51
|
Tanigawa K, Luo Y, Kawashima A, Kiriya M, Nakamura Y, Karasawa K, Suzuki K. Essential Roles of PPARs in Lipid Metabolism during Mycobacterial Infection. Int J Mol Sci 2021; 22:ijms22147597. [PMID: 34299217 PMCID: PMC8304230 DOI: 10.3390/ijms22147597] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/13/2021] [Indexed: 12/25/2022] Open
Abstract
The mycobacterial cell wall is composed of large amounts of lipids with varying moieties. Some mycobacteria species hijack host cells and promote lipid droplet accumulation to build the cellular environment essential for their intracellular survival. Thus, lipids are thought to be important for mycobacteria survival as well as for the invasion, parasitization, and proliferation within host cells. However, their physiological roles have not been fully elucidated. Recent studies have revealed that mycobacteria modulate the peroxisome proliferator-activated receptor (PPAR) signaling and utilize host-derived triacylglycerol (TAG) and cholesterol as both nutrient sources and evasion from the host immune system. In this review, we discuss recent findings that describe the activation of PPARs by mycobacterial infections and their role in determining the fate of bacilli by inducing lipid metabolism, anti-inflammatory function, and autophagy.
Collapse
Affiliation(s)
- Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Yuqian Luo
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Ken Karasawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (K.T.); (Y.N.); (K.K.)
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan; (Y.L.); (A.K.); (M.K.)
- Correspondence: ; Tel.: +81-3-3964-1211
| |
Collapse
|
52
|
Abdelhamid AM, Elsheakh AR, Suddek GM, Abdelaziz RR. Telmisartan alleviates alcohol-induced liver injury by activation of PPAR-γ/ Nrf-2 crosstalk in mice. Int Immunopharmacol 2021; 99:107963. [PMID: 34273638 DOI: 10.1016/j.intimp.2021.107963] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023]
Abstract
Excessive consumption of alcohol may induce severe liver damage, in part via oxidative stress and inflammatory responses, which implicates these processes as potential therapeutic approaches. Prior literature has shown that Telmisartan (TEL) may provide protective effects, presumably mediated by its anti-oxidant and anti-inflammatory activities. The purpose of this study was to determine TEL's hepatoprotective effects and to identify its possible curative mechanisms in alcoholic liver disease. A mouse chronic alcohol plus binge feedings model was used in the current study for induction of alcoholic liver disease (ALD). Our results showed that TEL (10 mg/kg/day) has the ability to reduce serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP). TEL also increased the activity of superoxide dismutase (SOD) and glutathione (GSH) with concomitant reduction of nitric oxide (NO) malonaldehyde (MDA) in the liver homogenate. Moreover, TEL downregulated nuclear factor kappa B (NF-κB) expression and decreased liver content of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α). These anti-inflammatory and anti-oxidant activities were associated with a significant increase in the expression of nuclear factor erythroid 2-related factor 2 (Nrf-2), peroxisome proliferator-activated receptors -γ (PPAR-γ), and heme oxygenase-1 (Hmox-1). In conclusion, TEL's hepatoprotective effects against ALD may be attributable to its anti-inflammatory and anti-oxidant activities which may be in part via the modulation of PPAR-γ/ Nrf-2/ NF-κB crosstalk.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Egypt
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | |
Collapse
|
53
|
Lv X, Qiu J, Hao T, Zhang H, Jiang H, Tan Y. HDAC inhibitor Trichostatin A suppresses adipogenesis in 3T3-L1 preadipocytes. Aging (Albany NY) 2021; 13:17489-17498. [PMID: 34232916 PMCID: PMC8312440 DOI: 10.18632/aging.203238] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/04/2021] [Indexed: 12/30/2022]
Abstract
Background and purpose: Obesity is becoming a major global health issue and is mainly induced by the accumulation of adipose tissues mediated by adipogenesis, which is reported to be regulated by peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT enhancer-binding protein α (C/EBPα). Trichostatin A (TSA) is a novel histone deacetylase inhibitor (HDACI) that was recently reported to exert multiple pharmacological functions. The present study will investigate the inhibitory effect of TSA on adipogenesis, as well as the underlying mechanism. Methods: The adipogenesis of 3T3-L1 cells was induced by stimulation with a differentiation cocktail (DMI) medium for 8 days. MTT assay was used to measure the cell viability and Oil Red O staining was used to evaluate the adipogenesis of 3T3-L1 cells. The total level of triglyceride and released glycerol were detected to evaluate the lipolysis during 3T3-L1 adipogenesis. The expression levels of Leptin, fatty acid-binding protein 4 (FABP4), and sterol regulatory element-binding protein (SREBP1C) were determined by qRT-PCR. qRT-PCR assay was utilized to detect the expression levels of PPARγ and C/EBPα in 3T3-L1 cells. A high-fat diet (HFD) was used to construct an obese mice model, followed by the treatment with TSA. HE staining was conducted to evaluate the pathological state of adipose tissues. Body weights and the weights of adipose tissues were recorded to evaluate the anti-obesity property of TSA. Results: Firstly, the promoted lipid accumulation induced by DMI incubation was significantly reversed by the treatment with TSA in a dose-dependent manner. The elevated expression levels of Leptin, FABP4, SREBP1C, PPARγ, and C/EBPα induced by the stimulation with DMI incubation were dramatically inhibited by the introduction of TSA, accompanied by the upregulation of phosphorylated AMP-activated protein kinase (p-AMPK). Secondly, the inhibitory effect of TSA against the expression level of PPARγ and lipid accumulation was greatly abolished by an AMPK inhibitor. Lastly, the increased body weights and visceral adipocyte tissue weight, as well as the enlarged size of adipocytes induced by HFD were pronouncedly reversed by the administration of TSA. Conclusion: TSA inhibited adipogenesis in 3T3-L1 preadipocytes by activating the AMPK pathway.
Collapse
Affiliation(s)
- Xin Lv
- Department of Clinical Nutrition, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.,Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Jun Qiu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Tao Hao
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Haoran Zhang
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Haiping Jiang
- Department of Clinical Nutrition, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China.,Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, Guangdong, China
| | - Yang Tan
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
54
|
Escandon P, Vasini B, Whelchel AE, Nicholas SE, Matlock HG, Ma JX, Karamichos D. The role of peroxisome proliferator-activated receptors in healthy and diseased eyes. Exp Eye Res 2021; 208:108617. [PMID: 34010603 PMCID: PMC8594540 DOI: 10.1016/j.exer.2021.108617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/23/2022]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) are a family of nuclear receptors that play essential roles in modulating cell differentiation, inflammation, and metabolism. Three subtypes of PPARs are known: PPAR-alpha (PPARα), PPAR-gamma (PPARγ), and PPAR-beta/delta (PPARβ/δ). PPARα activation reduces lipid levels and regulates energy homeostasis, activation of PPARγ results in regulation of adipogenesis, and PPARβ/δ activation increases fatty acid metabolism and lipolysis. PPARs are linked to various diseases, including but not limited to diabetes, non-alcoholic fatty liver disease, glaucoma and atherosclerosis. In the past decade, numerous studies have assessed the functional properties of PPARs in the eye and key PPAR mechanisms have been discovered, particularly regarding the retina and cornea. PPARγ and PPARα are well established in their functions in ocular homeostasis regarding neuroprotection, neovascularization, and inflammation, whereas PPARβ/δ isoform function remains understudied. Naturally, studies on PPAR agonists and antagonists, associated with ocular pathology, have also gained traction with the development of PPAR synthetic ligands. Studies on PPARs has significantly influenced novel therapeutics for diabetic eye disease, ocular neuropathy, dry eye, and age-related macular degeneration (AMD). In this review, therapeutic potentials and implications will be highlighted, as well as reported adverse effects. Further investigations are necessary before any of the PPARs ligands can be utilized, in the clinics, to treat eye diseases. Future research on the prominent role of PPARs will help unravel the complex mechanisms involved in order to prevent and treat ocular diseases.
Collapse
Affiliation(s)
- Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Brenda Vasini
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Amy E Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Sarah E Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - H Greg Matlock
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA
| | - Jian-Xing Ma
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young, Oklahoma City, OK, USA; Harold Hamm Oklahoma Diabetes Center, 1000 N Lincoln Blvd, Oklahoma City, OK, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA; Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
55
|
Wang Z, Zhu M, Wang M, Gao Y, Zhang C, Liu S, Qu S, Liu Z, Zhang C. Integrated Multiomic Analysis Reveals the High-Fat Diet Induced Activation of the MAPK Signaling and Inflammation Associated Metabolic Cascades via Histone Modification in Adipose Tissues. Front Genet 2021; 12:650863. [PMID: 34262592 PMCID: PMC8273343 DOI: 10.3389/fgene.2021.650863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background The number of diet induced obese population is increasing every year, and the incidence of type 2 diabetes is also on the rise. Histone methylation and acetylation have been shown to be associated with lipogenesis and obesity by manipulating gene expression via the formation of repression or activation domains on chromosomes. Objective In this study, we aimed to explore gene activation or repression and related biological processes by histone modification across the whole genome on a high-fat diet (HFD) condition. We also aimed to elucidate the correlation of these genes that modulated by histone modification with energy metabolism and inflammation under both short-term and long-term HFD conditions. Method We performed ChIP-seq analysis of H3K9me2 and H3K9me3 in brown and white adipose tissues (WATs; subcutaneous adipose tissue) from mice fed with a standard chow diet (SCD) or HFD and a composite analysis of the histone modification of H3K9me2, H3K9me3, H3K4me1 and H3K27ac throughout the whole genome. We also employed and integrated two bulk RNA-seq and a single-nuclei RNA sequencing dataset and performed western blotting (WB) to confirm the gene expression levels in adipose tissue of the SCD and HFD groups. Results The ChIP-seq and transcriptome analysis of mouse adipose tissues demonstrated that a series of genes were activated by the histone modification of H3K9me2, H3K9me3, H3K4me1, and H3K27ac in response to HFD condition. These genes were enriched in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways involved in lipogenesis, energy metabolism and inflammation. Several genes in the activated mitogen-activated protein kinase (MAPK) pathway might be related to both inflammation and energy metabolism in mice, rats and humans fed with HFD for a short or long term, as showed by bulk RNA-seq and single nuclei RNA-seq datasets. Western blot analyses further confirmed the increased expression of MET, VEGFA and the enhanced phosphorylation ratio of p44/42 MAPK upon HFD treatment. Conclusion This study expanded our understanding of the influence of eating behavior on obesity and could assist the identification of putative therapeutic targets for the prevention and treatment of metabolic disorders in the future.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yihui Gao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shangyun Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhongmin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Department of Cardiac Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
56
|
Kim JY, Park EJ, Kim SM, Lee HJ. Optimization of adipogenic differentiation conditions for canine adipose-derived stem cells. J Vet Sci 2021; 22:e53. [PMID: 34170094 PMCID: PMC8318799 DOI: 10.4142/jvs.2021.22.e53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Canine adipose-derived stem cells (cADSCs) exhibit various differentiation properties and are isolated from the canine subcutaneous fat. Although cADSCs are valuable as tools for research on adipogenic differentiation, studies focusing on adipogenic differentiation methods and the underlying mechanisms are still lacking. OBJECTIVES In this study, we aimed to establish an optimal method for adipogenic differentiation conditions of cADSCs and evaluate the role of peroxisome proliferator-activated receptor gamma (PPARγ) and estrogen receptor (ER) signaling in the adipogenic differentiation. METHODS To induce adipogenic differentiation of cADSCs, 3 different adipogenic medium conditions, MDI, DRI, and MDRI, using 3-isobutyl-1-methylxanthine (M), dexamethasone (D), insulin (I), and rosiglitazone (R) were tested. RESULTS MDRI, addition of PPARγ agonist rosiglitazone to MDI, was the most significantly facilitated cADSC into adipocyte. GW9662, an antagonist of PPARγ, significantly reduced adipogenic differentiation induced by rosiglitazone. Adipogenic differentiation was also stimulated when 17β-estradiol was added to MDI and DRI, and this stimulation was inhibited by the ER antagonist ICI182,780. CONCLUSIONS Taken together, our results suggest that PPARγ and ER signaling are related to the adipogenic differentiation of cADSCs. This study could provide basic information for future research on obesity or anti-obesity mechanisms in dogs.
