51
|
Bethani I, Lang T, Geumann U, Sieber JJ, Jahn R, Rizzoli SO. The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J 2007; 26:3981-92. [PMID: 17717530 PMCID: PMC1994121 DOI: 10.1038/sj.emboj.7601820] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 07/19/2007] [Indexed: 12/26/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins mediate organelle fusion in the secretory pathway. Different fusion steps are catalyzed by specific sets of SNARE proteins. Here we have used the SNAREs mediating the fusion of early endosomes and exocytosis, respectively, to investigate how pairing specificity is achieved. Although both sets of SNAREs promiscuously assemble in vitro, there is no functional crosstalk. We now show that they not only colocalize to overlapping microdomains in the membrane of early endosomes of neuroendocrine cells, but also form cis-complexes promiscuously, with the proportion of the different complexes being primarily dependent on mass action. Addition of soluble SNARE molecules onto native membranes revealed preference for cognate SNAREs. Furthermore, we found that SNAREs are laterally segregated at endosome contact sites, with the exocytotic synaptobrevin being depleted. We conclude that specificity in endosome fusion is mediated by the following two synergistically operating mechanisms: (i) preference for the cognate SNARE in 'trans' interactions and (ii) lateral segregation of SNAREs, leading to relative enrichment of the cognate ones at the prospective fusion sites.
Collapse
Affiliation(s)
- Ioanna Bethani
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- International Max Planck Research School Neurosciences, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thorsten Lang
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulf Geumann
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jochen J Sieber
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen 37077, Germany. Tel.: +49 551 201 1635; Fax: +49 551 201 1639; E-mail:
| | - Silvio O Rizzoli
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
52
|
Ohara-Imaizumi M, Fujiwara T, Nakamichi Y, Okamura T, Akimoto Y, Kawai J, Matsushima S, Kawakami H, Watanabe T, Akagawa K, Nagamatsu S. Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis. ACTA ACUST UNITED AC 2007; 177:695-705. [PMID: 17502420 PMCID: PMC2064214 DOI: 10.1083/jcb.200608132] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanism of glucose-induced biphasic insulin release is unknown. We used total internal reflection fluorescence (TIRF) imaging analysis to reveal the process of first- and second-phase insulin exocytosis in pancreatic β cells. This analysis showed that previously docked insulin granules fused at the site of syntaxin (Synt)1A clusters during the first phase; however, the newcomers fused during the second phase external to the Synt1A clusters. To reveal the function of Synt1A in phasic insulin exocytosis, we generated Synt1A-knockout (Synt1A−/−) mice. Synt1A−/− β cells showed fewer previously docked granules with no fusion during the first phase; second-phase fusion from newcomers was preserved. Rescue experiments restoring Synt1A expression demonstrated restoration of granule docking status and fusion events. Inhibition of other syntaxins, Synt3 and Synt4, did not affect second-phase insulin exocytosis. We conclude that the first phase is Synt1A dependent but the second phase is not. This indicates that the two phases of insulin exocytosis differ spatially and mechanistically.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Biochemistry, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Zilly FE, Sørensen JB, Jahn R, Lang T. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol 2007; 4:e330. [PMID: 17002520 PMCID: PMC1570500 DOI: 10.1371/journal.pbio.0040330] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 08/08/2006] [Indexed: 11/18/2022] Open
Abstract
Munc18-1, a protein essential for regulated exocytosis in neurons and neuroendocrine cells, belongs to the family of Sec1/Munc18-like (SM) proteins. In vitro, Munc18-1 forms a tight complex with the SNARE syntaxin 1, in which syntaxin is stabilized in a closed conformation. Since closed syntaxin is unable to interact with its partner SNAREs SNAP-25 and synaptobrevin as required for membrane fusion, it has hitherto not been possible to reconcile binding of Munc18-1 to syntaxin 1 with its biological function. We now show that in intact and exocytosis-competent lawns of plasma membrane, Munc18-1 forms a complex with syntaxin that allows formation of SNARE complexes. Munc18-1 associated with membrane-bound syntaxin 1 can be effectively displaced by adding recombinant synaptobrevin but not syntaxin 1 or SNAP-25. Displacement requires the presence of endogenous SNAP-25 since no displacement is observed when chromaffin cell membranes from SNAP-25-deficient mice are used. We conclude that Munc18-1 allows for the formation of a complex between syntaxin and SNAP-25 that serves as an acceptor for vesicle-bound synaptobrevin and that thus represents an intermediate in the pathway towards exocytosis.
Collapse
Affiliation(s)
- Felipe E Zilly
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Jakob B Sørensen
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Thorsten Lang
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
54
|
Abstract
Since the discovery of SNARE proteins in the late 1980s, SNAREs have been recognized as key components of protein complexes that drive membrane fusion. Despite considerable sequence divergence among SNARE proteins, their mechanism seems to be conserved and is adaptable for fusion reactions as diverse as those involved in cell growth, membrane repair, cytokinesis and synaptic transmission. A fascinating picture of these robust nanomachines is emerging.
Collapse
Affiliation(s)
- Reinhard Jahn
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Am Fassberg, 37077 Göttingen, Germany.
| | | |
Collapse
|
55
|
Milosevic I, Sørensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E. Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 2006; 25:2557-65. [PMID: 15758165 PMCID: PMC6725155 DOI: 10.1523/jneurosci.3761-04.2005] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During exocytosis, certain phospholipids may act as regulators of secretion. Here, we used several independent approaches to perturb the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2] level in bovine chromaffin cells to investigate how changes of plasmalemmal PI(4,5)P2 affect secretion. Membrane levels of PI(4,5)P2 were estimated by analyzing images of lawns of plasma membranes labeled with fluorescent probes specific for PI(4,5)P2. The specific PI(4,5)P2 signal was enriched in submicrometer-sized clusters. In parallel patch-clamp experiments on intact cells, we measured the secretion of catecholamines. Overexpression of phosphatidylinositol-4-phosphate-5-kinase I, or infusion of PI(4,5)P2 through the patch pipette, increased the PI(4,5)P2 level in the plasma membrane and potentiated secretion. Expression of a membrane-targeted inositol 5-phosphatase domain of synaptojanin 1 eliminated PI(4,5)P2 from the membrane and abolished secretion. An inhibitor of phosphatidylinositol-3 kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one, led to a transient increase in the PI(4,5)P2 level that was associated with a potentiation of secretion. After prolonged incubation, the level of PI(4,5)P2 decreased and secretion was inhibited. Kinetic analysis showed that changes in PI(4,5)P2 levels led to correlated changes in the size of two releasable vesicle pools, whereas their fusion kinetics remained unaffected. We conclude that during both short- and long-term manipulations of PI(4,5)P2 level secretion scales with plasma membrane PI(4,5)P2 content and that PI(4,5)P2 has an early effect on secretion by regulating the number of vesicles ready for release.
