51
|
Tsuboi K, Uyama T, Okamoto Y, Ueda N. Endocannabinoids and related N-acylethanolamines: biological activities and metabolism. Inflamm Regen 2018; 38:28. [PMID: 30288203 PMCID: PMC6166290 DOI: 10.1186/s41232-018-0086-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 09/05/2018] [Indexed: 12/24/2022] Open
Abstract
The plant Cannabis sativa contains cannabinoids represented by Δ9-tetrahydrocannabinol, which exert psychoactivity and immunomodulation through cannabinoid CB1 and CB2 receptors, respectively, in animal tissues. Arachidonoylethanolamide (also referred to as anandamide) and 2-arachidonoylglycerol (2-AG) are well known as two major endogenous agonists of these receptors (termed "endocannabinoids") and show various cannabimimetic bioactivities. However, only 2-AG is a full agonist for CB1 and CB2 and mediates retrograde signals at the synapse, strongly suggesting that 2-AG is physiologically more important than anandamide. The metabolic pathways of these two endocannabinoids are completely different. 2-AG is mostly produced from inositol phospholipids via diacylglycerol by phospholipase C and diacylglycerol lipase and then degraded by monoacylglycerol lipase. On the other hand, anandamide is concomitantly produced with larger amounts of other N-acylethanolamines via N-acyl-phosphatidylethanolamines (NAPEs). Although this pathway consists of calcium-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D, recent studies revealed the involvement of several new enzymes. Quantitatively major N-acylethanolamines include palmitoylethanolamide and oleoylethanolamide, which do not bind to cannabinoid receptors but exert anti-inflammatory, analgesic, and anorexic effects through receptors such as peroxisome proliferator-activated receptor α. The biosynthesis of these non-endocannabinoid N-acylethanolamines rather than anandamide may be the primary significance of this pathway. Here, we provide an overview of the biological activities and metabolisms of endocannabinoids (2-AG and anandamide) and non-endocannabinoid N-acylethanolamines.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan.,2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Toru Uyama
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| | - Yasuo Okamoto
- 2Department of Pharmacology, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192 Japan
| | - Natsuo Ueda
- 1Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793 Japan
| |
Collapse
|
52
|
Janssen APA, van der Vliet D, Bakker AT, Jiang M, Grimm SH, Campiani G, Butini S, van der Stelt M. Development of a Multiplexed Activity-Based Protein Profiling Assay to Evaluate Activity of Endocannabinoid Hydrolase Inhibitors. ACS Chem Biol 2018; 13:2406-2413. [PMID: 30199617 PMCID: PMC6154214 DOI: 10.1021/acschembio.8b00534] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Endocannabinoids,
an important class of signaling lipids involved
in health and disease, are predominantly synthesized and metabolized
by enzymes of the serine hydrolase superfamily. Activity-based protein
profiling (ABPP) using fluorescent probes, such as fluorophosphonate
(FP)-TAMRA and β-lactone-based MB064, enables drug discovery
activities for serine hydrolases. FP-TAMRA and MB064 have distinct,
albeit partially overlapping, target profiles but cannot be used in
conjunction due to overlapping excitation/emission spectra. We therefore
synthesized a novel FP-probe with a green BODIPY as a fluorescent
tag and studied its labeling profile in mouse proteomes. Surprisingly,
we found that the reporter tag plays an important role in the binding
potency and selectivity of the probe. A multiplexed ABPP assay was
developed in which a probe cocktail of FP-BODIPY and MB064 visualized
most endocannabinoid serine hydrolases in mouse brain proteomes in
a single experiment. The multiplexed ABPP assay was employed to profile
endocannabinoid hydrolase inhibitor activity and selectivity in the
mouse brain.
Collapse
Affiliation(s)
| | - Daan van der Vliet
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Alexander T. Bakker
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Ming Jiang
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Sebastian H. Grimm
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), NatSynDrugs, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), NatSynDrugs, University of Siena, Siena, Italy
| | - Mario van der Stelt
- Department of Molecular Physiology, LIC, Leiden University, Leiden, The Netherlands
| |
Collapse
|
53
|
Lin L, Metherel AH, Kitson AP, Alashmali SM, Hopperton KE, Trépanier MO, Jones PJ, Bazinet RP. Dietary fatty acids augment tissue levels of n-acylethanolamines in n-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) knockout mice. J Nutr Biochem 2018; 62:134-142. [PMID: 30290332 DOI: 10.1016/j.jnutbio.2018.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 12/18/2022]
Abstract
N-acylethanolamines (NAEs) are lipid signaling mediators, which can be synthesized from dietary fatty acids via n-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) and in turn influence physiological outcomes; however, the roles of NAPE-PLD upon dietary fatty acid modulation are not fully understood. Presently, we examine if NAPE-PLD is necessary to increase NAEs in response to dietary fatty acid manipulation. Post-weaning male wild-type (C57Bl/6), NAPE-PLD (-/+) and NAPE-PLD (-/-) mice received isocaloric fat diets containing either beef tallow, corn oil, canola oil or fish oil (10% wt/wt from fat) for 9 weeks. Brain docosahexaenoic acid (DHA) levels were higher (P<.01) in NAPE-PLD (-/+) (10.01±0.31 μmol/g) and NAPE-PLD (-/-) (10.89±0.61 μmol/g) than wild-type (7.72±0.61 μmol/g) consuming fish oil. In NAPE-PLD (-/-) mice, brain docosahexaenoylethanolamide (DHEA) levels were higher (P<.01) after fish oil feeding suggesting that NAPE-PLD was not necessary for DHEA synthesis. Liver and jejunum arachidonoylethanolamide, 1,2-arachidonoylglycerol and DHEA levels reflected their corresponding fatty acid precursors suggesting that alternate pathways are involved in NAE synthesis. NAPE-PLD (-/-) mice had lower oleoylethanolamide levels in the jejunum and a leaner phenotype compared to wild-type mice. Overall, these results demonstrate that dietary fatty acid can augment tissue NAEs in the absence of NAPE-PLD.
Collapse
Affiliation(s)
- Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Adam H Metherel
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Alex P Kitson
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Shoug M Alashmali
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | | | | | - Peter J Jones
- Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
| |
Collapse
|
54
|
Shin M, Ware TB, Lee HC, Hsu KL. Lipid-metabolizing serine hydrolases in the mammalian central nervous system: endocannabinoids and beyond. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:907-921. [PMID: 30905349 DOI: 10.1016/j.bbalip.2018.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The metabolic serine hydrolases hydrolyze ester, amide, or thioester bonds found in broad small molecule substrates using a conserved activated serine nucleophile. The mammalian central nervous system (CNS) express a diverse repertoire of serine hydrolases that act as (phospho)lipases or lipid amidases to regulate lipid metabolism and signaling vital for normal neurocognitive function and CNS integrity. Advances in genomic DNA sequencing have provided evidence for the role of these lipid-metabolizing serine hydrolases in neurologic, psychiatric, and neurodegenerative disorders. This review briefly summarizes recent progress in understanding the biochemical and (patho)physiological roles of these lipid-metabolizing serine hydrolases in the mammalian CNS with a focus on serine hydrolases involved in the endocannabinoid system. The development and application of specific inhibitors for an individual serine hydrolase, if available, are also described. This article is part of a Special Issue entitled Novel functions of phospholipase A2 Guest Editors: Makoto Murakami and Gerard Lambeau.
Collapse
Affiliation(s)
- Myungsun Shin
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Timothy B Ware
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States
| | - Hyeon-Cheol Lee
- Department of Biochemistry, Juntendo University School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, United States; Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA 22903, United States.
| |
Collapse
|
55
|
Paloczi J, Varga ZV, Hasko G, Pacher P. Neuroprotection in Oxidative Stress-Related Neurodegenerative Diseases: Role of Endocannabinoid System Modulation. Antioxid Redox Signal 2018; 29:75-108. [PMID: 28497982 PMCID: PMC5984569 DOI: 10.1089/ars.2017.7144] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SIGNIFICANCE Redox imbalance may lead to overproduction of reactive oxygen and nitrogen species (ROS/RNS) and subsequent oxidative tissue damage, which is a critical event in the course of neurodegenerative diseases. It is still not fully elucidated, however, whether oxidative stress is the primary trigger or a consequence in the process of neurodegeneration. Recent Advances: Increasing evidence suggests that oxidative stress is involved in the propagation of neuronal injury and consequent inflammatory response, which in concert promote development of pathological alterations characteristic of most common neurodegenerative diseases. CRITICAL ISSUES Accumulating recent evidence also suggests that there is an important interplay between the lipid endocannabinoid system [ECS; comprising the main cannabinoid 1 and 2 receptors (CB1 and CB2), endocannabinoids, and their synthetic and metabolizing enzymes] and various key inflammatory and redox-dependent processes. FUTURE DIRECTIONS Targeting the ECS to modulate redox state-dependent cell death and to decrease consequent or preceding inflammatory response holds therapeutic potential in a multitude of oxidative stress-related acute or chronic neurodegenerative disorders from stroke and traumatic brain injury to Alzheimer's and Parkinson's diseases and multiple sclerosis, just to name a few, which will be discussed in this overview. Antioxid. Redox Signal. 29, 75-108.