Collapse
Affiliation(s)
- Jong Yeon Kim
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea
| | - Eun Jung Park
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Sung Min Kim
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea
| | - Hae Jeung Lee
- Department of Food and Nutrition, College of BioNano Technology, Gachon University, Seongnam 13120, Korea.,Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam 13120, Korea.
| |
Collapse
|
57
|
Upregulated PPARG2 facilitates interaction with demethylated AKAP12 gene promoter and suppresses proliferation in prostate cancer. Cell Death Dis 2021; 12:528. [PMID: 34023860 PMCID: PMC8141057 DOI: 10.1038/s41419-021-03820-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PCA) is one of the most common male genitourinary tumors. However, the molecular mechanisms involved in the occurrence and progression of PCA have not been fully clarified. The present study aimed to investigate the biological function and molecular mechanism of the nuclear receptor peroxisome proliferator-activated receptor gamma 2 (PPARG2) in PCA. Our results revealed that PPARG2 was downregulated in PCA, and overexpression of PPARG2 inhibited cell migration, colony formation, invasion and induced cell cycle arrest of PCA cells in vitro. In addition, PPARG2 overexpression modulated the activation of the Akt signaling pathway, as well as inhibited tumor growth in vivo. Moreover, mechanistic analysis revealed that PPARG2 overexpression induced increased expression level of miR-200b-3p, which targeted 3′ UTR of the downstream targets DNMT3A/3B, and facilitated interaction with demethylated AKAP12 gene promoter and suppressed cell proliferation in PCA. Our findings provided the first evidence for a novel PPARG2-AKAP12 axis mediated epigenetic regulatory network. The study identified a molecular mechanism involving an epigenetic modification that could be possibly targeted as an antitumoral strategy against prostate cancer.
Collapse
|
58
|
Simultaneous Use of ROCK Inhibitors and EP2 Agonists Induces Unexpected Effects on Adipogenesis and the Physical Properties of 3T3-L1 Preadipocytes. Int J Mol Sci 2021; 22:ijms22094648. [PMID: 33925005 PMCID: PMC8125646 DOI: 10.3390/ijms22094648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/25/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022] Open
Abstract
To elucidate the additive effects of an EP2 agonist, omidenepag (OMD) or butaprost (Buta) on the Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, ripasudil (Rip) on adipose tissue, two- or three-dimension (2D or 3D) cultures of 3T3-L1 cells were analyzed by lipid staining, the mRNA expression of adipogenesis-related genes, extracellular matrix (ECM) molecules including collagen (Col) -1, -4 and -6, and fibronectin (Fn), and the sizes and physical properties of 3D organoids, as measured by a micro-squeezer. The results indicate that adipogenesis induced (1) an enlargement of the 3D organoids; (2) a substantial enhancement in lipid staining as well as the expression of the Pparγ, Ap2 and Leptin genes; (3) a significant softening of the 3D organoids, the effects of which were all enhanced by Rip except for Pparγ expression; and (4) a significant downregulation in Col1 and Fn, and a significant upregulation in Col4, Col6, the effects of which were unchanged by Rip. When adding the EP2 agonist to Rip, (1) the sizes of the 3D organoids were reduced substantially; (2) lipid staining was increased (OMD), or decreased (Buta); (3) the stiffness of the 3D organoids was substantially increased in Buta; (4-1) the expression of Pparγ was suppressed (2D, OMD) or increased (2D, Buta), and the expressions of Ap2 were downregulated (2D, 3D) and Leptin was increased (2D) or decreased (3D), (4-2) all the expressions of four ECM molecules were upregulated in 2D (2D), and in 3D, the expression of Col1, Col4 was upregulated. The collective findings reported herein indicate that the addition of an EP2 agonist, OMD or Buta significantly but differently modulate the Rip-induced effects on adipogenesis and the physical properties of 2D and 3D cultured 3T3-L1 cells.
Collapse
|
59
|
Wang X, Kang J, Liu Q, Tong T, Quan H. Fighting Diabetes Mellitus: Pharmacological and Non-pharmacological Approaches. Curr Pharm Des 2021; 26:4992-5001. [PMID: 32723251 DOI: 10.2174/1381612826666200728144200] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND The increasing worldwide prevalence of diabetes mellitus confers heavy public health issues and points to a large medical need for effective and novel anti-diabetic approaches with negligible adverse effects. Developing effective and novel anti-diabetic approaches to curb diabetes is one of the most foremost scientific challenges. OBJECTIVES This article aims to provide an overview of current pharmacological and non-pharmacological approaches available for the management of diabetes mellitus. METHODS Research articles that focused on pharmacological and non-pharmacological interventions for diabetes were collected from various search engines such as Science Direct and Scopus, using keywords like diabetes, glucagon-like peptide-1, glucose homeostasis, etc. Results: We review in detail several key pathways and pharmacological targets (e.g., the G protein-coupled receptors- cyclic adenosine monophosphate, 5'-adenosine monophosphate-activated protein kinase, sodium-glucose cotransporters 2, and peroxisome proliferator activated-receptor gamma signaling pathways) that are vital in the regulation of glucose homeostasis. The currently approved diabetes medications, the pharmacological potentials of naturally occurring compounds as promising interventions for diabetes, and the non-pharmacological methods designed to mitigate diabetes are summarized and discussed. CONCLUSION Pharmacological-based approaches such as insulin, metformin, sodium-glucose cotransporters 2 inhibitor, sulfonylureas, glucagon-like peptide-1 receptor agonists, and dipeptidyl peptidase IV inhibitors represent the most important strategies in diabetes management. These approved diabetes medications work via targeting the central signaling pathways related to the etiology of diabetes. Non-pharmacological approaches, including dietary modification, increased physical activity, and microbiota-based therapy are the other cornerstones for diabetes treatment. Pharmacological-based approaches may be incorporated when lifestyle modification alone is insufficient to achieve positive outcomes.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinhong Kang
- College of Pharmacy, Korea University, Sejong 30019, Korea
| | - Qing Liu
- Jilin Green Food Engineering Research Institute, Changchun, 130022, China
| | - Tao Tong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Helong Quan
- Exercise and Metabolism Research Center, College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, Zhejiang Province, 321004, China
| |
Collapse
|
60
|
Lottini T, Iorio J, Lastraioli E, Carraresi L, Duranti C, Sala C, Armenio M, Noci I, Pillozzi S, Arcangeli A. Transgenic mice overexpressing the LH receptor in the female reproductive system spontaneously develop endometrial tumour masses. Sci Rep 2021; 11:8847. [PMID: 33893331 PMCID: PMC8065064 DOI: 10.1038/s41598-021-87492-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 03/18/2021] [Indexed: 11/26/2022] Open
Abstract
The receptor for the luteinizing hormone (LH-R) is aberrantly over expressed in cancers of the reproductive system. To uncover whether LH-R over expression has a causative role in cancer, we generated a transgenic (TG) mouse which overexpresses the human LH-R (hLH-R) in the female reproductive tract, under the control of the oviduct-specific glycoprotein (OGP) mouse promoter (mogp-1). The transgene was highly expressed in the uterus, ovary and liver, but only in the uterus morphological and molecular alterations (increased proliferation and trans-differentiation in the endometrial layer) were detected. A transcriptomic analysis on the uteri of young TG mice showed an up regulation of genes involved in cell cycle control and a down regulation of genes related to the immune system and the metabolism of xenobiotics. Aged TG females developed tumor masses in the uteri, which resembled an Endometrial Cancer (EC). Microarray and immunohistochemistry data indicated the deregulation of signaling pathways which are known to be altered in human ECs. The analysis of a cohort of 126 human ECs showed that LH-R overexpression is associated with early-stage tumors. Overall, our data led support to conclude that LH-R overexpression may directly contribute to trigger the neoplastic transformation of the endometrium.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | | | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Cesare Sala
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Miriam Armenio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Ivo Noci
- Department of Biochemical, Experimental and Clinical Science, University of Florence, Florence, Italy
| | - Serena Pillozzi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Viale G.B. Morgagni, 50, 50134, Florence, Italy.
- CSDC-Center for the Study of Complex Dynamics, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
61
|
Amen T, Kaganovich D. Small Molecule Screen Reveals Joint Regulation of Stress Granule Formation and Lipid Droplet Biogenesis. Front Cell Dev Biol 2021; 8:606111. [PMID: 33972926 PMCID: PMC8105174 DOI: 10.3389/fcell.2020.606111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/21/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic regulation is a necessary component of all stress response pathways, because all different mechanisms of stress-adaptation place high-energy demands on the cell. Mechanisms that integrate diverse stress response pathways with their metabolic components are therefore of great interest, but few are known. We show that stress granule (SG) formation, a common adaptive response to a variety of stresses, is reciprocally regulated by the pathways inducing lipid droplet accumulation. Inability to upregulate lipid droplets reduces stress granule formation. Stress granule formation in turn drives lipid droplet clustering and fatty acid accumulation. Our findings reveal a novel connection between stress response pathways and new modifiers of stress granule formation.
Collapse
Affiliation(s)
- Triana Amen
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Daniel Kaganovich
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.,1Base Pharmaceuticals, Boston, MA, United States
| |
Collapse
|
62
|
Moon JH, Hong JM, Park SY. The antidiabetic drug troglitazone protects against PrP (106‑126)‑induced neurotoxicity via the PPARγ‑autophagy pathway in neuronal cells. Mol Med Rep 2021; 23:430. [PMID: 33846779 PMCID: PMC8047904 DOI: 10.3892/mmr.2021.12069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 03/16/2021] [Indexed: 12/11/2022] Open
Abstract
Prion diseases, which involve the alteration of cellular prion protein into a misfolded isoform, disrupt the central nervous systems of humans and animals alike. Prior research has suggested that peroxisome proliferator-activator receptor (PPAR)γ and autophagy provide some protection against neurodegeneration. PPARs are critical to lipid metabolism regulation and autophagy is one of the main cellular mechanisms by which cell function and homeostasis is maintained. The present study examined the effect of troglitazone, a PPARγ agonist, on autophagy flux in a prion peptide (PrP) (106–126)-mediated neurodegeneration model. Western blot analysis confirmed that treatment with troglitazone increased LC3-II and p62 protein expression, whereas an excessive increase in autophagosomes was verified by transmission electron microscopy. Troglitazone weakened PrP (106–126)-mediated neurotoxicity via PPARγ activation and autophagy flux inhibition. A PPARγ antagonist blocked PPARγ activation as well as the neuroprotective effects induced by troglitazone treatment, indicating that PPARγ deactivation impaired troglitazone-mediated protective effects. In conclusion, the present study demonstrated that troglitazone protected primary neuronal cells against PrP (106–126)-induced neuronal cell death by inhibiting autophagic flux and activating PPARγ signals. These results suggested that troglitazone may be a useful therapeutic agent for the treatment of neurodegenerative disorders and prion diseases.
Collapse
Affiliation(s)
- Ji-Hong Moon
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Jeong-Min Hong
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| | - Sang-Youel Park
- Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk 54596, Republic of Korea
| |
Collapse
|
63
|
Shahinozzaman M, Islam M, Basak B, Sultana A, Emran R, Ashrafizadeh M, Islam ATMR. A review on chemistry, source and therapeutic potential of lambertianic acid. Z NATURFORSCH C 2021; 76:347-356. [PMID: 33826808 DOI: 10.1515/znc-2020-0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 01/05/2023]
Abstract
Lambertianic acid (LA) is a diterpene bioactive compound mainly purified from different species of Pinus. It is an optical isomer of another natural compound daniellic acid and was firstly purified from Pinus lambertiana. LA can be synthesized in laboratory from podocarpic acid. It has been reported to have potential health benefits in attenuating obesity, allergies and different cancers including breast, liver, lung and prostate cancer. It exhibits anticancer properties through inhibiting cancer cell proliferation and survival, and inducing apoptosis, targeting major signalling components including AKT, AMPK, NFkB, COX-2, STAT3, etc. Most of the studies with LA were done using in vitro models, thus warranting future investigations with animal models to evaluate its pharmacological effects such as antidiabetic, anti-inflammatory and neuroprotective effects as well as to explore the underlying molecular mechanisms and toxicological profile. This review describes the chemistry, source, purification and therapeutic potentials of LA and it can therefore be a suitable guideline for any future study with LA.