Collapse
Affiliation(s)
- Ira Milosevic
- Department of Membrane Biophysics, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Bajohrs M, Darios F, Peak-Chew SY, Davletov B. Promiscuous interaction of SNAP-25 with all plasma membrane syntaxins in a neuroendocrine cell. Biochem J 2006; 392:283-9. [PMID: 15975093 PMCID: PMC1316263 DOI: 10.1042/bj20050583] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
SNAP-25 (25 kDa synaptosome-associated protein) is found in cells that release neurotransmitters and hormones, and plays a central role in the fusion of secretory vesicles with the plasma membrane. SNAP-25 has been shown to interact specifically with syntaxin 1, a 35 kDa membrane protein, to mediate the fusion process. Here, we investigated whether other known syntaxin isoforms found at the plasma membrane can serve as binding partners for SNAP-25 in vivo. In our analysis, we employed rat phaeochromocytoma PC12 cells that are often used as a model of neuronal functions. We now show that these cells contain large amounts of SNAP-25, which interacts not only with syntaxin 1, but also with ubiquitous syntaxins 2, 3 and 4. The plasma membrane syntaxins appear to occupy complementary domains at the plasma membrane. In defined reactions, the ubiquitous plasma membrane syntaxin isoforms, when in binary complexes with SNAP-25, readily bound vesicular synaptobrevin to form SDS-resistant SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) complexes implicated in membrane fusion. However, vesicular synaptotagmin and cytosolic complexin, both implicated in the fusion process, exhibited differential ability to interact with the SNARE complexes formed by syntaxins 1-4, suggesting that the plasma membrane syntaxins may mediate vesicle fusion events with different properties.
Collapse
Affiliation(s)
- Mark Bajohrs
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, U.K
| | - Frédéric Darios
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, U.K
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, U.K
| | - Bazbek Davletov
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
57
|
Sieber JJ, Willig KI, Heintzmann R, Hell SW, Lang T. The SNARE motif is essential for the formation of syntaxin clusters in the plasma membrane. Biophys J 2006; 90:2843-51. [PMID: 16443657 PMCID: PMC1414554 DOI: 10.1529/biophysj.105.079574] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the plasma membrane, syntaxin 1 and syntaxin 4 clusters define sites at which secretory granules and caveolae fuse, respectively. It is widely believed that lipid phases are mandatory for cluster formation, as cluster integrity depends on cholesterol. Here we report that the native lipid environment is not sufficient for correct syntaxin 1 clustering and that additional cytoplasmic protein-protein interactions, primarily involving the SNARE motif, are required. Apparently no specific cofactors are needed because i), clusters form equally well in nonneuronal cells, and ii), as revealed by nanoscale subdiffraction resolution provided by STED microscopy, the number of clusters directly depends on the syntaxin 1 concentration. For syntaxin 4 clustering the N-terminal domain and the linker region are also dispensable. Moreover, clustering is specific because in both cluster types syntaxins mutually exclude one another at endogenous levels. We suggest that the SNARE motifs of syntaxin 1 and 4 mediate specific syntaxin clustering by homooligomerization, thereby spatially separating sites for different biological activities. Thus, syntaxin clustering represents a mechanism of membrane patterning that is based on protein-protein interactions.
Collapse
Affiliation(s)
- Jochen J Sieber
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
58
|
Low SH, Vasanji A, Nanduri J, He M, Sharma N, Koo M, Drazba J, Weimbs T. Syntaxins 3 and 4 are concentrated in separate clusters on the plasma membrane before the establishment of cell polarity. Mol Biol Cell 2005; 17:977-89. [PMID: 16339081 PMCID: PMC1356605 DOI: 10.1091/mbc.e05-05-0462] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Syntaxins 3 and 4 localize to the apical and basolateral plasma membrane, respectively, of epithelial cells where they mediate vesicle fusion. Here, we report that before establishment of cell polarity, syntaxins 3 and 4 are confined to mutually exclusive, submicron-sized clusters. Syntaxin clusters are remarkably uniform in size, independent of expression levels, and are distinct from caveolae and clathrin-coated pits. SNAP-23 partially colocalizes with both syntaxin 3 and 4 clusters. Deletion of the apical targeting signal of syntaxin 3 does not prevent sorting into clusters away from syntaxin 4. Syntaxin 3 and 4 cluster formation depends on different mechanisms because the integrity of syntaxin 3 clusters depends on intact microtubules, whereas syntaxin 4 clusters depend on intact actin filaments. Cholesterol depletion causes dispersion of syntaxin 3 but not syntaxin 4 clusters. In migrating cells, syntaxin clusters polarize to the leading edge, suggesting a role in polarized exocytosis. These results suggest that exocytosis occurs at small fusion sites exhibiting high local concentrations of SNARE proteins that may be required for efficient membrane fusion. The establishment of separate clusters for each syntaxin suggests that the plasma membrane is inherently polarized on an ultrastructural level even before the establishment of true cell polarity.
