014] [Indexed: 11/29/2022]
Abstract
Previous studies point to quaternary assembly of dopamine transporters (DATs) in oligomers. However, it is not clear whether the protomers function independently in the oligomer. Is each protomer an entirely separate unit that takes up dopamine and is inhibited by drugs known to block DAT function? In this work, human embryonic kidney 293 cells were co-transfected with DAT constructs possessing differential binding affinities for the phenyltropane cocaine analog, [³H]WIN35,428. It was assessed whether the binding properties in co-expressing cells capable of forming hetero-oligomers differ from those in preparations obtained from mixed singly transfected cells where such oligomers cannot occur. A method is described that replaces laborious 'mixing' experiments with an in silico method predicting binding parameters from those observed for the singly expressed constructs. Among five pairs of constructs tested, statistically significant interactions were found between protomers of wild-type (WT) and D313N, WT and D345N, and WT and D436N. Compared with predicted Kd values of [³H]WIN35,428 binding to the non-interacting pairs, the observed affinity of the former pair was increased 1.7 fold while the latter two were reduced 2.2 and 4.1 fold, respectively. This is the first report of an influence of protomer composition on the properties of a DAT inhibitor, indicating cooperativity within the oligomer. The dopamine transporter (DAT) can exist as an oligomer but it is unknown whether the protomers function independently. The present results indicate that protomers that are superpotent or deficient in cocaine analog binding can confer enhanced or reduced potency to the oligomer, respectively. In this respect, positive or negative cooperativity is revealed in the DAT oligomer.
Collapse
Affiliation(s)
- Juan Zhen
- Department of Psychiatry, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
72
|
McHugh PC, Buckley DA. The Structure and Function of the Dopamine Transporter and its Role in CNS Diseases. HORMONES AND TRANSPORT SYSTEMS 2015; 98:339-69. [DOI: 10.1016/bs.vh.2014.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
73
|
GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci U S A 2014; 111:E5697-705. [PMID: 25512553 DOI: 10.1073/pnas.1416675112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Serotonin (5-HT) transporter (SERT) regulates the level of 5-HT in placenta. Initially, we found that in gestational diabetes mellitus (GDM), whereas free plasma 5-HT levels were elevated, the 5-HT uptake rates of trophoblast were significantly down-regulated, due to impairment in the translocation of SERT molecules to the cell surface. We sought to determine the factors mediating the down-regulation of SERT in GDM trophoblast. We previously reported that an endoplasmic reticulum chaperone, ERp44, binds to Cys200 and Cys209 residues of SERT to build a disulfide bond. Following this posttranslational modification, before trafficking to the plasma membrane, SERT must be dissociated from ERp44; and this process is facilitated by insulin signaling and reversed by the insulin receptor blocker AGL2263. However, the GDM-associated defect in insulin signaling hampers the dissociation of ERp44 from SERT. Furthermore, whereas ERp44 constitutively occupies Cys200/Cys209 residues, one of the SERT glycosylation sites, Asp208 located between the two Cys residues, cannot undergo proper glycosylation, which plays an important role in the uptake efficiency of SERT. Herein, we show that the decrease in 5-HT uptake rates of GDM trophoblast is the consequence of defective insulin signaling, which entraps SERT with ERp44 and impairs its glycosylation. In this regard, restoring the normal expression of SERT on the trophoblast surface may represent a novel approach to alleviating some GDM-associated complications.
Collapse
|
74
|
Vecchio LM, Bermejo MK, Beerepoot P, Ramsey AJ, Salahpour A. N-terminal tagging of the dopamine transporter impairs protein expression and trafficking in vivo. Mol Cell Neurosci 2014; 61:123-32. [PMID: 24886986 DOI: 10.1016/j.mcn.2014.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 05/22/2014] [Accepted: 05/29/2014] [Indexed: 01/26/2023] Open
Abstract
The dopamine transporter (DAT) is the primary protein responsible for the uptake of dopamine from the extracellular space back into presynaptic neurons. As such, it plays an important role in the cessation of dopaminergic neurotransmission and in the maintenance of extracellular dopamine homeostasis. Here, we report the development of a new BAC transgenic mouse line that expresses DAT with an N-terminal HA-epitope (HAD-Tg). In this line, two copies of the HA-DAT BAC are incorporated into the genome, increasing DAT mRNA levels by 47%. Despite the increase in mRNA levels, HAD-Tg mice show no significant increase in the level of DAT protein in the striatum, indicating a defect in protein trafficking or stability. By crossing HAD-Tg mice with DAT knockout mice (DAT-KO), we engineered mice that exclusively express HA-tagged DAT in the absence of endogenous DAT (DAT-KO/HAD-Tg). We show that DAT-KO/HAD-Tg mice express only 8.5% of WT DAT levels in the striatum. Importantly, the HA-tagged DAT that is present in DAT-KO/HAD-Tg mice is functional, as it is able to partially rescue the DAT-KO hyperactive phenotype. Finally, we provide evidence that the HA-tagged DAT is retained in the cell body based on a reduction in the striatum:midbrain protein ratio. These results demonstrate that the presence of the N-terminal tag leads to impaired DAT protein expression in vivo due in part to improper trafficking of the tagged transporter, and highlight the importance of the N-terminus in the transport of DAT to striatal terminals.