Collapse
Affiliation(s)
- Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Moutushi Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Bristy Basak
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Arifa Sultana
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Rashiduzzaman Emran
- Department of Biochemistry, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh.,Department of Agricultural Extension (DAE), Dhaka 1215, Bangladesh
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.,Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | | |
Collapse
|
64
|
Reguero M, Gómez de Cedrón M, Wagner S, Reglero G, Quintela JC, Ramírez de Molina A. Precision Nutrition to Activate Thermogenesis as a Complementary Approach to Target Obesity and Associated-Metabolic-Disorders. Cancers (Basel) 2021; 13:cancers13040866. [PMID: 33670730 PMCID: PMC7922953 DOI: 10.3390/cancers13040866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Regarding the pandemic of obesity and chronic diseases associated to metabolic alterations that occur nowadays worldwide, here, we review the most recent studies related to bioactive compounds and diet derived ingredients with potential effects to augment the systemic energy expenditure. We specifically focus in two processes: the activation of thermogenesis in adipose tissue and the enhancement of the mitochondrial oxidative phosphorylation capacity in muscles. This may provide relevant information to develop diets and supplements to conduct nutritional intervention studies with the objective to ameliorate the metabolic and chronic inflammation in the course of obesity and related disorders. Abstract Obesity is associated to increased incidence and poorer prognosis in multiple cancers, contributing to up to 20% of cancer related deaths. These associations are mainly driven by metabolic and inflammatory changes in the adipose tissue during obesity, which disrupt the physiologic metabolic homeostasis. The association between obesity and hypercholesterolemia, hypertension, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) is well known. Importantly, the retrospective analysis of more than 1000 epidemiological studies have also shown the positive correlation between the excess of fatness with the risk of cancer. In addition, more important than weight, it is the dysfunctional adipose tissue the main driver of insulin resistance, metabolic syndrome and all cause of mortality and cancer deaths, which also explains why normal weight individuals may behave as “metabolically unhealthy obese” individuals. Adipocytes also have direct effects on tumor cells through paracrine signaling. Downregulation of adiponectin and upregulation of leptin in serum correlate with markers of chronic inflammation, and crown like structures (CLS) associated to the adipose tissue disfunction. Nevertheless, obesity is a preventable risk factor in cancer. Lifestyle interventions might contribute to reduce the adverse effects of obesity. Thus, Mediterranean diet interventional studies have been shown to reduce to circulation inflammatory factors, insulin sensitivity and cardiovascular function, with durable responses of up to 2 years in obese patients. Mediterranean diet supplemented with extra-virgin olive oil reduced the incidence of breast cancer compared with a control diet. Physical activity is another important lifestyle factor which may also contribute to reduced systemic biomarkers of metabolic syndrome associated to obesity. In this scenario, precision nutrition may provide complementary approaches to target the metabolic inflammation associated to “unhealthy obesity”. Herein, we first describe the different types of adipose tissue -thermogenic active brown adipose tissue (BAT) versus the energy storing white adipose tissue (WAT). We then move on precision nutrition based strategies, by mean of natural extracts derived from plants and/or diet derived ingredients, which may be useful to normalize the metabolic inflammation associated to “unhealthy obesity”. More specifically, we focus on two axis: (1) the activation of thermogenesis in BAT and browning of WAT; (2) and the potential of augmenting the oxidative capacity of muscles to dissipate energy. These strategies may be particularly relevant as complementary approaches to alleviate obesity associated effects on chronic inflammation, immunosuppression, angiogenesis and chemotherapy resistance in cancer. Finally, we summarize main studies where plant derived extracts, mainly, polyphenols and flavonoids, have been applied to increase the energy expenditure.
Collapse
Affiliation(s)
- Marina Reguero
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- NATAC BIOTECH, Electronica 7, Alcorcón, 28923 Madrid, Spain;
| | - Marta Gómez de Cedrón
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| | - Sonia Wagner
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Medicinal Gardens SL, Marqués de Urquijo 47, 28008 Madrid, Spain
| | - Guillermo Reglero
- Production and Characterization of Novel Foods Department, Institute of Food Science Research CIAL, CEI UAM + CSIC, 28049 Madrid, Spain;
| | | | - Ana Ramírez de Molina
- Molecular Oncology Group, Precision Nutrition and Health, IMDEA Food Institute, CEI UAM + CSIC, Ctra. de Cantoblanco 8, 28049 Madrid, Spain; (M.R.); (S.W.)
- Correspondence: (M.G.d.C.); (A.R.d.M.)
| |
Collapse
|
65
|
Rozenfeld PA, Crivaro AN, Ormazabal M, Mucci JM, Bondar C, Delpino MV. Unraveling the mystery of Gaucher bone density pathophysiology. Mol Genet Metab 2021; 132:76-85. [PMID: 32782168 DOI: 10.1016/j.ymgme.2020.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 01/18/2023]
Abstract
Gaucher disease (GD) is caused by pathogenic mutations in GBA1, the gene that encodes the lysosomal enzyme β-glucocerebrosidase. Despite the existence of a variety of specific treatments for GD, they cannot completely reverse bone complications. Many studies have evidenced the impairment in bone tissue of GD, and molecular mechanisms of bone density alterations in GD are being studied during the last years and different reports emphasized its efforts trying to unravel why and how bone tissue is affected. The cause of skeletal density affection in GD is a matter of debates between research groups. and there are two opposing hypotheses trying to explain reduced bone mineral density in GD: increased bone resorption versus impaired bone formation. In this review, we discuss the diverse mechanisms of bone alterations implicated in GD revealed until the present, along with a presentation of normal bone physiology and its regulation. With this information in mind, we discuss effectiveness of specific therapies, introduce possible adjunctive therapies and present a novel model for GD-associated bone density pathogenesis. Under the exposed evidence, we may conclude that both sides of the balance of remodeling process are altered. In GD the observed osteopenia/osteoporosis may be the result of contribution of both reduced bone formation and increased bone resorption.
Collapse
Affiliation(s)
- P A Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| | - A N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M Ormazabal
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - J M Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - C Bondar
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - M V Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, CONICET, Av. Córdoba 2351, (C1120ABG), Buenos Aires, Argentina
| |
Collapse
|
66
|
Park S, Park JH, Kang UB, Choi SK, Elfadl A, Ullah HMA, Chung MJ, Son JY, Yun HH, Park JM, Yim JH, Jung SJ, Kim SH, Choi YC, Kim DS, Shin JH, Park JS, Hur K, Lee SH, Lee EJ, Hwang D, Jeong KS. Nogo-A regulates myogenesis via interacting with Filamin-C. Cell Death Discov 2021; 7:1. [PMID: 33414425 PMCID: PMC7791112 DOI: 10.1038/s41420-020-00384-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/22/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Among the three isoforms encoded by Rtn4, Nogo-A has been intensely investigated as a central nervous system inhibitor. Although Nogo-A expression is increased in muscles of patients with amyotrophic lateral sclerosis, its role in muscle homeostasis and regeneration is not well elucidated. In this study, we discovered a significant increase in Nogo-A expression in various muscle-related pathological conditions. Nogo−/− mice displayed dystrophic muscle structure, dysregulated muscle regeneration following injury, and altered gene expression involving lipid storage and muscle cell differentiation. We hypothesized that increased Nogo-A levels might regulate muscle regeneration. Differentiating myoblasts exhibited Nogo-A upregulation and silencing Nogo-A abrogated myoblast differentiation. Nogo-A interacted with filamin-C, suggesting a role for Nogo-A in cytoskeletal arrangement during myogenesis. In conclusion, Nogo-A maintains muscle homeostasis and integrity, and pathologically altered Nogo-A expression mediates muscle regeneration, suggesting Nogo-A as a novel target for the treatment of myopathies in clinical settings.
Collapse
Affiliation(s)
- SunYoung Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea.,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Hwan Park
- Department of New Biology, DGIST, Daegu, 42988, Republic of Korea
| | - Un-Beom Kang
- R&D Division, BERTIS, Inc., Seongnam-si, Gyeonggi-do, 13605, Republic of Korea
| | - Seong-Kyoon Choi
- Division of Biotechnology, DGIST, Daegu, 42988, Republic of Korea.,Core Protein Resources Center, DGIST, Daegu, 42988, Republic of Korea
| | - Ahmed Elfadl
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - H M Arif Ullah
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Myung-Jin Chung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Ji-Yoon Son
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Hyun Ho Yun
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Min Park
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jae-Hyuk Yim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jun Jung
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Sang-Hyup Kim
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Young-Chul Choi
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06058, Republic of Korea
| | - Dae-Seong Kim
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Hong Shin
- Department of Neurology, Pusan National University Yangsan Hospital, Yangsan, 50612, Republic of Korea
| | - Jin-Sung Park
- Department of Neurology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Keun Hur
- Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu, 41944, Republic of Korea
| | - Sang-Han Lee
- Department of Food Science and Biotechnology, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Eun-Joo Lee
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea. .,Stem Cell Therapeutic Research Institute, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
67
|
Larsson M, Rudqvist N, Spetz J, Shubbar E, Parris TZ, Langen B, Helou K, Forssell-Aronsson E. Long-term transcriptomic and proteomic effects in Sprague Dawley rat thyroid and plasma after internal low dose 131I exposure. PLoS One 2021; 15:e0244098. [PMID: 33382739 PMCID: PMC7774980 DOI: 10.1371/journal.pone.0244098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 12/03/2020] [Indexed: 02/08/2023] Open
Abstract
Background Radioiodide (131I) is commonly used to treat thyroid cancer and hyperthyroidis.131I released during nuclear accidents, have resulted in increased incidence of thyroid cancer in children. Therefore, a better understanding of underlying cellular mechanisms behind 131I exposure is of great clinical and radiation protection interest. The aim of this work was to study the long-term dose-related effects of 131I exposure in thyroid tissue and plasma in young rats and identify potential biomarkers. Materials and methods Male Sprague Dawley rats (5-week-old) were i.v. injected with 0.5, 5.0, 50 or 500 kBq 131I (Dthyroid ca 1–1000 mGy), and killed after nine months at which time the thyroid and blood samples were collected. Gene expression microarray analysis (thyroid samples) and LC-MS/MS analysis (thyroid and plasma samples) were performed to assess differential gene and protein expression profiles in treated and corresponding untreated control samples. Bioinformatics analyses were performed using the DAVID functional annotation tool and Ingenuity Pathway Analysis (IPA). The gene expression microarray data and LC-MS/MS data were validated using qRT-PCR and ELISA, respectively. Results Nine 131I exposure-related candidate biomarkers (transcripts: Afp and RT1-Bb, and proteins: ARF3, DLD, IKBKB, NONO, RAB6A, RPN2, and SLC25A5) were identified in thyroid tissue. Two dose-related protein candidate biomarkers were identified in thyroid (APRT and LDHA) and two in plasma (DSG4 and TGM3). Candidate biomarkers for thyroid function included the ACADL and SORBS2 (all activities), TPO and TG proteins (low activities). 131I exposure was shown to have a profound effect on metabolism, immune system, apoptosis and cell death. Furthermore, several signalling pathways essential for normal cellular function (actin cytoskeleton signalling, HGF signalling, NRF2-mediated oxidative stress, integrin signalling, calcium signalling) were also significantly regulated. Conclusion Exposure-related and dose-related effects on gene and protein expression generated few expression patterns useful as biomarkers for thyroid function and cancer.
Collapse
Affiliation(s)
- Malin Larsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Nils Rudqvist
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Johan Spetz
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Emman Shubbar
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z. Parris
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Britta Langen
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Khalil Helou
- Departments of Oncology, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Departments of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Cancer Center, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
68
|
Monounsaturated Fatty Acids in Obesity-Related Inflammation. Int J Mol Sci 2020; 22:ijms22010330. [PMID: 33396940 PMCID: PMC7795523 DOI: 10.3390/ijms22010330] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity is an important aspect of the metabolic syndrome and is often associated with chronic inflammation. In this context, inflammation of organs participating in energy homeostasis (such as liver, adipose tissue, muscle and pancreas) leads to the recruitment and activation of macrophages, which secrete pro-inflammatory cytokines. Interleukin-1β secretion, sustained C-reactive protein plasma levels and activation of the NLRP3 inflammasome characterize this inflammation. The Stearoyl-CoA desaturase-1 (SCD1) enzyme is a central regulator of lipid metabolism and fat storage. This enzyme catalyzes the generation of monounsaturated fatty acids (MUFAs)-major components of triglycerides stored in lipid droplets-from saturated fatty acid (SFA) substrates. In this review, we describe the molecular effects of specific classes of fatty acids (saturated and unsaturated) to better understand the impact of different diets (Western versus Mediterranean) on inflammation in a metabolic context. Given the beneficial effects of a MUFA-rich Mediterranean diet, we also present the most recent data on the role of SCD1 activity in the modulation of SFA-induced chronic inflammation.
Collapse
|
69
|
Peng Y, Zhang Q, Zielinski RM, Howells RD, Welsh WJ. Identification of an irreversible PPARγ antagonist with potent anticancer activity. Pharmacol Res Perspect 2020; 8:e00693. [PMID: 33280279 PMCID: PMC7719157 DOI: 10.1002/prp2.693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Melanoma is responsible for most skin cancer deaths, and its incidence continues to rise year after year. Different treatment options have been developed for melanoma depending on the stage of the disease. Despite recent advances in immuno- and targeted therapies, advanced melanoma remains incurable and thus an urgent need persists for safe and more effective melanoma therapeutics. In this study, we demonstrate that a novel compound MM902 (3-(3-(bromomethyl)-5-(4-(tert-butyl) phenyl)-1H-1,2,4-triazol-1-yl) phenol) exhibited potent efficacies in inhibiting the growth of different cancer cells, and suppressed tumor growth in a mouse xenograft model of malignant melanoma. Beginning with MM902 instead of specific targets, computational similarity- and docking-based approaches were conducted to search for known anticancer drugs whose structural features match MM902 and whose pharmacological target would accommodate an irreversible inhibitor. Peroxisome proliferator-activated receptor (PPAR) was computationally identified as one of the pharmacological targets and confirmed by in vitro biochemical assays. MM902 was shown to bind to PPARγ in an irreversible mode of action and to function as a selective antagonist for PPARγ over PPARα and PPARδ. It is hoped that MM902 will serve as a valuable research probe to study the functions of PPARγ in tumorigenesis and other pathological processes.