Collapse
Affiliation(s)
- Seng Hui Low
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara 93106-9610, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Aikawa Y, Xia X, Martin TFJ. SNAP25, but not syntaxin 1A, recycles via an ARF6-regulated pathway in neuroendocrine cells. Mol Biol Cell 2005; 17:711-22. [PMID: 16314394 PMCID: PMC1356582 DOI: 10.1091/mbc.e05-05-0382] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) proteins mediate cellular membrane fusion events and provide a level of specificity to donor-acceptor membrane interactions. However, the trafficking pathways by which individual SNARE proteins are targeted to specific membrane compartments are not well understood. In neuroendocrine cells, synaptosome-associated protein of 25 kDa (SNAP25) is localized to the plasma membrane where it functions in regulated secretory vesicle exocytosis, but it is also found on intracellular membranes. We identified a dynamic recycling pathway for SNAP25 in PC12 cells through which plasma membrane SNAP25 recycles in approximately 3 h. Approximately 20% of the SNAP25 resides in a perinuclear recycling endosome-trans-Golgi network (TGN) compartment from which it recycles back to the plasma membrane. SNAP25 internalization occurs by constitutive, dynamin-independent endocytosis that is distinct from the dynamin-dependent endocytosis that retrieves secretory vesicle constituents after exocytosis. Endocytosis of SNAP25 is regulated by ADP-ribosylation factor (ARF)6 (through phosphatidylinositol bisphosphate synthesis) and is dependent upon F-actin. SNAP25 endosomes, which exclude the plasma membrane SNARE syntaxin 1A, merge with those derived from clathrin-dependent endocytosis containing endosomal syntaxin 13. Our results characterize a robust ARF6-dependent internalization mechanism that maintains an intracellular pool of SNAP25, which is compatible with possible intracellular roles for SNAP25 in neuroendocrine cells.
Collapse
Affiliation(s)
- Yoshikatsu Aikawa
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
60
|
Sikdar SK, Kreft M, Pangrsic T, Grilc S, Zorec R. FM1-43 measurements of local exocytotic events in rat melanotrophs. FEBS Lett 2005; 579:6575-80. [PMID: 16293249 DOI: 10.1016/j.febslet.2005.10.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Revised: 10/11/2005] [Accepted: 10/25/2005] [Indexed: 11/26/2022]
Abstract
We have explored the existence of fusion- and secretion-competent sites on the plasma membrane of peptide secreting rat pituitary melanotrophs at rest, and following stimulation with glutamate. We monitored changes in fluorescence of FM1-43, a styryl dye which labels plasma membrane. The results show spontaneous local increases in FM1-43 reporting changes in membrane surface area due to cumulative exocytosis. Addition of glutamate, further increased the occurrence of these events. Statistical analysis of local FM1-43 fluorescence changes suggests that this is due to the recruitment of inactive exocytotic domains and due to the stimulation of already active exocytotic domains.
Collapse
Affiliation(s)
- S K Sikdar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Medical Faculty, University of Ljubljana Medical School, Zaloska 4, SI-1000 Ljubljana, Slovenia
| | | | | | | | | |
Collapse
|
61
|
Nagy G, Milosevic I, Fasshauer D, Müller EM, de Groot BL, Lang T, Wilson MC, Sørensen JB. Alternative splicing of SNAP-25 regulates secretion through nonconservative substitutions in the SNARE domain. Mol Biol Cell 2005; 16:5675-85. [PMID: 16195346 PMCID: PMC1289412 DOI: 10.1091/mbc.e05-07-0595] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The essential membrane fusion apparatus in mammalian cells, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, consists of four alpha-helices formed by three proteins: SNAP-25, syntaxin 1, and synaptobrevin 2. SNAP-25 contributes two helices to the complex and is targeted to the plasma membrane by palmitoylation of four cysteines in the linker region. It is alternatively spliced into two forms, SNAP-25a and SNAP-25b, differing by nine amino acids substitutions. When expressed in chromaffin cells from SNAP-25 null mice, the isoforms support different levels of secretion. Here, we investigated the basis of that different secretory phenotype. We found that two nonconservative substitutions in the N-terminal SNARE domain and not the different localization of one palmitoylated cysteine cause the functional difference between the isoforms. Biochemical and molecular dynamic simulation experiments revealed that the two substitutions do not regulate secretion by affecting the property of SNARE complex itself, but rather make the SNAP-25b-containing SNARE complex more available for the interaction with accessory factor(s).
Collapse
Affiliation(s)
- Gábor Nagy
- Department of Membrane Biophysics, Max-Planck-Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Blas GAD, Roggero CM, Tomes CN, Mayorga LS. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol 2005; 3:e323. [PMID: 16131227 PMCID: PMC1197286 DOI: 10.1371/journal.pbio.0030323] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 07/14/2005] [Indexed: 11/19/2022] Open
Abstract
The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperm's single vesicle—the acrosome—is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca2+ chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca2+ entry into the cytoplasm, Rab3 is activated and triggers NSF/α-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/α-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP)–specific neurotoxins. Ca2+ must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis. Unidirectional and sequential disassembly and assembly of SNARE complexes drive sperm acrosomal exocytosis.
Collapse
Affiliation(s)
- Gerardo A. De Blas
- 1Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Carlos M Roggero
- 1Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia N Tomes
- 1Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Luis S Mayorga
- 1Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
63
|
Predescu SA, Predescu DN, Shimizu K, Klein IK, Malik AB. Cholesterol-dependent syntaxin-4 and SNAP-23 clustering regulates caveolar fusion with the endothelial plasma membrane. J Biol Chem 2005; 280:37130-8. [PMID: 16118213 DOI: 10.1074/jbc.m505659200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We determined the organization of target (t) SNARE proteins on the basolateral endothelial plasma membrane (PM) and their role in the mechanism of caveolar fusion. Studies were performed in a cell-free system involving endothelial PM sheets and isolated biotin-labeled caveolae. We monitored the fusion of caveolae with the PM by the detection of biotin-streptavidin complexes using correlative high resolution fluorescence microscopy and gold labeling electron microscopy on ultrathin sections of PM sheets. Imaging of PM sheets demonstrated and biochemical findings showed that the t-SNARE proteins present in endothelial cells (SNAP-23 and syntaxin-4) formed cholesterol-dependent clusters in discrete areas of the PM. Upon fusion of caveolae with the target PM, 50% of the caveolae co-localized with the t-SNARE clusters, indicating that these caveolae were at the peak of the fusion reaction. Fluorescent streptavidin staining of PM sheets correlated with the ultrastructure in the same area. These findings demonstrate that t-SNARE clusters in the endothelial target PM serve as the fusion sites for caveolae during exocytosis.