Collapse
Affiliation(s)
- Laura M Vecchio
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - M Kristel Bermejo
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Pieter Beerepoot
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Amy J Ramsey
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| | - Ali Salahpour
- Department of Pharmacology, University of Toronto: Medical Sciences Building, Room 4302, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
75
|
Single and binge methamphetamine administrations have different effects on the levels of dopamine D2 autoreceptor and dopamine transporter in rat striatum. Int J Mol Sci 2014; 15:5884-906. [PMID: 24717411 PMCID: PMC4013602 DOI: 10.3390/ijms15045884] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 03/15/2014] [Accepted: 03/25/2014] [Indexed: 01/17/2023] Open
Abstract
Methamphetamine (METH) is a central nervous system psychostimulant with a high potential for abuse. At high doses, METH causes a selective degeneration of dopaminergic terminals in the striatum. Dopamine D2 receptor antagonists and dopamine transporter (DAT) inhibitors protect against neurotoxicity of the drug by decreasing intracellular dopamine content and, consequently, dopamine autoxidation and production of reactive oxygen species. In vitro, amphetamines regulate D2 receptor and DAT functions via regulation of their intracellular trafficking. No data exists on axonal transport of both proteins and there is limited data on their interactions in vivo. The aim of the present investigation was to examine synaptosomal levels of presynaptic D2 autoreceptor and DAT after two different regimens of METH and to determine whether METH affects the D2 autoreceptor-DAT interaction in the rat striatum. We found that, as compared to saline controls, administration of single high-dose METH decreased D2 autoreceptor immunoreactivity and increased DAT immunoreactivity in rat striatal synaptosomes whereas binge high-dose METH increased immunoreactivity of D2 autoreceptor and had no effect on DAT immunoreactivity. Single METH had no effect on D2 autoreceptor-DAT interaction whereas binge METH increased the interaction between the two proteins in the striatum. Our results suggest that METH can affect axonal transport of both the D2 autoreceptor and DAT in an interaction-dependent and -independent manner.
Collapse
|
76
|
Dopamine signaling in C. elegans is mediated in part by HLH-17-dependent regulation of extracellular dopamine levels. G3-GENES GENOMES GENETICS 2014; 4:1081-9. [PMID: 24709946 PMCID: PMC4065251 DOI: 10.1534/g3.114.010819] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Caenorhabditis elegans, the dopamine transporter DAT-1 regulates synaptic dopamine (DA) signaling by controlling extracellular DA levels. In dat-1(ok157) animals, DA is not taken back up presynaptically but instead reaches extrasynpatic sites, where it activates the dopamine receptor DOP-3 on choligeneric motor neurons and causes animals to become paralyzed in water. This phenotype is called swimming-induced paralysis (SWIP) and is dependent on dat-1 and dop-3. Upstream regulators of dat-1 and dop-3 have yet to be described in C. elegans. In our previous studies, we defined a role for HLH-17 during dopamine response through its regulation of the dopamine receptors. Here we continue our characterization of the effects of HLH-17 on dopamine signaling. Our results suggest that HLH-17 acts downstream of dopamine synthesis to regulate the expression of dop-3 and dat-1. First, we show that hlh-17 animals display a SWIP phenotype that is consistent with its regulation of dop-3 and dat-1. Second, we show that this behavior is enhanced by treatment with the dopamine reuptake inhibitor, bupropion, in both hlh-17 and dat-1 animals, a result suggesting that SWIP behavior is regulated via a mechanism that is both dependent on and independent of DAT-1. Third, and finally, we show that although the SWIP phenotype of hlh-17 animals is unresponsive to the dopamine agonist, reserpine, and to the antidepressant, fluoxetine, hlh-17 animals are not defective in acetylcholine signaling. Taken together, our work suggests that HLH-17 is required to maintain normal levels of dopamine in the synaptic cleft through its regulation of dop-3 and dat-1.
Collapse
|
77
|
Ng J, Zhen J, Meyer E, Erreger K, Li Y, Kakar N, Ahmad J, Thiele H, Kubisch C, Rider NL, Morton DH, Strauss KA, Puffenberger EG, D'Agnano D, Anikster Y, Carducci C, Hyland K, Rotstein M, Leuzzi V, Borck G, Reith MEA, Kurian MA. Dopamine transporter deficiency syndrome: phenotypic spectrum from infancy to adulthood. ACTA ACUST UNITED AC 2014; 137:1107-19. [PMID: 24613933 PMCID: PMC3959557 DOI: 10.1093/brain/awu022] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Dopamine transporter deficiency syndrome is an SLC6A3-related progressive infantile-onset parkinsonism-dystonia that mimics cerebral palsy. Ng et al. describe clinical features and molecular findings in a new cohort of patients. They report infants with classical disease, as well as young adults manifesting as atypical juvenile-onset parkinsonism-dystonia, thereby expanding the disease spectrum. Dopamine transporter deficiency syndrome due to SLC6A3 mutations is the first inherited dopamine ‘transportopathy’ to be described, with a classical presentation of early infantile-onset progressive parkinsonism dystonia. In this study we have identified a new cohort of patients with dopamine transporter deficiency syndrome, including, most significantly, atypical presentation later in childhood with a milder disease course. We report the detailed clinical features, molecular genetic findings and in vitro functional investigations undertaken for adult and paediatric cases. Patients presenting with parkinsonism dystonia or a neurotransmitter profile characteristic of dopamine transporter deficiency syndrome were recruited for study. SLC6A3 mutational analysis was undertaken in all patients. The functional consequences of missense variants on the dopamine transporter were evaluated by determining the effect of mutant dopamine transporter on dopamine uptake, protein expression and amphetamine-mediated dopamine efflux using an in vitro cellular heterologous expression system. We identified eight new patients from five unrelated families with dopamine transporter deficiency syndrome. The median age at diagnosis was 13 years (range 1.5–34 years). Most significantly, the case series included three adolescent males with atypical dopamine transporter deficiency syndrome of juvenile onset (outside infancy) and progressive parkinsonism dystonia. The other five patients in the cohort presented with classical infantile-onset parkinsonism dystonia, with one surviving into adulthood (currently aged 34 years) and labelled as having ‘juvenile parkinsonism’. All eight patients harboured homozygous or compound heterozygous mutations in SLC6A3, of which the majority are previously unreported variants. In vitro studies of mutant dopamine transporter demonstrated multifaceted loss of dopamine transporter function. Impaired dopamine uptake was universally present, and more severely impacted in dopamine transporter mutants causing infantile-onset rather than juvenile-onset disease. Dopamine transporter mutants also showed diminished dopamine binding affinity, reduced cell surface transporter, loss of post-translational dopamine transporter glycosylation and failure of amphetamine-mediated dopamine efflux. Our data series expands the clinical phenotypic continuum of dopamine transporter deficiency syndrome and indicates that there is a phenotypic spectrum from infancy (early onset, rapidly progressive disease) to childhood/adolescence and adulthood (later onset, slower disease progression). Genotype–phenotype analysis in this cohort suggests that higher residual dopamine transporter activity is likely to contribute to postponing disease presentation in these later-onset adult cases. Dopamine transporter deficiency syndrome remains under-recognized and our data highlights that dopamine transporter deficiency syndrome should be considered as a differential diagnosis for both infantile- and juvenile-onset movement disorders, including cerebral palsy and juvenile parkinsonism.