Collapse
Affiliation(s)
- Youyi Peng
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
| | - Qiang Zhang
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
- Present address:
Intra‐Cellular Therapies, Inc.430 East 29th StreetNew YorkNY10016USA
| | - Robert M. Zielinski
- Graduate School of Biomedical SciencesNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - Richard D. Howells
- Department of Biochemistry & Molecular BiologyNew Jersey Medical SchoolRutgers, The State University of New JerseyNewarkNJUSA
| | - William J. Welsh
- Biomedical Informatics Shared ResourceCancer Institute of New JerseyRutgers, The State University of New JerseyNew BrunswickNJUSA
- Department of PharmacologyRobert Wood Johnson Medical SchoolRutgers, The State University of New JerseyPiscatawayNJUSA
| |
Collapse
|
70
|
Joo YH, Chung N, Lee YK. Anti-obesity effect of fresh and browned Magnolia denudata flowers in a high fat diet murine model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
71
|
García-Ricobaraza M, García-Bermúdez M, Torres-Espinola FJ, Segura Moreno MT, Bleyere MN, Díaz-Prieto LE, Nova E, Marcos A, Campoy C. Association study of rs1801282 PPARG gene polymorphism and immune cells and cytokine levels in a Spanish pregnant women cohort and their offspring. J Biomed Sci 2020; 27:101. [PMID: 33250050 PMCID: PMC7702670 DOI: 10.1186/s12929-020-00694-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Background Peroxisome proliferator activated receptor gamma (PPARG) belongs to the nuclear receptor superfamily functioning as transcription factors to regulate cellular differentiation, development and metabolism. Moreover, it has been implicated in the regulation of lipid metabolism, as well as the maturation of monocytes/macrophages and the control of inflammatory reactions. The aim of this study was to evaluate the relationship between the Pro12Ala (rs1808212) PPARG gene polymorphism on immune molecular and cellular components in mothers and their offspring participating in the PREOBE study. Methods DNA from maternal venous blood samples at 24, 34 and 40 gestational weeks, plus cord blood samples was extracted. Pro12Ala PPARG polymorphism genotyping was performed, and immune system markers were analyzed by flow cytometry. Results Study findings revealed no effect of rs1808212 PPARG genotypes on innate immune parameters in mothers and their offspring; however, CD4 + /CD8 + ratio were decreased at 24 and 34 weeks in pregnant women carrying the CG (Pro12Ala) rs1808212 polymorphism, (p = 0,012 and p = 0,030; respectively). Only CD19 levels in peripheral blood were significantly higher at delivery in pregnant women carrying the CC (Pro12Pro) genotype (p ≤ 0.001). Moreover, there were statistically significant differences in leukocytes and neutrophils maternal levels at 34 weeks of gestation, being lower in carriers of Pro12Ala genotype (p = 0.028 and p = 0.031, respectively). Conclusions Results suggest that Pro12Ala PPARG polymorphism may have an effect on some cell and immune parameters in pregnant women during pregnancy and at time of delivery. However, newborn innate immune system does not seems to be influenced by PPARG Pro12Ala polymorphism in cord blood.
Collapse
Affiliation(s)
- Maria García-Ricobaraza
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain
| | - Mercedes García-Bermúdez
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain.
| | - Francisco J Torres-Espinola
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,EURISTIKOS Excellence Centre for Paediatric Research, Universidad de Granada, Granada, Spain
| | - M Teresa Segura Moreno
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain
| | - Mathieu N Bleyere
- Department of Physiology, Haematology and Immunology, Nangui Abrogoua University, Abidjan, Côte d'Ivoire
| | - Ligia E Díaz-Prieto
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Esther Nova
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Ascensión Marcos
- Institute of Food Science, Technology and Nutrition (ICTAN), CSIC, Madrid, Spain
| | - Cristina Campoy
- Department of Paediatrics, School of Medicine, Universidad de Granada, Granada, Spain. .,Instituto de Investigación Biosanitaria ibsGRANADA, Health Sciences Technological Park, Granada, Spain. .,EURISTIKOS Excellence Centre for Paediatric Research, Universidad de Granada, Granada, Spain.
| |
Collapse
|
72
|
Yang E, Shen J. The roles and functions of Paneth cells in Crohn's disease: A critical review. Cell Prolif 2020; 54:e12958. [PMID: 33174662 PMCID: PMC7791172 DOI: 10.1111/cpr.12958] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/15/2020] [Accepted: 10/24/2020] [Indexed: 12/13/2022] Open
Abstract
Paneth cells (PCs) are located at the base of small intestinal crypts and secrete the α‐defensins, human α‐defensin 5 (HD‐5) and human α‐defensin 6 (HD‐6) in response to bacterial, cholinergic and other stimuli. The α‐defensins are broad‐spectrum microbicides that play critical roles in controlling gut microbiota and maintaining intestinal homeostasis. Inflammatory bowel disease, including ulcerative colitis and Crohn's disease (CD), is a complicated autoimmune disorder. The pathogenesis of CD involves genetic factors, environmental factors and microflora. Surprisingly, with regard to genetic factors, many susceptible genes and pathogenic pathways of CD, including nucleotide‐binding oligomerization domain 2 (NOD2), autophagy‐related 16‐like 1 (ATG16L1), immunity‐related guanosine triphosphatase family M (IRGM), wingless‐related integration site (Wnt), leucine‐rich repeat kinase 2 (LRRK2), histone deacetylases (HDACs), caspase‐8 (Casp8) and X‐box‐binding protein‐1 (XBP1), are relevant to PCs. As the underlying mechanisms are being unravelled, PCs are identified as the central element of CD pathogenesis, integrating factors among microbiota, intestinal epithelial barrier dysfunction and the immune system. In the present review, we demonstrate how these genes and pathways regulate CD pathogenesis via their action on PCs and what treatment modalities can be applied to deal with these PC‐mediated pathogenic processes.
Collapse
Affiliation(s)
- Erpeng Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
73
|
Kim SA, Park HY, Shin YW, Go EJ, Kim YJ, Kim YC, Shetty AA, Kim SJ. Hemovac blood after total knee arthroplasty as a source of stem cells. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1406. [PMID: 33313151 PMCID: PMC7723525 DOI: 10.21037/atm-20-2215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background With increasing life expectancy, stem cell therapy is receiving increasing attention. However, its application is restricted by ethical concerns. Hence a need exists for design of safe procedures for stem cell procurement. Here, we investigated whether hemovac blood (HVB) is an appropriate stem cell source. Methods HVB concentrates (HVBCs) from 20 total knee arthroplasty (TKA) patients and bone marrow aspirate (BMA) concentrates (BMACs) from 15 patients who underwent knee cartilage repair were comparatively evaluated. A bone marrow aspiration needle was inserted into the anterior superior iliac spine. Aspiration was performed using a 50-mL syringe, including 4 mL of anticoagulant, followed by centrifugation to obtain BMACs. To obtain HVBCs, blood was aspirated from the hemovac immediately after TKA surgery. Different cell types were enumerated. Isolation of BMA and HVB mononuclear cells was performed using density gradient centrifugation. Non-hematopoietic fibroblast colonies were quantified by colony forming unit-fibroblast assay surface marker analysis of HVB, HVBC, BMA, and BMAC was performed via flow cytometry. Mesenchymal stem cells (MSCs) isolated from HVBCs and BMACs were examined for osteogenic, adipogenic, and chondrogenic differentiation potential. Gene expression analysis was performed by quantitative real-time polymerase chain reaction (qRT-PCR). Results The number of cells from HVB and HVBC was significantly lower than from BMA and BMAC; however, the number of colonies in HVBC and BMAC did not differ significantly (P>0.05). Isolated cells from both sources had a fibroblast-like appearance, adhered to culture flasks, and formed colonies. Under different culture conditions, MSC-specific surface markers (CD29, CD44, CD90, CD105), osteogenic markers [RUNX2, osteopontin, osteocalcin, and alkaline phosphatase (ALP)] and adipogenic markers (PPARγ and C/EBPα) were expressed. Moreover, SOX9, type II collagen, and aggrecan were significantly upregulated upon chondrogenic differentiation. Conclusions HVB from TKA patients is a useful source of stem cells for research.
Collapse
Affiliation(s)
- Seon Ae Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ho Youn Park
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yong-Woon Shin
- Department of Orthopaedic Surgery, College of Medicine, The Inje University of Korea, Seoul, Republic of Korea
| | - Eun Jeong Go
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Young Ju Kim
- Department of Nursing Education & Administration, Uijeongbu St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoo Chang Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Asode Ananthram Shetty
- Canterbury Christ Church University, Faculty of Health and Wellbeing, Chatham Maritime, Kent, UK
| | - Seok Jung Kim
- Department of Orthopedic Surgery, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
74
|
Ishaka A, Imam MU, Ismail M. Nanoemulsification of Rice Bran Wax Policosanol Enhances Its Cardio-protective Effects via Modulation of Hepatic Peroxisome Proliferator-activated Receptor gamma in Hyperlipidemic Rats. J Oleo Sci 2020; 69:1287-1295. [PMID: 33028753 DOI: 10.5650/jos.ess20098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Policosanol, a mixture of long-chain alcohols found in animal and plant waxes, has several biological effects including lipid-lowering that have been extensively studied. However, its bioavailability is low. To investigate the effect of nanoemulsified rice bran wax policosanol (NPOL) on plasma homocysteine, heart and liver histology in hyperlipidemic rats, high-fat diet containing 2.5% cholesterol was used to induce hyperlipidemia in Sprague Dawley rats. The hyperlipidemic rats were treated with NPOL and rice bran wax policosanol (POL) in comparison with normal diet (ND), high-cholesterol diet (HCD) and simvastatin-treated rats. Plasma homocysteine, heart and liver histology, and hepatic mRNA expression of peroxisome proliferator-activated receptor gamma (PPARG) were evaluated. The NPOL group, similar to the simvastatin group, showed reduced plasma homocysteine, preserved heart and liver histology, and down-regulated hepatic PPARG mRNA in comparison to the control group, and was better than the POL group. The results suggest that the modest effect of NPOL on homocysteine and preservation of heart and liver histology could be through the regulation of PPARG expression on a background of increased assimilation of rice bran wax policosanol.
Collapse
Affiliation(s)
- Aminu Ishaka
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University
| | - Mustapha Umar Imam
- Department of Medical Biochemistry, College of Health Sciences, Usmanu Danfodiyo University.,Director Centre for Advance Medical Research and Training (CAMRET)
| | - Maznah Ismail
- Laboratory of Molecular Biomedicine, Institute of Bioscience, University Putra Malaysia
| |
Collapse
|
75
|
Enhancing insulin sensitivity by dual PPARγ partial agonist, β-catenin inhibitor: Design, synthesis of new αphthalimido-o-toluoyl2-aminothiazole hybrids. Life Sci 2020; 259:118270. [PMID: 32814067 DOI: 10.1016/j.lfs.2020.118270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/28/2020] [Accepted: 08/10/2020] [Indexed: 01/03/2023]
Abstract
AIMS Partial PPARγ agonists attracted substantially heightened interest as safer thiazolidinediones alternatives. On the other hand, Wnt/β-catenin antagonists have been highlighted as promising strategy for type 2 diabetes management via up-regulating PPARγ gene expression. We aimed at synthesizing novel partial PPARγ agonists with β-catenin inhibitory activity which could enhance insulin sensitivity and avoid the side effects of full PPARγ agonists. MAIN METHODS We synthesized novel series of α-phthlimido-o-toluoyl-2-aminothiazoles hybrids for evaluating their antidiabetic activity and discovering its mechanistic pathway. We assessed effect of the new hybrids on PPARγ activation using a luciferase reporter assay system. Moreover, intracellular triglyceride levels, gene levels of c/EBPα, PPARγ and PPARγ targets including GLUT4, adiponectin, aP2 were measured in 3T3-L1 cells. Uptake of 2-DOG together with PPARγ and β-catenin protein levels were evaluated in 3T3-L1cells. In addition, molecular docking studies with PPARγ LBD, physicochemical properties and structure activity relationship of the novel hybrids were also studied. KEY FINDINGS Three of the synthesized hybrids showed partial PPARγ agonistic activity and distinct PPARγ binding pattern. These compounds modulated PPARγ gene expression and PPARγ target genes; and increased glucose uptake in 3T3-L1 and slightly induced adipogenesis compared to rosiglitazone. Moreover, these compounds reduced β-catenin protein level which reflected in increased both PPARγ gene and protein levels that leads to improved insulin sensitivity and increased GLUT4 and adiponectin gene expression. SIGNIFICANCE Our synthesized compounds act as novel partial PPARγ agonists and β-catenin inhibitors that have potent insulin sensitizing activity and mitigate the lipogenic side effects of TZDs.
