51
|
Wong HTC, Lang AE, Stein C, Drerup CM. ALS-Linked VapB P56S Mutation Alters Neuronal Mitochondrial Turnover at the Synapse. J Neurosci 2024; 44:e0879242024. [PMID: 39054069 PMCID: PMC11358610 DOI: 10.1523/jneurosci.0879-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/11/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024] Open
Abstract
Mitochondrial population maintenance in neurons is essential for neuron function and survival. Contact sites between mitochondria and the endoplasmic reticulum (ER) are poised to regulate mitochondrial homeostasis in neurons. These contact sites can facilitate transfer of calcium and lipids between the organelles and have been shown to regulate aspects of mitochondrial dynamics. Vesicle-associated membrane protein-associated protein B (VapB) is an ER membrane protein present at a subset of ER-mitochondrial contact sites. A proline-to-serine mutation in VapB at amino acid 56 (P56S) correlates with susceptibility to amyotrophic lateral sclerosis (ALS) type 8. Given the relationship between failed mitochondrial health and neurodegenerative disease, we investigated the function of VapB in mitochondrial population maintenance. We demonstrated that transgenic expression of VapBP56S in zebrafish larvae (sex undetermined) increased mitochondrial biogenesis, causing increased mitochondrial population size in the axon terminal. Expression of wild-type VapB did not alter biogenesis but, instead, increased mitophagy in the axon terminal. Using genetic manipulations to independently increase mitochondrial biogenesis, we show that biogenesis is normally balanced by mitophagy to maintain a constant mitochondrial population size. VapBP56S transgenics fail to increase mitophagy to compensate for the increase in mitochondrial biogenesis, suggesting an impaired mitophagic response. Finally, using a synthetic ER-mitochondrial tether, we show that VapB's function in mitochondrial turnover is likely independent of ER-mitochondrial tethering by contact sites. Our findings demonstrate that VapB can control mitochondrial turnover in the axon terminal, and this function is altered by the P56S ALS-linked mutation.
Collapse
Affiliation(s)
- Hiu-Tung C Wong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Angelica E Lang
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Chris Stein
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Catherine M Drerup
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
52
|
Grepper D, Tabasso C, Zanou N, Aguettaz AK, Castro-Sepulveda M, Ziegler DV, Lagarrigue S, Arribat Y, Martinotti A, Ebrahimi A, Daraspe J, Fajas L, Amati F. BCL2L13 at endoplasmic reticulum-mitochondria contact sites regulates calcium homeostasis to maintain skeletal muscle function. iScience 2024; 27:110510. [PMID: 39175772 PMCID: PMC11340602 DOI: 10.1016/j.isci.2024.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/17/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
The physical connection between mitochondria and endoplasmic reticulum (ER) is an essential signaling hub to ensure organelle and cellular functions. In skeletal muscle, ER-mitochondria calcium (Ca2+) signaling is crucial to maintain cellular homeostasis during physical activity. High expression of BCL2L13, a member of the BCL-2 family, was suggested as an adaptive response in endurance-trained human subjects. In adult zebrafish, we found that the loss of Bcl2l13 impairs skeletal muscle structure and function. Ca2+ signaling is altered in Bcl2l13 knockout animals and mitochondrial complexes activity is decreased. Organelle fractioning in mammalian cells shows BCL2L13 at mitochondria, ER, and mitochondria-associated membranes. ER-mitochondria contact sites number is not modified by BCL2L13 modulation, but knockdown of BCL2L13 in C2C12 cells changes cytosolic Ca2+ release and mitochondrial Ca2+ uptake. This suggests that BCL2L13 interaction with mitochondria and ER, and its role in Ca2+ signaling, contributes to proper skeletal muscle function.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Axel K.F. Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Mauricio Castro-Sepulveda
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Dorian V. Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| |
Collapse
|
53
|
Kejík Z, Hajduch J, Abramenko N, Vellieux F, Veselá K, Fialová JL, Petrláková K, Kučnirová K, Kaplánek R, Tatar A, Skaličková M, Masařík M, Babula P, Dytrych P, Hoskovec D, Martásek P, Jakubek M. Cyanine dyes in the mitochondria-targeting photodynamic and photothermal therapy. Commun Chem 2024; 7:180. [PMID: 39138299 PMCID: PMC11322665 DOI: 10.1038/s42004-024-01256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/26/2024] [Indexed: 08/15/2024] Open
Abstract
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
Collapse
Affiliation(s)
- Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Jan Hajduch
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Nikita Abramenko
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Frédéric Vellieux
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Kateřina Veselá
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | | | - Kateřina Petrláková
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
| | - Kateřina Kučnirová
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Robert Kaplánek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Ameneh Tatar
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Markéta Skaličková
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
| | - Michal Masařík
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, CZ-625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Dytrych
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - David Hoskovec
- 1st Department of Surgery-Department of Abdominal, Thoracic Surgery and Traumatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, U Nemocnice 2, 121 08, Prague, Czech Republic
| | - Pavel Martásek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, 252 50 Vestec, Prague, Czech Republic.
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Ke Karlovu 455, 120 00, Prague, Czech Republic.
| |
Collapse
|
54
|
Melo RCN, Silva TP. Eosinophil activation during immune responses: an ultrastructural view with an emphasis on viral diseases. J Leukoc Biol 2024; 116:321-334. [PMID: 38466831 DOI: 10.1093/jleuko/qiae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/17/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Eosinophils are cells of the innate immune system that orchestrate complex inflammatory responses. The study of the cell biology of eosinophils, particularly associated with cell activation, is of great interest to understand their immune responses. From a morphological perspective, activated eosinophils show ultrastructural signatures that have provided critical insights into the comprehension of their functional capabilities. Application of conventional transmission electron microscopy in combination with quantitative assessments (quantitative transmission electron microscopy), molecular imaging (immunoEM), and 3-dimensional electron tomography have generated important insights into mechanisms of eosinophil activation. This review explores a multitude of ultrastructural events taking place in eosinophils activated in vitro and in vivo as key players in allergic and inflammatory diseases, with an emphasis on viral infections. Recent progress in our understanding of biological processes underlying eosinophil activation, including in vivo mitochondrial remodeling, is discussed, and it can bring new thinking to the field.
Collapse
Affiliation(s)
- Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora (UFJF), Rua José Lourenço Kelmer, campus, Juiz de Fora, MG, 36036-900, Brazil
| |
Collapse
|
55
|
Lu J, Liu G, Sun W, Jia G, Zhao H, Chen X, Wang J. Dietary α-Ketoglutarate Alleviates Escherichia coli LPS-Induced Intestinal Barrier Injury by Modulating the Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J Nutr 2024; 154:2087-2096. [PMID: 38453028 DOI: 10.1016/j.tjnut.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Collapse
Affiliation(s)
- Jiajia Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
56
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
57
|
Huang KT, Wagner LE, Takano T, Lin XX, Bagavant H, Deshmukh U, Yule DI. Dysregulated Ca 2+ signaling, fluid secretion, and mitochondrial function in a mouse model of early Sjögren's syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585719. [PMID: 38562738 PMCID: PMC10983907 DOI: 10.1101/2024.03.19.585719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Saliva is essential for oral health. The molecular mechanisms leading to physiological fluid secretion are largely established, but factors that underlie secretory hypofunction, specifically related to the autoimmune disease Sjögren's syndrome (SS) are not fully understood. A major conundrum is the lack of association between the severity of inflammatory immune cell infiltration within the salivary glands and glandular hypofunction. In this study, we investigated in a mouse model system, mechanisms of glandular hypofunction caused by the activation of the stimulator of interferon genes (STING) pathway. Glandular hypofunction and SS-like disease were induced by treatment with 5,6-Dimethyl-9-oxo-9H-xanthene-4-acetic acid (DMXAA), a small molecule agonist of murine STING. Contrary to our expectations, despite a significant reduction in fluid secretion in DMXAA-treated mice, in vivo imaging demonstrated that neural stimulation resulted in greatly enhanced spatially averaged cytosolic Ca2+ levels. Notably, however, the spatiotemporal characteristics of the Ca2+ signals were altered to signals that propagated throughout the entire cytoplasm as opposed to largely apically confined Ca2+ rises observed without treatment. Despite the augmented Ca2+ signals, muscarinic stimulation resulted in reduced activation of TMEM16a, although there were no changes in channel abundance or absolute sensitivity to Ca2+. However, super-resolution microscopy revealed a disruption in the intimate colocalization of Inositol 1,4,5-trisphosphate receptor Ca2+ release channels in relation to TMEM16a. TMEM16a channel activation was also reduced when intracellular Ca2+ buffering was increased. These data are consistent with altered local coupling between the channels contributing to the reduced activation of TMEM16a. Appropriate Ca2+ signaling is also pivotal for mitochondrial morphology and bioenergetics and secretion is an energetically expensive process. Disrupted mitochondrial morphology, a depolarized mitochondrial membrane potential, and reduced oxygen consumption rate were observed in DMXAA-treated animals compared to control animals. We report that early in SS disease, dysregulated Ca2+ signals lead to decreased fluid secretion and disrupted mitochondrial function contributing to salivary gland hypofunction and likely the progression of SS disease.