Collapse
Affiliation(s)
- Joanne Ng
- 1 Neurosciences Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Anderluh A, Klotzsch E, Reismann AWAF, Brameshuber M, Kudlacek O, Newman AH, Sitte HH, Schütz GJ. Single molecule analysis reveals coexistence of stable serotonin transporter monomers and oligomers in the live cell plasma membrane. J Biol Chem 2014; 289:4387-94. [PMID: 24394416 DOI: 10.1074/jbc.m113.531632] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human serotonin transporter (hSERT) is responsible for the termination of synaptic serotonergic signaling. Although there is solid evidence that SERT forms oligomeric complexes, the exact stoichiometry of the complexes and the fractions of different coexisting oligomeric states still remain enigmatic. Here we used single molecule fluorescence microscopy to obtain the oligomerization state of the SERT via brightness analysis of single diffraction-limited fluorescent spots. Heterologously expressed SERT was labeled either with the fluorescent inhibitor JHC 1-64 or via fusion to monomeric GFP. We found a variety of oligomerization states of membrane-associated transporters, revealing molecular associations larger than dimers and demonstrating the coexistence of different degrees of oligomerization in a single cell; the data are in agreement with a linear aggregation model. Furthermore, oligomerization was found to be independent of SERT surface density, and oligomers remained stable over several minutes in the live cell plasma membrane. Together, the results indicate kinetic trapping of preformed SERT oligomers at the plasma membrane.
Collapse
Affiliation(s)
- Andreas Anderluh
- From the Institute of Applied Physics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Timple JMV, Magalhães LG, Souza Rezende KC, Pereira AC, Cunha WR, Andrade e Silva ML, Mortensen OV, Fontana ACK. The lignan (-)-hinokinin displays modulatory effects on human monoamine and GABA transporter activities. JOURNAL OF NATURAL PRODUCTS 2013; 76:1889-95. [PMID: 24112084 DOI: 10.1021/np400452n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The neurotransmitter transporters of the SLC6 family play critical roles in the regulation of neurotransmission and are the primary targets of therapeutic agents used to treat clinical disorders involving compromised neurotransmitter signaling. The dopamine and norepinephrine transporters have been implicated in clinical disorders such as attention deficit hyperactivity disorder (ADHD) and substance abuse. The GABA transporters (GATs) serve as a target for anxiolytic, antidepressant, and antiepileptic therapies. In this work, the interaction with neurotransmitter transporters was characterized for a derivative of the lignan (-)-cubebin (1), namely, (-)-hinokinin (2). Using in vitro pharmacological assays, 2 selectively inhibited the human dopamine and norepinephrine transporters, in a noncompetitive manner possibly mediated by binding to a novel site within the transporters, and displayed low affinity for the serotonin transporter. Compound 2 also specifically inhibited the GAT-1 GABA transporter subtype. Compound 2 is not a substrate of the carriers as it had no effect on the efflux of either of the neurotransmitters investigated. This compound is inactive toward glutamate and glycine transporters. These results suggest that 2 may serve as a tool to develop new therapeutic drugs for ADHD and anxiety that target the DAT, NET, and GAT-1 transporters.
Collapse
Affiliation(s)
- Julie Marie V Timple
- Department of Pharmacology and Physiology, Drexel University College of Medicine , Philadelphia, Pennsylvania 19102, United States
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Penmatsa A, Wang KH, Gouaux E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. Nature 2013; 503:85-90. [PMID: 24037379 DOI: 10.1038/nature12533] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/07/2013] [Indexed: 12/11/2022]
Abstract
Antidepressants targeting Na(+)/Cl(-)-coupled neurotransmitter uptake define a key therapeutic strategy to treat clinical depression and neuropathic pain. However, identifying the molecular interactions that underlie the pharmacological activity of these transport inhibitors, and thus the mechanism by which the inhibitors lead to increased synaptic neurotransmitter levels, has proven elusive. Here we present the crystal structure of the Drosophila melanogaster dopamine transporter at 3.0 Å resolution bound to the tricyclic antidepressant nortriptyline. The transporter is locked in an outward-open conformation with nortriptyline wedged between transmembrane helices 1, 3, 6 and 8, blocking the transporter from binding substrate and from isomerizing to an inward-facing conformation. Although the overall structure of the dopamine transporter is similar to that of its prokaryotic relative LeuT, there are multiple distinctions, including a kink in transmembrane helix 12 halfway across the membrane bilayer, a latch-like carboxy-terminal helix that caps the cytoplasmic gate, and a cholesterol molecule wedged within a groove formed by transmembrane helices 1a, 5 and 7. Taken together, the dopamine transporter structure reveals the molecular basis for antidepressant action on sodium-coupled neurotransmitter symporters and elucidates critical elements of eukaryotic transporter structure and modulation by lipids, thus expanding our understanding of the mechanism and regulation of neurotransmitter uptake at chemical synapses.