Collapse
|
76
|
Marino N, German R, Rao X, Simpson E, Liu S, Wan J, Liu Y, Sandusky G, Jacobsen M, Stoval M, Cao S, Storniolo AMV. Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. NPJ Breast Cancer 2020; 6:50. [PMID: 33083529 PMCID: PMC7538898 DOI: 10.1038/s41523-020-00191-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Histologically normal tissue adjacent to the tumor can provide insight of the microenvironmental alterations surrounding the cancerous lesion and affecting the progression of the disease. However, little is known about the molecular changes governing cancer initiation in cancer-free breast tissue. Here, we employed laser microdissection and whole-transcriptome profiling of the breast epithelium prior to and post tumor diagnosis to identify the earliest alterations in breast carcinogenesis. Furthermore, a comprehensive analysis of the three tissue compartments (microdissected epithelium, stroma, and adipose tissue) was performed on the breast donated by either healthy subjects or women prior to the clinical manifestation of cancer (labeled "susceptible normal tissue"). Although both susceptible and healthy breast tissues appeared histologically normal, the susceptible breast epithelium displayed a significant upregulation of genes involved in fatty acid uptake/transport (CD36 and AQP7), lipolysis (LIPE), and lipid peroxidation (AKR1C1). Upregulation of lipid metabolism- and fatty acid transport-related genes was observed also in the microdissected susceptible stromal and adipose tissue compartments, respectively, when compared with the matched healthy controls. Moreover, inter-compartmental co-expression analysis showed increased epithelium-adipose tissue crosstalk in the susceptible breasts as compared with healthy controls. Interestingly, reductions in natural killer (NK)-related gene signature and CD45+/CD20+ cell staining were also observed in the stromal compartment of susceptible breasts. Our study yields new insights into the cancer initiation process in the breast. The data suggest that in the early phase of cancer development, metabolic activation of the breast, together with increased epithelium-adipose tissue crosstalk may create a favorable environment for final cell transformation, proliferation, and survival.
Collapse
Affiliation(s)
- Natascia Marino
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Rana German
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
| | - Xi Rao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Ed Simpson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Sheng Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - George Sandusky
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Max Jacobsen
- Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Miranda Stoval
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
| | - Sha Cao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Anna Maria V Storniolo
- Susan G. Komen Tissue Bank at the IU Simon Cancer Center, Indianapolis, IN 46202 USA
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| |
Collapse
|
77
|
Imerb N, Thonusin C, Chattipakorn N, Chattipakorn SC. Aging, obese-insulin resistance, and bone remodeling. Mech Ageing Dev 2020; 191:111335. [DOI: 10.1016/j.mad.2020.111335] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/14/2020] [Indexed: 02/08/2023]
|
78
|
Planas D, Fert A, Zhang Y, Goulet JP, Richard J, Finzi A, Ruiz MJ, Marchand LR, Chatterjee D, Chen H, Wiche Salinas TR, Gosselin A, Cohen EA, Routy JP, Chomont N, Ancuta P. Pharmacological Inhibition of PPARy Boosts HIV Reactivation and Th17 Effector Functions, While Preventing Progeny Virion Release and de novo Infection. Pathog Immun 2020; 5:177-239. [PMID: 33089034 PMCID: PMC7556414 DOI: 10.20411/pai.v5i1.348] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/04/2020] [Indexed: 01/02/2023] Open
Abstract
The frequency and functions of Th17-polarized
CCR6+RORyt+CD4+ T cells are rapidly
compromised upon HIV infection and are not restored with long-term viral
suppressive antiretroviral therapy (ART). In line with this, Th17 cells
represent selective HIV-1 infection targets mainly at mucosal sites, with
long-lived Th17 subsets carrying replication-competent HIV-DNA during ART.
Therefore, novel Th17-specific therapeutic interventions are needed as a
supplement of ART to reach the goal of HIV remission/cure. Th17 cells express
high levels of peroxisome proliferator-activated receptor gamma
(PPARy), which acts as a transcriptional repressor of the HIV provirus and the
rorc gene, which encodes for the Th17-specific master
regulator RORyt. Thus, we hypothesized that the pharmacological inhibition of
PPARy will facilitate HIV reservoir reactivation while enhancing Th17 effector
functions. Consistent with this prediction, the PPARy antagonist T0070907
significantly increased HIV transcription (cell-associated HIV-RNA) and
RORyt-mediated Th17 effector functions (IL-17A). Unexpectedly, the PPARy
antagonism limited HIV outgrowth from cells of ART-treated people living with
HIV (PLWH), as well as HIV replication in vitro.
Mechanistically, PPARy inhibition in CCR6+CD4+ T cells
induced the upregulation of transcripts linked to Th17-polarisation (RORyt,
STAT3, BCL6 IL-17A/F, IL-21) and HIV transcription (NCOA1-3, CDK9, HTATIP2).
Interestingly, several transcripts involved in HIV-restriction were upregulated
(Caveolin-1, TRIM22, TRIM5α, BST2, miR-29), whereas HIV permissiveness
transcripts were downregulated (CCR5, furin), consistent with the decrease in
HIV outgrowth/replication. Finally, PPARy inhibition increased intracellular
HIV-p24 expression and prevented BST-2 downregulation on infected T cells,
suggesting that progeny virion release is restricted by BST-2-dependent
mechanisms. These results provide a strong rationale for considering PPARy
antagonism as a novel strategy for HIV-reservoir purging and restoring
Th17-mediated mucosal immunity in ART-treated PLWH.
Collapse
Affiliation(s)
- Delphine Planas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Yuwei Zhang
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Jonathan Richard
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Andrés Finzi
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Maria Julia Ruiz
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | | | - Debashree Chatterjee
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Huicheng Chen
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Annie Gosselin
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal; Montréal, Québec, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service; Division of Hematology; McGill University Health Centre-Glen site; Montreal, Québec, Canada
| | - Nicolas Chomont
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie; Faculté de médecine; Université de Montréal; Montréal, Québec, Canada.,Centre de recherche du CHUM; Montréal, Québec, Canada
| |
Collapse
|
79
|
Lokhande KB, Ballav S, Yadav RS, Swamy KV, Basu S. Probing intermolecular interactions and binding stability of kaempferol, quercetin and resveratrol derivatives with PPAR-γ: docking, molecular dynamics and MM/GBSA approach to reveal potent PPAR- γ agonist against cancer. J Biomol Struct Dyn 2020; 40:971-981. [PMID: 32954977 DOI: 10.1080/07391102.2020.1820380] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Peroxisome Proliferator-Activated Receptors-γ (PPAR-γ), a ligand-activated transcription factor, suggested having anti-inflammatory effects by activating the target genes when bound to the ligand. Herein, we examined a conformational analysis of 8708 derivatives of Kaempferol, Quercetin, and Resveratrol, the prime activators of PPAR-γ molecular target by employing molecular docking and dynamic simulation pipeline to screen out potential agonists. The structure-based docking procedure performed by FlexX tool shortlisted high binding affinities of these derivatives of Kaempferol, Quercetin and Resveratrol with the protein receptor with a score of -38.94 kcal/mol (4'-Carboxy-5, 7-Dihydroxyflavone-CDHF), -41.63 kcal/mol (Demethyltorosaflavone D- DMTF) and -31.52 kcal/mol (Resveratrol-O-disulphate- RD) respectively, signifying the selected derivatives forms interactions like H-bond, Aromatic H-Bond, Pi-Pi stacking and salt bridges with PPAR-γ. The PPAR-γ-derivative complex was stabilized by intermolecular hydrogen bonds and stacking interactions. A greater interaction was significantly observed between the binding affinities of derivatives compared to the standards. Based on the root mean square deviation (RMSD) and root mean square fluctuation (RMSF) carried by the means of high-speed molecular dynamics (MD) and simulation of best-docked poses, the ligand, DMTF attained the most favored interaction with PPAR-γ. Thus, it appeared to have high chemical scaffold diversity and may confer high drug-likeness. The binding free energy (ΔG) led us to manifest Quercetin derivative to have a key role for PPAR-γ receptor. The result obtained clearly indicates the exploitation of the promising new drug leads that may further influence in synthesizing and analyzing the development as anti-cancer agonists.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kiran Bharat Lokhande
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, , Dr. D.Y. Patil Vidyapeeth, Pune, India
| | - Sangeeta Ballav
- Cancer and Translational Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Rohit Singh Yadav
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, , Dr. D.Y. Patil Vidyapeeth, Pune, India.,Cancer and Translational Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - K Venkateswara Swamy
- Bioinformatics Research Laboratory, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, , Dr. D.Y. Patil Vidyapeeth, Pune, India.,MIT School of Bioengineering Science and Research, MIT- Art, Design and Technology University, Pune, India
| | - Soumya Basu
- Cancer and Translational Research Laboratory, Dr. D.Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| |
Collapse
|
80
|
Hwang YJ, Park JH, Cho DH. Activation of AMPK by Telmisartan Decreases Basal and PDGF-stimulated VSMC Proliferation via Inhibiting the mTOR/p70S6K Signaling Axis. J Korean Med Sci 2020; 35:e289. [PMID: 32893519 PMCID: PMC7476795 DOI: 10.3346/jkms.2020.35.e289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/16/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Telmisartan, an angiotensin II type 1 receptor blocker (ARB), is widely used to treat hypertension by blocking the renin-angiotensin-aldosterone system. Although abnormal proliferation of vascular smooth muscle cells (VSMCs) is a well-established contributor to the development of various vascular diseases, such as atherosclerosis, the effect of telmisartan on VSMC proliferation and its mechanism of action have not been fully revealed. Herein, we investigated the molecular mechanism whereby telmisartan inhibits rat VSMC proliferation. METHODS We measured VSMC proliferation by MTT assay, and performed inhibitor studies and western blot analyses using basal and platelet-derived growth factor (PDGF)-stimulated rat VSMCs. To elucidate the role of AMP-activated protein kinase (AMPK), we introduced dominant-negative (dn)-AMPKα1 gene into VSMCs. RESULTS Telmisartan decreased VSMC proliferation, which was accompanied by decreased phosphorylations of mammalian target of rapamycin (mTOR) at Ser2448 (p-mTOR-Ser2448) and p70 S6 kinase (p70S6K) at Thr389 (p-p70S6K-Thr389) in dose- and time-dependent manners. Telmisartan dose- and time-dependently increased phosphorylation of AMPK at Thr172 (p-AMPK-Thr172). Co-treatment with compound C, a specific AMPK inhibitor, or ectopic expression of the dn-AMPKα1 gene, significantly reversed telmisartan-inhibited VSMC proliferation, p-mTOR-Ser2448 and p-p70S6K-Thr389 levels. Among the ARBs tested (including losartan and fimasartan), only telmisartan increased p-AMPK-Thr172 and decreased p-mTOR-Ser2448, p-p70S6K-Thr389, and VSMC proliferation. Furthermore, GW9662, a specific and irreversible peroxisome proliferator-activated receptor γ (PPARγ) antagonist, did not affect any of the telmisartan-induced changes. Finally, telmisartan also exhibited inhibitory effects on VSMC proliferation by increasing p-AMPK-Thr172 and decreasing p-mTOR-Ser2448 and p-p70S6K-Thr389 in a PDGF-induced in vitro atherosclerosis model. CONCLUSION These results demonstrated that telmisartan-activated AMPK inhibited basal and PDGF-stimulated VSMC proliferation, at least in part, by downregulating the mTOR/p70S6K signaling axis in a PPARγ-independent manner. These observations suggest that telmisartan could be used to treat arterial narrowing diseases such as atherosclerosis and restenosis.