Collapse
Affiliation(s)
- Sanda A Predescu
- Department of Pharmacology and the Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
64
|
Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M. The Activation of Exocytotic Sites by the Formation of Phosphatidylinositol 4,5-Bisphosphate Microdomains at Syntaxin Clusters. J Biol Chem 2005; 280:17346-52. [PMID: 15741173 DOI: 10.1074/jbc.m413307200] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of the lipid bilayer but plays an important role in various cellular functions, including exocytosis and endocytosis. Recently, PI(4,5)P2 was shown to form microdomains in the plasma membrane. In this study, we investigated the relationship between the spatial organization of PI(4,5)P2 microdomains and exocytotic machineries in clonal rat pheochromocytoma PC12 cells. Both PI(4,5)P2 and syntaxin, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein essential for exocytosis, exhibited punctate clusters in isolated plasma membranes. The number of PI(4,5)P2 microdomains colocalizing with syntaxin clusters and large dense core vesicles (LDCVs) was decreased after catecholamine release. Alternatively, the expression of type I phosphatidylinositol-4-phosphate 5-kinase (PIP5KI) increased the number of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs and enhanced exocytotic activity, possibly by increasing the number of release sites. About half of the PI(4,5)P2 microdomains were not colocalized with Thy-1, a specific marker of lipid rafts, and the colocalization of transfected PIP5KI with syntaxin clusters was observed. These results suggest that the formation of PI(4,5)P2 microdomains at syntaxin clusters with docked LDCVs is essential for Ca2+-dependent exocytosis.
Collapse
Affiliation(s)
- Kyota Aoyagi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
65
|
Boal F, Zhang H, Tessier C, Scotti P, Lang J. The variable C-terminus of cysteine string proteins modulates exocytosis and protein-protein interactions. Biochemistry 2005; 43:16212-23. [PMID: 15610015 DOI: 10.1021/bi048612+] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cysteine string proteins (Csps) are vesicle proteins involved in neurotransmission and hormone exocytosis. They are composed of distinct domains: a variable N-terminus, a J-domain followed by a linker region, a cysteine-rich string, and a C-terminus which diverges among isoforms. Their precise function and interactions are not fully understood. Using insulin exocytosis as a model, we show that the linker region and the C-terminus, but not the variable N-terminus, regulate overall secretion. Moreover, endogenous Csp1 binds in a calcium-dependent manner to monomeric VAMP2, and this interaction requires the C-terminus of Csp. The interaction is isoform specific as recombinant Csp1 binds VAMP1 and VAMP7, but not VAMP3. Cross-linking in permeabilized clonal beta-cells revealed homodimerization of Csp which is stimulated by Ca(2+) and again modulated by the variant C-terminus. Our data suggest that both interactions of Csp occur during exocytosis and may explain the effect of the variant C-terminus of this chaperon protein on peptide hormone secretion.
Collapse
Affiliation(s)
- Frédéric Boal
- Institut Européen de Chimie et Biologie, Pôle Biologie Cellulaire et Moléculaire, JE 2390, 33607 Pessac/Bordeaux, France
| | | | | | | | | |
Collapse
|
66
|
Abstract
Syntaxin, synaptosome-associated protein of 25 kD (SNAP25), and vesicle-associated membrane protein/synaptobrevin are collectively called SNAP receptor (SNARE) proteins, and they catalyze neuronal exocytosis by forming a "core complex." The steps in core complex formation are unknown. Here, we monitored SNARE complex formation in vivo with the use of a fluorescent version of SNAP25. In PC12 cells, we found evidence for a syntaxin-SNAP25 complex that formed with high affinity, required only the amino-terminal SNARE motif of SNAP25, tolerated a mutation that blocks formation of other syntaxin-SNAP25 complexes, and assembled reversibly when Ca2+ entered cells during depolarization. The complex may represent a precursor to the core complex formed during a Ca2+-dependent priming step of exocytosis.
Collapse
Affiliation(s)
- Seong J An
- Vollum Institute L-474, Oregon Health Sciences University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97201, USA
| | | |
Collapse
|
67
|
Salaün C, James DJ, Greaves J, Chamberlain LH. Plasma membrane targeting of exocytic SNARE proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1693:81-9. [PMID: 15313010 DOI: 10.1016/j.bbamcr.2004.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 05/26/2004] [Accepted: 05/27/2004] [Indexed: 11/28/2022]
Abstract
SNARE proteins play a central role in the process of intracellular membrane fusion. Indeed, the interaction of SNAREs present on two opposing membranes is generally believed to provide the driving force to initiate membrane fusion. Eukaryotic cells express a large number of SNARE isoforms, and the function of individual SNAREs is required for specific intracellular fusion events. Exocytosis, the fusion of secretory vesicles with the plasma membrane, employs the proteins syntaxin and SNAP-25 as plasma membrane SNAREs. As a result, exocytosis is dependent upon the targeting of these proteins to the plasma membrane; however, the mechanisms that underlie trafficking of exocytic syntaxin and SNAP-25 proteins to the cell surface are poorly understood. The intracellular trafficking itinerary of these proteins is particularly intriguing as syntaxins are tail-anchored (or Type IV) membrane proteins, whereas SNAP-25 is anchored to membranes via a central palmitoylated domain-there is no common consensus for the trafficking of such proteins within the cell. In this review, we discuss the plasma membrane targeting of these essential exocytic SNARE proteins.
Collapse
Affiliation(s)
- Christine Salaün
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry & Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, United Kingdom
| | | | | | | |
Collapse
|
68
|
Wang CC, Ng CP, Lu L, Atlashkin V, Zhang W, Seet LF, Hong W. A Role of VAMP8/Endobrevin in Regulated Exocytosis of Pancreatic Acinar Cells. Dev Cell 2004; 7:359-71. [PMID: 15363411 DOI: 10.1016/j.devcel.2004.08.002] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 07/19/2004] [Accepted: 07/23/2004] [Indexed: 11/21/2022]
Abstract
Despite our general understanding that members of the SNARE superfamily participate in diverse intracellular docking/fusion events, the physiological role of the majority of SNAREs in the intact organism remains elusive. In this study, through targeted gene knockout in mice, we establish that VAMP8/endobrevin is a major player in regulated exocytosis of the exocrine pancreas. VAMP8 is enriched on the membrane of zymogen granules and exists in a complex with syntaxin 4 and SNAP-23. VAMP8-/- mice developed normally but showed severe defects in the pancreas. VAMP8 null acinar cells contained three times more zymogen granules than control acinar cells. Furthermore, secretagogue-stimulated secretion was abolished in pancreatic fragments derived from VAMP8-/- mice. In addition, VAMP8-/- mice were partially resistant to supramaximal caerulein-induced pancreatitis. These results suggest a major physiological role of VAMP8 in regulated exocytosis of pancreatic acinar cells by serving as a v-SNARE of zymogen granules.