Collapse
Affiliation(s)
- Aravind Penmatsa
- 1] Vollum Institute, Oregon Health & Science University, 3181 South West Sam Jackson Park Road, Portland, Oregon 97239, USA [2]
| | | | | |
Collapse
|
81
|
Rickhag M, Hansen FH, Sørensen G, Strandfelt KN, Andresen B, Gotfryd K, Madsen KL, Vestergaard-Klewe I, Ammendrup-Johnsen I, Eriksen J, Newman AH, Füchtbauer EM, Gomeza J, Woldbye DPD, Wörtwein G, Gether U. A C-terminal PDZ domain-binding sequence is required for striatal distribution of the dopamine transporter. Nat Commun 2013; 4:1580. [PMID: 23481388 PMCID: PMC3646413 DOI: 10.1038/ncomms2568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 01/31/2013] [Indexed: 01/27/2023] Open
Abstract
The dopamine transporter (DAT) mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling DAT levels in striatal nerve terminals remain poorly understood. DAT contains a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different DAT knock-in mice with disrupted PDZ-binding motifs (DAT-AAA and DAT+Ala) are characterized by dramatic loss of DAT expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from DAT-AAA mice, we find markedly reduced DAT surface levels and evidence for enhanced constitutive internalization. In DAT-AAA neurons, but not in wild type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ domain interactions are critical for synaptic distribution of DAT in vivo and thereby for proper maintenance of dopamine homeostasis.
Collapse
Affiliation(s)
- Mattias Rickhag
- Molecular Neuropharmacology Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Shirey-Rice JK, Klar R, Fentress HM, Redmon SN, Sabb TR, Krueger JJ, Wallace NM, Appalsamy M, Finney C, Lonce S, Diedrich A, Hahn MK. Norepinephrine transporter variant A457P knock-in mice display key features of human postural orthostatic tachycardia syndrome. Dis Model Mech 2013; 6:1001-11. [PMID: 23580201 PMCID: PMC3701219 DOI: 10.1242/dmm.012203] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Postural orthostatic tachycardia syndrome (POTS) is a common autonomic disorder of largely unknown etiology that presents with sustained tachycardia on standing, syncope and elevated norepinephrine spillover. Some individuals with POTS experience anxiety, depression and cognitive dysfunction. Previously, we identified a mutation, A457P, in the norepinephrine (NE; also known as noradrenaline) transporter (NET; encoded by SLC6A2) in POTS patients. NET is expressed at presynaptic sites in NE neurons and plays a crucial role in regulating NE signaling and homeostasis through NE reuptake into noradrenergic nerve terminals. Our in vitro studies demonstrate that A457P reduces both NET surface trafficking and NE transport and exerts a dominant-negative impact on wild-type NET proteins. Here we report the generation and characterization of NET A457P mice, demonstrating the ability of A457P to drive the POTS phenotype and behaviors that are consistent with reported comorbidities. Mice carrying one A457P allele (NET(+/P)) exhibited reduced brain and sympathetic NE transport levels compared with wild-type (NET(+/+)) mice, whereas transport activity in mice carrying two A457P alleles (NET(P/P)) was nearly abolished. NET(+/P) and NET(P/P) mice exhibited elevations in plasma and urine NE levels, reduced 3,4-dihydroxyphenylglycol (DHPG), and reduced DHPG:NE ratios, consistent with a decrease in sympathetic nerve terminal NE reuptake. Radiotelemetry in unanesthetized mice revealed tachycardia in NET(+/P) mice without a change in blood pressure or baroreceptor sensitivity, consistent with studies of human NET A457P carriers. NET(+/P) mice also demonstrated behavioral changes consistent with CNS NET dysfunction. Our findings support that NET dysfunction is sufficient to produce a POTS phenotype and introduces the first genetic model suitable for more detailed mechanistic studies of the disorder and its comorbidities.
Collapse
Affiliation(s)
- Jana K Shirey-Rice
- Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Garcia-Olivares J, Torres-Salazar D, Owens WA, Baust T, Siderovski DP, Amara SG, Zhu J, Daws LC, Torres GE. Inhibition of dopamine transporter activity by G protein βγ subunits. PLoS One 2013; 8:e59788. [PMID: 23555781 PMCID: PMC3608556 DOI: 10.1371/journal.pone.0059788] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 02/18/2013] [Indexed: 12/15/2022] Open
Abstract
Uptake through the Dopamine Transporter (DAT) is the primary mechanism of terminating dopamine signaling within the brain, thus playing an essential role in neuronal homeostasis. Deregulation of DAT function has been linked to several neurological and psychiatric disorders including ADHD, schizophrenia, Parkinson’s disease, and drug addiction. Over the last 15 years, several studies have revealed a plethora of mechanisms influencing the activity and cellular distribution of DAT; suggesting that fine-tuning of dopamine homeostasis occurs via an elaborate interplay of multiple pathways. Here, we show for the first time that the βγ subunits of G proteins regulate DAT activity. In heterologous cells and brain tissue, a physical association between Gβγ subunits and DAT was demonstrated by co-immunoprecipitation. Furthermore, in vitro pull-down assays using purified proteins established that this association occurs via a direct interaction between the intracellular carboxy-terminus of DAT and Gβγ. Functional assays performed in the presence of the non-hydrolyzable GTP analog GTP-γ-S, Gβγ subunit overexpression, or the Gβγ activator mSIRK all resulted in rapid inhibition of DAT activity in heterologous systems. Gβγ activation by mSIRK also inhibited dopamine uptake in brain synaptosomes and dopamine clearance from mouse striatum as measured by high-speed chronoamperometry in vivo. Gβγ subunits are intracellular signaling molecules that regulate a multitude of physiological processes through interactions with enzymes and ion channels. Our findings add neurotransmitter transporters to the growing list of molecules regulated by G-proteins and suggest a novel role for Gβγ signaling in the control of dopamine homeostasis.