Collapse
Affiliation(s)
- Janos Paloczi
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - Zoltan V Varga
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| | - George Hasko
- 2 Department of Surgery, Rutgers New Jersey Medical School , Newark, New Jersey
| | - Pal Pacher
- 1 Laboratory of Cardiovascular Physiology and Tissue Injury (LCPTI), National Institute on Alcohol Abuse and Alcoholism (NIAAA), National Institutes of Health (NIH) , Bethesda, Maryland
| |
Collapse
|
56
|
Kim HY, Spector AA. N-Docosahexaenoylethanolamine: A neurotrophic and neuroprotective metabolite of docosahexaenoic acid. Mol Aspects Med 2018; 64:34-44. [PMID: 29572109 DOI: 10.1016/j.mam.2018.03.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/15/2018] [Accepted: 03/18/2018] [Indexed: 12/11/2022]
Abstract
N-Docosahexaenoylethanolamine (synaptamide) is an endocannabinoid-like metabolite endogenously synthesized from docosahexaenoic acid (DHA, 22:6n-3), the major omega-3 polyunsaturated fatty acid present in the brain. Although its biosynthetic mechanism has yet to be established, there is a closely linked relationship between the levels of synaptamide and its precursor DHA in the brain. Synaptamide at nanomolar concentrations promotes neurogenesis, neurite outgrowth and synaptogenesis in developing neurons. Synaptamide also attenuates the lipopolysaccharide-induced neuroinflammatory response and reduces the deleterious effects of ethanol on neurogenic differentiation of neural stem cells (NSCs). These actions are mediated by a specific target receptor of synaptamide GPR110 (ADGRF1), a G-protein coupled receptor that is highly expressed in NSCs and the brain during development. Synaptamide binding to GPR110 induces cAMP production and phosphorylation of protein kinase A (PKA) and the cAMP response element binding protein (CREB). This signaling pathway leads to the expression of neurogenic and synaptogenic genes and suppresses the expression of proinflammatory genes. The GPR110-dependent cellular effects of synaptamide are recapitulated in animal models, suggesting that synaptamide-derived mechanisms may have translational implications. The synaptamide bioactivity transmitted by newly deorphanized GPR110 provides a novel target for neurodevelopmental and neuroprotective control as well as new insight into mechanisms for DHA's beneficial effects on the central nervous system.
Collapse
Affiliation(s)
- Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States.
| | - Arthur A Spector
- Laboratory of Molecular Signaling, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9410, United States
| |
Collapse
|
57
|
Huang X, Chen Z, Zhou S, Huang P, Zhuo Z, Zeng S, Wang L, Wang Y, Xu C, Tian H. Cassaine diterpenoids from the seeds of Erythrophleum fordii and their cytotoxic activities. Fitoterapia 2018; 127:245-251. [PMID: 29496564 DOI: 10.1016/j.fitote.2018.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 10/17/2022]
Abstract
Six new cassaine diterpenoids (1, 3-7), along with three known ones (2, 8-9) were isolated from the seeds of Erythrophleum fordii. Their structures were elucidated by extensive spectroscopic methods and acid hydrolysis. Compound 2 was tested to be the most potent one and showed more sensitive activities on MCF-7 and A549 cancer cells with IC50 values of 3.66 ± 1.20 and 2.87 ± 0.46 μM, respectively. Furthermore, compound 2 reduced the number of cell colonies significantly in a dose-dependent manner in the colony formation assay and triggered apoptosis of MCF-7 cell.
Collapse
Affiliation(s)
- Xiuyong Huang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zeping Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiwen Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Pengyun Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Zhenjian Zhuo
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China
| | - Sudan Zeng
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Lei Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yong Wang
- School of Stomatology and Medicine, Foshan University, Foshan 528000, China.
| | - Chuanshan Xu
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong 999077, China; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China; Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China.
| | - Haiyan Tian
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
58
|
Schwarz R, Ramer R, Hinz B. Targeting the endocannabinoid system as a potential anticancer approach. Drug Metab Rev 2018; 50:26-53. [PMID: 29390896 DOI: 10.1080/03602532.2018.1428344] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is currently under intense investigation due to the therapeutic potential of cannabinoid-based drugs as treatment options for a broad variety of diseases including cancer. Besides the canonical endocannabinoid system that includes the cannabinoid receptors CB1 and CB2 and the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol, recent investigations suggest that other fatty acid derivatives, receptors, enzymes, and lipid transporters likewise orchestrate this system as components of the endocannabinoid system when defined as an extended signaling network. As such, fatty acids acting at cannabinoid receptors (e.g. 2-arachidonoyl glyceryl ether [noladin ether], N-arachidonoyldopamine) as well as endocannabinoid-like substances that do not elicit cannabinoid receptor activation (e.g. N-palmitoylethanolamine, N-oleoylethanolamine) have raised interest as anticancerogenic substances. Furthermore, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid binding protein family, additional cannabinoid-activated G protein-coupled receptors, members of the transient receptor potential family as well as peroxisome proliferator-activated receptors have been considered as targets of antitumoral cannabinoid activity. Therefore, this review focused on the antitumorigenic effects induced upon modulation of this extended endocannabinoid network.
Collapse
Affiliation(s)
- Rico Schwarz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Robert Ramer
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| | - Burkhard Hinz
- a Institute of Pharmacology and Toxicology , Rostock University Medical Center , Rostock , Germany
| |
Collapse
|
59
|
Inoue M, Tsuboi K, Okamoto Y, Hidaka M, Uyama T, Tsutsumi T, Tanaka T, Ueda N, Tokumura A. Peripheral tissue levels and molecular species compositions of N-acyl-phosphatidylethanolamine and its metabolites in mice lacking N-acyl-phosphatidylethanolamine-specific phospholipase D. J Biochem 2017; 162:449-458. [PMID: 28992041 DOI: 10.1093/jb/mvx054] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/06/2017] [Indexed: 12/14/2022] Open
Abstract
N-acylethanolamines (NAEs), a class of lipid mediators, are produced from N-acyl-phosphatidylethanolamine (NAPE) by several pathways, including the direct release by NAPE-specific phospholipase D (NAPE-PLD) or the multistep pathway via sn-glycero-3-phospho-N-acylethanolamine (Gp-NAE). Using liquid chromatography-tandem mass spectrometry, we compared peripheral tissue levels of NAPE, Gp-NAE and NAE in NAPE-PLD-deficient (NAPE-PLD-/-) and wild type (WT) mice. NAPE-PLD was suggested to play a major role in the NAPE degradation in heart, kidney, and liver, but not in jejunum, because the NAPE levels except jejunum were significantly higher in NAPE-PLD-/- mice than in WT mice. The deletion of NAPE-PLD failed to alter the NAE levels of these tissues, suggesting its limited role in the NAE production. The enzyme assays with tissue homogenates confirmed the presence of NAPE-PLD-independent pathways in these peripheral tissues. Gp-NAE species having an acyl moiety with 22 carbons and 6 double bonds was enriched in these peripheral tissues. As for sn-2 acyl species of NAPE, 18:2-acyl-containing NAPE species were predominant over 18:1-containing species in heart, liver, and jejunum. Our results show that both molecular species composition of NAPE, NAE and Gp-NAE and their dependencies on Napepld are different among the peripheral tissues, suggesting that each tissue has distinct metabolic pathways and these NAE-containing lipids play tissue-specific roles.