Collapse
Affiliation(s)
- Kai-Ting Huang
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Xiao-Xuan Lin
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| | - Harini Bagavant
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - Umesh Deshmukh
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, 825 NE 13 Street, Oklahoma City, OK 73104
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY. 14526
| |
Collapse
|
58
|
He W, Sun Z, Tong G, Zeng L, He W, Chen X, Zhen C, Chen P, Tan N, He P. FUNDC1 alleviates doxorubicin-induced cardiotoxicity by restoring mitochondrial-endoplasmic reticulum contacts and blocked autophagic flux. Theranostics 2024; 14:3719-3738. [PMID: 38948070 PMCID: PMC11209712 DOI: 10.7150/thno.92771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Rationale: Autophagy dysregulation is known to be a mechanism of doxorubicin (DOX)-induced cardiotoxicity (DIC). Mitochondrial-Endoplasmic Reticulum Contacts (MERCs) are where autophagy initiates and autophagosomes form. However, the role of MERCs in autophagy dysregulation in DIC remains elusive. FUNDC1 is a tethering protein of MERCs. We aim to investigate the effect of DOX on MERCs in cardiomyocytes and explore whether it is involved in the dysregulated autophagy in DIC. Methods: We employed confocal microscopy and transmission electron microscopy to assess MERCs structure. Autophagic flux was analyzed using the mCherry-EGFP-LC3B fluorescence assay and western blotting for LC3BII. Mitophagy was studied through the mCherry-EGFP-FIS1 fluorescence assay and colocalization analysis between LC3B and mitochondria. A total dose of 18 mg/kg of doxorubicin was administrated in mice to construct a DIC model in vivo. Additionally, we used adeno-associated virus (AAV) to cardiac-specifically overexpress FUNDC1. Cardiac function and remodeling were evaluated by echocardiography and Masson's trichrome staining, respectively. Results: DOX blocked autophagic flux by inhibiting autophagosome biogenesis, which could be attributed to the downregulation of FUNDC1 and disruption of MERCs structures. FUNDC1 overexpression restored the blocked autophagosome biogenesis by maintaining MERCs structure and facilitating ATG5-ATG12/ATG16L1 complex formation without altering mitophagy. Furthermore, FUNDC1 alleviated DOX-induced oxidative stress and cardiomyocytes deaths in an autophagy-dependent manner. Notably, cardiac-specific overexpression of FUNDC1 protected DOX-treated mice against adverse cardiac remodeling and improved cardiac function. Conclusions: In summary, our study identified that FUNDC1-meditated MERCs exerted a cardioprotective effect against DIC by restoring the blocked autophagosome biogenesis. Importantly, this research reveals a novel role of FUNDC1 in enhancing macroautophagy via restoring MERCs structure and autophagosome biogenesis in the DIC model, beyond its previously known regulatory role as an mitophagy receptor.
Collapse
Affiliation(s)
- Weibin He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Zhongchan Sun
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Guang Tong
- Department of Cardiac Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical university, 510080 Guangzhou, China
| | - Lin Zeng
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Wenlong He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Xiaopan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
| | - Cien Zhen
- School of Medicine, South China University of Technology, 510006 Guangzhou, China
| | - Pengyuan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Ning Tan
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences) Southern Medical University, 510080 Guangzhou, China
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510080 Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, 517000 Heyuan, China
| |
Collapse
|
59
|
Barbuti PA. A-Syn(ful) MAM: A Fresh Perspective on a Converging Domain in Parkinson's Disease. Int J Mol Sci 2024; 25:6525. [PMID: 38928232 PMCID: PMC11203789 DOI: 10.3390/ijms25126525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/03/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Parkinson's disease (PD) is a disease of an unknown origin. Despite that, decades of research have provided considerable evidence that alpha-synuclein (αSyn) is central to the pathogenesis of disease. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are functional domains formed at contact sites between the ER and mitochondria, with a well-established function of MAMs being the control of lipid homeostasis within the cell. Additionally, there are numerous proteins localized or enriched at MAMs that have regulatory roles in several different molecular signaling pathways required for cellular homeostasis, such as autophagy and neuroinflammation. Alterations in several of these signaling pathways that are functionally associated with MAMs are found in PD. Taken together with studies that find αSyn localized at MAMs, this has implicated MAM (dys)function as a converging domain relevant to PD. This review will highlight the many functions of MAMs and provide an overview of the literature that finds αSyn, in addition to several other PD-related proteins, localized there. This review will also detail the direct interaction of αSyn and αSyn-interacting partners with specific MAM-resident proteins. In addition, recent studies exploring new methods to investigate MAMs will be discussed, along with some of the controversies regarding αSyn, including its several conformations and subcellular localizations. The goal of this review is to highlight and provide insight on a domain that is incompletely understood and, from a PD perspective, highlight those complex interactions that may hold the key to understanding the pathomechanisms underlying PD, which may lead to the targeted development of new therapeutic strategies.
Collapse
Affiliation(s)
- Peter A Barbuti
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
60
|
Agyapong ED, Pedriali G, Ramaccini D, Bouhamida E, Tremoli E, Giorgi C, Pinton P, Morciano G. Calcium signaling from sarcoplasmic reticulum and mitochondria contact sites in acute myocardial infarction. J Transl Med 2024; 22:552. [PMID: 38853272 PMCID: PMC11162575 DOI: 10.1186/s12967-024-05240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/26/2024] [Indexed: 06/11/2024] Open
Abstract
Acute myocardial infarction (AMI) is a serious condition that occurs when part of the heart is subjected to ischemia episodes, following partial or complete occlusion of the epicardial coronary arteries. The resulting damage to heart muscle cells have a significant impact on patient's health and quality of life. About that, recent research focused on the role of the sarcoplasmic reticulum (SR) and mitochondria in the physiopathology of AMI. Moreover, SR and mitochondria get in touch each other through multiple membrane contact sites giving rise to the subcellular region called mitochondria-associated membranes (MAMs). MAMs are essential for, but not limited to, bioenergetics and cell fate. Disruption of the architecture of these regions occurs during AMI although it is still unclear the cause-consequence connection and a complete overview of the pathological changes; for sure this concurs to further damage to heart muscle. The calcium ion (Ca2+) plays a pivotal role in the pathophysiology of AMI and its dynamic signaling between the SR and mitochondria holds significant importance. In this review, we tried to summarize and update the knowledge about the roles of these organelles in AMI from a Ca2+ signaling point of view. Accordingly, we also reported some possible cardioprotective targets which are directly or indirectly related at limiting the dysfunctions caused by the deregulation of the Ca2+ signaling.
Collapse
Affiliation(s)
| | - Gaia Pedriali
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | | | | | - Elena Tremoli
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| | - Giampaolo Morciano
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.
- Maria Cecilia Hospital, GVM Care&Research, Cotignola, Italy.
| |
Collapse
|
61
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. PDZD8-FKBP8 tethering complex at ER-mitochondria contact sites regulates mitochondrial complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554218. [PMID: 38895210 PMCID: PMC11185567 DOI: 10.1101/2023.08.22.554218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
|
62
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
63
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
64
|
Chen S, Collart MA. Membrane-associated mRNAs: A Post-transcriptional Pathway for Fine-turning Gene Expression. J Mol Biol 2024; 436:168579. [PMID: 38648968 DOI: 10.1016/j.jmb.2024.168579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
Gene expression is a fundamental and highly regulated process involving a series of tightly coordinated steps, including transcription, post-transcriptional processing, translation, and post-translational modifications. A growing number of studies have revealed an additional layer of complexity in gene expression through the phenomenon of mRNA subcellular localization. mRNAs can be organized into membraneless subcellular structures within both the cytoplasm and the nucleus, but they can also targeted to membranes. In this review, we will summarize in particular our knowledge on localization of mRNAs to organelles, focusing on important regulators and available techniques for studying organellar localization, and significance of this localization in the broader context of gene expression regulation.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| | - Martine A Collart
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Institute of Genetics and Genomics of Geneva, Geneva, Switzerland.
| |
Collapse
|
65
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
66
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
67
|
Parlakgül G, Pang S, Artico LL, Min N, Cagampan E, Villa R, Goncalves RLS, Lee GY, Xu CS, Hotamışlıgil GS, Arruda AP. Spatial mapping of hepatic ER and mitochondria architecture reveals zonated remodeling in fasting and obesity. Nat Commun 2024; 15:3982. [PMID: 38729945 PMCID: PMC11087507 DOI: 10.1038/s41467-024-48272-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
The hepatocytes within the liver present an immense capacity to adapt to changes in nutrient availability. Here, by using high resolution volume electron microscopy, we map how hepatic subcellular spatial organization is regulated during nutritional fluctuations and as a function of liver zonation. We identify that fasting leads to remodeling of endoplasmic reticulum (ER) architecture in hepatocytes, characterized by the induction of single rough ER sheet around the mitochondria, which becomes larger and flatter. These alterations are enriched in periportal and mid-lobular hepatocytes but not in pericentral hepatocytes. Gain- and loss-of-function in vivo models demonstrate that the Ribosome receptor binding protein1 (RRBP1) is required to enable fasting-induced ER sheet-mitochondria interactions and to regulate hepatic fatty acid oxidation. Endogenous RRBP1 is enriched around periportal and mid-lobular regions of the liver. In obesity, ER-mitochondria interactions are distinct and fasting fails to induce rough ER sheet-mitochondrion interactions. These findings illustrate the importance of a regulated molecular architecture for hepatocyte metabolic flexibility.