Collapse
Affiliation(s)
- Jennie Garcia-Olivares
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Delany Torres-Salazar
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William A. Owens
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Tracy Baust
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - David P. Siderovski
- Department of Pharmacology and UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Susan G. Amara
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jun Zhu
- Department of Pharmaceutical and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, South Carolina, United States of America
| | - Lynette C. Daws
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
84
|
Cone JJ, Chartoff EH, Potter DN, Ebner SR, Roitman MF. Prolonged high fat diet reduces dopamine reuptake without altering DAT gene expression. PLoS One 2013; 8:e58251. [PMID: 23516454 PMCID: PMC3596409 DOI: 10.1371/journal.pone.0058251] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/05/2013] [Indexed: 02/02/2023] Open
Abstract
The development of diet-induced obesity (DIO) can potently alter multiple aspects of dopamine signaling, including dopamine transporter (DAT) expression and dopamine reuptake. However, the time-course of diet-induced changes in DAT expression and function and whether such changes are dependent upon the development of DIO remains unresolved. Here, we fed rats a high (HFD) or low (LFD) fat diet for 2 or 6 weeks. Following diet exposure, rats were anesthetized with urethane and striatal DAT function was assessed by electrically stimulating the dopamine cell bodies in the ventral tegmental area (VTA) and recording resultant changes in dopamine concentration in the ventral striatum using fast-scan cyclic voltammetry. We also quantified the effect of HFD on membrane associated DAT in striatal cell fractions from a separate group of rats following exposure to the same diet protocol. Notably, none of our treatment groups differed in body weight. We found a deficit in the rate of dopamine reuptake in HFD rats relative to LFD rats after 6 but not 2 weeks of diet exposure. Additionally, the increase in evoked dopamine following a pharmacological challenge of cocaine was significantly attenuated in HFD relative to LFD rats. Western blot analysis revealed that there was no effect of diet on total DAT protein. However, 6 weeks of HFD exposure significantly reduced the 50 kDa DAT isoform in a synaptosomal membrane-associated fraction, but not in a fraction associated with recycling endosomes. Our data provide further evidence for diet-induced alterations in dopamine reuptake independent of changes in DAT production and demonstrates that such changes can manifest without the development of DIO.
Collapse
Affiliation(s)
- Jackson J. Cone
- Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Elena H. Chartoff
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - David N. Potter
- Dept. of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, Massachusetts, United States of America
| | - Stephanie R. Ebner
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
85
|
McIntosh S, Howell L, Hemby SE. Dopaminergic dysregulation in prefrontal cortex of rhesus monkeys following cocaine self-administration. Front Psychiatry 2013; 4:88. [PMID: 23970867 PMCID: PMC3748374 DOI: 10.3389/fpsyt.2013.00088] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/29/2013] [Indexed: 01/20/2023] Open
Abstract
Chronic cocaine administration regulates the expression of several proteins related to dopaminergic signaling and synaptic function in the mesocorticolimbic pathway, including the prefrontal cortex. Functional abnormalities in the prefrontal cortex are hypothesized to be due in part to the expression of proteins involved in dopamine signaling and plasticity. Adult male rhesus monkeys self-administered cocaine (i.v.) under limited (n = 4) and extended access conditions (n = 6). The abundance of surrogate markers of dopamine signaling and plasticity in the dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), and anterior cingulate cortex (ACC) were examined: glycosylated and non-glycosylated forms of the dopamine transporter (efficiency of dopamine transport), tyrosine hydroxylase (TH; marker of dopamine synthesis) and phosphorylated TH at Serine 30 and 40 (markers of enzyme activity), extracellular signal-regulated kinase 1 and 2 (ERK1 and ERK 2), and phosphorylated ERK1 and ERK2 (phosphorylates TH Serine 31; markers of synaptic plasticity), and markers of synaptic integrity, spinophilin and post-synaptic density protein 95 (roles in dopamine signaling and response to cocaine). Extended cocaine access increased non-glycosylated and glycosylated DAT in DLPFC and OFC. While no differences in TH expression were observed between groups for any of the regions, extended access induced significant elevations in pTH(Ser31) in all regions. In addition, a slight but significant reduction in phosphorylated pTH(Ser40) was found in the DLPFC. Phosphorylated ERK2 was increased in all regions; however, pERK1 was decreased in ACC and OFC but increased in DLPFC. PSD-95 was increased in the OFC but not in DLPFC or ACC. Furthermore, extended cocaine self-administration elicited significant increases in spinophilin protein expression in all regions. Results from the study provide insight into the biochemical alterations occurring in primate prefrontal cortex.
Collapse
Affiliation(s)
- Scot McIntosh
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine , Winston-Salem, NC , USA ; Center for Neurobiology of Addiction Treatment, Wake Forest University School of Medicine , Winston-Salem, NC , USA
| | | | | |
Collapse
|
86
|
Espana RA, Jones SR. Presynaptic dopamine modulation by stimulant self-administration. Front Biosci (Schol Ed) 2013; 5:261-76. [PMID: 23277050 DOI: 10.2741/s371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mesolimbic dopamine system is an essential participant in the initiation and modulation of various forms of goal-directed behavior, including drug reinforcement and addiction processes. Dopamine neurotransmission is increased by acute administration of all drugs of abuse, including the stimulants cocaine and amphetamine. Chronic exposure to these drugs via voluntary self-administration provides a model of stimulant abuse that is useful in evaluating potential behavioral and neurochemical adaptations that occur during addiction. This review describes commonly used methodologies to measure dopamine and baseline parameters of presynaptic dopamine regulation, including exocytotic release and reuptake through the dopamine transporter in the nucleus accumbens core, as well as dramatic adaptations in dopamine neurotransmission and drug sensitivity that occur with acute non-contingent and chronic, contingent self-administration of cocaine and amphetamine.