Collapse
Affiliation(s)
- Yun Jin Hwang
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung Hyun Park
- Department of Molecular Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Du Hyong Cho
- Department of Pharmacology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
81
|
Abdelhamid AM, Elsheakh AR, Abdelaziz RR, Suddek GM. Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci 2020; 256:117908. [PMID: 32512011 DOI: 10.1016/j.lfs.2020.117908] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive alcohol intake contributes to severe liver damage involving oxidative stress and inflammatory responses, which make them promising therapeutic targets. Previous studies have demonstrated that empagliflozin (EMPA) showed cardiovascular, renal, and cerebral benefits potentially mediated through its antioxidant and anti-inflammatory actions. AIMS This experiment aimed to evaluate the hepatoprotective effect of EMPA on alcoholic liver disease (ALD) and the possible underlying mechanisms. MATERIALS AND METHODS Serum biochemical parameters and the liver contents of malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Real-time qPCR was conducted to determine the gene expression of peroxisome proliferator-activated receptor gamma (PPAR-γ), nuclear factor erythroid 2-related factor 2 (Nrf-2), and heme oxygenase-1 (Hmox-1). In addition, ELISA was performed to measure tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, Nrf-2, and PPAR-γ. Nuclear factor-kappa B (NF-κB) was detected by immunohistochemical staining using an anti-NF-κB p65 antibody. KEY FINDINGS Our results revealed that the serum levels of alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase were significantly reduced by EMPA. EMPA also decreased the content of MDA and NO and increased the activities of SOD and GSH in liver homogenates. Moreover, EMPA inhibited the release of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, via the downregulation of NF-κB. These changes were associated with an improvement in histopathological deterioration. The protective effect of EMPA against oxidative stress and inflammation was associated with the upregulation of PPAR-γ, Nrf-2, and their target gene Hmox-1. SIGNIFICANCE EMPA showed protective activities against ethanol-induced liver injury by suppressing inflammation and oxidative stress via modulation of the NF-κB/Nrf-2/PPAR-γ axis.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Delta University for Science & Technology, Egypt.
| | - Ahmed Ramadan Elsheakh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| | | | - Ghada Mohamed Suddek
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Egypt
| |
Collapse
|
82
|
Empagliflozin ameliorates ethanol-induced liver injury by modulating NF-κB/Nrf-2/PPAR-γ interplay in mice. Life Sci 2020. [DOI: 10.1016/j.lfs.2020.117908
expr 913773998 + 879574250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
83
|
Deoxynivalenol Exposure Suppresses Adipogenesis by Inhibiting the Expression of Peroxisome Proliferator-Activated Receptor Gamma 2 (PPARγ2) in 3T3-L1 Cells. Int J Mol Sci 2020; 21:ijms21176300. [PMID: 32878272 PMCID: PMC7504378 DOI: 10.3390/ijms21176300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/29/2020] [Accepted: 08/29/2020] [Indexed: 12/16/2022] Open
Abstract
Deoxynivalenol (DON)-a type B trichothecene mycotoxin, mainly produced by the secondary metabolism of Fusarium-has toxic effects on animals and humans. Although DON's toxicity in many organs including the adrenal glands, thymus, stomach, spleen, and colon has been addressed, its effects on adipocytes have not been investigated. In this study, 3T3-L1 cells were chosen as the cell model and treated with less toxic doses of DON (100 ng/mL) for 7 days. An inhibition of adipogenesis and decrease in triglycerides (TGs) were observed. DON exposure significantly downregulated the expression of PPARγ2 and C/EBPα, along with that of other adipogenic marker genes in 3T3-L1 cells and BALB/c mice. The anti-adipogenesis effect of DON and the downregulation of the expression of adipogenic marker genes were effectively reversed by PPARγ2 overexpression. The repression of PPARγ2's expression is the pivotal event during DON exposure regarding adipogenesis. DON exposure specifically decreased the di-/trimethylation levels of Histone 3 at lysine 4 in 3T3-L1 cells, therefore weakening the enrichment of H3K4me2 and H3K4me3 at the Pparγ2 promoter and suppressing its expression. Conclusively, DON exposure inhibited PPARγ2 expression via decreasing H3K4 methylation, downregulated the expression of PPARγ2-regulated adipogenic marker genes, and consequently suppressed the intermediate and late stages of adipogenesis. Our results broaden the current understanding of DON's toxic effects and provide a reference for addressing the toxicological mechanism of DON's interference with lipid homeostasis.
Collapse
|
84
|
Xu KK, Huang YK, Liu X, Zhang MC, Xie HT. Organotypic Culture of Mouse Meibomian Gland: A Novel Model to Study Meibomian Gland Dysfunction In Vitro. Invest Ophthalmol Vis Sci 2020; 61:30. [PMID: 32330227 PMCID: PMC7401473 DOI: 10.1167/iovs.61.4.30] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Meibomian glands are essential in maintaining the integrity and health of the ocular surface. Meibomian gland dysfunction (MGD), mainly induced by ductal occlusion, is considered as the major cause of dry eye disease. In this study, a novel in vitro model was established for investigating the role of inflammation in the process of MGD. Methods Mouse tarsal plates were removed from eyelids after dissection and explants were cultured during various time ranging from 24 to 120 hours. Meibomian gland epithelial cells were further enzymatically digested and dissociated from tarsal plates before culturing. Both explants and cells were incubated in different media with or without serum or azithromycin (AZM). Furthermore, explants were treated with IL-1β or vehicle for 48 hours. Analyses for tissue viability, histology, biomarker expression, and lipid accumulation were performed with hematoxylin and eosin (H&E) staining, immunofluorescence staining, and Western blot. Results Higher viability was preserved when explants were cultured on Matrigel with immediate addition of culture medium. The viability, morphology, biomarker expression, and function of meibomian glands were preserved in explants cultured for up to 72 hours. Lipid accumulation and peroxisome proliferator-activated receptor γ (PPARγ) expression increased in both explants and cells cultured in media containing serum or AZM. Treatment with IL-1β induced overexpression of Keratin (Krt) 1 in meibomian gland ducts. Conclusions Intervention with pro-inflammatory cytokine IL-1β induces hyperkeratinization in meibomian gland ducts in vitro. This novel organotypic culture model can be used for investigating the mechanism of MGD.
Collapse
|
85
|
Xia H, Ge Y, Wang F, Ming Y, Wu Z, Wang J, Sun S, Huang S, Chen M, Xiao W, Yao S. Protectin DX ameliorates inflammation in sepsis-induced acute lung injury through mediating PPARγ/NF-κB pathway. Immunol Res 2020; 68:280-288. [PMID: 32845434 DOI: 10.1007/s12026-020-09151-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 08/19/2020] [Indexed: 01/08/2023]
Abstract
Previous reports have demonstrated that the newly identified lipid mediator protectin DX (PDX) could effectively attenuate multiple organ injuries in sepsis. The aim of our study was to clarify whether PDX could improve acute lung injury (ALI) induced by sepsis and elucidate the relevant potential mechanism. After inducing sepsis by the cecal ligation and puncture approach, mice were treated with a high or low dose of PDX. Pathological changes in the pulmonary tissue were analyzed by hematoxylin-eosin staining, and lung injury score was evaluated. Lung permeability and edema were assessed by lung wet/dry ratio, and protein and cellular load of the bronchoalveolar lavage fluid (BALF). Inflammatory cytokine levels in BALF were measured by ELISA and the expression of PPARγ in the lung tissue was analyzed by immunoblotting. The results suggested that PDX could diminish the inflammatory response in lung tissue after sepsis by upregulating PPARγ and inhibiting the phosphorylation and activation of NF-κB p65. PDX treatment lowered the levels of pro-inflammation cytokines IL-1β, IL-6, TNF-α, and MCP-1, and the levels of anti-inflammatory cytokine IL-10 was increased in the BALF. It also improved lung permeability and reduced lung injury. Furthermore, the protective effect of PDX on lung tissue could be reversed by GW9662, a specific PPAR-γ antagonist. Taken together, our study indicated that PDX could ameliorate the inflammatory response in ALI by activating the PPARγ/NF-κB pathway in a mouse model of sepsis.
Collapse
Affiliation(s)
- Haifa Xia
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Yangyang Ge
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Fuquan Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Yu Ming
- College of Health Science and Nursing, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhouyang Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Jingxu Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Shujun Sun
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Ming Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China
| | - Weimin Xiao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
| | - Shanglong Yao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China. .,Institute of Anesthesia and Critical Care, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277, Jiefang Avenue, Wuhan, 430022, China.
| |
Collapse
|
86
|
Wang W, Zhu N, Yan T, Shi YN, Chen J, Zhang CJ, Xie XJ, Liao DF, Qin L. The crosstalk: exosomes and lipid metabolism. Cell Commun Signal 2020; 18:119. [PMID: 32746850 PMCID: PMC7398059 DOI: 10.1186/s12964-020-00581-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Exosomes have been considered as novel and potent vehicles of intercellular communication, instead of "cell dust". Exosomes are consistent with anucleate cells, and organelles with lipid bilayer consisting of the proteins and abundant lipid, enhancing their "rigidity" and "flexibility". Neighboring cells or distant cells are capable of exchanging genetic or metabolic information via exosomes binding to recipient cell and releasing bioactive molecules, such as lipids, proteins, and nucleic acids. Of note, exosomes exert the remarkable effects on lipid metabolism, including the synthesis, transportation and degradation of the lipid. The disorder of lipid metabolism mediated by exosomes leads to the occurrence and progression of diseases, such as atherosclerosis, cancer, non-alcoholic fatty liver disease (NAFLD), obesity and Alzheimer's diseases and so on. More importantly, lipid metabolism can also affect the production and secretion of exosomes, as well as interactions with the recipient cells. Therefore, exosomes may be applied as effective targets for diagnosis and treatment of diseases. Video abstract.
Collapse
Affiliation(s)
- Wei Wang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Tao Yan
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya-Ning Shi
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Neurosurgery in Changsha, 921 hospital, joint service support force of People's Liberation Army, Changsha, China
| | - Chan-Juan Zhang
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China.,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Duan-Fang Liao
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| | - Li Qin
- School of Pharmacy, Hanpu Science and Education District, Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, 410208, Hunan, China. .,Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
87
|
Szalai K, Tempfli K, Zsédely E, Lakatos E, Gáspárdy A, Bali Papp Á. Linseed oil supplementation affects fatty acid desaturase 2, peroxisome proliferator activated receptor gamma, and insulin-like growth factor 1 gene expression in turkeys (Meleagris gallopavo). Anim Biosci 2020; 34:662-669. [PMID: 32810939 PMCID: PMC7961277 DOI: 10.5713/ajas.20.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/17/2020] [Indexed: 12/01/2022] Open
Abstract
Objective Effects of linseed oil (LO) supplementation on the fat content and fatty acid profile of breast meat, and the expression of three genes in the liver, breast muscle and fat tissues of commercial 154-day-old hybrid male turkeys were investigated. Methods The animals in the control group were fed a commercially available feed and received no LO supplementation (n = 70), whereas animals in the LO group (n = 70) were fed the same basic diet supplemented with LO (day 15 to 21, 0.5%; day 22 to 112, 1%). The effect of dietary LO supplementation on fatty acid composition of breast muscle was examined by gas chromatography, and the expression of fatty acid desaturase 2 (FADS2), peroxisome proliferator activated receptor gamma (PPARγ), and insulin-like growth factor 1 (IGF1) genes was analysed by means of quantitative reverse transcription polymerase chain reaction. Results The LO supplementation affected the fatty acid composition of breast muscle. Hepatic FADS2 levels were considerably lower (p<0.001), while adipose tissue expression was higher (p<0.05) in the control compared to the LO group. The PPARγ expression was lower (p<0.05), whereas IGF1 was higher (p<0.05) in the fat of control animals. There were no significant (p>0.05) differences in FADS2, PPARγ, and IGF1 gene expressions of breast muscle; however, omega-6/omega-3 ratio of breast muscle substantially decreased (p<0.001) in the LO group compared to control. Conclusion Fatty acid composition of breast meat was positively influenced by LO supplementation without deterioration of fattening parameters. Remarkably, increased FADS2 expression in the liver of LO supplemented animals was associated with a significantly decreased omega-6/omega-3 ratio, providing a potentially healthier meat product for human consumption. Increased PPARγ expression in fat tissue of the LO group was not associated with fat content of muscle, whereas a decreased IGF1 expression in fat tissue was associated with a trend of decreasing fat content in muscle of the experimental LO group.
Collapse
Affiliation(s)
- Klaudia Szalai
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - Károly Tempfli
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - Eszter Zsédely
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - Erika Lakatos
- Department of Food Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - András Gáspárdy
- Department of Animal Breeding and Genetics, University of Veterinary Medicine, 1078 Budapest, Hungary
| | - Ágnes Bali Papp
- Department of Animal Science, Faculty of Agricultural and Food Sciences, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| |
Collapse
|
88
|
Yoon CH, Ryu JS, Hwang HS, Kim MK. Comparative Analysis of Age-Related Changes in Lacrimal Glands and Meibomian Glands of a C57BL/6 Male Mouse Model. Int J Mol Sci 2020; 21:ijms21114169. [PMID: 32545199 PMCID: PMC7313015 DOI: 10.3390/ijms21114169] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
It is not known how biological changes in the lacrimal (LGs) and meibomian (MGs) glands contribute to dry eye disease (DED) in a time-dependent manner. In this study, we investigated time-sequenced changes in the inflammation, oxidative stress, and senescence of stem cells in both glands of an aging-related DED mouse model. Eight-week (8W)-, one-year (1Y)-, and two-year (2Y)-old C57BL/6 male mice were used. MG areas of the upper and lower eyelids were analyzed by transillumination meibography imaging. The number of CD45+, 8-OHdG+, Ki-67+, and BrdU+ cells was compared in both glands. Increased corneal staining and decreased tear secretion were observed in aged mice. The MG dropout area increased with aging, and the age-adjusted MG area in lower lids was negatively correlated with the National Eye Institute (NEI) score. Increased CD4+ interferon (IFN)-γ+ cells in LGs were found in both aged mice. An increase in 8-OHdG+ cells in both glands was evident in 2Y-old mice. Reduced Ki-67+ cells, but no change in CD45+ cells, was observed in the MGs of 1Y-old mice. Increased BrdU+ cells were observed in the LGs of aged mice. This suggests that age-dependent DED in C57BL/6 mice is related to inflammation of the LGs, the development of MG atrophy, and oxidative stress in both glands.