Collapse
Affiliation(s)
- Manami Inoue
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Yoko Okamoto
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Mayumi Hidaka
- Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toshihiko Tsutsumi
- Department of Pharmaceutics, Graduate School of Clinical Pharmacy, Kyushu University of Health and Welfare, 1714-1 Yoshinomachi, Nobeoka, Miyazaki 882-8508, Japan
| | - Tamotsu Tanaka
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biomedical Sciences, Tokushima University, 1-78 Shomachi, Tokushima 770-8505, Japan.,Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Yasuda Women's University, 6-13-1 Yasuhigashi, Asaminami-ku, Hiroshima 731-0153, Japan
| |
Collapse
|
60
|
Mammalian enzymes responsible for the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1546-1561. [PMID: 28843504 DOI: 10.1016/j.bbalip.2017.08.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/31/2017] [Accepted: 08/19/2017] [Indexed: 12/15/2022]
Abstract
Bioactive N-acylethanolamines (NAEs) are ethanolamides of long-chain fatty acids, including palmitoylethanolamide, oleoylethanolamide and anandamide. In animal tissues, NAEs are biosynthesized from membrane phospholipids. The classical "transacylation-phosphodiesterase" pathway proceeds via N-acyl-phosphatidylethanolamine (NAPE), which involves the actions of two enzymes, NAPE-generating Ca2+-dependent N-acyltransferase (Ca-NAT) and NAPE-hydrolyzing phospholipase D (NAPE-PLD). Recent identification of Ca-NAT as Ɛ isoform of cytosolic phospholipase A2 enabled the further molecular biological approaches toward this enzyme. In addition, Ca2+-independent NAPE formation was shown to occur by N-acyltransferase activity of a group of proteins named phospholipase A/acyltransferases (PLAAT)-1-5. The analysis of NAPE-PLD-deficient mice confirmed that NAEs can be produced through multi-step pathways bypassing NAPE-PLD. The NAPE-PLD-independent pathways involved three members of the glycerophosphodiesterase (GDE) family (GDE1, GDE4 and GDE7) as well as α/β-hydrolase domain-containing protein (ABHD)4. In this review article, we will focus on recent progress made and latest insights in the enzymes involved in NAE synthesis and their further characterization.
Collapse
|
61
|
Drug-Induced Alterations of Endocannabinoid-Mediated Plasticity in Brain Reward Regions. J Neurosci 2017; 36:10230-10238. [PMID: 27707960 DOI: 10.1523/jneurosci.1712-16.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/25/2016] [Indexed: 12/21/2022] Open
Abstract
The endocannabinoid (eCB) system has emerged as one of the most important mediators of physiological and pathological reward-related synaptic plasticity. eCBs are retrograde messengers that provide feedback inhibition, resulting in the suppression of neurotransmitter release at both excitatory and inhibitory synapses, and they serve a critical role in the spatiotemporal regulation of both short- and long-term synaptic plasticity that supports adaptive learning of reward-motivated behaviors. However, mechanisms of eCB-mediated synaptic plasticity in reward areas of the brain are impaired following exposure to drugs of abuse. Because of this, it is theorized that maladaptive eCB signaling may contribute to the development and maintenance of addiction-related behavior. Here we review various forms of eCB-mediated synaptic plasticity present in regions of the brain involved in reward and reinforcement and explore the potential physiological relevance of maladaptive eCB signaling to addiction vulnerability.
Collapse
|
62
|
Alhouayek M, Bottemanne P, Makriyannis A, Muccioli GG. N -acylethanolamine-hydrolyzing acid amidase and fatty acid amide hydrolase inhibition differentially affect N -acylethanolamine levels and macrophage activation. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:474-484. [DOI: 10.1016/j.bbalip.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 11/16/2022]
|
63
|
Oleic acid-derived oleoylethanolamide: A nutritional science perspective. Prog Lipid Res 2017; 67:1-15. [PMID: 28389247 DOI: 10.1016/j.plipres.2017.04.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 03/17/2017] [Accepted: 04/03/2017] [Indexed: 01/11/2023]
Abstract
The fatty acid ethanolamide oleoylethanolamide (OEA) is an endogenous lipid mediator derived from the monounsaturated fatty acid, oleic acid. OEA is synthesized from membrane glycerophospholipids and is a high-affinity agonist of the nuclear transcription factor peroxisome proliferator-activated receptor α (PPAR-α). Dietary intake of oleic acid elevates circulating levels of OEA in humans by increasing substrate availability for OEA biosynthesis. Numerous clinical studies demonstrate a beneficial relationship between high-oleic acid diets and body composition, with emerging evidence to suggest OEA may mediate this response through modulation of lipid metabolism and energy intake. OEA exposure has been shown to stimulate fatty acid uptake, lipolysis, and β-oxidation, and also promote food intake control. Future research on high-oleic acid diets and body composition is warranted to confirm these outcomes and elucidate the underlying mechanisms by which oleic acid exerts its biological effects. These findings have significant practical implications, as the oleic acid-derived OEA molecule may be a promising therapeutic agent for weight management and obesity treatment.
Collapse
|
64
|
Sousa-Valente J, Varga A, Torres-Perez JV, Jenes A, Wahba J, Mackie K, Cravatt B, Ueda N, Tsuboi K, Santha P, Jancso G, Tailor H, Avelino A, Nagy I. Inflammation of peripheral tissues and injury to peripheral nerves induce differing effects in the expression of the calcium-sensitive N-arachydonoylethanolamine-synthesizing enzyme and related molecules in rat primary sensory neurons. J Comp Neurol 2017; 525:1778-1796. [PMID: 27997038 DOI: 10.1002/cne.24154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/17/2016] [Accepted: 11/06/2016] [Indexed: 11/11/2022]
Abstract
Elevation of intracellular Ca2+ concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca2+ -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- João Sousa-Valente
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Angelika Varga
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.,Department of Physiology, University of Debrecen, Medical and Health Science Center, Debrecen, H-4012, Hungary
| | - Jose Vicente Torres-Perez
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Agnes Jenes
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.,Department of Physiology, University of Debrecen, Medical and Health Science Center, Debrecen, H-4012, Hungary
| | - John Wahba
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomedical Sciences, Indiana University, Bloomington, Indiana, 47405
| | - Benjamin Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, 92037
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, 761-0793, Japan
| | - Peter Santha
- Department of Physiology, University of Szeged, 6720, Szeged, Hungary
| | - Gabor Jancso
- Department of Physiology, University of Szeged, 6720, Szeged, Hungary
| | - Hiren Tailor
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - António Avelino
- Departamento de Biologia Experimental, Faculdade de Medicina do Porto, 4200-450, Porto, Portugal.,I3S Instituto de Investigação e Inovação em Saúde, IBMC Instituto de Biologia Molecular e Celular, 4200-135, Porto, Portugal
| | - Istvan Nagy
- Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| |
Collapse
|
65
|
Marino S, Idris AI. Emerging therapeutic targets in cancer induced bone disease: A focus on the peripheral type 2 cannabinoid receptor. Pharmacol Res 2017; 119:391-403. [PMID: 28274851 DOI: 10.1016/j.phrs.2017.02.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 01/26/2017] [Accepted: 02/27/2017] [Indexed: 12/17/2022]
Abstract
Skeletal complications are a common cause of morbidity in patients with primary bone cancer and bone metastases. The type 2 cannabinoid (Cnr2) receptor is implicated in cancer, bone metabolism and pain perception. Emerging data have uncovered the role of Cnr2 in the regulation of tumour-bone cell interactions and suggest that agents that target Cnr2 in the skeleton have potential efficacy in the reduction of skeletal complications associated with cancer. This review aims to provide an overview of findings relating to the role of Cnr2 receptor in the regulation of skeletal tumour growth, osteolysis and bone pain, and highlights the many unanswered questions and unmet needs. This review argues that development and testing of peripherally-acting, tumour-, Cnr2-selective ligands in preclinical models of metastatic cancer will pave the way for future research that will advance our knowledge about the basic mechanism(s) by which the endocannabinoid system regulate cancer metastasis, stimulate the development of a safer cannabis-based therapy for the treatment of cancer and provide policy makers with powerful tools to assess the science and therapeutic potential of cannabinoid-based therapy. Thus, offering the prospect of identifying selective Cnr2 ligands, as novel, alternative to cannabis herbal extracts for the treatment of advanced cancer patients.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| | - Aymen I Idris
- Department of Oncology and Metabolism, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK.
| |
Collapse
|
66
|
Sanders MA, Zhang H, Mladenovic L, Tseng YY, Granneman JG. Molecular Basis of ABHD5 Lipolysis Activation. Sci Rep 2017; 7:42589. [PMID: 28211464 PMCID: PMC5314347 DOI: 10.1038/srep42589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/11/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-beta hydrolase domain-containing 5 (ABHD5), the defective gene in human Chanarin-Dorfman syndrome, is a highly conserved regulator of adipose triglyceride lipase (ATGL)-mediated lipolysis that plays important roles in metabolism, tumor progression, viral replication, and skin barrier formation. The structural determinants of ABHD5 lipolysis activation, however, are unknown. We performed comparative evolutionary analysis and structural modeling of ABHD5 and ABHD4, a functionally distinct paralog that diverged from ABHD5 ~500 million years ago, to identify determinants of ABHD5 lipolysis activation. Two highly conserved ABHD5 amino acids (R299 and G328) enabled ABHD4 (ABHD4 N303R/S332G) to activate ATGL in Cos7 cells, brown adipocytes, and artificial lipid droplets. The corresponding ABHD5 mutations (ABHD5 R299N and ABHD5 G328S) selectively disrupted lipolysis without affecting ATGL lipid droplet translocation or ABHD5 interactions with perilipin proteins and ABHD5 ligands, demonstrating that ABHD5 lipase activation could be dissociated from its other functions. Structural modeling placed ABHD5 R299/G328 and R303/G332 from gain-of-function ABHD4 in close proximity on the ABHD protein surface, indicating they form part of a novel functional surface required for lipase activation. These data demonstrate distinct ABHD5 functional properties and provide new insights into the functional evolution of ABHD family members and the structural basis of lipase regulation.