Collapse
Affiliation(s)
- Rodrigo A Espana
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | | |
Collapse
|
87
|
Attention deficit/hyperactivity disorder-derived coding variation in the dopamine transporter disrupts microdomain targeting and trafficking regulation. J Neurosci 2012; 32:5385-97. [PMID: 22514303 DOI: 10.1523/jneurosci.6033-11.2012] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Attention deficit/hyperactivity disorder (ADHD) is the most commonly diagnosed disorder of school-age children. Although genetic and brain-imaging studies suggest a contribution of altered dopamine (DA) signaling in ADHD, evidence of signaling perturbations contributing to risk is largely circumstantial. The presynaptic, cocaine- and amphetamine (AMPH)-sensitive DA transporter (DAT) constrains DA availability at presynaptic and postsynaptic receptors following vesicular release and is targeted by the most commonly prescribed ADHD therapeutics. Using polymorphism discovery approaches with an ADHD cohort, we identified a hDAT (human DAT) coding variant, R615C, located in the distal C terminus of the transporter, a region previously implicated in constitutive and regulated transporter trafficking. Here, we demonstrate that, whereas wild-type DAT proteins traffic in a highly regulated manner, DAT 615C proteins recycle constitutively and demonstrate insensitivity to the endocytic effects of AMPH and PKC (protein kinase C) activation. The disrupted regulation of DAT 615C parallels a redistribution of the transporter variant away from GM1 ganglioside- and flotillin1-enriched membranes, and is accompanied by altered CaMKII (calcium/calmodulin-dependent protein kinase II) and flotillin-1 interactions. Using C-terminal peptides derived from wild-type DAT and the R615C variant, we establish that the DAT 615C C terminus can act dominantly to preclude AMPH regulation of wild-type DAT. Mutagenesis of DAT C-terminal sequences suggests that phosphorylation of T613 may be important in sorting DAT between constitutive and regulated pathways. Together, our studies support a coupling of DAT microdomain localization with transporter regulation and provide evidence of perturbed DAT activity and DA signaling as a risk determinant for ADHD.
Collapse
|
88
|
Freyaldenhoven S, Li Y, Kocabas AM, Ziu E, Ucer S, Ramanagoudr-Bhojappa R, Miller GP, Kilic F. The role of ERp44 in maturation of serotonin transporter protein. J Biol Chem 2012; 287:17801-17811. [PMID: 22451649 DOI: 10.1074/jbc.m112.345058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.
Collapse
Affiliation(s)
- Samuel Freyaldenhoven
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Yicong Li
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Arif M Kocabas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Enrit Ziu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Serra Ucer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Raman Ramanagoudr-Bhojappa
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Grover P Miller
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Fusun Kilic
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205.
| |
Collapse
|
89
|
Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, Azabdaftari G, Nakaso K, Yan Z, Feng J. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun 2012; 3:668. [PMID: 22314364 DOI: 10.1038/ncomms1669] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 01/09/2012] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) is defined by the degeneration of nigral dopaminergic (DA) neurons and can be caused by monogenic mutations of genes such as parkin. The lack of phenotype in parkin knockout mice suggests that human nigral DA neurons have unique vulnerabilities. Here we generate induced pluripotent stem cells from normal subjects and PD patients with parkin mutations. We demonstrate that loss of parkin in human midbrain DA neurons greatly increases the transcription of monoamine oxidases and oxidative stress, significantly reduces DA uptake and increases spontaneous DA release. Lentiviral expression of parkin, but not its PD-linked mutant, rescues these phenotypes. The results suggest that parkin controls dopamine utilization in human midbrain DA neurons by enhancing the precision of DA neurotransmission and suppressing dopamine oxidation. Thus, the study provides novel targets and a physiologically relevant screening platform for disease-modifying therapies of PD.
Collapse
Affiliation(s)
- Houbo Jiang
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Blakely RD, Edwards RH. Vesicular and plasma membrane transporters for neurotransmitters. Cold Spring Harb Perspect Biol 2012; 4:a005595. [PMID: 22199021 PMCID: PMC3281572 DOI: 10.1101/cshperspect.a005595] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The regulated exocytosis that mediates chemical signaling at synapses requires mechanisms to coordinate the immediate response to stimulation with the recycling needed to sustain release. Two general classes of transporter contribute to release, one located on synaptic vesicles that loads them with transmitter, and a second at the plasma membrane that both terminates signaling and serves to recycle transmitter for subsequent rounds of release. Originally identified as the target of psychoactive drugs, these transport systems have important roles in transmitter release, but we are only beginning to understand their contribution to synaptic transmission, plasticity, behavior, and disease. Recent work has started to provide a structural basis for their activity, to characterize their trafficking and potential for regulation. The results indicate that far from the passive target of psychoactive drugs, neurotransmitter transporters undergo regulation that contributes to synaptic plasticity.
Collapse
Affiliation(s)
- Randy D Blakely
- Department of Pharmacology and Psychiatry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8548, USA
| | | |
Collapse
|
91
|
Abstract
AbstractThe development of effective therapeutic interventions for neurodegeneration requires a better understanding of the early events that precede neuronal loss. Recent work in various disease models has begun to emphasize the significance of presynaptic dysfunction as an early event that occurs before manifestation of neurological disorders. Dysregulation of dopamine (DA) homeostasis is implicated in neurodegenerative diseases, drug addiction, and neuropsychiatric disorders. The neuronal plasma membrane dopamine transporter (DAT) is essential for the maintenance of DA homeostasis in the brain. α-synuclein is a 140-amino acid protein that forms a stable complex with DAT and is linked to the pathogenesis of neurodegenerative disease. In this review we will examine the prevailing hypotheses for α-synuclein-regulation of DAT biology.
Collapse
|
92
|
Sager JJ, Torres GE. Proteins interacting with monoamine transporters: current state and future challenges. Biochemistry 2011; 50:7295-310. [PMID: 21797260 DOI: 10.1021/bi200405c] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Plasma membrane and vesicular transporters for the biogenic amines, dopamine, norepinephrine, and serotonin, represent a group of proteins that play a crucial role in the regulation of neurotransmission. Clinically, mono amine transporters are the primary targets for the actions of many therapeutic agents used to treat mood disorders, as well as the site of action for highly addictive psychostimulants such as cocaine, amphetamine, methamphetamine, and 3,4-methylenedioxymethamphetamine. Over the past decade, the use of approaches such as yeast two-hybrid and proteomics has identified a multitude of transporter interacting proteins, suggesting that the function and regulation of these transporters are more complex than previously anticipated. With the increasing number of interacting proteins, the rules dictating transporter synthesis, assembly, targeting, trafficking, and function are beginning to be deciphered. Although many of these protein interactions have yet to be fully characterized, current knowledge is beginning to shed light on novel transporter mechanisms involved in monoamine homeostasis, the molecular actions of psychostimulants, and potential disease mechanisms. While future studies resolving the spatial and temporal resolution of these, and yet unknown, interactions will be needed, the realization that monoamine transporters do not work alone opens the path to a plethora of possible pharmacological interventions.