Collapse
Affiliation(s)
- Chang Ho Yoon
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Korea
| | - Jin Suk Ryu
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
| | - Ho Sik Hwang
- Department of Ophthalmology, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea
- Correspondence: (H.S.H.); (M.K.K.); Tel.: +82-2-3779-1025 (H.S.H.); +82-2-2072-2665 (M.K.K.); Fax: +82-2-761-6869 (H.S.H.); +82-2-741-3187 (M.K.K.)
| | - Mee Kum Kim
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Korea;
- Laboratory of Ocular Regenerative Medicine and Immunology, Seoul Artificial Eye Center, Seoul National University Hospital Biomedical Research Institute, Seoul 03080, Korea;
- Department of Ophthalmology, Seoul National University Hospital, Seoul 03080, Korea
- Correspondence: (H.S.H.); (M.K.K.); Tel.: +82-2-3779-1025 (H.S.H.); +82-2-2072-2665 (M.K.K.); Fax: +82-2-761-6869 (H.S.H.); +82-2-741-3187 (M.K.K.)
| |
Collapse
|
89
|
Zhou HM, Ye YS, Jiang NN, Mu RF, Wang Q, Hu J, Liu X, Qin WY, Xu G, Xiong WY. Adipogenesis Inhibitory Activity of Hypersampsone P from Hypericum subsessile. NATURAL PRODUCTS AND BIOPROSPECTING 2020; 10:163-170. [PMID: 32447748 PMCID: PMC7253573 DOI: 10.1007/s13659-020-00245-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/16/2020] [Indexed: 06/08/2023]
Abstract
Adamantane polycyclic polyprenylated acylphloroglucinols (PPAPs) with caged architecture, a special class of hybrid natural products, is specifically rich in the plant family Guttiferae, especially Hypericum or Garcinia genus. Hypersampsone P is one of Adamantane PPAPs compounds extracted from Hypericum subsessile. Here we have chosen, screened ten PPAPs and identified one of them showed an activity in inhibiting of adipocytes differentiation. Particularly, the compound, hypersampsone P, blunted the adipocyte differentiation dose-dependently. Moreover, hypersampsone P down-regulated the expressions of several key regulators for adipogenesis, including PPARγ and FABP4. The treatment of cells at the early stage of adipogenesis by hypersampsone P induced the greatest blunting of adipocyte differentiation and the effect might be involved in the LKB1-AMPK signaling pathway.
Collapse
Affiliation(s)
- Hui-Min Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yan-Song Ye
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Na-Na Jiang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rong-Fang Mu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jing Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Xia Liu
- Department of Pharmacy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
| | - Wan-Ying Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Gang Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| | - Wen-Yong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
90
|
Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or Synthetic) and Nutritional Agonists of PPAR-γ as Candidates for Cytokine Storm Modulation in COVID-19 Disease. Molecules 2020; 25:molecules25092076. [PMID: 32365556 PMCID: PMC7248959 DOI: 10.3390/molecules25092076] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 12/25/2022] Open
Abstract
The cytokine storm is an abnormal production of inflammatory cytokines, due to the over-activation of the innate immune response. This mechanism has been recognized as a critical mediator of influenza-induced lung disease, and it could be pivotal for COVID-19 infections. Thus, an immunomodulatory approach targeting the over-production of cytokines could be proposed for viral aggressive pulmonary disease treatment. In this regard, the peroxisome proliferator-activated receptor (PPAR)-γ, a member of the PPAR transcription factor family, could represent a potential target. Beside the well-known regulatory role on lipid and glucose metabolism, PPAR-γ also represses the inflammatory process. Similarly, the PPAR-γ agonist thiazolidinediones (TZDs), like pioglitazone, are anti-inflammatory drugs with ameliorating effects on severe viral pneumonia. In addition to the pharmacological agonists, also nutritional ligands of PPAR-γ, like curcuma, lemongrass, and pomegranate, possess anti-inflammatory properties through PPAR-γ activation. Here, we review the main synthetic and nutritional PPAR-γ ligands, proposing a dual approach based on the strengthening of the immune system using pharmacological and dietary strategies as an attempt to prevent/treat cytokine storm in the case of coronavirus infection.
Collapse
|
91
|
Ahsan W. The Journey of Thiazolidinediones as Modulators of PPARs for the Management of Diabetes: A Current Perspective. Curr Pharm Des 2020; 25:2540-2554. [PMID: 31333088 DOI: 10.2174/1381612825666190716094852] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/04/2019] [Indexed: 01/06/2023]
Abstract
Peroxisome Proliferator-Activated Receptors (PPARs) also known as glitazone receptors are a family of receptors that regulate the expression of genes and have an essential role in carbohydrate, lipid and protein metabolism apart from other functions. PPARs come in 3 sub-types: PPAR-α, PPAR-β/δ and PPAR-γ - with PPAR-γ having 2 isoforms - γ1 and γ2. Upon activation, the PPARs regulate the transcription of various genes involved in lipid and glucose metabolism, adipocyte differentiation, increasing insulin sensitivity, prevention of oxidative stress and to a certain extent, modulation of immune responses via macrophages that have been implicated in the pathogenesis of insulin resistance. Hence, PPARs are an attractive molecular target for designing new anti-diabetic drugs. This has led to a boost in the research efforts directed towards designing of PPAR ligands - particularly ones that can selectively and specifically activate one or more of the PPAR subtypes. Though, PPAR- γ full agonists such as Thiazolidinediones (TZDs) are well established agents for dyslipidemia and type 2 diabetes mellitus (T2D), the side effect profile associated with TZDs has potentiated an imminent need to come up with newer agents that act through this pathway. Several newer derivatives having TZD scaffold have been designed using structure based drug designing technique and computational tools and tested for their PPAR binding affinity and efficacy in combating T2D and some have shown promising activities. This review would focus on the role of PPARs in the management of T2D; recently reported TZD derivatives which acted as agonists of PPAR- γ and its subtypes and are potentially useful in the new drug discovery for the disease.
Collapse
Affiliation(s)
- Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P. Box No. 114, Jazan, Saudi Arabia
| |
Collapse
|
92
|
Correlation of serum vitamin D, adipose tissue vitamin D receptor, and peroxisome proliferator-activated receptor γ in women with gestational diabetes mellitus. Chin Med J (Engl) 2020; 132:2612-2620. [PMID: 31651513 PMCID: PMC6846247 DOI: 10.1097/cm9.0000000000000480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background: Gestational diabetes mellitus (GDM) is a common complication during pregnancy. Obesity and overweight are closely related to metabolic diseases and diabetes. However, the role of adipose tissue in the pathogenesis of GDM remains to be studied. The aim of this study was to investigate the correlation of vitamin D (VD) levels, VD receptor (VDR), and peroxisome proliferator-activated receptor γ (PPARγ) expression with GDM in overweight or obese women. Methods: One hundred and forty pregnant women with full-term single-birth cesarean-section were selected as the study subjects and grouped (70 GDM women, including 35 non-overweight/non-obese women [group G1] and 35 women with overweight or obesity [group G2]; 70 pregnant women with normal glucose tolerance, including 35 non-overweight/non-obese women [group N1] and 35 overweight/obese women [group N2]). The levels of serum VD, blood biochemistry, and adiponectin were compared in these women. Subcutaneous adipose tissue was isolated from the abdominal wall incision. VDR and PPARγ messenger RNA (mRNA) transcript levels in these adipose tissues were quantified by real-time polymerase chain reaction. The differences between the levels of PPARγ protein and phosphorylated PPARγ Ser273 were detected by Western blotting. Results: The serum VD level of GDM women was lower in comparison to that of women with normal glucose tolerance (G1 vs. N1: 20.62 ± 7.87 ng/mL vs. 25.85 ± 7.29 ng/mL, G2 vs. N2: 17.06 ± 6.74 ng/mL vs. 21.62 ± 7.18 ng/mL, P < 0.05), and the lowest in overweight/obese GDM women. VDR and PPARγ mRNA expression was higher in the adipose tissues of GDM women in comparison to that of women with normal glucose tolerance (VDR mRNA: G1 vs. N1: 210.00 [90.58–311.46] vs. 89.34 [63.74–159.92], G2 vs. N2: 298.67 [170.84–451.25] vs. 198.28 [119.46–261.23], PPARγ mRNA: G1 vs. N1: 100.72 [88.61–123.87] vs. 87.52 [66.37–100.04], G2 vs. N2: 117.33 [100.08–149.00] vs. 89.90 [76.95–109.09], P < 0.05), and their expression was the highest in GDM + overweight/obese women. VDR mRNA levels positively correlated with the pre-pregnancy body mass index (BMI), pre-delivery BMI, fasting blood glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), and PPARγ mRNA while it negatively correlated with the VD and the adiponectin levels (r = 0.395, 0.336, 0.240, 0.190, 0.235, –0.350, –0.294, respectively, P < 0.05). The degree of PPARγ Ser273 phosphorylation increased in obese and GDM pregnant women. PPARγ mRNA levels positively correlated with pre-pregnancy BMI, pre-delivery BMI, FBG, HOMA-IR, serum total cholesterol, triglyceride, free fatty acid, and VDR mRNA, while it negatively correlated with the VD and adiponectin levels (r = 0.276, 0.199, 0.210, 0.230, 0.182, 0.214, 0.270, 0.235, –0.232, –0.199, respectively, P < 0.05). Conclusions: Both GDM and overweight/obese women had decreased serum VD levels and up-regulated VDR and PPARγ mRNA expression in adipose tissue, which was further higher in the overweight or obese women with GDM. VD may regulate the formation and differentiation of adipocytes through the VDR and PPARγ pathways and participate in the occurrence of GDM.
Collapse
|
93
|
Cardiovascular Risk and Safety Evaluation of a Dual Peroxisome Proliferator–Activated Receptor-Alpha/Gamma Agonist, Aleglitazar, in Patients With Type 2 Diabetes. J Cardiovasc Pharmacol 2020; 75:351-357. [PMID: 31929323 DOI: 10.1097/fjc.0000000000000796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
94
|
Chatuphonprasert W, Nawaratt N, Jarukamjorn K. Reused palm oil from frying pork or potato induced expression of cytochrome P450s and the SLCO1B1 transporter in HepG2 cells. J Food Biochem 2020; 44:e13178. [PMID: 32160325 DOI: 10.1111/jfbc.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/29/2020] [Accepted: 02/19/2020] [Indexed: 11/27/2022]
Abstract
Deep frying degrades the oil and generates harmful products. This study evaluated effects of reused palm oil (from frying pork or potato) on expression of cytochrome P450s (CYPs), the transporter (SLCO1B1), and lipid metabolism regulators; proliferator-activated receptors (PPAR) and sterol regulatory element binding protein (SREBP). Human hepatic carcinoma cell line (HepG2) cells were incubated with oleic acid (OA), new palm oil, or reused palm oils for 24 hr. Fatty acid accumulation was examined by Nile red staining. Total RNA was extracted, followed by RT/qPCR of the target genes. Fatty acid accumulation was significantly different between the new and the reused oils. Expression of CYP1A2, CYP2C19, CYP2E1, CYP3A4, CYP4A11, and SLCO1B1 was induced by reused oils. Expression of PPAR-α was strongly increased in all treatments while SREBP-1a and SREBP-1c were suppressed. Modification of CYPs, PPAR-α, and SLCO1B1 by palm oil might increase the risk of fatty acid accumulation with associated oxidative stress. Therefore, consumption of palm oil or reused oil should be limited. PRACTICAL APPLICATIONS: Deep frying degrades the oil and generates harmful products. This study evaluated effects of reused palm oil (from frying pork or potato) on expression of cytochrome P450s (CYPs), the transporter (SLCO1B1), and lipid metabolism regulators; PPAR and SREBP in HepG2 cells. Both of the reused oils-induced profiles of all CYP and SLCO1B1, but the new oil upregulated CYP2E1, CYP3A4, and CYP4A11. PPAR-α was induced while SREBP-1a and SREBP-1c were suppressed by all treatments. Inductions of CYPs with suppression of SREBP-1a and SREBP-1c might contribute to an increased risk of fatty acid accumulation. These findings revealed the impacts of reused palm oil on metabolism via CYPs which related to oxidative stress for further study. Hence, consumption of palm oil or reused cooking oil should be of concern.