Collapse
Affiliation(s)
- Matthew A. Sanders
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Huamei Zhang
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ljiljana Mladenovic
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yan Yuan Tseng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - James G. Granneman
- Center for Integrative Metabolic and Endocrine Research Wayne State University School of Medicine, Detroit, MI 48201, USA
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
67
|
Fonseca BM, Teixeira NA, Correia-da-Silva G. Cannabinoids as Modulators of Cell Death: Clinical Applications and Future Directions. Rev Physiol Biochem Pharmacol 2017; 173:63-88. [PMID: 28425013 DOI: 10.1007/112_2017_3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids are bioactive lipids that modulate various physiological processes through G-protein-coupled receptors (CB1 and CB2) and other putative targets. By sharing the activation of the same receptors, some phytocannabinoids and a multitude of synthetic cannabinoids mimic the effects of endocannabinoids. In recent years, a growing interest has been dedicated to the study of cannabinoids properties for their analgesic, antioxidant, anti-inflammatory and neuroprotective effects. In addition to these well-recognized effects, various studies suggest that cannabinoids may affect cell survival, cell proliferation or cell death. These observations indicate that cannabinoids may play an important role in the regulation of cellular homeostasis and, thus, may contribute to tissue remodelling and cancer treatment. For a long time, the study of cannabinoid receptor signalling has been focused on the classical adenylyl cyclase/cyclic AMP/protein kinase A (PKA) pathway. However, this pathway does not totally explain the wide array of biological responses to cannabinoids. In addition, the diversity of receptors and signalling pathways that endocannabinoids modulate offers an interesting opportunity for the development of specific molecules to disturb selectively the endogenous system. Moreover, emerging evidences suggest that cannabinoids ability to limit cell proliferation and to induce tumour-selective cell death may offer a novel strategy in cancer treatment. This review describes the main properties of cannabinoids in cell death and attempts to clarify the different pathways triggered by these compounds that may help to understand the complexity of respective molecular mechanisms and explore the potential clinical benefit of cannabinoids use in cancer therapies.
Collapse
Affiliation(s)
- B M Fonseca
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal.
| | - N A Teixeira
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| | - G Correia-da-Silva
- UCIBIO, REQUIMTE, Laboratório de Bioquímica, Departamento Ciências Biológicas, Faculdade de Farmácia da Universidade do Porto, Porto, Portugal
| |
Collapse
|
68
|
Rahman IAS, Tsuboi K, Hussain Z, Yamashita R, Okamoto Y, Uyama T, Yamazaki N, Tanaka T, Tokumura A, Ueda N. Calcium-dependent generation of N-acylethanolamines and lysophosphatidic acids by glycerophosphodiesterase GDE7. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1881-1892. [DOI: 10.1016/j.bbalip.2016.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/23/2016] [Accepted: 09/10/2016] [Indexed: 01/26/2023]
|
69
|
Sex differences in alcohol consumption and alterations in nucleus accumbens endocannabinoid mRNA in alcohol-dependent rats. Neuroscience 2016; 335:195-206. [DOI: 10.1016/j.neuroscience.2016.08.032] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 11/22/2022]
|
70
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
71
|
Mecha M, Carrillo-Salinas F, Feliú A, Mestre L, Guaza C. Microglia activation states and cannabinoid system: Therapeutic implications. Pharmacol Ther 2016; 166:40-55. [DOI: 10.1016/j.pharmthera.2016.06.011] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
|
72
|
Molecular characterization of human ABHD2 as TAG lipase and ester hydrolase. Biosci Rep 2016; 36:BSR20160033. [PMID: 27247428 PMCID: PMC4945992 DOI: 10.1042/bsr20160033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/31/2016] [Indexed: 01/12/2023] Open
Abstract
Alterations in lipid metabolism have been progressively documented as a characteristic property of cancer cells. Though, human ABHD2 gene was found to be highly expressed in breast and lung cancers, its biochemical functionality is yet uncharacterized. In the present study we report, human ABHD2 as triacylglycerol (TAG) lipase along with ester hydrolysing capacity. Sequence analysis of ABHD2 revealed the presence of conserved motifs G205XS207XG209 and H120XXXXD125. Phylogenetic analysis showed homology to known lipases, Drosophila melanogaster CG3488. To evaluate the biochemical role, recombinant ABHD2 was expressed in Saccharomyces cerevisiae using pYES2/CT vector and His-tag purified protein showed TAG lipase activity. Ester hydrolase activity was confirmed with pNP acetate, butyrate and palmitate substrates respectively. Further, the ABHD2 homology model was built and the modelled protein was analysed based on the RMSD and root mean square fluctuation (RMSF) of the 100 ns simulation trajectory. Docking the acetate, butyrate and palmitate ligands with the model confirmed covalent binding of ligands with the Ser207 of the GXSXG motif. The model was validated with a mutant ABHD2 developed with alanine in place of Ser207 and the docking studies revealed loss of interaction between selected ligands and the mutant protein active site. Based on the above results, human ABHD2 was identified as a novel TAG lipase and ester hydrolase.
Collapse
|
73
|
Ogura Y, Parsons WH, Kamat SS, Cravatt BF. A calcium-dependent acyltransferase that produces N-acyl phosphatidylethanolamines. Nat Chem Biol 2016; 12:669-71. [PMID: 27399000 PMCID: PMC4990470 DOI: 10.1038/nchembio.2127] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022]
Abstract
More than 30 years ago, a calcium-dependent enzyme activity was described that generates N-acyl phosphatidylethanolamines (NAPEs), which are precursors for N-acyl ethanolamine (NAE) lipid transmitters, including the endocannabinoid anandamide. The identity of this calcium-dependent N-acyltransferase (Ca-NAT) has remained mysterious. Here, we use activity-based protein profiling to identify the poorly characterized serine hydrolase PLA2G4E as a mouse brain Ca-NAT and show that this enzyme generates NAPEs and NAEs in mammalian cells.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - William H Parsons
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Siddhesh S Kamat
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| |
Collapse
|
74
|
Relationships of human α/β hydrolase fold proteins and other organophosphate-interacting proteins. Chem Biol Interact 2016; 259:343-351. [PMID: 27109753 DOI: 10.1016/j.cbi.2016.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Organophosphates (OPs) are either found in nature or synthetized for use as pesticides, flame retardants, neurotoxic warfare agents or drugs (cholinergic enhancers in Alzheimer's disease and myasthenia gravis, or inhibitors of lipases in metabolic diseases). Because of the central role of acetylcholinesterase cholinergic neurotransmission in humans, one of the main purposes for using OPs is inactivation of the enzyme by phosphorylation of the nucleophilic serine residue in the active center. However, hundreds of serine hydrolases are expressed in the human proteome, and many of them are potential targets for OP adduction. In this review, we first situate the α/β hydrolase fold proteins among the distinctively folded proteins known to interact with OPs, in particular the different lipases, peptidases, and enzymes hydrolyzing OPs. Second, we compile the human α/β hydrolases and review those that have been experimentally shown to interact with OPs. Among the 120 human α/β hydrolase fold proteins, 102 have a serine in the consensus GXSXG pentapeptide compatible with an active site, 6 have an aspartate or a cysteine as the active site nucleophile residue, and 12 evidently lack an active site. 76 of the 120 have been experimentally shown to bind an OP.