Collapse
Affiliation(s)
- Güneş Parlakgül
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Song Pang
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Leonardo L Artico
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Nina Min
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Erika Cagampan
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Reyna Villa
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Renata L S Goncalves
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Grace Yankun Lee
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - C Shan Xu
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Gökhan S Hotamışlıgil
- Department of Molecular Metabolism and Sabri Ülker Center, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ana Paula Arruda
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
68
|
He Y, He T, Li H, Chen W, Zhong B, Wu Y, Chen R, Hu Y, Ma H, Wu B, Hu W, Han Z. Deciphering mitochondrial dysfunction: Pathophysiological mechanisms in vascular cognitive impairment. Biomed Pharmacother 2024; 174:116428. [PMID: 38599056 DOI: 10.1016/j.biopha.2024.116428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/26/2024] [Accepted: 03/08/2024] [Indexed: 04/12/2024] Open
Abstract
Vascular cognitive impairment (VCI) encompasses a range of cognitive deficits arising from vascular pathology. The pathophysiological mechanisms underlying VCI remain incompletely understood; however, chronic cerebral hypoperfusion (CCH) is widely acknowledged as a principal pathological contributor. Mitochondria, crucial for cellular energy production and intracellular signaling, can lead to numerous neurological impairments when dysfunctional. Recent evidence indicates that mitochondrial dysfunction-marked by oxidative stress, disturbed calcium homeostasis, compromised mitophagy, and anomalies in mitochondrial dynamics-plays a pivotal role in VCI pathogenesis. This review offers a detailed examination of the latest insights into mitochondrial dysfunction within the VCI context, focusing on both the origins and consequences of compromised mitochondrial health. It aims to lay a robust scientific groundwork for guiding the development and refinement of mitochondrial-targeted interventions for VCI.
Collapse
Affiliation(s)
- Yuyao He
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Tiantian He
- Sichuan Academy of Chinese Medicine Sciences, China
| | - Hongpei Li
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wei Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Biying Zhong
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yue Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Runming Chen
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Yuli Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Huaping Ma
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Bin Wu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China
| | - Wenyue Hu
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| | - Zhenyun Han
- Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, Guangdong, China.
| |
Collapse
|
69
|
Stevens TL, Cohen HM, Garbincius JF, Elrod JW. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:500-514. [PMID: 39185387 PMCID: PMC11343476 DOI: 10.1038/s44161-024-00463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
70
|
Kulkarni PG, Mohire VM, Waghmare PP, Banerjee T. Interplay of mitochondria-associated membrane proteins and autophagy: Implications in neurodegeneration. Mitochondrion 2024; 76:101874. [PMID: 38514017 DOI: 10.1016/j.mito.2024.101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/23/2024]
Abstract
Since the discovery of membrane contact sites between ER and mitochondria called mitochondria-associated membranes (MAMs), several pieces of evidence identified their role in the regulation of different cellular processes such as Ca2+ signalling, mitochondrial transport, and dynamics, ER stress, inflammation, glucose homeostasis, and autophagy. The integrity of these membranes was found to be essential for the maintenance of these cellular functions. Accumulating pieces of evidence suggest that MAMs serve as a platform for autophagosome formation. However, the alteration within MAMs structure is associated with the progression of neurodegenerative diseases. Dysregulated autophagy is a hallmark of neurodegeneration. Here, in this review, we highlight the present knowledge on MAMs, their structural composition, and their roles in different cellular functions. We also discuss the association of MAMs proteins with impaired autophagy and their involvement in the progression of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Prakash G Kulkarni
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007 India
| | - Vaibhavi M Mohire
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Pranjal P Waghmare
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India
| | - Tanushree Banerjee
- Molecular Neuroscience Research Centre, Dr. D. Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y Patil Vidyapeeth, Survey No 87/88, Mumbai Bangalore Express Highway, Tathawade, Pune 411 033 India; Infosys Ltd., SEZ unit VI, Plot No. 1, Rajiv Gandhi Infotech Park, Hinjawadi Phase I, Pune, Maharashtra 411057, India.
| |
Collapse
|
71
|
Cheng D, Lei ZG, Chu K, Lam OJH, Chiang CY, Zhang ZJ. N, N-Dimethyltryptamine, a natural hallucinogen, ameliorates Alzheimer's disease by restoring neuronal Sigma-1 receptor-mediated endoplasmic reticulum-mitochondria crosstalk. Alzheimers Res Ther 2024; 16:95. [PMID: 38693554 PMCID: PMC11061967 DOI: 10.1186/s13195-024-01462-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Aberrant neuronal Sigma-1 receptor (Sig-1r)-mediated endoplasmic reticulum (ER)- mitochondria signaling plays a key role in the neuronal cytopathology of Alzheimer's disease (AD). The natural psychedelic N, N-dimethyltryptamine (DMT) is a Sig-1r agonist that may have the anti-AD potential through protecting neuronal ER-mitochondrial interplay. METHODS 3×TG-AD transgenic mice were administered with chronic DMT (2 mg/kg) for 3 weeks and then performed water maze test. The Aβ accumulation in the mice brain were determined. The Sig-1r level upon DMT treatment was tested. The effect of DMT on the ER-mitochondrial contacts site and multiple mitochondria-associated membrane (MAM)-associated proteins were examined. The effect of DMT on calcium transport between ER and mitochondria and the mitochondrial function were also evaluated. RESULTS chronic DMT (2 mg/kg) markedly alleviated cognitive impairment of 3×TG-AD mice. In parallel, it largely diminished Aβ accumulation in the hippocampus and prefrontal cortex. DMT restored the decreased Sig-1r levels of 3×TG-AD transgenic mice. The hallucinogen reinstated the expression of multiple MAM-associated proteins in the brain of 3×TG-AD mice. DMT also prevented physical contact and calcium dynamic between the two organelles in in vitro and in vivo pathological circumstances. DMT modulated oxidative phosphorylation (OXPHOS) and ATP synthase in the in vitro model of AD. CONCLUSION The anti-AD effects of DMT are associated with its protection of neuronal ER-mitochondria crosstalk via the activation of Sig-1r. DMT has the potential to serve as a novel preventive and therapeutic agent against AD.
Collapse
Affiliation(s)
- Dan Cheng
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhuo-Gui Lei
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Kin Chu
- Department of Psychology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Oi Jin Honey Lam
- School of Biomedical Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, China
| | - Chun Yuan Chiang
- Digital Centre of State Key Laboratory of Quality Research in Chinese Medicine, Macau, China
| | - Zhang-Jin Zhang
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
72
|
Ding Y, Liu N, Zhang D, Guo L, Shang Q, Liu Y, Ren G, Ma X. Mitochondria-associated endoplasmic reticulum membranes as a therapeutic target for cardiovascular diseases. Front Pharmacol 2024; 15:1398381. [PMID: 38694924 PMCID: PMC11061472 DOI: 10.3389/fphar.2024.1398381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide. In 2022, the CVDs contributed to 19.8 million deaths globally, accounting for one-third of all global deaths. With an aging population and changing lifestyles, CVDs pose a major threat to human health. Mitochondria-associated endoplasmic reticulum membranes (MAMs) are communication platforms between cellular organelles and regulate cellular physiological functions, including apoptosis, autophagy, and programmed necrosis. Further research has shown that MAMs play a critical role in the pathogenesis of CVDs, including myocardial ischemia and reperfusion injury, heart failure, pulmonary hypertension, and coronary atherosclerosis. This suggests that MAMs could be an important therapeutic target for managing CVDs. The goal of this study is to summarize the protein complex of MAMs, discuss its role in the pathological mechanisms of CVDs in terms of its functions such as Ca2+ transport, apoptotic signaling, and lipid metabolism, and suggest the possibility of MAMs as a potential therapeutic approach.
Collapse
Affiliation(s)
- Yanqiu Ding
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Nanyang Liu
- Department of Geratology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dawu Zhang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lijun Guo
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qinghua Shang
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yicheng Liu
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaocan Ren
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Cardiovascular Department, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory of Traditional Chinese Medicine Syndrome, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Mavuduru VA, Vadupu L, Ghosh KK, Chakrabortty S, Gulyás B, Padmanabhan P, Ball WB. Mitochondrial phospholipid transport: Role of contact sites and lipid transport proteins. Prog Lipid Res 2024; 94:101268. [PMID: 38195013 DOI: 10.1016/j.plipres.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/11/2024]
Abstract
One of the major constituents of mitochondrial membranes is the phospholipids, which play a key role in maintaining the structure and the functions of the mitochondria. However, mitochondria do not synthesize most of the phospholipids in situ, necessitating the presence of phospholipid import pathways. Even for the phospholipids, which are synthesized within the inner mitochondrial membrane (IMM), the phospholipid precursors must be imported from outside the mitochondria. Therefore, the mitochondria heavily rely on the phospholipid transport pathways for its proper functioning. Since, mitochondria are not part of a vesicular trafficking network, the molecular mechanisms of how mitochondria receive its phospholipids remain a relevant question. One of the major ways that hydrophobic phospholipids can cross the aqueous barrier of inter or intraorganellar spaces is by apposing membranes, thereby decreasing the distance of transport, or by being sequestered by lipid transport proteins (LTPs). Therefore, with the discovery of LTPs and membrane contact sites (MCSs), we are beginning to understand the molecular mechanisms of phospholipid transport pathways in the mitochondria. In this review, we will present a brief overview of the recent findings on the molecular architecture and the importance of the MCSs, both the intraorganellar and interorganellar contact sites, in facilitating the mitochondrial phospholipid transport. In addition, we will also discuss the role of LTPs for trafficking phospholipids through the intermembrane space (IMS) of the mitochondria. Mechanistic insights into different phospholipid transport pathways of mitochondria could be exploited to vary the composition of membrane phospholipids and gain a better understanding of their precise role in membrane homeostasis and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Vijay Aditya Mavuduru
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Lavanya Vadupu
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India
| | - Krishna Kanta Ghosh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Sabyasachi Chakrabortty
- Department of Chemistry, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522502, India
| | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore; Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17176, Sweden
| | - Parasuraman Padmanabhan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 59 Nanyang Drive, Singapore, 636921, Singapore; Cognitive Neuroimaging Centre, Nanyang Technological University, Singapore, 59 Nanyang Drive, 636921, Singapore.
| | - Writoban Basu Ball
- Department of Biological Sciences, School of Engineering and Sciences, SRM University AP Andhra Pradesh, Guntur, Andhra Pradesh 522240, India.