Collapse
Affiliation(s)
| | - Nawaratt Nawaratt
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kanokwan Jarukamjorn
- Research Group for Pharmaceutical Activities of Natural Products using Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
95
|
Histone demethylase KDM4D cooperates with NFIB and MLL1 complex to regulate adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Sci Rep 2020; 10:3050. [PMID: 32080306 PMCID: PMC7033117 DOI: 10.1038/s41598-020-60049-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 11/09/2022] Open
Abstract
The coordinated and sequential actions of lineage-specific transcription factors and epigenetic regulators are essential for the initiation and maintenance of cellular differentiation. We here report KDM4D histone demethylase as a key regulator of adipogenesis in C3H10T1/2 mesenchymal stem cells. The depletion of KDM4D results in impaired differentiation, which can be rescued by exogenous KDM4D, PPARγ, and C/EBPα, but not by C/EBPβ. In addition, KDM4D interacts physically and functionally with both NFIB and MLL1 complex to regulate C/EBPα and PPARγ expression upon adipogenic hormonal induction. Although KDM4D is dispensable for the binding of both NFIB and MLL1 complex to the target promoters, the demethylation of tri-methylated H3K9 by KDM4D is required for NFIB and MLL1 complex to deposit tri-methylated H3K4 and activate PPARγ and C/EBPα expression. Taken together, our data provide a molecular framework for lineage-specific transcription factor and histone modifiers to cooperate in adipogenic differentiation, in which KDM4D removes repressive histone marks at genes with a bivalent chromatin domain and allows NFIB and MLL1 complex to promote the expression of key adipogenic regulators.
Collapse
|
96
|
Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, Kojetin DJ. A molecular switch regulating transcriptional repression and activation of PPARγ. Nat Commun 2020; 11:956. [PMID: 32075969 PMCID: PMC7031403 DOI: 10.1038/s41467-020-14750-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear receptor (NR) transcription factors use a conserved activation function-2 (AF-2) helix 12 mechanism for agonist-induced coactivator interaction and NR transcriptional activation. In contrast, ligand-induced corepressor-dependent NR repression appears to occur through structurally diverse mechanisms. We report two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation. Helix 12 is displaced from the solvent-exposed active conformation and occupies the orthosteric ligand-binding pocket enabled by a conformational change that doubles the pocket volume. Paramagnetic relaxation enhancement (PRE) NMR and chemical crosslinking mass spectrometry confirm the repressive helix 12 conformation. PRE NMR also defines the mechanism of action of the corepressor-selective inverse agonist T0070907, and reveals that apo-helix 12 exchanges between transcriptionally active and repressive conformations—supporting a fundamental hypothesis in the NR field that helix 12 exchanges between transcriptionally active and repressive conformations. Structural studies of nuclear receptor transcription factors revealed that nearly all nuclear receptors share a conserved helix 12 dependent transcriptional activation mechanism. Here the authors present two crystal structures of peroxisome proliferator-activated receptor gamma (PPARγ) in an inverse agonist/corepressor-bound transcriptionally repressive conformation, where helix 12 is located within the orthosteric ligand-binding pocket instead, and discuss mechanistic implications.
Collapse
Affiliation(s)
- Jinsai Shang
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Sarah A Mosure
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jie Zheng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Richard Brust
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Jared Bass
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Ashley Nichols
- Summer Undergraduate Research Fellows (SURF) program, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Patrick R Griffin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, 33458, USA. .,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
97
|
Elix CC, Salgia MM, Otto-Duessel M, Copeland BT, Yoo C, Lee M, Tew BY, Ann D, Pal SK, Jones JO. Peroxisome proliferator-activated receptor gamma controls prostate cancer cell growth through AR-dependent and independent mechanisms. Prostate 2020; 80:162-172. [PMID: 31769890 PMCID: PMC8985763 DOI: 10.1002/pros.23928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/15/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Prostate cancer (PC) remains a leading cause of cancer mortality and the most successful chemopreventative and treatment strategies for PC come from targeting the androgen receptor (AR). Although AR plays a key role, it is likely that other molecular pathways also contribute to PC, making it essential to identify and develop drugs against novel targets. Recent studies have identified peroxisome proliferator-activated receptor gamma (PPARγ), a nuclear receptor that regulates fatty acid (FA) metabolism, as a novel target in PC, and suggest that inhibitors of PPARγ could be used to treat existing disease. We hypothesized that PPARγ acts through AR-dependent and independent mechanisms to control PC development and growth and that PPARγ inhibition is a viable PC treatment strategy. METHODS Immunohistochemistry was used to determine expression of PPARү in a cohort of patients with PC. Standard molecular techniques were used to investigate the PPARү signaling in PC cells as well a xenograft mouse model to test PPARү inhibition in vivo. Kaplan-Meier curves were created using cBioportal. RESULTS We confirmed the expression of PPARү in human PC. We then showed that small molecule inhibition of PPARγ decreases the growth of AR-positive and -negative PC cells in vitro and that T0070907, a potent PPARγ antagonist, significantly decreased the growth of human PC xenografts in nude mice. We found that PPARγ antagonists or small interfering RNA (siRNA) do not affect mitochondrial activity nor do they cause apoptosis; instead, they arrest the cell cycle. In AR-positive PC cells, antagonists and siRNAs reduce AR transcript and protein levels, which could contribute to growth inhibition. AR-independent effects on growth appear to be mediated by effects on FA metabolism as the specific FASN inhibitor, Fasnall, inhibited PC cell growth but did not have an additive effect when combined with PPARγ antagonists. Patients with increased PPARү target gene expression, but not alterations in PPARү itself, were found to have significantly worse overall survival. CONCLUSIONS Having elucidated the direct cancer cell effects of PPARγ inhibition, our studies have helped to determine the role of PPARγ in PC growth, and support the hypothesis that PPARγ inhibition is an effective strategy for PC treatment.
Collapse
Affiliation(s)
- Catherine C Elix
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Meghan M Salgia
- Department of Medical Oncology, City of Hope, Duarte, California
| | | | - Ben T Copeland
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Christopher Yoo
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Michael Lee
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, California
| | - Ben Yi Tew
- Department of Medical Oncology, City of Hope, Duarte, California
| | - David Ann
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, California
| | - Sumanta K Pal
- Department of Medical Oncology, City of Hope, Duarte, California
| | - Jeremy O Jones
- Department of Medical Oncology, City of Hope, Duarte, California
| |
Collapse
|
98
|
Heinonen S, Jokinen R, Rissanen A, Pietiläinen KH. White adipose tissue mitochondrial metabolism in health and in obesity. Obes Rev 2020; 21:e12958. [PMID: 31777187 DOI: 10.1111/obr.12958] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
White adipose tissue is one of the largest organs of the body. It plays a key role in whole-body energy status and metabolism; it not only stores excess energy but also secretes various hormones and metabolites to regulate body energy balance. Healthy adipose tissue capable of expanding is needed for metabolic well-being and to prevent accumulation of triglycerides to other organs. Mitochondria govern several important functions in the adipose tissue. We review the derangements of mitochondrial function in white adipose tissue in the obese state. Downregulation of mitochondrial function or biogenesis in the white adipose tissue is a central driver for obesity-associated metabolic diseases. Mitochondrial functions compromised in obesity include oxidative functions and renewal and enlargement of the adipose tissue through recruitment and differentiation of adipocyte progenitor cells. These changes adversely affect whole-body metabolic health. Dysfunction of the white adipose tissue mitochondria in obesity has long-term consequences for the metabolism of adipose tissue and the whole body. Understanding the pathways behind mitochondrial dysfunction may help reveal targets for pharmacological or nutritional interventions that enhance mitochondrial biogenesis or function in adipose tissue.
Collapse
Affiliation(s)
- Sini Heinonen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Jokinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Aila Rissanen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
99
|
Qiu X, Ye Q, Sun M, Wang L, Tan Y, Wu G. Saturated hydrogen improves lipid metabolism disorders and dysbacteriosis induced by a high-fat diet. Exp Biol Med (Maywood) 2020; 245:512-521. [PMID: 31910652 DOI: 10.1177/1535370219898407] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that metabolic diseases, such as obesity, are significantly associated with intestinal flora imbalance. The amplification of opportunistic pathogens induced by the glyoxylic acid cycle contributes to intestinal flora imbalance. Promising, though, is that saturated hydrogen can effectively improve the occurrence and development of metabolic diseases, such as obesity. However, the specific mechanism of how saturated hydrogen operates is still not very clear. In this study, after a high-fat diet, the level of total cholesterol, total glyceride, and low-density lipoprotein in the peripheral blood of mice increased, and that of high-density lipoprotein decreased. Intestinal fatty acid metabolism-related gene Apolipoprotein E (ApoE), fatty acid synthase (FAS), intestinal fatty acid-binding protein (I-FAPB), acetyl-CoA carboxylase 1 (ACC1), peroxisome proliferator-activated receptor γ (PPARγ), and stearoyl-CoA desaturase 1 (SCD1) increased significantly. Bacteroides, Bifidobacteria, and Lactobacillus counts in feces decreased considerably, while Enterobacter cloacae increased. The activity of isocitrate lyase in feces increased markedly. Treatment of mice with saturated hydrogen led to decreased total cholesterol, total glyceride, and low-density lipoprotein and increased high-density lipoprotein in the peripheral blood. FAS and I-FAPB gene expression in the small intestine decreased. Bacteroides, Bifidobacteria, and Lactobacillus in feces increased significantly, whereas Enterobacter cloacae decreased. The activity of isocitrate lyase also diminished remarkably. These results suggest that saturated hydrogen could improve intestinal structural integrity and lipid metabolism disorders by inhibiting the glyoxylic acid cycle of the intestinal flora. Impact statement Past studies have shown that hydrogen can improve metabolic disorders, but its mechanism of action remains unclear. It is well known that metabolic diseases, such as obesity, are significantly associated with changes in the intestinal flora. The glyoxylic acid cycle is an essential metabolic pathway in prokaryotes, lower eukaryotes, and plants and could be the portal for mechanisms related to metabolic disorders. Many opportunistic pathogenic bacteria can recycle fatty acids to synthesize sugars and other pathogenic substances using the glyoxylic acid cycle. So, the glyoxylic acid cycle may be involved in intestinal dysbacteriosis under high-fat diet. This study, therefore, seeks to provide the mechanism of how hydrogen improves metabolic diseases and a new basis for the use of hydrogen in the treatment of metabolic disorders.
Collapse
Affiliation(s)
- Xiangjie Qiu
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Qiaona Ye
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Mengxing Sun
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Lili Wang
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Yurong Tan
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| | - Guojun Wu
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha 410078, China
| |
Collapse
|
100
|
Gao P, Wang L, Yang N, Wen J, Zhao M, Su G, Zhang J, Weng D. Peroxisome proliferator-activated receptor gamma (PPARγ) activation and metabolism disturbance induced by bisphenol A and its replacement analog bisphenol S using in vitro macrophages and in vivo mouse models. ENVIRONMENT INTERNATIONAL 2020; 134:105328. [PMID: 31778932 DOI: 10.1016/j.envint.2019.105328] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Bisphenol A (BPA) and its replacement analog, bisphenol S (BPS), have been proposed as environmental obesogen to disrupt the lipid metabolism through regulating peroxisome proliferator-activated receptor gamma (PPARγ) receptor. However, there is a dearth of information on whether this biological effect can occur in human macrophage, a cell type which closely interacts with adipocytes and hepatocytes to control lipid metabolism. Here, we for the first time investigate the activity of BPA and BPS on PPARγ pathway in human macrophages. The results demonstrated that BPA and BPS served as activators of PPARγ in human macrophage cell line, and significantly induced the expression of lipid metabolism-related genes, including fatty acid binding protein 4 (FABP4), cluster of differentiation 36 (CD36) and nuclear receptor subfamily 1 group H member 3 (NR1H3). In PPARγ knockout cells, expression of these genes was down-regulated, suggesting that these genes are dependent on PPARγ. The underlying mechanisms were further investigated using an in vivo mouse model, and the results confirmed the induction of PPARγ and its respective target genes in mice following exposure to BPA or BPS. Moreover, the observed alteration of PPARγ expression highly correlated with the disturbance of metabolism profiles in liver tissues as detected by 1H Nuclear Magnetic Resonance (NMR)-based metabonomics. Overall, this study provided the first evidence that BPA and BPS activated PPARγ and its target genes in human macrophages, and provided comprehensive information to confirm that BPA and BPS disturb the metabolism through targeting PPARγ via both in vitro assays and in vivo animal models.
Collapse
Affiliation(s)
- Pingshi Gao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Lei Wang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Rheumatology and Immunology, The Affiliated Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, School of Sciences, Nanjing University, Nanjing 210023, China
| | - Jingjing Wen
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Mengshu Zhao
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China
| | - Jianfa Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| | - Dan Weng
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, 200 Xiaolingwei Street, Nanjing 210094, China.
| |
Collapse
|