Collapse
Affiliation(s)
- Cheng-Chun Wang
- Membrane Biology Laboratory, Institute of Molecular and Cell Biology, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
69
|
Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ. A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion. EMBO J 2004; 23:2765-76. [PMID: 15241469 PMCID: PMC514947 DOI: 10.1038/sj.emboj.7600286] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/02/2004] [Indexed: 11/09/2022] Open
Abstract
Membrane fusion requires priming, the disassembly of cis-SNARE complexes by the ATP-driven chaperones Sec18/17p. Yeast vacuole priming releases Vam7p, a soluble SNARE. Vam7p reassociation during docking allows trans-SNARE pairing and fusion. We now report that recombinant Vam7p (rVam7p) enters into complex with other SNAREs in vitro and bypasses the need for Sec17p, Sec18p, and ATP. Thus, the sole essential function of vacuole priming in vitro is the release of Vam7p from cis-SNARE complexes. In 'bypass fusion', without ATP but with added rVam7p, there are sufficient unpaired vacuolar SNAREs Vam3p, Vti1p, and Nyv1p to interact with Vam7p and support fusion. However, active SNARE proteins are not sufficient for bypass fusion. rVam7p does not bypass requirements for Rho GTPases,Vps33p, Vps39p, Vps41p, calmodulin, specific lipids, or Vph1p, a subunit of the V-ATPase. With excess rVam7p, reduced levels of PI(3)P or functional Ypt7p suffice for bypass fusion. High concentrations of rVam7p allow the R-SNARE Ykt6p to substitute for Nyv1p for fusion; this functional redundancy among vacuole SNAREs may explain why nyv1delta strains lack the vacuole fragmentation seen with mutants in other fusion catalysts.
Collapse
Affiliation(s)
- Naomi Thorngren
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin M Collins
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - Rutilio A Fratti
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| | - William Wickner
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
- Department of Biochemistry, 7200 Vail Building, Room 425 Remsen, Dartmouth Medical School, Hanover, NH 03755-3844, USA. Tel.: +1 603 650 1701; Fax: +1 603 650 1353; E-mail: ; Lab website: http://www.dartmouth.edu/~wickner
| | - Alexey J Merz
- Department of Biochemistry, Dartmouth Medical School, Hanover, NH, USA
| |
Collapse
|
70
|
Martin TF, Grishanin RN. PC12 cells as a model for studies of regulated secretion in neuronal and endocrine cells. Methods Cell Biol 2004; 71:267-86. [PMID: 12884694 DOI: 10.1016/s0091-679x(03)01012-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Pheochromocytoma-derived cell lines such as PC12 cells maintain a differentiated neuroendocrine phenotype and have been widely used as a convenient model system for a wide variety of cell biological studies on neurotrophin action, monoamine biogenesis, protein trafficking, and secretory vesicle dynamics. This chapter reviews a number of methods that are useful for studies of the regulated dense core vesicle secretory pathway. This includes protocols for maintaining cells and preserving their phenotype. A variety of assays are discussed for monitoring secretion in intact or permeable cells and in transfected cells. Specific methods for immunocytochemical studies in permeable cells are discussed. Finally, protocols for high-efficiency PC12 cell transfections and the isolation of stably transfected cell lines are provided.
Collapse
Affiliation(s)
- T F Martin
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
71
|
Kubista H, Edelbauer H, Boehm S. Evidence for structural and functional diversity among SDS-resistant SNARE complexes in neuroendocrine cells. J Cell Sci 2004; 117:955-66. [PMID: 14762114 DOI: 10.1242/jcs.00941] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core complex, formed by the SNARE proteins synaptobrevin 2, syntaxin 1 and SNAP-25, is an important component of the synaptic fusion machinery and shows remarkable in vitro stability, as exemplified by its SDS-resistance. In western blots, antibodies against one of these SNARE proteins reveal the existence of not only an SDS-resistant ternary complex but also as many as five bands between 60 and >200 kDa. Structural conformation as well as possible functions of these various complexes remained elusive. In western blots of protein extracts from PC12 cell membranes, an antibody against SNAP-25 detected two heat-sensitive SDS-resistant bands with apparent molecular weights of 100 and 230 kDa. A syntaxin antibody recognized only the 230 kDa band and required heat-treatment of the blotting membrane to detect the 100 kDa band. Various antibodies against synaptobrevin failed to detect SNARE complexes in conventional western blots and detected either the 100 kDa band or the 230 kDa band on heat-treated blotting membranes. When PC12 cells were exposed to various extracellular K(+)-concentrations (to evoke depolarization-induced Ca(2+) influx) or permeabilized in the presence of basal or elevated free Ca(2+), levels of these SNARE complexes were altered differentially: moderate Ca(2+) rises (</=1 microM) caused an increase, whereas Ca(2+) elevations of more than 1 microM led to a decrease in the 230 kDa band. Under both conditions the 100 kDa band was either increased or remained unchanged. Our data show that various SDS-resistant complexes occur in living cells and indicate that they represent SNARE complexes with different structures and diverging functions. The distinct behavior of these complexes under release-promoting conditions indicates that these SNARE structures have different roles in exocytosis.