| |
Collapse
|
74
|
Li M, Zhang Y, Yu G, Gu L, Zhu H, Feng S, Xiong X, Jian Z. Mitochondria-associated endoplasmic reticulum membranes tethering protein VAPB-PTPIP51 protects against ischemic stroke through inhibiting the activation of autophagy. CNS Neurosci Ther 2024; 30:e14707. [PMID: 38584329 PMCID: PMC10999572 DOI: 10.1111/cns.14707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/09/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
AIMS Mitochondria-associated endoplasmic reticulum membranes (MAMs) serve as a crucial bridge connecting the endoplasmic reticulum (ER) and mitochondria within cells. Vesicle-associated membrane protein-associated protein B (VAPB) and protein tyrosine phosphatase interacting protein 51 (PTPIP51) are responsible for the formation and stability of MAMs, which have been implicated in the pathogenesis of various diseases. However, the role of MAMs in ischemic stroke (IS) remains unclear. We aimed to investigate the role of MAMs tethering protein VAPB-PTPIP51 in experimental cerebral ischemia. METHODS We simulated cerebral ischemia-reperfusion injury (CIRI) by using a mouse middle cerebral artery occlusion (MCAO) model. RESULTS We observed a decrease in VAPB-PTPIP51 expression in the brain tissue. Our findings suggested compromised MAMs after MCAO, as a decreased mitochondria-ER contact (MERC) coverage and an increased distance were observed through the transmission electron microscope (TEM). Upon VAPB or PTPIP51 knockdown, the damage to MAMs was exacerbated, accompanied by excessive autophagy activation and increased reactive oxygen species (ROS) production, resulting in an enlarged infarct area and exacerbated neurological deficits. Notably, we observed that this damage was concomitant with the inhibition of the PI3K/AKT/mTOR pathway and was successfully mitigated by the treatment with the PI3K activator. CONCLUSIONS Our findings suggest that the downregulation of VAPB-PTPIP51 expression after IS mediates structural damage to MAMs. This may exacerbate CIRI by inhibiting the PI3K pathway and activating autophagy, thus providing new therapeutic targets for IS.
Collapse
Affiliation(s)
- Mingyang Li
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Yonggang Zhang
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Guixiang Yu
- Department of OphthalmologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lijuan Gu
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Hua Zhu
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Shi Feng
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Xiaoxing Xiong
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
- Central LaboratoryRenmin Hospital of Wuhan UniversityWuhanChina
| | - Zhihong Jian
- Department of NeurosurgeryRenmin Hospital of Wuhan UniversityWuhanChina
| |
Collapse
|
75
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
76
|
Elgendy M, Tamada H, Taira T, Iio Y, Kawamura A, Kunogi A, Mizutani Y, Kiyama H. Dynamic changes in endoplasmic reticulum morphology and its contact with the plasma membrane in motor neurons in response to nerve injury. Cell Tissue Res 2024; 396:71-84. [PMID: 38311679 PMCID: PMC10997708 DOI: 10.1007/s00441-024-03858-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/29/2023] [Indexed: 02/06/2024]
Abstract
The endoplasmic reticulum (ER) extends throughout a cell and plays a critical role in maintaining cellular homeostasis. Changes in ER shape could provide a clue to explore the mechanisms that underlie the fate determination of neurons after axon injury because the ER drastically changes its morphology under neuronal stress to maintain cellular homeostasis and recover from damage. Because of their tiny structures and richness in the soma, the detailed morphology of the ER and its dynamics have not been well analysed. In this study, the focused ion beam/scanning electron microscopy (FIB/SEM) analysis was performed to explore the ultra-structures of the ER in the somata of motor neuron with axon regenerative injury models. In normal motor neurons, ER in the somata is abundantly localised near the perinucleus and represents lamella-like structures. After injury, analysis of the ER volume and ER branching points indicated a collapse of the normal distribution and a transformation from lamella-like structures to mesh-like structures. Furthermore, accompanied by ER accumulation near the plasma membrane (PM), the contact between the ER and PM (ER-PM contacts) significantly increased after injury. The accumulation of extended-synaptotagmin 1 (E-Syt1), a tethering protein of the ER and PM that regulates Ca2+-dependent lipid transfer, was also identified by immunohistochemistry and quantitative Real-time PCR after injury. These morphological alterations of ER and the increase in ER-PM contacts may be crucial events that occur in motor neurons as a resilient response for the survival after axonal injury.
Collapse
Affiliation(s)
- Mahmoud Elgendy
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Hiromi Tamada
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
- Anatomy, Graduate School of Medicines, University of Fukui, Matsuokashimoaizuki, Eiheiji-Cho, Yoshida-gun, Fukui, 910-1193, Japan.
| | - Takaya Taira
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuma Iio
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Akinobu Kawamura
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Ayusa Kunogi
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuka Mizutani
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Kiyama
- Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-Ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
77
|
Leclerc S, Gupta A, Ruokolainen V, Chen JH, Kunnas K, Ekman AA, Niskanen H, Belevich I, Vihinen H, Turkki P, Perez-Berna AJ, Kapishnikov S, Mäntylä E, Harkiolaki M, Dufour E, Hytönen V, Pereiro E, McEnroe T, Fahy K, Kaikkonen MU, Jokitalo E, Larabell CA, Weinhardt V, Mattola S, Aho V, Vihinen-Ranta M. Progression of herpesvirus infection remodels mitochondrial organization and metabolism. PLoS Pathog 2024; 20:e1011829. [PMID: 38620036 PMCID: PMC11045090 DOI: 10.1371/journal.ppat.1011829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/25/2024] [Accepted: 03/12/2024] [Indexed: 04/17/2024] Open
Abstract
Viruses target mitochondria to promote their replication, and infection-induced stress during the progression of infection leads to the regulation of antiviral defenses and mitochondrial metabolism which are opposed by counteracting viral factors. The precise structural and functional changes that underlie how mitochondria react to the infection remain largely unclear. Here we show extensive transcriptional remodeling of protein-encoding host genes involved in the respiratory chain, apoptosis, and structural organization of mitochondria as herpes simplex virus type 1 lytic infection proceeds from early to late stages of infection. High-resolution microscopy and interaction analyses unveiled infection-induced emergence of rough, thin, and elongated mitochondria relocalized to the perinuclear area, a significant increase in the number and clustering of endoplasmic reticulum-mitochondria contact sites, and thickening and shortening of mitochondrial cristae. Finally, metabolic analyses demonstrated that reactivation of ATP production is accompanied by increased mitochondrial Ca2+ content and proton leakage as the infection proceeds. Overall, the significant structural and functional changes in the mitochondria triggered by the viral invasion are tightly connected to the progression of the virus infection.
Collapse
Affiliation(s)
- Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Alka Gupta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Visa Ruokolainen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Jian-Hua Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Kari Kunnas
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Axel A. Ekman
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Henri Niskanen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Paula Turkki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Ana J. Perez-Berna
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maria Harkiolaki
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK; Division of Structural Biology, The Henry Wellcome Building for Genomic Medicine, Roosevelt Drive, Oxford, United Kingdom
| | - Eric Dufour
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Hytönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab laboratories, Tampere, Finland
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Valles, Barcelona, Spain
| | | | | | - Minna U. Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Finland
| | - Carolyn A. Larabell
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Venera Weinhardt
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| |
Collapse
|
78
|
Zhong R, Rua MT, Wei-LaPierre L. Targeting mitochondrial Ca 2+ uptake for the treatment of amyotrophic lateral sclerosis. J Physiol 2024; 602:1519-1549. [PMID: 38010626 PMCID: PMC11032238 DOI: 10.1113/jp284143] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/31/2023] [Indexed: 11/29/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare adult-onset neurodegenerative disease characterized by progressive motor neuron (MN) loss, muscle denervation and paralysis. Over the past several decades, researchers have made tremendous efforts to understand the pathogenic mechanisms underpinning ALS, with much yet to be resolved. ALS is described as a non-cell autonomous condition with pathology detected in both MNs and non-neuronal cells, such as glial cells and skeletal muscle. Studies in ALS patient and animal models reveal ubiquitous abnormalities in mitochondrial structure and function, and disturbance of intracellular calcium homeostasis in various tissue types, suggesting a pivotal role of aberrant mitochondrial calcium uptake and dysfunctional calcium signalling cascades in ALS pathogenesis. Calcium signalling and mitochondrial dysfunction are intricately related to the manifestation of cell death contributing to MN loss and skeletal muscle dysfunction. In this review, we discuss the potential contribution of intracellular calcium signalling, particularly mitochondrial calcium uptake, in ALS pathogenesis. Functional consequences of excessive mitochondrial calcium uptake and possible therapeutic strategies targeting mitochondrial calcium uptake or the mitochondrial calcium uniporter, the main channel mediating mitochondrial calcium influx, are also discussed.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Department of Emergency Medicine, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China, 110001
| | - Michael T. Rua
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
| | - Lan Wei-LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, 32611
- Myology Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
79
|
Hart SN, Lenin R, Sturgill J, Kern PA, Nikolajczyk B. MITOCHONDRIA-ASSOCIATED MEMBRANES ARE NOT ALTERED IN IMMUNE CELLS IN T2D. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.586170. [PMID: 38585802 PMCID: PMC10996535 DOI: 10.1101/2024.03.25.586170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Metabolism research is increasingly recognizing the contributions of organelle crosstalk to metabolic regulation. Mitochondria-associated membranes (MAMs), which are structures connecting the mitochondria and endoplasmic reticulum (ER), are critical in a myriad of cellular functions linked to cellular metabolism. MAMs control calcium signaling, mitochondrial transport, redox balance, protein folding/degradation, and in some studies, metabolic health. The possibility that MAMs drive changes in cellular function in individuals with Type 2 Diabetes (T2D) is controversial. Although disruptions in MAMs that change the distance between the mitochondria and ER, MAM protein composition, or disrupt downstream signaling, can perpetuate inflammation, one key trait of T2D. However, the full scope of this structure's role in immune cell health and thus T2D-associated inflammation remains unknown. We show that human immune cell MAM proteins and their associated functions are not altered by T2D and thus unlikely to contribute to metaflammation.