Collapse
|
75
|
Leishman E, Mackie K, Luquet S, Bradshaw HB. Lipidomics profile of a NAPE-PLD KO mouse provides evidence of a broader role of this enzyme in lipid metabolism in the brain. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:491-500. [PMID: 26956082 DOI: 10.1016/j.bbalip.2016.03.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/13/2022]
Abstract
A leading hypothesis of N-acyl ethanolamine (NAE) biosynthesis, including the endogenous cannabinoid anandamide (AEA), is that it depends on hydrolysis of N-acyl-phosphatidylethanolamines (NAPE) by a NAPE-specific phospholipase D (NAPE-PLD). Thus, deletion of NAPE-PLD should attenuate NAE levels. Previous analyses of two different NAPE-PLD knockout (KO) strains produced contradictory data on the importance of NAPE-PLD to AEA biosynthesis. Here, we examine this hypothesis with a strain of NAPE-PLD KO mice whose lipidome is uncharacterized. Using HPLC/MS/MS, over 70 lipids, including the AEA metabolite, N-arachidonoyl glycine (NAGly), the endocannabinoid 2-arachidonyl glycerol (2-AG) and prostaglandins (PGE(2) and PGF(2α)), and over 60 lipoamines were analyzed in 8 brain regions of KO and wild-type (WT) mice. Lipidomics analysis of this third NAPE-PLD KO strain shows a broad range of lipids that were differentially affected by lipid species and brain region. Importantly, all 6 NAEs measured were significantly reduced, though the magnitude of the effect varied by fatty acid saturation length and brain region. 2-AG levels were only impacted in the brainstem, where levels were significantly increased in KO mice. Correspondingly, levels of arachidonic acid were significantly decreased exclusively in brainstem. NAGly levels were significantly increased in 4 brain regions and levels of PGE(2) increased in 6 of 8 brain regions in KO mice. These data indicate that deletion of NAPE-PLD has far broader effects on the lipidome than previously recognized. Therefore, behavioral characteristics of suppressing NAPE-PLD activity may be due to a myriad of effects on lipids and not simply due to reduced AEA biosynthesis.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Gill Center for Biomolecular Neuroscience, Indiana University, Bloomington, IN, USA
| | - Serge Luquet
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, CNRS UMR 8251, F-75205 Paris, France
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
76
|
Sun X, Deng W, Li Y, Tang S, Leishman E, Bradshaw HB, Dey SK. Sustained Endocannabinoid Signaling Compromises Decidual Function and Promotes Inflammation-induced Preterm Birth. J Biol Chem 2016; 291:8231-40. [PMID: 26900150 DOI: 10.1074/jbc.m115.707836] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 01/13/2023] Open
Abstract
Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling.
Collapse
Affiliation(s)
- Xiaofei Sun
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Wenbo Deng
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Yingju Li
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Shuang Tang
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| | - Emma Leishman
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana 47405
| | - Heather B Bradshaw
- Department of Psychological and Brain Sciences, Kinsey Institute for Research in Sex, Gender, and Reproduction, Indiana University, Bloomington, Indiana 47405
| | - Sudhansu K Dey
- From the Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229 and
| |
Collapse
|
77
|
Verrotti A, Castagnino M, Maccarrone M, Fezza F. Plant-Derived and Endogenous Cannabinoids in Epilepsy. Clin Drug Investig 2016; 36:331-40. [DOI: 10.1007/s40261-016-0379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
78
|
Abstract
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Collapse
|
79
|
Pontis S, Ribeiro A, Sasso O, Piomelli D. Macrophage-derived lipid agonists of PPAR-αas intrinsic controllers of inflammation. Crit Rev Biochem Mol Biol 2015; 51:7-14. [DOI: 10.3109/10409238.2015.1092944] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
80
|
Hillard CJ. The Endocannabinoid Signaling System in the CNS: A Primer. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:1-47. [PMID: 26638763 DOI: 10.1016/bs.irn.2015.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain.
Collapse
Affiliation(s)
- Cecilia J Hillard
- Neuroscience Research Center, and Department of Pharmacology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
81
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
82
|
Boeszoermenyi A, Nagy HM, Arthanari H, Pillip CJ, Lindermuth H, Luna RE, Wagner G, Zechner R, Zangger K, Oberer M. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J Biol Chem 2015; 290:26361-72. [PMID: 26350461 PMCID: PMC4646293 DOI: 10.1074/jbc.m115.682203] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/02/2015] [Indexed: 11/29/2022] Open
Abstract
Triacylglycerols (TGs) stored in lipid droplets (LDs) are hydrolyzed in a highly regulated metabolic process called lipolysis to free fatty acids that serve as energy substrates for β-oxidation, precursors for membrane lipids and signaling molecules. Comparative gene identification-58 (CGI-58) stimulates the enzymatic activity of adipose triglyceride lipase (ATGL), which catalyzes the hydrolysis of TGs to diacylglycerols and free fatty acids. In adipose tissue, protein-protein interactions between CGI-58 and the LD coating protein perilipin 1 restrain the ability of CGI-58 to activate ATGL under basal conditions. Phosphorylation of perilipin 1 disrupts these interactions and mobilizes CGI-58 for the activation of ATGL. We have previously demonstrated that the removal of a peptide at the N terminus (residues 10-31) of CGI-58 abrogates CGI-58 localization to LDs and CGI-58-mediated activation of ATGL. Here, we show that this tryptophan-rich N-terminal peptide serves as an independent LD anchor, with its three tryptophans serving as focal points of the left (harboring Trp(21) and Trp(25)) and right (harboring Trp(29)) anchor arms. The solution state NMR structure of a peptide comprising the LD anchor bound to dodecylphosphocholine micelles as LD mimic reveals that the left arm forms a concise hydrophobic core comprising tryptophans Trp(21) and Trp(25) and two adjacent leucines. Trp(29) serves as the core of a functionally independent anchor arm. Consequently, simultaneous tryptophan alanine permutations in both arms abolish localization and activity of CGI-58 as opposed to tryptophan substitutions that occur in only one arm.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria, the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Harald Manuel Nagy
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Haribabu Arthanari
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | | | - Hanna Lindermuth
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria, the Institute of Biophysics, Medical University of Graz, 8010 Graz, Austria
| | - Rafael Eulogio Luna
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Gerhard Wagner
- the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Rudolf Zechner
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Klaus Zangger
- the Institute of Chemistry, University of Graz, 8010 Graz, Austria, and
| | - Monika Oberer
- From the Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria,
| |
Collapse
|
83
|
Mecha M, Feliú A, Carrillo-Salinas FJ, Rueda-Zubiaurre A, Ortega-Gutiérrez S, de Sola RG, Guaza C. Endocannabinoids drive the acquisition of an alternative phenotype in microglia. Brain Behav Immun 2015; 49:233-45. [PMID: 26086345 DOI: 10.1016/j.bbi.2015.06.002] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/02/2015] [Accepted: 06/02/2015] [Indexed: 12/16/2022] Open
Abstract
The ability of microglia to acquire diverse states of activation, or phenotypes, reflects different features that are determinant for their contribution to homeostasis in the adult CNS, and their activity in neuroinflammation, repair or immunomodulation. Despite the widely reported immunomodulatory effects of cannabinoids in both the peripheral immune system and the CNS, less is known about how the endocannabinoid signaling system (eCBSS) influence the microglial phenotype. The general aim of the present study was to investigate the role of endocannabinoids in microglia polarization by using microglia cell cultures. We show that alternative microglia (M2a) and acquired deactivated microglia (M2c) exhibit changes in the eCB machinery that favor the selective synthesis of 2-AG and AEA, respectively. Once released, these eCBs might be able to act through CB1 and/or CB2 receptors in order to influence the acquisition of an M2 phenotype. We present three lines of evidence that the eCBSS is critical for the acquisition of the M2 phenotype: (i) M2 polarization occurs on exposure to the two main endocannabinoids 2-AG and AEA in microglia cultures; (ii) cannabinoid receptor antagonists block M2 polarization; and (iii) M2 polarization is dampened in microglia from CB2 receptor knockout mice. Taken together, these results indicate the interest of eCBSS for the regulation of microglial activation in normal and pathological conditions.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/metabolism
- Cell Polarity
- Cells, Cultured
- Endocannabinoids/metabolism
- Glycerides/metabolism
- Lipoprotein Lipase/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microglia/metabolism
- Microglia/physiology
- Phenotype
- Polyunsaturated Alkamides/metabolism
- Rats, Wistar
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- M Mecha
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain.