Collapse
Affiliation(s)
- Helmut Kubista
- Department of Pharmacology, University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | | | | |
Collapse
|
72
|
Matos MF, Mukherjee K, Chen X, Rizo J, Südhof TC. Evidence for SNARE zippering during Ca2+-triggered exocytosis in PC12 cells. Neuropharmacology 2004; 45:777-86. [PMID: 14529716 DOI: 10.1016/s0028-3908(03)00318-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
SNAREs (soluble NSF attachment protein receptors) are membrane proteins that catalyze membrane fusion. SNAREs are defined by a characteristic 70 residue sequence called the SNARE motif. During synaptic vesicle fusion, the single SNARE motif of the synaptic vesicle SNARE protein synaptobrevin/VAMP associates into a four-helical bundle with SNARE motifs from the plasma membrane SNARE proteins syntaxin 1 and SNAP-25. The four SNARE motifs (one each from synaptobrevin and syntaxin, and two from SNAP-25) assume a parallel orientation in the complex, suggesting that formation of the complex initiates fusion by forcing the membranes containing the SNAREs into close proximity. It has been proposed that SNARE complexes assemble in an N- to C-terminal progression, a process referred to as zippering, but little direct evidence for zippering exists. Furthermore, the SM protein Munc18-1, which binds to syntaxin 1 and is essential for synaptic fusion, is thought to prepare SNAREs for complex formation by an unknown mechanism, possibly by nucleating zippering. We now show that fragments containing the N- and C-terminal regions of the SNARE motif from syntaxin 1A bind SNAP-25 similarly. However, in permeabilized PC12 cells which are used as a biochemical model system to study synaptic fusion, only fragments containing the N-terminal region are powerful inhibitors of fusion. Furthermore, mutations in the N-terminal part of the Syntaxin SNARE motif have only a moderate effect on SNAP-25 binding but abolish the inhibitory activity of the SNARE motif. Finally, larger fragments of syntaxin 1A that strongly bind to Munc18-1 but do not readily assemble into SNARE complexes had no effect on exocytosis in permeabilized PC12 cells. Together these results suggest that Munc18-1 acts before SNARE complex assembly, and is no longer required at the stage of fusion assayed in permeabilized PC12 cells. The selective effect of the N-terminal half of the syntaxin 1A SNARE motif on PC12 cell exocytosis shows that the SNARE motif is functionally polarized, and supports the notion that SNARE complexes assemble in an N- to C-terminal zippering reaction during fusion without a stable, partially assembled intermediate.
Collapse
Affiliation(s)
- Maria F Matos
- Center for Basic Neuroscience, Department of Molecular Genetics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
73
|
Ohara-Imaizumi M, Nishiwaki C, Kikuta T, Kumakura K, Nakamichi Y, Nagamatsu S. Site of docking and fusion of insulin secretory granules in live MIN6 beta cells analyzed by TAT-conjugated anti-syntaxin 1 antibody and total internal reflection fluorescence microscopy. J Biol Chem 2003; 279:8403-8. [PMID: 14676208 DOI: 10.1074/jbc.m308954200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To determine the site of insulin exocytosis in the pancreatic beta cell plasma membrane, we analyzed the interaction between the docking/fusion of green fluorescent protein-tagged insulin granules and syntaxin 1 labeled by TAT-conjugated Cy3-labeled antibody (Ab) using total internal reflection fluorescence microscopy (TIRFM). Monoclonal Ab against syntaxin 1 was labeled with Cy3 then conjugated with the protein transduction domain of HIV-1 TAT. TAT-conjugated Cy3-labeled anti-syntaxin 1 Ab was transduced rapidly into the subplasmalemmal region in live MIN6 beta cells, which enabled us to observe the spatial organization and distribution of endogenous syntaxin 1. TIRFM imaging revealed that syntaxin 1 is distributed in numerous separate clusters in the intact plasma membrane, where insulin secretory granules were docked preferentially to the sites of syntaxin 1 clusters, colocalizing with synaptosomal-associated protein of 25 kDa (SNAP-25) clusters. TIRFM imaging analysis of the motion of single insulin granules demonstrated that the fusion of insulin secretory granules stimulated by 50 mm KCl occurred exclusively at the sites of the syntaxin 1 clusters. Cholesterol depletion by methyl-beta-cyclodextrin treatment, in which the syntaxin 1 clusters were disintegrated, decreased the number of docked insulin granules, and, eventually the number of fusion events was significantly reduced. Our results indicate that 1) insulin exocytosis occurs at the site of syntaxin 1 clusters; 2) syntaxin 1 clusters are essential for the docking and fusion of insulin granules in MIN6 beta cells; and 3) the sites of syntaxin 1 clusters are distinct from flotillin-1 lipid rafts.
Collapse
Affiliation(s)
- Mica Ohara-Imaizumi
- Department of Biochemistry (II), Kyorin University School of Medicine, Shinkawa 6-20-2, Mitaka, Tokyo 181-8611, Japan
| | | | | | | | | | | |
Collapse
|
74
|
Rickman C, Meunier FA, Binz T, Davletov B. High affinity interaction of syntaxin and SNAP-25 on the plasma membrane is abolished by botulinum toxin E. J Biol Chem 2003; 279:644-51. [PMID: 14551199 DOI: 10.1074/jbc.m310879200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The release of hormones and neurotransmitters requires the fusion of cargo-containing vesicles with the plasma membrane. This process of exocytosis relies on three SNARE proteins, namely syntaxin and SNAP-25 on the target plasma membrane and synaptobrevin on the vesicular membrane. In this study we examined the molecular assembly pathway that leads to formation of the fusogenic SNARE complex. We now show that the plasma membrane syntaxin and SNAP-25 interact with high affinity and equimolar stoichiometry to form a stable dimer on the pathway to the ternary SNARE complex. In bovine chromaffin cells, syntaxin and SNAP-25 colocalize in defined clusters that average 700 nm in diameter and cover 10% of the plasma membrane. Removal of the C terminus of SNAP-25 by botulinum neurotoxin E, a known neuroparalytic agent, dissociates the target SNARE dimer in vitro and disrupts the SNARE clustering in vivo. Together, our data uncover formation of stable syntaxin/SNAP-25 dimers as a central principle of the SNARE assembly pathway underlying regulated exocytosis.