Collapse
Affiliation(s)
- Samantha N Hart
- Department of Molecular and Cellular Biochemistry, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| | - Raji Lenin
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
| | - Jamie Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
| | - Philip A Kern
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
- Department of Internal Medicine, University of Kentucky
| | - Barbara Nikolajczyk
- Department of Pharmacology and Nutritional Sciences, University of Kentucky
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky
| |
Collapse
|
80
|
Li J, Zhang Y, Zhang D, Wang W, Xie H, Ruan J, Jin Y, Li T, Li X, Zhao B, Zhang X, Lin J, Shi H, Jia JM. Ca 2+ oscillation in vascular smooth muscle cells control myogenic spontaneous vasomotion and counteract post-ischemic no-reflow. Commun Biol 2024; 7:332. [PMID: 38491167 PMCID: PMC10942987 DOI: 10.1038/s42003-024-06010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Ischemic stroke produces the highest adult disability. Despite successful recanalization, no-reflow, or the futile restoration of the cerebral perfusion after ischemia, is a major cause of brain lesion expansion. However, the vascular mechanism underlying this hypoperfusion is largely unknown, and no approach is available to actively promote optimal reperfusion to treat no-reflow. Here, by combining two-photon laser scanning microscopy (2PLSM) and a mouse middle cerebral arteriolar occlusion (MCAO) model, we find myogenic vasomotion deficits correlated with post-ischemic cerebral circulation interruptions and no-reflow. Transient occlusion-induced transient loss of mitochondrial membrane potential (ΔΨm) permanently impairs mitochondria-endoplasmic reticulum (ER) contacts and abolish Ca2+ oscillation in smooth muscle cells (SMCs), the driving force of myogenic spontaneous vasomotion. Furthermore, tethering mitochondria and ER by specific overexpression of ME-Linker in SMCs restores cytosolic Ca2+ homeostasis, remotivates myogenic spontaneous vasomotion, achieves optimal reperfusion, and ameliorates neurological injury. Collectively, the maintaining of arteriolar myogenic vasomotion and mitochondria-ER contacts in SMCs, are of critical importance in preventing post-ischemic no-reflow.
Collapse
Affiliation(s)
- Jinze Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Yiyi Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Dongdong Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Wentao Wang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Huiqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayu Ruan
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yuxiao Jin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Tingbo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xuzhao Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Bingrui Zhao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xiaoxuan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jiayi Lin
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hongjun Shi
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jie-Min Jia
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Laboratory of Neurovascular Biology, Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
81
|
Wilson EL, Yu Y, Leal NS, Woodward JA, Patikas N, Morris JL, Field SF, Plumbly W, Paupe V, Chowdhury SR, Antrobus R, Lindop GE, Adia YM, Loh SHY, Prudent J, Martins LM, Metzakopian E. Genome-wide CRISPR/Cas9 screen shows that loss of GET4 increases mitochondria-endoplasmic reticulum contact sites and is neuroprotective. Cell Death Dis 2024; 15:203. [PMID: 38467609 PMCID: PMC10928201 DOI: 10.1038/s41419-024-06568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
Organelles form membrane contact sites between each other, allowing for the transfer of molecules and signals. Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) are cellular subdomains characterized by close apposition of mitochondria and ER membranes. They have been implicated in many diseases, including neurodegenerative, metabolic, and cardiac diseases. Although MERCS have been extensively studied, much remains to be explored. To uncover novel regulators of MERCS, we conducted a genome-wide, flow cytometry-based screen using an engineered MERCS reporter cell line. We found 410 genes whose downregulation promotes MERCS and 230 genes whose downregulation decreases MERCS. From these, 29 genes were selected from each population for arrayed screening and 25 were validated from the high population and 13 from the low population. GET4 and BAG6 were highlighted as the top 2 genes that upon suppression increased MERCS from both the pooled and arrayed screens, and these were subjected to further investigation. Multiple microscopy analyses confirmed that loss of GET4 or BAG6 increased MERCS. GET4 and BAG6 were also observed to interact with the known MERCS proteins, inositol 1,4,5-trisphosphate receptors (IP3R) and glucose-regulated protein 75 (GRP75). In addition, we found that loss of GET4 increased mitochondrial calcium uptake upon ER-Ca2+ release and mitochondrial respiration. Finally, we show that loss of GET4 rescues motor ability, improves lifespan and prevents neurodegeneration in a Drosophila model of Alzheimer's disease (Aβ42Arc). Together, these results suggest that GET4 is involved in decreasing MERCS and that its loss is neuroprotective.
Collapse
Affiliation(s)
- Emma L Wilson
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nuno S Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - James A Woodward
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nikolaos Patikas
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - Jordan L Morris
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Sarah F Field
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - William Plumbly
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK
| | - Vincent Paupe
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Suvagata R Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, The Keith Peters Building, Cambridge Biomedical Campus, Hills Rd, Cambridge, CB2 0XY, UK
| | - Georgina E Lindop
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Downing Site, Cambridge, CB2 3DY, UK
| | - Yusuf M Adia
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, The Keith Peters building, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| | - Emmanouil Metzakopian
- UK Dementia Research Institute, University of Cambridge, Clifford Albutt building, Cambridge biomedical campus, Cambridge, CB2 0AH, UK.
- bit bio, The Dorothy Hodgkin Building, Babraham Research Campus, Cambridge, CB22 3FH, UK.
| |
Collapse
|
82
|
Delfino G, Briand JB, Oullier T, Nienkemper L, Greig J, Véziers J, Neunlist M, Derkinderen P, Paillusson S. Characterization of mitochondria-associated ER membranes in the enteric nervous system under physiological and pathological conditions. Am J Physiol Gastrointest Liver Physiol 2024; 326:G330-G343. [PMID: 38226933 PMCID: PMC11211041 DOI: 10.1152/ajpgi.00224.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Alterations in endoplasmic reticulum (ER)-mitochondria associations and in mitochondria-associated ER membrane (MAM) behavior have been reported in the brain in several neurodegenerative diseases. Despite the emerging role of the gut-brain axis in neurodegenerative disorders, the biology of MAM in the enteric nervous system (ENS) has not previously been studied. Therefore, we set out to characterize the MAM in the distal colon of wild-type C57BL/6J mice and senescence-accelerated mouse prone 8 (SAMP8), a mouse model of age-related neurodegeneration. We showed for the first time that MAMs are widely present in enteric neurons and that their association is altered in SAMP8 mice. We then examined the functions of MAMs in a primary culture model of enteric neurons and showed that calcium homeostasis was altered in SAMP8 mice when compared with control animals. These findings provide the first detailed characterization of MAMs in the ENS under physiological conditions and during age-associated neurodegeneration. Further investigation of MAM modifications in the ENS in disease may provide valuable information about the possible role of enteric MAMs in neurodegenerative diseases.NEW & NOTEWORTHY Our work shows for the first time the presence of contacts between endoplasmic reticulum and mitochondria in the enteric neurons and that the dynamic of these contacts is affected in these cells from an age-related neurodegeneration mouse model. It provides new insights into the potential role of enteric mitochondria-associated endoplasmic reticulum membrane in neurodegenerative disorders.
Collapse
Affiliation(s)
- Giada Delfino
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Jean Baptiste Briand
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Thibauld Oullier
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Léa Nienkemper
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Jenny Greig
- INSERM, Centre de Recherche en Transplantation et Immunologie, Institut de Transplantation Urologie Néphrologie, Nantes, France
| | - Joëlle Véziers
- INSERM, Regenerative Medicine and Skeleton, Nantes Université, Oniris, Univ Angers, RMeS, Nantes, France
| | - Michel Neunlist
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Pascal Derkinderen
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| | - Sébastien Paillusson
- Nantes Université, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire (CHU) Nantes, The Enteric Nervous System in Gut and Brain Disorders, Nantes, France
| |
Collapse
|
83
|
Elwakiel A, Mathew A, Isermann B. The role of endoplasmic reticulum-mitochondria-associated membranes in diabetic kidney disease. Cardiovasc Res 2024; 119:2875-2883. [PMID: 38367274 DOI: 10.1093/cvr/cvad190] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 02/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease worldwide. The pathomechanisms of DKD are multifactorial, yet haemodynamic and metabolic changes in the early stages of the disease appear to predispose towards irreversible functional loss and histopathological changes. Recent studies highlight the importance of endoplasmic reticulum-mitochondria-associated membranes (ER-MAMs), structures conveying important cellular homeostatic and metabolic effects, in the pathology of DKD. Disruption of ER-MAM integrity in diabetic kidneys is associated with DKD progression, but the regulation of ER-MAMs and their pathogenic contribution remain largely unknown. Exploring the cell-specific components and dynamic changes of ER-MAMs in diabetic kidneys may lead to the identification of new approaches to detect and stratify diabetic patients with DKD. In addition, these insights may lead to novel therapeutic approaches to target and/or reverse disease progression. In this review, we discuss the association of ER-MAMs with key pathomechanisms driving DKD such as insulin resistance, dyslipidaemia, ER stress, and inflammasome activation and the importance of further exploration of ER-MAMs as diagnostic and therapeutic targets in DKD.