Collapse
Affiliation(s)
- Jonathan J Sager
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, United States
| | | |
Collapse
|
93
|
Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U. SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 2011; 63:585-640. [PMID: 21752877 DOI: 10.1124/pr.108.000869] [Citation(s) in RCA: 608] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The neurotransmitter transporters (NTTs) belonging to the solute carrier 6 (SLC6) gene family (also referred to as the neurotransmitter-sodium-symporter family or Na(+)/Cl(-)-dependent transporters) comprise a group of nine sodium- and chloride-dependent plasma membrane transporters for the monoamine neurotransmitters serotonin (5-hydroxytryptamine), dopamine, and norepinephrine, and the amino acid neurotransmitters GABA and glycine. The SLC6 NTTs are widely expressed in the mammalian brain and play an essential role in regulating neurotransmitter signaling and homeostasis by mediating uptake of released neurotransmitters from the extracellular space into neurons and glial cells. The transporters are targets for a wide range of therapeutic drugs used in treatment of psychiatric diseases, including major depression, anxiety disorders, attention deficit hyperactivity disorder and epilepsy. Furthermore, psychostimulants such as cocaine and amphetamines have the SLC6 NTTs as primary targets. Beginning with the determination of a high-resolution structure of a prokaryotic homolog of the mammalian SLC6 transporters in 2005, the understanding of the molecular structure, function, and pharmacology of these proteins has advanced rapidly. Furthermore, intensive efforts have been directed toward understanding the molecular and cellular mechanisms involved in regulation of the activity of this important class of transporters, leading to new methodological developments and important insights. This review provides an update of these advances and their implications for the current understanding of the SLC6 NTTs.
Collapse
Affiliation(s)
- Anders S Kristensen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Sucic S, El-Kasaby A, Kudlacek O, Sarker S, Sitte HH, Marin P, Freissmuth M. The serotonin transporter is an exclusive client of the coat protein complex II (COPII) component SEC24C. J Biol Chem 2011; 286:16482-90. [PMID: 21454670 PMCID: PMC3091253 DOI: 10.1074/jbc.m111.230037] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transporters for serotonin (SERT), dopamine, and noradrenaline have a conserved hydrophobic core but divergent N and C termini. The C terminus harbors the binding site for the coat protein complex II (COPII) cargo-binding protein SEC24. Here we explored which SEC24 isoform was required for export of SERT from the endoplasmic reticulum (ER). Three lines of evidence argue that SERT can only exit the ER by recruiting SEC24C: (i) Mass spectrometry showed that a peptide corresponding to the C terminus of SERT recruited SEC24C-containing COPII complexes from mouse brain lysates. (ii) Depletion of individual SEC24 isoforms by siRNAs revealed that SERT was trapped in the ER only if SEC24C was down-regulated, in both, cells that expressed SERT endogenously or after transfection. The combination of all siRNAs was not more effective than that directed against SEC24C. A SERT mutant in which the SEC24C-binding motif ((607)RI(608)) was replaced by alanine was insensitive to down-regulation of SEC24C levels. (iii) Overexpression of a SEC24C variant with a mutation in the candidate cargo-binding motif (SEC24C-D796V/D797N) but not of the corresponding mutant SEC24D-D733V/D734N reduced SERT surface levels. In contrast, noradrenaline and dopamine transporters and the more distantly related GABA transporter 1 relied on SEC24D for ER export. These observations demonstrate that closely related transporters are exclusive client cargo proteins for different SEC24 isoforms. The short promoter polymorphism results in reduced SERT cell surface levels and renders affected individuals more susceptible to depression. By inference, variations in the Sec24C gene may also affect SERT cell surface levels and thus be linked to mood disorders.
Collapse
Affiliation(s)
- Sonja Sucic
- Institute of Pharmacology, Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
95
|
Lin Z, Canales JJ, Björgvinsson T, Thomsen MM, Qu H, Liu QR, Torres GE, Caine SB. Monoamine transporters: vulnerable and vital doorkeepers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 98:1-46. [PMID: 21199769 PMCID: PMC3321928 DOI: 10.1016/b978-0-12-385506-0.00001-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transporters of dopamine, serotonin, and norepinephrine have been empirically used as medication targets for several mental illnesses in the last decades. These protein-targeted medications are effective only for subpopulations of patients with transporter-related brain disorders. Since the cDNA clonings in early 1990s, molecular studies of these transporters have revealed a wealth of information about the transporters' structure-activity relationship (SAR), neuropharmacology, cell biology, biochemistry, pharmacogenetics, and the diseases related to the human genes encoding these transporters among related regulators. Such new information creates a unique opportunity to develop transporter-specific medications based on SAR, mRNA, DNA, and perhaps transporter trafficking regulation for a number of highly relevant diseases including substance abuse, depression, schizophrenia, and Parkinson's disease.