| | - A Feliú
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - F J Carrillo-Salinas
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - A Rueda-Zubiaurre
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - S Ortega-Gutiérrez
- Department of Organic Chemistry, Chemistry Faculty, University Complutense of Madrid, Spain
| | - R García de Sola
- Clinical Neurophysiology Service, Hospital Universitario la Princesa, Madrid, Spain
| | - C Guaza
- Department of Functional and Systems Neurobiology, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
84
|
Onyango MG, Beebe NW, Gopurenko D, Bellis G, Nicholas A, Ogugo M, Djikeng A, Kemp S, Walker PJ, Duchemin JB. Assessment of population genetic structure in the arbovirus vector midge, Culicoides brevitarsis (Diptera: Ceratopogonidae), using multi-locus DNA microsatellites. Vet Res 2015; 231:39-58. [PMID: 26408175 DOI: 10.1007/978-3-319-20825-1_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Bluetongue virus (BTV) is a major pathogen of ruminants that is transmitted by biting midges (Culicoides spp.). Australian BTV serotypes have origins in Asia and are distributed across the continent into two distinct episystems, one in the north and another in the east. Culicoides brevitarsis is the major vector of BTV in Australia and is distributed across the entire geographic range of the virus. Here, we describe the isolation and use of DNA microsatellites and gauge their ability to determine population genetic connectivity of C. brevitarsis within Australia and with countries to the north. Eleven DNA microsatellite markers were isolated using a novel genomic enrichment method and identified as useful for genetic analyses of sampled populations in Australia, northern Papua New Guinea (PNG) and Timor-Leste. Significant (P < 0.05) population genetic subdivision was observed between all paired regions, though the highest levels of genetic sub-division involved pair-wise tests with PNG (PNG vs. Australia (FST = 0.120) and PNG vs. Timor-Leste (FST = 0.095)). Analysis of multi-locus allelic distributions using STRUCTURE identified a most probable two-cluster population model, which separated PNG specimens from a cluster containing specimens from Timor-Leste and Australia. The source of incursions of this species in Australia is more likely to be Timor-Leste than PNG. Future incursions of BTV positive C. brevitarsis into Australia may be genetically identified to their source populations using these microsatellite loci. The vector's panmictic genetic structure within Australia cannot explain the differential geographic distribution of BTV serotypes.
Collapse
Affiliation(s)
- Maria G Onyango
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia. .,School of Medicine, Deakin University, 75 Pidgons Road, Waurn Ponds, Victoria, 3216, Australia.
| | - Nigel W Beebe
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4072, Australia. .,CSIRO Health & Biosecurity Ecosciences Precinct, 41, Boggo Road, Dutton Park, Queensland, 4102, Australia.
| | - David Gopurenko
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, PMB, Wagga Wagga, New South Wales, 2650, Australia. .,Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Glenn Bellis
- Northern Australia Quarantine Strategy, 1 Pederson Road, Marrara, Northern Territory, 0812, Australia.
| | - Adrian Nicholas
- Graham Centre for Agricultural Innovation, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - Moses Ogugo
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Appolinaire Djikeng
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya. .,Biosciences eastern and central Africa - ILRI Hub (BecA-ILRI Hub), ILRI, PO Box 30709, 00100, Nairobi, Kenya.
| | - Steve Kemp
- International Livestock Research Institute, P.O. Box 30709, 00100, Nairobi, Kenya.
| | - Peter J Walker
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| | - Jean-Bernard Duchemin
- CSIRO Health & Biosecurity Australian Animal Health Laboratory, 5 Portalington Road, Geelong, Victoria, 3220, Australia.
| |
Collapse
|
85
|
Cognetta AB, Niphakis MJ, Lee HC, Martini ML, Hulce JJ, Cravatt BF. Selective N-Hydroxyhydantoin Carbamate Inhibitors of Mammalian Serine Hydrolases. ACTA ACUST UNITED AC 2015; 22:928-37. [PMID: 26120000 DOI: 10.1016/j.chembiol.2015.05.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/18/2015] [Accepted: 05/30/2015] [Indexed: 01/12/2023]
Abstract
Serine hydrolase inhibitors, which facilitate enzyme function assignment and are used to treat a range of human disorders, often act by an irreversible mechanism that involves covalent modification of the serine hydrolase catalytic nucleophile. The portion of mammalian serine hydrolases for which selective inhibitors have been developed, however, remains small. Here, we show that N-hydroxyhydantoin (NHH) carbamates are a versatile class of irreversible serine hydrolase inhibitors that can be modified on both the staying (carbamylating) and leaving (NHH) groups to optimize potency and selectivity. Synthesis of a small library of NHH carbamates and screening by competitive activity-based protein profiling furnished selective, in vivo-active inhibitors and tailored activity-based probes for multiple mammalian serine hydrolases, including palmitoyl protein thioesterase 1, mutations of which cause the human disease infantile neuronal ceroid lipofuscinosis.
Collapse
Affiliation(s)
- Armand B Cognetta
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Micah J Niphakis
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hyeon-Cheol Lee
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Michael L Martini
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jonathan J Hulce
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
86
|
Starvation-induced collective behavior in C. elegans. Sci Rep 2015; 5:10647. [PMID: 26013573 PMCID: PMC4445038 DOI: 10.1038/srep10647] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022] Open
Abstract
We describe a new type of collective behavior in C. elegans nematodes, aggregation of starved L1 larvae. Shortly after hatching in the absence of food, L1 larvae arrest their development and disperse in search for food. In contrast, after two or more days without food, the worms change their behavior—they start to aggregate. The aggregation requires a small amount of ethanol or acetate in the environment. In the case of ethanol, it has to be metabolized, which requires functional alcohol dehydrogenase sodh-1. The resulting acetate is used in de novo fatty acid synthesis, and some of the newly made fatty acids are then derivatized to glycerophosphoethanolamides and released into the surrounding medium. We examined several other Caenorhabditis species and found an apparent correlation between propensity of starved L1s to aggregate and density dependence of their survival in starvation. Aggregation locally concentrates worms and may help the larvae to survive long starvation. This work demonstrates how presence of ethanol or acetate, relatively abundant small molecules in the environment, induces collective behavior in C. elegans associated with different survival strategies.
Collapse
|
87
|
Xie P, Kadegowda AKG, Ma Y, Guo F, Han X, Wang M, Groban L, Xue B, Shi H, Li H, Yu L. Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice. Endocrinology 2015; 156:1648-58. [PMID: 25751639 PMCID: PMC4398773 DOI: 10.1210/en.2014-1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Biochemistry (P.X., Y.M., F.G., L.Y.) and Anesthesiology (L.G.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Animal and Avian Sciences (A.K.G.G., Y.M., L.Y.), University of Maryland, College Park, Maryland 20742; Diabetes and Obesity Research Center (X.H., M.W.), Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Department of Biology (B.X., H.S.), Georgia State University, Atlanta, Georgia 30303; and The Key Laboratory of Remodeling-Related Cardiovascular Diseases (H.L.), Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated the Capital Medical University, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Tsuboi K, Okamoto Y, Rahman IAS, Uyama T, Inoue T, Tokumura A, Ueda N. Glycerophosphodiesterase GDE4 as a novel lysophospholipase D: a possible involvement in bioactive N-acylethanolamine biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1851:537-48. [DOI: 10.1016/j.bbalip.2015.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 12/10/2014] [Accepted: 01/05/2015] [Indexed: 11/28/2022]
|
89
|
Xie P, Zeng X, Xiao J, Sun B, Yang D. Transgenic CGI-58 expression in macrophages alleviates the atherosclerotic lesion development in ApoE knockout mice. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1683-90. [PMID: 25178844 DOI: 10.1016/j.bbalip.2014.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/15/2014] [Accepted: 08/22/2014] [Indexed: 10/24/2022]
Abstract
Comparative Gene Identification-58 (CGI-58), as an adipose triglyceride lipase (ATGL) activator, strongly in- creases ATGL-mediated triglyceride (TG) catabolism. Previous studies have shown that CGI-58 affects intestinal cholesterol homeostasis independently of ATGL activity. Therefore, we hypothesized that CGI-58 was involved in macrophage cholesterol metabolism and consequently atherosclerotic lesion formation. Here, we generated macrophage-specific CGI-58 transgenic mice (Mac-CGI-58 Tg) using an SRA promoter, which was further mated with ApoE-/- mice to create litters of CGI-58 Tg/ApoE-/- mice. These CGI-58 Tg/ApoE-/- mice exhibited an anti-atherosclerosis phenotype compared with wild type (WT) controls (CGI-58 WT/ApoE-/-), illustrated by less plaque area in aortic roots. Moreover, macrophage-specific CGI-58 overexpression in mice resulted in upregulated levels of plasma total cholesterol and HDL-cholesterol. Consequently, higher expression levels of PPARa, PPARγ, LXRα, ABCA1, and ABCG1 were detected in macrophages from CGI-58 Tg/ApoE-/- mice compared to CGI-58 WT/ApoE-/- counterparts, which were accompanied by elevated macrophage cholesterol efflux toward HDL and Apo A1. Nevertheless, serum levels of TNF-α and IL-6 were reduced by macrophage-specific CGI-58 overexpression. Finally, bone marrow (BM) transplantation experiments further revealed that ApoE-/- mice reconstituted with Mac-CGI-58 Tg BM cells (ApoE-/-Tg-BM chimera) displayed a significant reduction of atherosclerosis lesions compared with control mice reconstituted with Mac-CGI-58 WT BM cells (ApoE-/-/WT-BM chimera). Collectively, these data strongly suggest that CGI-58 overexpression in macrophages may protect against atherosclerosis development in mice.