Collapse
Affiliation(s)
- Ahmed Elwakiel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Akash Mathew
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Paul-List-Straße 13/15, 04103 Leipzig, Germany
| |
Collapse
|
84
|
Yang Z, Chan DC. Development of a signal-integrating reporter to monitor mitochondria-ER contacts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580376. [PMID: 38405790 PMCID: PMC10888864 DOI: 10.1101/2024.02.14.580376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Mitochondria-ER contact sites (MERCS) serve as hotspots for important cellular processes, including calcium homeostasis, phospholipid homeostasis, mitochondria dynamics, and mitochondrial quality control. MERCS reporters based on complementation of GFP fragments have been designed to visualize MERCS in real-time, but we find that they do not accurately respond to changes in MERCS content. Here, we utilize split LacZ complementing fragments to develop the first MERCS reporter system (termed SpLacZ-MERCS) that continuously integrates the MERCS information within a cell and generates a fluorescent output. Our system exhibits good organelle targeting, no artifactual tethering, and effective, dynamic tracking of the MERCS level in single cells. The SpLacZ-MERCS reporter was validated by drug treatments and genetic perturbations known to affect mitochondria-ER contacts. The signal-integrating nature of SpLacZ-MERCS may enable systematic identification of genes and drugs that regulate mitochondria-ER interactions. Our successful application of the split LacZ complementation strategy to study MERCS may be extended to study other forms of inter-organellar crosstalk.
Collapse
|
85
|
Lu B, Chen X, Ma Y, Gui M, Yao L, Li J, Wang M, Zhou X, Fu D. So close, yet so far away: the relationship between MAM and cardiac disease. Front Cardiovasc Med 2024; 11:1353533. [PMID: 38374992 PMCID: PMC10875081 DOI: 10.3389/fcvm.2024.1353533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria-associated membrane (MAM) serve as crucial contact sites between mitochondria and the endoplasmic reticulum (ER). Recent research has highlighted the significance of MAM, which serve as a platform for various protein molecules, in processes such as calcium signaling, ATP production, mitochondrial structure and function, and autophagy. Cardiac diseases caused by any reason can lead to changes in myocardial structure and function, significantly impacting human health. Notably, MAM exhibits various regulatory effects to maintain cellular balance in several cardiac diseases conditions, such as obesity, diabetes mellitus, and cardiotoxicity. MAM proteins independently or interact with their counterparts, forming essential tethers between the ER and mitochondria in cardiomyocytes. This review provides an overview of key MAM regulators, detailing their structure and functions. Additionally, it explores the connection between MAM and various cardiac injuries, suggesting that precise genetic, pharmacological, and physical regulation of MAM may be a promising strategy for preventing and treating heart failure.
Collapse
Affiliation(s)
- Bo Lu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Xiaozhe Chen
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yulong Ma
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingtai Gui
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Yao
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Li
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingzhu Wang
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xunjie Zhou
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Deyu Fu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
86
|
Shi R, Liu Z, Yue H, Li M, Liu S, De D, Li R, Chen Y, Cheng S, Gu X, Jia M, Li J, Li J, Zhang S, Feng N, Fan R, Fu F, Liu Y, Ding M, Pei J. IP 3R1-mediated MAMs formation contributes to mechanical trauma-induced hepatic injury and the protective effect of melatonin. Cell Mol Biol Lett 2024; 29:22. [PMID: 38308199 PMCID: PMC10836028 DOI: 10.1186/s11658-023-00509-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/02/2023] [Indexed: 02/04/2024] Open
Abstract
INTRODUCTION There is a high morbidity and mortality rate in mechanical trauma (MT)-induced hepatic injury. Currently, the molecular mechanisms underlying liver MT are largely unclear. Exploring the underlying mechanisms and developing safe and effective medicines to alleviate MT-induced hepatic injury is an urgent requirement. The aim of this study was to reveal the role of mitochondria-associated ER membranes (MAMs) in post-traumatic liver injury, and ascertain whether melatonin protects against MT-induced hepatic injury by regulating MAMs. METHODS Hepatic mechanical injury was established in Sprague-Dawley rats and primary hepatocytes. A variety of experimental methods were employed to assess the effects of melatonin on hepatic injury, apoptosis, MAMs formation, mitochondrial function and signaling pathways. RESULTS Significant increase of IP3R1 expression and MAMs formation were observed in MT-induced hepatic injury. Melatonin treatment at the dose of 30 mg/kg inhibited IP3R1-mediated MAMs and attenuated MT-induced liver injury in vivo. In vitro, primary hepatocytes cultured in 20% trauma serum (TS) for 12 h showed upregulated IP3R1 expression, increased MAMs formation and cell injury, which were suppressed by melatonin (100 μmol/L) treatment. Consequently, melatonin suppressed mitochondrial calcium overload, increased mitochondrial membrane potential and improved mitochondrial function under traumatic condition. Melatonin's inhibitory effects on MAMs formation and mitochondrial calcium overload were blunted when IP3R1 was overexpressed. Mechanistically, melatonin bound to its receptor (MR) and increased the expression of phosphorylated ERK1/2, which interacted with FoxO1 and inhibited the activation of FoxO1 that bound to the IP3R1 promoter to inhibit MAMs formation. CONCLUSION Melatonin prevents the formation of MAMs via the MR-ERK1/2-FoxO1-IP3R1 pathway, thereby alleviating the development of MT-induced liver injury. Melatonin-modulated MAMs may be a promising therapeutic therapy for traumatic hepatic injury.
Collapse
Affiliation(s)
- Rui Shi
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Zhenhua Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Huan Yue
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
- School of Life Science, Northwest University, Xi'an, China
| | - Simin Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dema De
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Runjing Li
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Yunan Chen
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| | - Shuli Cheng
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Min Jia
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Jun Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Rong Fan
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China
| | - Yali Liu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
- The Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Laboratory Center of Stomatology, Department of Orthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
87
|
Obara CJ, Nixon-Abell J, Moore AS, Riccio F, Hoffman DP, Shtengel G, Xu CS, Schaefer K, Pasolli HA, Masson JB, Hess HF, Calderon CP, Blackstone C, Lippincott-Schwartz J. Motion of VAPB molecules reveals ER-mitochondria contact site subdomains. Nature 2024; 626:169-176. [PMID: 38267577 PMCID: PMC10830423 DOI: 10.1038/s41586-023-06956-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
To coordinate cellular physiology, eukaryotic cells rely on the rapid exchange of molecules at specialized organelle-organelle contact sites1,2. Endoplasmic reticulum-mitochondrial contact sites (ERMCSs) are particularly vital communication hubs, playing key roles in the exchange of signalling molecules, lipids and metabolites3,4. ERMCSs are maintained by interactions between complementary tethering molecules on the surface of each organelle5,6. However, due to the extreme sensitivity of these membrane interfaces to experimental perturbation7,8, a clear understanding of their nanoscale organization and regulation is still lacking. Here we combine three-dimensional electron microscopy with high-speed molecular tracking of a model organelle tether, Vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), to map the structure and diffusion landscape of ERMCSs. We uncovered dynamic subdomains within VAPB contact sites that correlate with ER membrane curvature and undergo rapid remodelling. We show that VAPB molecules enter and leave ERMCSs within seconds, despite the contact site itself remaining stable over much longer time scales. This metastability allows ERMCSs to remodel with changes in the physiological environment to accommodate metabolic needs of the cell. An amyotrophic lateral sclerosis-associated mutation in VAPB perturbs these subdomains, likely impairing their remodelling capacity and resulting in impaired interorganelle communication. These results establish high-speed single-molecule imaging as a new tool for mapping the structure of contact site interfaces and reveal that the diffusion landscape of VAPB at contact sites is a crucial component of ERMCS homeostasis.
Collapse
Affiliation(s)
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Cambridge Institute for Medical Research (CIMR), Cambridge, UK
| | - Andrew S Moore
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Federica Riccio
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- Centre for Gene Therapy & Regenerative Medicine, King's College London, London, UK
| | - David P Hoffman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kathy Schaefer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - H Amalia Pasolli
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jean-Baptiste Masson
- Decision and Bayesian Computation, Neuroscience, & Computational Biology Departments, CNRS UMR 3751, Institut Pasteur, Université de Paris, Paris, France
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Christopher P Calderon
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
- Ursa Analytics, Inc., Denver, CO, USA
| | - Craig Blackstone
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
88
|
Qu S, Lin H, Pfeiffer N, Grus FH. Age-Related Macular Degeneration and Mitochondria-Associated Autoantibodies: A Review of the Specific Pathogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:1624. [PMID: 38338904 PMCID: PMC10855900 DOI: 10.3390/ijms25031624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Age-related macular degeneration (AMD) is a severe retinal disease that causes irreversible visual loss and blindness in elderly populations worldwide. The pathological mechanism of AMD is complex, involving the interactions of multiple environmental and genetic factors. A poor understanding of the disease leads to limited treatment options and few effective prevention methods. The discovery of autoantibodies in AMD patients provides an opportunity to explore the pathogenesis and treatment direction of the disease. This review focuses on the mitochondria-associated autoantibodies and summarizes the functional roles of mitochondria under physiological conditions and their alterations during the pathological states. Additionally, it discusses the crosstalk between mitochondria and other organelles, as well as the mitochondria-related therapeutic strategies in AMD.