Collapse
Affiliation(s)
- Zhicheng Lin
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Juan J. Canales
- Department of Psychology, Behavioural Neuroscience, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Thröstur Björgvinsson
- Behavioral Health Partial Hospital and Psychology Internship Programs, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - Morgane M. Thomsen
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| | - Hong Qu
- Center for Bioinformatics, National Laboratory of Protein Engineering and Plant Genetic Engineering, College of Life Sciences, Peking University. Beijing, 100871 China
| | - Qing-Rong Liu
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Gonzalo E. Torres
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - S. Barak Caine
- Department of Psychiatry, Harvard Medical School and Division of Alcohol and Drug Abuse, McLean Hospital, Belmont, MA 02478, USA
| |
Collapse
|
96
|
Hadjiconstantinou M, Duchemin AM, Zhang H, Neff NH. Enhanced dopamine transporter function in striatum during nicotine withdrawal. Synapse 2010; 65:91-8. [DOI: 10.1002/syn.20820] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
97
|
The role of otx2 in adult mesencephalic-diencephalic dopaminergic neurons. Mol Neurobiol 2010; 43:107-13. [PMID: 21086067 DOI: 10.1007/s12035-010-8148-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 10/20/2010] [Indexed: 12/13/2022]
Abstract
Mesencephalic and diencephalic dopaminergic (mdDA) progenitors generate two major groups of neurons corresponding to the A9 neurons of the substantia nigra pars compacta (SNpc) and the A10 neurons of the ventral tegmental area (VTA). MdDA neurons control motor, sensorimotor and motivated behaviour and their degeneration or abnormal functioning is associated to Parkinson's disease and psychiatric disorders. Although relevant advances have been made, the molecular basis controlling identity, survival and vulnerability to neurodegeneration of SNpc and VTA neurons remains poorly understood. Here, we will review recent findings on the role exerted by the transcription factor Otx2 in adult mdDA neurons. Otx2 expression is restricted to a relevant fraction of VTA neurons and absent in the SNpc. In particular, Otx2 is prevalently excluded from neurons of the dorsal-lateral VTA, which expressed Girk2 and high level of the dopamine transporter (Dat). Loss and gain of function mouse models revealed that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of the dorsal-lateral VTA such as Girk2 and Dat expression as well as vulnerability to the parkinsonian MPTP toxin. Furthermore, when ectopically expressed in the SNpc, Otx2 suppresses Dat expression and confers efficient neuroprotection to MPTP toxicity by suppressing efficient DA uptake.
Collapse
|
98
|
Otx2 controls neuron subtype identity in ventral tegmental area and antagonizes vulnerability to MPTP. Nat Neurosci 2010; 13:1481-8. [PMID: 21057506 DOI: 10.1038/nn.2661] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/09/2010] [Indexed: 01/27/2023]
Abstract
Mesencephalic-diencephalic dopaminergic neurons control locomotor activity and emotion and are affected in neurodegenerative and psychiatric diseases. The homeoprotein Otx2 is restricted to ventral tegmental area (VTA) neurons that are prevalently complementary to those expressing Girk2 and glycosylated active form of the dopamine transporter (Dat). High levels of glycosylated Dat mark neurons with efficient dopamine uptake and pronounced vulnerability to Parkinsonian degeneration. We found that Otx2 controls neuron subtype identity by antagonizing molecular and functional features of dorsal-lateral VTA, such as Girk2 and Dat expression. Otx2 limited the number of VTA neurons with efficient dopamine uptake and conferred resistance to the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-HCl (MPTP) neurotoxin. Ectopic Otx2 expression also provided neurons of the substantia nigra with efficient neuroprotection to MPTP. These findings indicate that Otx2 is required to specify neuron subtype identity in VTA and may antagonize vulnerability to the Parkinsonian toxin MPTP.
Collapse
|
99
|
Watson CS, Alyea RA, Cunningham KA, Jeng YJ. Estrogens of multiple classes and their role in mental health disease mechanisms. Int J Womens Health 2010; 2:153-66. [PMID: 21072308 PMCID: PMC2971739 DOI: 10.2147/ijwh.s6907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.
Collapse
|
100
|
Sogawa C, Mitsuhata C, Kumagai-Morioka K, Sogawa N, Ohyama K, Morita K, Kozai K, Dohi T, Kitayama S. Expression and function of variants of human catecholamine transporters lacking the fifth transmembrane region encoded by exon 6. PLoS One 2010; 5:e11945. [PMID: 20700532 PMCID: PMC2916826 DOI: 10.1371/journal.pone.0011945] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 07/11/2010] [Indexed: 11/30/2022] Open
Abstract
Background The transporters for dopamine (DAT) and norepinephrine (NET) are members of the Na+- and Cl−-dependent neurotransmitter transporter family SLC6. There is a line of evidence that alternative splicing results in several isoforms of neurotransmitter transporters including NET. However, its relevance to the physiology and pathology of the neurotransmitter reuptake system has not been fully elucidated. Methodology/Principal Findings We found novel isoforms of human DAT and NET produced by alternative splicing in human blood cells (DAT) and placenta (NET), both of which lacked the region encoded by exon 6. RT-PCR analyses showed a difference in expression between the full length (FL) and truncated isoforms in the brain and peripheral tissues, suggesting tissue-specific alternative splicing. Heterologous expression of the FL but not truncated isoforms of DAT and NET in COS-7 cells revealed transport activity. However, immunocytochemistry with confocal microscopy and a cell surface biotinylation assay demonstrated that the truncated as well as FL isoform was expressed at least in part in the plasma membrane at the cell surface, although the truncated DAT was distributed to the cell surface slower than FL DAT. A specific antibody to the C-terminus of DAT labeled the variant but not FL DAT, when cells were not treated with Triton for permeabilization, suggesting the C-terminus of the variant to be located extracellulary. Co-expression of the FL isoform with the truncated isoform in COS-7 cells resulted in a reduced uptake of substrates, indicating a dominant negative effect of the variant. Furthermore, an immunoprecipitation assay revealed physical interaction between the FL and truncated isoforms. Conclusions/Significance The unique expression and function and the proposed membrane topology of the variants suggest the importance of isoforms of catecholamine transporters in monoaminergic signaling in the brain and peripheral tissues.
Collapse
Affiliation(s)
- Chiharu Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Chieko Mitsuhata
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kei Kumagai-Morioka
- Department of Dental Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Norio Sogawa
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kazumi Ohyama
- RI Research Center, Okayama University Dental School, Okayama, Japan
| | - Katsuya Morita
- Department of Dental Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Katsuyuki Kozai
- Department of Pediatric Dentistry, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Toshihiro Dohi
- Department of Dental Pharmacology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Shigeo Kitayama
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| |
Collapse
|