Collapse
|
90
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
91
|
Lee HC, Simon GM, Cravatt BF. ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 2015; 54:2539-49. [PMID: 25853435 DOI: 10.1021/acs.biochem.5b00207] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
N-Acyl phospholipids are atypical components of cell membranes that bear three acyl chains and serve as potential biosynthetic precursors for lipid mediators such as endocannabinoids. Biochemical studies have implicated ABHD4 as a brain N-acyl phosphatidylethanolamine (NAPE) lipase, but in vivo evidence for this functional assignment is lacking. Here, we describe ABHD4(-/-) mice and their characterization using untargeted lipidomics to discover that ABHD4 regulates multiple classes of brain N-acyl phospholipids. In addition to showing reductions in brain glycerophospho-NAEs (GP-NAEs) and plasmalogen-based lyso-NAPEs (lyso-pNAPEs), ABHD4(-/-) mice exhibited decreases in a distinct set of brain lipids that were structurally characterized as N-acyl lysophosphatidylserines (lyso-NAPSs). Biochemical assays confirmed that NAPS lipids are direct substrates of ABHD4. These findings, taken together, designate ABHD4 as a principal regulator of N-acyl phospholipid metabolism in the mammalian nervous system.
Collapse
Affiliation(s)
- Hyeon-Cheol Lee
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gabriel M Simon
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
92
|
Rivera P, Bindila L, Pastor A, Pérez-Martín M, Pavón FJ, Serrano A, de la Torre R, Lutz B, Rodríguez de Fonseca F, Suárez J. Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci 2015; 9:98. [PMID: 25870539 PMCID: PMC4375993 DOI: 10.3389/fncel.2015.00098] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
Endocannabinoids participate in the control of neurogenesis, neural cell death and gliosis. The pharmacological effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which limits the endocannabinoid degradation, was investigated in the present study. Cell proliferation (phospho-H3+ or BrdU+ cells) of the main adult neurogenic zones as well as apoptosis (cleaved caspase-3+), astroglia (GFAP+), and microglia (Iba1+ cells) were analyzed in the hippocampus, hypothalamus and striatum of rats intraperitoneally treated with URB597 (0.3 mg/kg/day) at one dose/4-days resting or 5 doses (1 dose/day). Repeated URB597 treatment increased the plasma levels of the N-acylethanolamines oleoylethanolamide, palmitoylethanolamide and arachidonoylethanolamine, reduced the plasma levels of glucose, triglycerides and cholesterol, and induced a transitory body weight decrease. The hippocampi of repeated URB597-treated rats showed a reduced number of phospho-H3+ and BrdU+ subgranular cells as well as GFAP+, Iba1+ and cleaved caspase-3+ cells, which was accompanied with decreased hippocampal expression of the cannabinoid CB1 receptor gene Cnr1 and Faah. In the hypothalami of these rats, the number of phospho-H3+, GFAP+ and 3-weeks-old BrdU+ cells was specifically decreased. The reduced striatal expression of CB1 receptor in repeated URB597-treated rats was only associated with a reduced apoptosis. In contrast, the striatum of acute URB597-treated rats showed an increased number of subventricular proliferative, astroglial and apoptotic cells, which was accompanied with increased Faah expression. Main results indicated that FAAH inhibitor URB597 decreased neural proliferation, glia and apoptosis in a brain region-dependent manner, which were coupled to local changes in Faah and/or Cnr1 expression and a negative energy context.
Collapse
Affiliation(s)
- Patricia Rivera
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Antoni Pastor
- Institut Hospital del Mar d'Investigacions Mediques Barcelona, Spain ; Facultat de Medicina, Universitat Autonoma de Barcelona Barcelona, Spain
| | - Margarita Pérez-Martín
- Departamento de Biología Celular, Genética y Fisiología, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga Málaga, Spain
| | - Francisco J Pavón
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Antonia Serrano
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Rafael de la Torre
- CIBER OBN, Instituto de Salud Carlos III Madrid, Spain ; Institut Hospital del Mar d'Investigacions Mediques Barcelona, Spain ; Facultat de Ciencies de la Salut i de la Vida, Universitat Pompeu Fabra (CEXS-UPF) Barcelona, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg-University of Mainz Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| | - Juan Suárez
- UGC Salud Mental, Instituto de Investigación Biomédica (IBIMA), Universidad de Málaga-Hospital Universitario Regional de Málaga Málaga, Spain ; CIBER OBN, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
93
|
Harrison N, Lone MA, Kaul TK, Reis Rodrigues P, Ogungbe IV, Gill MS. Characterization of N-acyl phosphatidylethanolamine-specific phospholipase-D isoforms in the nematode Caenorhabditis elegans. PLoS One 2014; 9:e113007. [PMID: 25423491 PMCID: PMC4244089 DOI: 10.1371/journal.pone.0113007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 10/17/2014] [Indexed: 12/27/2022] Open
Abstract
N-acylethanolamines are an important class of lipid signaling molecules found in many species, including the nematode Caenorhabditis elegans (C. elegans) where they are involved in development and adult lifespan. In mammals, the relative activity of the biosynthetic enzyme N-acyl phosphatidylethanolamine-specific phospholipase-D and the hydrolytic enzyme fatty acid amide hydrolase determine N-acylethanolamine levels. C. elegans has two N-acyl phosphatidylethanolamine-specific phospholipase-D orthologs, nape-1 and nape-2, that are likely to have arisen from a gene duplication event. Here, we find that recombinant C. elegans NAPE-1 and NAPE-2 are capable of generating N-acylethanolamines in vitro, confirming their functional conservation. In vivo, they exhibit overlapping expression in the pharynx and the nervous system, but are also expressed discretely in these and other tissues, suggesting divergent roles. Indeed, nape-1 over-expression results in delayed growth and shortened lifespan only at 25°C, while nape-2 over-expression results in significant larval arrest and increased adult lifespan at 15°C. Interestingly, deletion of the N-acylethanolamine degradation enzyme faah-1 exacerbates nape-1 over-expression phenotypes, but suppresses the larval arrest phenotype of nape-2 over-expression, suggesting that faah-1 is coupled to nape-2, but not nape-1, in a negative feedback loop. We also find that over-expression of either nape-1 or nape-2 significantly enhances recovery from the dauer larval stage in the insulin signaling mutant daf-2(e1368), but only nape-1 over-expression reduces daf-2 adult lifespan, consistent with increased levels of the N-acylethanolamine eicosapentaenoyl ethanolamine. These results provide evidence that N-acylethanolamine biosynthetic enzymes in C. elegans have conserved function and suggest a temperature-dependent, functional divergence between the two isoforms.
Collapse
Affiliation(s)
- Neale Harrison
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Museer A. Lone
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Tiffany K. Kaul
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Pedro Reis Rodrigues
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Ifedayo Victor Ogungbe
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| | - Matthew S. Gill
- Department of Metabolism & Aging, The Scripps Research Institute, Scripps Florida, Jupiter, Florida, United States of America
| |
Collapse
|
94
|
Lord CC, Brown JM. Distinct roles for alpha-beta hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2) in lipid metabolism and signaling. Adipocyte 2014; 1:123-131. [PMID: 23145367 PMCID: PMC3492958 DOI: 10.4161/adip.20035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Catabolism of stored triacylglycerol (TAG) from cytoplasmic lipid droplets is critical for providing energy substrates, membrane building blocks and signaling lipids in most cells of the body. However, the lipolytic machinery dictating TAG hydrolysis varies greatly among different cell types. Within the adipocyte, TAG hydrolysis is dynamically regulated by hormones to ensure appropriate metabolic adaptation to nutritional and physiologic cues. In other cell types such as hepatocytes, myocytes and macrophages, mobilization of stored TAG is regulated quite differently. Within the last decade, mutations in two key genes involved in TAG hydrolysis, α-β hydrolase domain 5 (ABHD5/CGI-58) and adipose triglyceride lipase (ATGL/PNPLA2), were found to cause two distinct neutral lipid storage diseases (NLSD) in humans. These genetic links, along with supporting evidence in mouse models, have prompted a number of studies surrounding the biochemical function(s) of these proteins. Although both CGI-58 and ATGL have been clearly implicated in TAG hydrolysis in multiple tissues and have even been shown to physically interact with each other, recent evidence suggests that they may also have distinct roles. The purpose of this review is to summarize the most recent insights into how CGI-58 and ATGL regulate lipid metabolism and signaling.