Collapse
Affiliation(s)
| | | | | | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, 55131 Mainz, Germany; (S.Q.); (H.L.)
| |
Collapse
|
89
|
Zhao J, He C, Fan X, Wang L, Zhao L, Liu H, Shen W, Jiang S, Pei K, Gao J, Qi Y, Liu Y, Zhao J, Zhang R, Lu C, Tong J, Huai J. Tripeptidyl peptidase II coordinates the homeostasis of calcium and lipids in the central nervous system and its depletion causes presenile dementia in female mice through calcium/lipid dyshomeostasis-induced autophagic degradation of CYP19A1. Theranostics 2024; 14:1390-1429. [PMID: 38389851 PMCID: PMC10879859 DOI: 10.7150/thno.92571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Tripeptidyl peptidase II (TPP2) has been proven to be related to human immune and neurological diseases. It is generally considered as a cytosolic protein which forms the largest known protease complex in eukaryotic cells to operate mostly downstream of proteasomes for degradation of longer peptides. However, this canonical function of TPP2 cannot explain its role in a wide variety of biological and pathogenic processes. The mechanistic interrelationships and hierarchical order of these processes have yet to be clarified. Methods: Animals, cells, plasmids, and viruses established and/or used in this study include: TPP2 knockout mouse line, TPP2 conditional knockout mouse lines (different neural cell type oriented), TRE-TPP2 knockin mouse line on the C57BL/6 background; 293T cells with depletion of TPP2, ATF6, IRE1, PERK, SYVN1, UCHL1, ATG5, CEPT1, or CCTα, respectively; 293T cells stably expressing TPP2, TPP2 S449A, TPP2 S449T, or CCTα-KDEL proteins on the TPP2-depleted background; Plasmids for eukaryotic transient expression of rat CYP19A1-Flag, CYP19A1 S118A-Flag, CYP19A1 S118D-Flag, Sac I ML GFP Strand 11 Long, OMMGFP 1-10, G-CEPIA1er, GCAMP2, CEPIA3mt, ACC-GFP, or SERCA1-GFP; AAV2 carrying the expression cassette of mouse CYP19A1-3 X Flag-T2A-ZsGreen. Techniques used in this study include: Flow cytometry, Immunofluorescence (IF) staining, Immunohistochemical (IHC) staining, Luxol fast blue (LFB) staining, β-galactosidase staining, Lipid droplet (LD) staining, Calcium (Ca2+) staining, Stimulated emission depletion (STED) imaging, Transmission electron microscopic imaging, Two-photon imaging, Terminal deoxynucleotidyl transferase (TdT) dUTP nick-end Labeling (TUNEL) assay, Bromodeoxyuridine (BrdU) assay, Enzymatic activity assay, Proximity ligation assay (PLA), In vivo electrophysiological recording, Long-term potentiation (LTP) recording, Split-GFP-based mitochondria-associated membrane (MAM) detection, Immunoprecipitation (IP), Cellular fractionation, In situ hybridization, Semi-quantitative RT-PCR, Immunoblot, Mass spectrometry-based lipidomics, metabolomics, proteomics, Primary hippocampal neuron culture and Morris water maze (MWM) test. Results: We found that TPP2, independent of its enzymatic activity, plays a crucial role in maintaining the homeostasis of intracellular Ca2+ and phosphatidylcholine (PC) in the central nervous system (CNS) of mice. In consistence with the critical importance of Ca2+ and PC in the CNS, TPP2 gene ablation causes presenile dementia in female mice, which is closely associated with Ca2+/PC dysregulation-induced endoplasmic reticulum (ER) stress, abnormal autophagic degradation of CYP19A1 (aromatase), and estrogen depletion. This work therefore uncovers a new role of TPP2 in lipogenesis and neurosteroidogenesis which is tightly related to cognitive function of adult female mice. Conclusion: Our study reveals a crucial role of TPP2 in controlling homeostasis of Ca2+ and lipids in CNS, and its deficiency causes sexual dimorphism in dementia. Thus, this study is not only of great significance for elucidating the pathogenesis of dementia and its futural treatment, but also for interpreting the role of TPP2 in other systems and their related disorders.
Collapse
Affiliation(s)
- Jin Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Chengtong He
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Xueyu Fan
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Lin Wang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Liao Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Hui Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Wujun Shen
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Sanwei Jiang
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
| | - Kaixuan Pei
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jingjing Gao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yawei Qi
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Yang Liu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Junqiang Zhao
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Ruiling Zhang
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
| | - Chengbiao Lu
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
- Henan International Key Laboratory for Noninvasive Neuromodulation, Department of Physiology & Pathology, Xinxiang Medical University, Xinxiang, PR China
- Senior author for electrophysiological experiments and related analysis
| | - Jia Tong
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| | - Jisen Huai
- The Second Affiliated Hospital of Xinxiang Medical University (Henan Mental Hospital), Xinxiang, 453000, PR China
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003, PR China
| |
Collapse
|
90
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
91
|
Jiang W, Lin Y, Qian L, Lu S, Shen H, Ge X, Miao L. Mulberry Leaf Polysaccharides Attenuate Oxidative Stress Injury in Peripheral Blood Leukocytes by Regulating Endoplasmic Reticulum Stress. Antioxidants (Basel) 2024; 13:136. [PMID: 38397734 PMCID: PMC10886326 DOI: 10.3390/antiox13020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 02/25/2024] Open
Abstract
The present study assessed the protective effects and underlying mechanisms of mulberry leaf polysaccharides (MLPs) against hydrogen peroxide (H2O2)-induced oxidative stress injury in the peripheral blood leukocytes (PBLs) of Megalobrama amblycephala. Five treatment groups were established in vitro: the NC group (PBLs incubated in an RPMI-1640 complete medium for 4 h), the HP group (PBLs incubated in an RPMI-1640 complete medium for 3 h, and then stimulated with 100 μM of H2O2 for 1 h), and the 50/100/200-MLP pre-treatment groups (PBLs were pre-treated with MLPs (50, 100, and 200 μg/mL) for 3 h, and then stimulated with 100 μM of H2O2 for 1 h). The results showed that MLP pre-treatment dose-dependently enhanced PBLs' antioxidant capacities. The 200 μg/mL MLP pre-treatment effectively protected the antioxidant system of PBLs from H2O2-induced oxidative damage by reducing the malondialdehyde content and lactic dehydrogenase cytotoxicity, and increasing catalase and superoxide dismutase activities (p < 0.05). The over-production of reactive oxygen species, depletion of nicotinamide adenine dinucleotide phosphate, and collapse of the mitochondrial membrane potential were significantly inhibited in the 200-MLP pre-treatment group (p < 0.05). The expressions of endoplasmic reticulum stress-related genes (forkhead box O1α (foxO1α), binding immunoglobulin protein (bip), activating transcription factor 6 (atf6), and C/EBP-homologous protein (chop)), Ca2+ transport-related genes (voltage-dependent anion-selective channel 1 (vdac1), mitofusin 2 (mfn2), and mitochondrial Ca2+ uniporter (mcu)), and interleukin 6 (il-6) and bcl2-associated x (bax) were significantly lower in the 200-MLP pre-treatment group than in the HP group (p < 0.05), which rebounded to normal levels in the NC group (p > 0.05). These results indicated that MLP pre-treatment attenuated H2O2-induced PBL oxidative damage in the M. amblycephala by inhibiting endoplasmic reticulum stress and maintaining mitochondrial function. These findings also support the possibility that MLPs can be exploited as a natural dietary supplement for M. amblycephala, as they protect against oxidative damage.
Collapse
Affiliation(s)
- Wenqiang Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Yan Lin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linjie Qian
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
| | - Siyue Lu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Huaishun Shen
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Xianping Ge
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| | - Linghong Miao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (W.J.); (L.Q.); (X.G.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (Y.L.); (S.L.)
| |
Collapse
|
92
|
Wei X, Lu Y, Lin LL, Zhang C, Chen X, Wang S, Wu SA, Li ZJ, Quan Y, Sun S, Qi L. Proteomic screens of SEL1L-HRD1 ER-associated degradation substrates reveal its role in glycosylphosphatidylinositol-anchored protein biogenesis. Nat Commun 2024; 15:659. [PMID: 38253565 PMCID: PMC10803770 DOI: 10.1038/s41467-024-44948-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Endoplasmic reticulum-associated degradation (ERAD) plays indispensable roles in many physiological processes; however, the nature of endogenous substrates remains largely elusive. Here we report a proteomics strategy based on the intrinsic property of the SEL1L-HRD1 ERAD complex to identify endogenous ERAD substrates both in vitro and in vivo. Following stringent filtering using a machine learning algorithm, over 100 high-confidence potential substrates are identified in human HEK293T and mouse brown adipose tissue, among which ~88% are cell type-specific. One of the top shared hits is the catalytic subunit of the glycosylphosphatidylinositol (GPI)-transamidase complex, PIGK. Indeed, SEL1L-HRD1 ERAD attenuates the biogenesis of GPI-anchored proteins by specifically targeting PIGK for proteasomal degradation. Lastly, several PIGK disease variants in inherited GPI deficiency disorders are also SEL1L-HRD1 ERAD substrates. This study provides a platform and resources for future effort to identify proteome-wide endogenous substrates in vivo, and implicates SEL1L-HRD1 ERAD in many cellular processes including the biogenesis of GPI-anchored proteins.
Collapse
Affiliation(s)
- Xiaoqiong Wei
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - You Lu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liangguang Leo Lin
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Chengxin Zhang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Xinxin Chen
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Siwen Wang
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Shuangcheng Alivia Wu
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Zexin Jason Li
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48105, USA
| | - Yujun Quan
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Shengyi Sun
- Department of Pharmacology, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia, School of Medicine, Charlottesville, VA, 22903, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48105, USA.
| |
Collapse
|
93
|
Voeltz GK, Sawyer EM, Hajnóczky G, Prinz WA. Making the connection: How membrane contact sites have changed our view of organelle biology. Cell 2024; 187:257-270. [PMID: 38242082 PMCID: PMC11830234 DOI: 10.1016/j.cell.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.