Collapse
Affiliation(s)
- Colin Rickman
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|
75
|
Abstract
The COPII coat buds transport vesicles from the endoplasmic reticulum that incorporate cargo and SNARE molecules. Here, we show that recognition of the ER-Golgi SNAREs Bet1, Sed5, and Sec22 occurs through three binding sites on the Sec23/24 subcomplex of yeast COPII. The A site binds to the YNNSNPF motif of Sed5. The B site binds to Lxx-L/M-E sequences present in both the Bet1 and Sed5 molecules, as well as to the DxE cargo-sorting signal. A third, spatially distinct site binds to Sec22. COPII selects the free v-SNARE form of Bet1 because the LxxLE sequence is sequestered in the four-helix bundle of the v-/t-SNARE complex. COPII favors Sed5 within the Sed5/Bos1/Sec22 t-SNARE complex because t-SNARE assembly removes autoinhibitory contacts to expose the YNNSNPF motif. The COPII coat seems to be a specific conductor of the fusogenic forms of these SNAREs, suggesting how vesicle fusion specificity may be programmed during budding.
Collapse
Affiliation(s)
- Elena Mossessova
- Howard Hughes Medical Institute and the Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
76
|
Abstract
SNAREs (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors) are membrane-associated proteins that participate in the fusion of internal membranes in eukaryotic cells. SNAREs comprise three distinct and well-conserved families of molecules that act directly as membrane fusogens or, at the least, as elements that bring membranes into close apposition and allow for subsequent fusion events to occur. While the molecular events leading to fusion are still under debate, it is clear that a number of additional factors are required to bring about SNARE-mediated membrane fusion in vivo. Many of these factors, which collectively can be called SNARE regulators (e.g. Sec1/Munc18, synaptotagmin, GATE-16, LMA1, Munc13/UNC-13, synaptophysin, tomosyn, Vsm1, etc.), bind directly to SNAREs and are involved in the regulation of SNARE assembly as well as the ability of SNAREs to participate in trafficking events. In addition, recent studies have suggested a role for posttranslational modification (e.g., phosphorylation) in the regulation of SNARE functions. In this review the possible role of SNARE regulators in SNARE assembly and the involvement of SNARE phosphorylation in the regulation of intracellular membrane trafficking will be discussed.
Collapse
Affiliation(s)
- Jeffrey E Gerst
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
77
|
Abstract
Exocytic fusion reactions triggered by Ca(2+) are widespread in neural, endocrine, exocrine, hemapoetic and perhaps all cell types. These processes exhibit tremendous variation in latencies to fusion following a Ca(2+) rise and in rates of fusion. We review reported differences for synaptic vesicle (SV) and dense-core vesicle (DCV) exocytosis and attempt to identify key features in the molecular mechanisms of docking, priming and fusion of SVs and DCVs that may account for differences in speed.
Collapse
Affiliation(s)
- Thomas F J Martin
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
78
|
Abstract
Eukaryotic cells distribute materials among intracellular organelles and secrete into the extracellular space through cargo-loaded vesicles. A concluding step during vesicular transport is the fusion of a transport vesicle with a target membrane. SNARE proteins are essential for all vesicular fusion steps, thus they possibly comprise a conserved membrane fusion machinery. According to the "zipper" model, they assemble into stable membrane-bridging complexes that gradually bring membranes in juxtaposition. Hence, complex formation may provide the necessary energy for overcoming the repulsive forces between two membranes. During the last years, detailed structural and functional studies have extended the evidence that SNAREs are mostly in accord with the zipper model. Nevertheless, it remains unclear whether SNARE assembly between membranes directly leads to the merger of lipid bilayers.
Collapse
Affiliation(s)
- Dirk Fasshauer
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
79
|
Szule JA, Coorssen JR. Revisiting the role of SNAREs in exocytosis and membrane fusion. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1641:121-35. [PMID: 12914953 DOI: 10.1016/s0167-4889(03)00095-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
For over a decade SNARE hypotheses have been proposed to explain the mechanism of membrane fusion, yet the field still lacks sufficient evidence to conclusively identify the minimal components of native fusion. Consequently, debate concerning the postulated role(s) of SNAREs in membrane fusion continues. The focus of this review is to revisit original literature with a current perspective. Our analysis begins with the earliest studies of clostridial toxins, leading to various cellular and molecular approaches that have been used to test for the roles of SNAREs in exocytosis. We place much emphasis on distinguishing between specific effects on membrane fusion and effects on other critical steps in exocytosis. Although many systems can be used to study exocytosis, few permit selective access to specific steps in the pathway, such as membrane fusion. Thus, while SNARE proteins are essential to the physiology of exocytosis, assay limitations often prevent definitive conclusions concerning the molecular mechanism of membrane fusion. In all, the SNAREs are more likely to function upstream as modulators or priming factors of fusion.
Collapse
Affiliation(s)
- Joseph A Szule
- Cellular and Molecular Neurobiology Research Group, Department of Physiology and Biophysics, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
80
|
Hatsuzawa K, Lang T, Fasshauer D, Bruns D, Jahn R. The R-SNARE motif of tomosyn forms SNARE core complexes with syntaxin 1 and SNAP-25 and down-regulates exocytosis. J Biol Chem 2003; 278:31159-66. [PMID: 12782620 DOI: 10.1074/jbc.m305500200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tomosyn is a 130-kDa syntaxin-binding protein that contains a large N-terminal domain with WD40 repeats and a C-terminal domain homologous to R-SNAREs. Here we show that tomosyn forms genuine SNARE core complexes with the SNAREs syntaxin 1 and SNAP-25. In vitro studies with recombinant proteins revealed that complex formation proceeds from unstructured monomers to a stable four-helical bundle. The assembled complex displayed features typical for SNARE core complexes, including a profound hysteresis upon unfolding-refolding transitions. No stable complexes were formed between the SNARE motif of tomosyn and either syntaxin or SNAP-25 alone. Furthermore, both native tomosyn and its isolated C-terminal domain competed with synaptobrevin for binding to endogenous syntaxin and SNAP-25 on inside-out sheets of plasma membranes. Tomosyn-SNARE complexes were effectively disassembled by the ATPase N-ethylmaleimide-sensitive factor together with its cofactor alpha-SNAP. Moreover, the C-terminal domain of tomosyn was as effective as the cytoplasmic portion of synaptobrevin in inhibiting evoked exocytosis in a cell-free preparation derived from PC12 cells. Similarly, overexpression of tomosyn in PC12 cells resulted in a massive reduction of exocytosis, but the release parameters of individual exocytotic events remained unchanged. We conclude that tomosyn is a soluble SNARE that directly competes with synaptobrevin in the formation of SNARE complexes and thus may function in down-regulating exocytosis.