Collapse
|
95
|
Hu SSJ, Ho YC, Chiou LC. No more pain upon Gq-protein-coupled receptor activation: role of endocannabinoids. Eur J Neurosci 2014; 39:467-84. [PMID: 24494686 DOI: 10.1111/ejn.12475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Revised: 12/02/2013] [Accepted: 12/05/2013] [Indexed: 01/24/2023]
Abstract
Marijuana has been used to relieve pain for centuries. The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2) two decades ago. The subsequent identification of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and their biosynthetic and degradation enzymes discloses the therapeutic potential of compounds targeting the endocannabinoid system for pain control. Inhibitors of the anandamide and 2-AG degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase, respectively, may be superior to direct cannabinoid receptor ligands as endocannabinoids are synthesized on demand and rapidly degraded, focusing action at generating sites. Recently, a promising strategy for pain relief was revealed in the periaqueductal gray (PAG). It is initiated by Gq-protein-coupled receptor (Gq PCR) activation of the phospholipase C-diacylglycerol lipase enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia. Here, we introduce the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, particularly in the PAG. We also review recent studies disclosing the Gq PCR-phospholipase C-diacylglycerol lipase-2-AG retrograde disinhibition mechanism in the PAG, induced by activating several Gq PCRs, including metabotropic glutamatergic (type 5 metabotropic glutamate receptor), muscarinic acetylcholine (M1/M3), and orexin 1 receptors. Disinhibition mediated by type 5 metabotropic glutamate receptor can be initiated by glutamate transporter inhibitors or indirectly by substance P, neurotensin, cholecystokinin and capsaicin. Finally, the putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is discussed.
Collapse
Affiliation(s)
- Sherry Shu-Jung Hu
- Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| | | | | |
Collapse
|
96
|
Blancaflor EB, Kilaru A, Keereetaweep J, Khan BR, Faure L, Chapman KD. N-Acylethanolamines: lipid metabolites with functions in plant growth and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:568-583. [PMID: 24397856 DOI: 10.1111/tpj.12427] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/18/2013] [Accepted: 12/23/2013] [Indexed: 06/03/2023]
Abstract
Twenty years ago, N-acylethanolamines (NAEs) were considered by many lipid chemists to be biological 'artifacts' of tissue damage, and were, at best, thought to be minor lipohilic constituents of various organisms. However, that changed dramatically in 1993, when anandamide, an NAE of arachidonic acid (N-arachidonylethanolamine), was shown to bind to the human cannabinoid receptor (CB1) and activate intracellular signal cascades in mammalian neurons. Now NAEs of various types have been identified in diverse multicellular organisms, in which they display profound biological effects. Although targets of NAEs are still being uncovered, and probably vary among eukaryotic species, there appears to be remarkable conservation of the machinery that metabolizes these bioactive fatty acid conjugates of ethanolamine. This review focuses on the metabolism and functions of NAEs in higher plants, with specific reference to the formation, hydrolysis and oxidation of these potent lipid mediators. The discussion centers mostly on early seedling growth and development, for which NAE metabolism has received the most attention, but also considers other areas of plant development in which NAE metabolism has been implicated. Where appropriate, we indicate cross-kingdom conservation in NAE metabolic pathways and metabolites, and suggest areas where opportunities for further investigation appear most pressing.
Collapse
Affiliation(s)
- Elison B Blancaflor
- Plant Biology Division, The Samuel Roberts Noble Foundation Inc., 2510 Sam Noble Parkway, Ardmore, OK, 73401, USA
| | | | | | | | | | | |
Collapse
|
97
|
Kleberg K, Hassing HA, Hansen HS. Classical endocannabinoid-like compounds and their regulation by nutrients. Biofactors 2014; 40:363-72. [PMID: 24677570 DOI: 10.1002/biof.1158] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/08/2022]
Abstract
Endocannabinoid-like compounds are structurally related to the true endocannabinoids but do not contain highly unsaturated fatty acids, and they do not bind the cannabinoid receptors. The classical endocannabinoid-like compounds include N-acylethanolamines and 2-monoacylglycerols, and their structural resemblance to the endocannabinoids makes them players in the endocannabinoid system, where they can interfere with the actions of the true endocannabinoids, because they in several cases engage the same synthesizing and degrading enzymes. In addition they have pharmacological actions of their own, which are particularly interesting in a nutritional and metabolic context. Exogenously supplied oleoylethanolamide, palmitoylethanolamide, and linoleoylethanolamide have anorexic effects, and the endogenous formation of these N-acylethanolamines in the small intestine may serve an important role in regulating food intake, through signaling via PPARα and the vagus nerve to the brain appetite center. A chronic high-fat diet will decrease intestinal levels of these anorectic N-acylethanolamines and this may contribute to the hyperphagic effect of high-fat diet; 2-monoacylglycerols mediate endocrine responses in the small intestine; probably trough activation of GPR119 on enteroendocrine cells, and diet-derived 2-monoacylglycerols, for example, 2-oleoylglycerol and 2-palmitoylglycerol might be important for intestinal fat sensing. Whether these 2-monoacylglycerols have signaling functions in other tissues is unclear at present.
Collapse
Affiliation(s)
- Karen Kleberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | | |
Collapse
|
98
|
Bisogno T, Maccarrone M. Endocannabinoid signaling and its regulation by nutrients. Biofactors 2014; 40:373-80. [PMID: 24753395 DOI: 10.1002/biof.1167] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/07/2023]
Abstract
Diet plays a central role in maintaining health throughout life and a controlled food intake is associated to a reduced risk of certain diseases. A proper diet should include vitamins, minerals, carbohydrates, proteins, and fats that have to be optimally balanced in order to exert their physiological functions. The endogenous ligands of type-1 and type-2 cannabinoid receptors, N-arachidonoyl-ethanolamine and 2-arachidonoylglycerol, are arachidonic acid (AA) derivatives whose levels are regulated by the activity of metabolic enzymes, as well as by AA availability. Since the only sources of AA in mammals are diet and the enzymatic production in the liver from shorter-chain essential fatty acids like linoleic acid, it is realistic to hypothesize that endocannabinoid levels might be modulated by fatty acid composition of food. Therefore, in this review we summarize literature data indicating that endocannabinoid levels, and hence their activity at cannabinoid receptors, might be modulated by food composition. We focused our attention on dietary fatty acid content, and on type and esterified form of fatty acids in the different diets.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, 80078, Pozzuoli, Italy; Center of Integrated Research, Campus Bio-Medico University of Rome, 00128, Rome, Italy
| | | |
Collapse
|
99
|
Rahman IAS, Tsuboi K, Uyama T, Ueda N. New players in the fatty acyl ethanolamide metabolism. Pharmacol Res 2014; 86:1-10. [PMID: 24747663 DOI: 10.1016/j.phrs.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area.
Collapse
Affiliation(s)
- Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
100
|
Zierler KA, Zechner R, Haemmerle G. Comparative gene identification-58/α/β hydrolase domain 5: more than just an adipose triglyceride lipase activator? Curr Opin Lipidol 2014; 25:102-9. [PMID: 24565921 PMCID: PMC4170181 DOI: 10.1097/mol.0000000000000058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Comparative gene identification-58 (CGI-58) is a lipid droplet-associated protein that controls intracellular triglyceride levels by its ability to activate adipose triglyceride lipase (ATGL). Additionally, CGI-58 was described to exhibit lysophosphatidic acid acyl transferase (LPAAT) activity. This review focuses on the significance of CGI-58 in energy metabolism in adipose and nonadipose tissue. RECENT FINDINGS Recent studies with transgenic and CGI-58-deficient mouse strains underscored the importance of CGI-58 as a regulator of intracellular energy homeostasis by modulating ATGL-driven triglyceride hydrolysis. In accordance with this function, mice and humans that lack CGI-58 accumulate triglyceride in multiple tissues. Additionally, CGI-58-deficient mice develop an ATGL-independent severe skin barrier defect and die soon after birth. Although the premature death prevented a phenotypical characterization of adult global CGI-58 knockout mice, the characterization of mice with tissue-specific CGI-58 deficiency revealed new insights into its role in neutral lipid and energy metabolism. Concerning the ATGL-independent function of CGI-58, a recently identified LPAAT activity for CGI-58 was shown to be involved in the generation of signaling molecules regulating inflammatory processes and insulin action. SUMMARY Although the function of CGI-58 in the catabolism of cellular triglyceride depots via ATGL is well established, further studies are required to consolidate the function of CGI-58 as LPAAT and to clarify the involvement of CGI-58 in the metabolism of skin lipids.
Collapse
Affiliation(s)
- Kathrin A Zierler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | |
Collapse
|