Collapse
Affiliation(s)
- G K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - E M Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - G Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W A Prinz
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
94
|
Zhang SX, Wang JJ, Starr CR, Lee EJ, Park KS, Zhylkibayev A, Medina A, Lin JH, Gorbatyuk M. The endoplasmic reticulum: Homeostasis and crosstalk in retinal health and disease. Prog Retin Eye Res 2024; 98:101231. [PMID: 38092262 PMCID: PMC11056313 DOI: 10.1016/j.preteyeres.2023.101231] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/19/2023]
Abstract
The endoplasmic reticulum (ER) is the largest intracellular organelle carrying out a broad range of important cellular functions including protein biosynthesis, folding, and trafficking, lipid and sterol biosynthesis, carbohydrate metabolism, and calcium storage and gated release. In addition, the ER makes close contact with multiple intracellular organelles such as mitochondria and the plasma membrane to actively regulate the biogenesis, remodeling, and function of these organelles. Therefore, maintaining a homeostatic and functional ER is critical for the survival and function of cells. This vital process is implemented through well-orchestrated signaling pathways of the unfolded protein response (UPR). The UPR is activated when misfolded or unfolded proteins accumulate in the ER, a condition known as ER stress, and functions to restore ER homeostasis thus promoting cell survival. However, prolonged activation or dysregulation of the UPR can lead to cell death and other detrimental events such as inflammation and oxidative stress; these processes are implicated in the pathogenesis of many human diseases including retinal disorders. In this review manuscript, we discuss the unique features of the ER and ER stress signaling in the retina and retinal neurons and describe recent advances in the research to uncover the role of ER stress signaling in neurodegenerative retinal diseases including age-related macular degeneration, inherited retinal degeneration, achromatopsia and cone diseases, and diabetic retinopathy. In some chapters, we highlight the complex interactions between the ER and other intracellular organelles focusing on mitochondria and illustrate how ER stress signaling regulates common cellular stress pathways such as autophagy. We also touch upon the integrated stress response in retinal degeneration and diabetic retinopathy. Finally, we provide an update on the current development of pharmacological agents targeting the UPR response and discuss some unresolved questions and knowledge gaps to be addressed by future research.
Collapse
Affiliation(s)
- Sarah X Zhang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| | - Josh J Wang
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Christopher R Starr
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Eun-Jin Lee
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Karen Sophia Park
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Assylbek Zhylkibayev
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andy Medina
- Department of Ophthalmology and Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Jonathan H Lin
- Department of Ophthalmology and Byers Eye Institute, Stanford University, Stanford, CA, United States; VA Palo Alto Healthcare System, Palo Alto, CA, United States; Department of Pathology, Stanford University, Stanford, CA, United States
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
95
|
Makio T, Simmen T. Not So Rare: Diseases Based on Mutant Proteins Controlling Endoplasmic Reticulum-Mitochondria Contact (MERC) Tethering. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241261228. [PMID: 39070058 PMCID: PMC11273598 DOI: 10.1177/25152564241261228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 07/30/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs), also called endoplasmic reticulum (ER)-mitochondria contact sites (ERMCS), are the membrane domains, where these two organelles exchange lipids, Ca2+ ions, and reactive oxygen species. This crosstalk is a major determinant of cell metabolism, since it allows the ER to control mitochondrial oxidative phosphorylation and the Krebs cycle, while conversely, it allows the mitochondria to provide sufficient ATP to control ER proteostasis. MERC metabolic signaling is under the control of tethers and a multitude of regulatory proteins. Many of these proteins have recently been discovered to give rise to rare diseases if their genes are mutated. Surprisingly, these diseases share important hallmarks and cause neurological defects, sometimes paired with, or replaced by skeletal muscle deficiency. Typical symptoms include developmental delay, intellectual disability, facial dysmorphism and ophthalmologic defects. Seizures, epilepsy, deafness, ataxia, or peripheral neuropathy can also occur upon mutation of a MERC protein. Given that most MERC tethers and regulatory proteins have secondary functions, some MERC protein-based diseases do not fit into this categorization. Typically, however, the proteins affected in those diseases have dominant functions unrelated to their roles in MERCs tethering or their regulation. We are discussing avenues to pharmacologically target genetic diseases leading to MERC defects, based on our novel insight that MERC defects lead to common characteristics in rare diseases. These shared characteristics of MERCs disorders raise the hope that they may allow for similar treatment options.
Collapse
Affiliation(s)
- Tadashi Makio
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Thomas Simmen
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
96
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
97
|
Kırmızıgül ÖA, Sabanci A, Dişli F, Yıldız S, Milward MR, Aral K. Evaluation of the role of mitofusin-1 and mitofusin-2 in periodontal disease. J Periodontol 2024; 95:64-73. [PMID: 37436713 DOI: 10.1002/jper.23-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Mitochondria and endoplasmic reticulum are key cellular organelles and create contact sites (mitochondria-endoplasmic reticulum contact [MERC]), which plays a major role in calcium metabolism, apoptotic processes, and inflammation. Previously, proteins that have been associated with these MERC contact sites mitofusin-1 (MFN1) and mitofusin-2 (MFN2) have been found to be downregulated in periodontal disease in vitro. Therefore, the aim of the current study was to evaluate MFN1 and MFN2 in gingival crevicular fluid (GCF) of patients with periodontal disease compared with healthy controls clinically. METHODS A total of 48 participants were divided into three groups including periodontally healthy (n = 16), patients with gingivitis (n = 16), and patients with stage 3 grade B periodontitis (n = 16). GCF levels of MFN1, MFN2, calcium (Ca), caspase-1, and tumor necrosis factor-alpha (TNF-α) were determined via enzyme-linked immunosorbent assay (ELISA). Results were calculated as total amount and concentration. RESULTS MFN1 levels (total amount) were significantly higher in patients with periodontitis and gingivitis when compared with healthy controls (p < 0.05). However, concentration levels of MFN1, MFN2, Ca, caspase-1, TNF-α significantly decreased in periodontal disease groups compared with healthy controls (p < 0.05). A positive correlation was detected among all evaluated markers (p < 0.05). CONCLUSION The MERC protein MFN1 may have a role in the pathogenesis of periodontal disease due to its increase in GCF of patients with periodontitis and gingivitis.
Collapse
Affiliation(s)
| | - Arife Sabanci
- Department of Periodontology, Faculty of Dentistry, Inonu University, Malatya, Turkey
| | - Faruk Dişli
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Sedat Yıldız
- Department of Physiology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Michael R Milward
- Department of Periodontology, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Kübra Aral
- Department of Periodontology, Faculty of Dentistry, Inonu University, Malatya, Turkey
| |
Collapse
|
98
|
Janer A, Morris JL, Krols M, Antonicka H, Aaltonen MJ, Lin ZY, Anand H, Gingras AC, Prudent J, Shoubridge EA. ESYT1 tethers the ER to mitochondria and is required for mitochondrial lipid and calcium homeostasis. Life Sci Alliance 2024; 7:e202302335. [PMID: 37931956 PMCID: PMC10627786 DOI: 10.26508/lsa.202302335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Mitochondria interact with the ER at structurally and functionally specialized membrane contact sites known as mitochondria-ER contact sites (MERCs). Combining proximity labelling (BioID), co-immunoprecipitation, confocal microscopy and subcellular fractionation, we found that the ER resident SMP-domain protein ESYT1 was enriched at MERCs, where it forms a complex with the outer mitochondrial membrane protein SYNJ2BP. BioID analyses using ER-targeted, outer mitochondrial membrane-targeted, and MERC-targeted baits, confirmed the presence of this complex at MERCs and the specificity of the interaction. Deletion of ESYT1 or SYNJ2BP reduced the number and length of MERCs. Loss of the ESYT1-SYNJ2BP complex impaired ER to mitochondria calcium flux and provoked a significant alteration of the mitochondrial lipidome, most prominently a reduction of cardiolipins and phosphatidylethanolamines. Both phenotypes were rescued by reexpression of WT ESYT1 and an artificial mitochondria-ER tether. Together, these results reveal a novel function for ESYT1 in mitochondrial and cellular homeostasis through its role in the regulation of MERCs.
Collapse
Affiliation(s)
- Alexandre Janer
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Jordan L Morris
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michiel Krols
- Montreal Neurological Institute, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Hana Antonicka
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mari J Aaltonen
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Canada
- Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
99
|
Cardoen B, Vandevoorde KR, Gao G, Ortiz-Silva M, Alan P, Liu W, Tiliakou E, Vogl AW, Hamarneh G, Nabi IR. Membrane contact site detection (MCS-DETECT) reveals dual control of rough mitochondria-ER contacts. J Cell Biol 2024; 223:e202206109. [PMID: 37948126 PMCID: PMC10638097 DOI: 10.1083/jcb.202206109] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/20/2022] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
Identification and morphological analysis of mitochondria-ER contacts (MERCs) by fluorescent microscopy is limited by subpixel resolution interorganelle distances. Here, the membrane contact site (MCS) detection algorithm, MCS-DETECT, reconstructs subpixel resolution MERCs from 3D super-resolution image volumes. MCS-DETECT shows that elongated ribosome-studded riboMERCs, present in HT-1080 but not COS-7 cells, are morphologically distinct from smaller smooth contacts and larger contacts induced by mitochondria-ER linker expression in COS-7 cells. RiboMERC formation is associated with increased mitochondrial potential, reduced in Gp78 knockout HT-1080 cells and induced by Gp78 ubiquitin ligase activity in COS-7 and HeLa cells. Knockdown of riboMERC tether RRBP1 eliminates riboMERCs in both wild-type and Gp78 knockout HT-1080 cells. By MCS-DETECT, Gp78-dependent riboMERCs present complex tubular shapes that intercalate between and contact multiple mitochondria. MCS-DETECT of 3D whole-cell super-resolution image volumes, therefore, identifies novel dual control of tubular riboMERCs, whose formation is dependent on RRBP1 and size modulated by Gp78 E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Ben Cardoen
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Kurt R. Vandevoorde
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Guang Gao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Milene Ortiz-Silva
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Parsa Alan
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - William Liu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ellie Tiliakou
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - A. Wayne Vogl
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Ghassan Hamarneh
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Ivan R. Nabi
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, Canada
| |
Collapse
|
100
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|