Collapse
Affiliation(s)
- Kiyotaka Hatsuzawa
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
81
|
Szule JA, Jarvis SE, Hibbert JE, Spafford JD, Braun JEA, Zamponi GW, Wessel GM, Coorssen JR. Calcium-triggered membrane fusion proceeds independently of specific presynaptic proteins. J Biol Chem 2003; 278:24251-4. [PMID: 12764142 DOI: 10.1074/jbc.c300197200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Complexes of specific presynaptic proteins have been hypothesized to drive or catalyze the membrane fusion steps of exocytosis. Here we use a stage-specific preparation to test the roles of SNAREs, synaptotagmin, and SNARE-binding proteins in the mechanism of Ca2+-triggered membrane fusion. Excess exogenous proteins, sufficient to block SNARE interactions, did not inhibit either the Ca2+ sensitivity, extent, or kinetics of fusion. In contrast, despite a limited effect on SNARE and synaptotagmin densities, treatments with high doses of chymotrypsin markedly inhibited fusion. Conversely, low doses of chymotrypsin had no effect on the Ca2+ sensitivity or extent of fusion but did alter the kinetic profile, indicating a more direct involvement of other proteins in the triggered fusion pathway. SNAREs, synaptotagmin, and their immediate binding partners are critical to exocytosis at a stage other than membrane fusion, although they may still influence the triggered steps.
Collapse
Affiliation(s)
- Joseph A Szule
- Department of Physiology and Biophysics, Cellular and Molecular Neurobiology Research Group, University of Calgary, Health Sciences Centre, Faculty of Medicine, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.
Collapse
Affiliation(s)
- Thomas H Söllner
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 519, New York, NY 10021, USA.
| |
Collapse
|
83
|
Kweon DH, Kim CS, Shin YK. Regulation of neuronal SNARE assembly by the membrane. Nat Struct Mol Biol 2003; 10:440-7. [PMID: 12740606 DOI: 10.1038/nsb928] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2002] [Accepted: 04/16/2003] [Indexed: 11/08/2022]
Abstract
In the neuron, SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) assembly acts centrally in driving membrane fusion, a required process for neurotransmitter release. In the cytoplasm, vesicular SNARE VAMP-2 (vesicle-associated membrane protein-2) engages with two plasma membrane SNAREs, syntaxin 1A and SNAP-25 (synaptosome-associated protein of 25 kDa), to form the core complex that bridges two membranes. Although various factors regulate SNARE assembly, the membrane also aids in regulation by trapping VAMP-2 in the membrane. Fluorescence and EPR analyses revealed that the insertion of seven C-terminal core-forming residues into the membrane controls complex formation of the entire core region, even though the preceding 54 core-forming residues are fully exposed and freely moving. When two interfacial tryptophan residues in this region were replaced with hydrophilic serine residues, the mutation supported rapid complex formation. The results suggest that the membrane-proximal region of VAMP-2 is a regulatory module for SNARE assembly, providing new insights into calcium-triggered membrane fusion.
Collapse
Affiliation(s)
- Dae-Hyuk Kweon
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | | | |
Collapse
|
84
|
Abstract
Most cells contain a variety of transport vesicles traveling to different destinations. Although many specific transport routes exist, the underlying molecular principles appear to be rather similar and conserved in evolution. It has become evident that formation of protein complexes named SNARE complexes between vesicle and target membrane is a central aspect of the final fusion reaction in many, if not all, routes and that SNARE complexes in different routes and species form in a similar manner. It is also evident that a second gene family, the Sec1/Munc18 genes (SM genes), plays a prominent role in vesicle trafficking. But, in contrast to the consensus and clarity about SNARE proteins, recent data on SM proteins in different systems produce an uncomfortable heterogeneity of ideas about their exact role, their site of action and their relation to SNARE proteins. This review examines whether a universal principle for the molecular function of SM genes exists and whether the divergence in SM gene function can be related to the unique characteristics of different transport routes.
Collapse
Affiliation(s)
- Ruud F G Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam (VUA), De Boelelaan 1087, The Netherlands
| | | |
Collapse
|
85
|
Abstract
The compartmental organization of eukaryotic cells has fascinated cell biologists for several decades. Detailed morphological, genetic, and biochemical studies have unraveled astonishingly complex molecular machineries involved in establishing and maintaining organelle identity and cell polarization. Many of the transport steps in the secretory and endocytic pathways are subject to manifold regulatory mechanisms, which in turn are interconnected with a plethora of signaling pathways. It therefore does not seem surprising that the cell biology of intracellular protein and lipid transport continues to thrive. The topics covered at the recent meeting on "Protein Transport in the Secretory Pathway" reflect the enormous complexity of how compartmentalization in eukaryotic cells is achieved.
Collapse
Affiliation(s)
- Volker Haucke
- Zentrum Biochemie und Molekulare Zellbiologie, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany.
| |
Collapse
|
86
|
Holroyd P, Lang T, Wenzel D, De Camilli P, Jahn R. Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proc Natl Acad Sci U S A 2002; 99:16806-11. [PMID: 12486251 PMCID: PMC139225 DOI: 10.1073/pnas.222677399] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
During exocytosis, secretory granules fuse with the plasma membrane and discharge their content into the extracellular space. The exocytosed membrane is then reinternalized in a coordinated fashion. A role of clathrin-coated vesicles in this process is well established, whereas the involvement of a direct retrieval mechanism (often called kiss and run) is still debated. Here we report that a significant population of docked secretory granules in the neuroendocrine cell line PC12 fuses with the plasma membrane, takes up fluid-phase markers, and is retrieved at the same position. Fusion allows for complete discharge of small molecules, whereas GFP-labeled neuropeptide Y (molecular mass approximately equal 35 kDa) is only partially released. Retrieved granules were preferentially associated with dynamin. Furthermore, recapture is inhibited by guanosine 5'-[gamma-thio]triphosphate and peptides known to block dynamin function. We conclude that secretory granules can be recaptured immediately after formation of an exocytotic opening by an endocytic reaction that is spatially and temporally coupled to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-dependent fusion, but is not a reversal of the fusion reaction.
Collapse
Affiliation(s)
- Phillip Holroyd
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|