51
|
Sun Y, Islam S, Michikawa M, Zou K. Presenilin: A Multi-Functional Molecule in the Pathogenesis of Alzheimer's Disease and Other Neurodegenerative Diseases. Int J Mol Sci 2024; 25:1757. [PMID: 38339035 PMCID: PMC10855926 DOI: 10.3390/ijms25031757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Presenilin, a transmembrane protein primarily known for its role in Alzheimer's disease (AD) as part of the γ-secretase complex, has garnered increased attention due to its multifaceted functions in various cellular processes. Recent investigations have unveiled a plethora of functions beyond its amyloidogenic role. This review aims to provide a comprehensive overview of presenilin's diverse roles in AD and other neurodegenerative disorders. It includes a summary of well-known substrates of presenilin, such as its involvement in amyloid precursor protein (APP) processing and Notch signaling, along with other functions. Additionally, it highlights newly discovered functions, such as trafficking function, regulation of ferritin expression, apolipoprotein E (ApoE) secretion, the interaction of ApoE and presenilin, and the Aβ42-to-Aβ40-converting activity of ACE. This updated perspective underscores the evolving landscape of presenilin research, emphasizing its broader impact beyond established pathways. The incorporation of these novel findings accentuates the dynamic nature of presenilin's involvement in cellular processes, further advancing our comprehension of its multifaceted roles in neurodegenerative disorders. By synthesizing evidence from a range of studies, this review sheds light on the intricate web of presenilin functions and their implications in health and disease.
Collapse
Affiliation(s)
- Yang Sun
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Sadequl Islam
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| | - Makoto Michikawa
- Department of Geriatric Medicine, School of Life Dentistry at Niigata, The Nippon Dental University, Niigata 951-8580, Japan;
| | - Kun Zou
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (Y.S.); (S.I.)
| |
Collapse
|
52
|
Asghari K, Niknam Z, Mohammadpour-Asl S, Chodari L. Cellular junction dynamics and Alzheimer's disease: a comprehensive review. Mol Biol Rep 2024; 51:273. [PMID: 38302794 DOI: 10.1007/s11033-024-09242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by progressive neuronal damage and cognitive decline. Recent studies have shed light on the involvement of not only the blood-brain barrier (BBB) dysfunction but also significant alterations in cellular junctions in AD pathogenesis. In this review article, we explore the role of the BBB and cellular junctions in AD pathology, with a specific focus on the hippocampus. The BBB acts as a crucial protective barrier between the bloodstream and the brain, maintaining brain homeostasis and regulating molecular transport. Preservation of BBB integrity relies on various junctions, including gap junctions formed by connexins, tight junctions composed of proteins such as claudins, occludin, and ZO-1, as well as adherence junctions involving molecules like vascular endothelial (VE) cadherin, Nectins, and Nectin-like molecules (Necls). Abnormalities in these junctions and junctional components contribute to impaired neuronal signaling and increased cerebrovascular permeability, which are closely associated with AD advancement. By elucidating the underlying molecular mechanisms governing BBB and cellular junction dysfunctions within the context of AD, this review offers valuable insights into the pathogenesis of AD and identifies potential therapeutic targets for intervention.
Collapse
Affiliation(s)
- Keyvan Asghari
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Zahra Niknam
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Shadi Mohammadpour-Asl
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Leila Chodari
- Neurophysiology Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Physiology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
53
|
Chaves JCS, Wasielewska JM, Cuní-López C, Rantanen LM, Lee S, Koistinaho J, White AR, Oikari LE. Alzheimer's disease brain endothelial-like cells reveal differential drug transporter expression and modulation by potentially therapeutic focused ultrasound. Neurotherapeutics 2024; 21:e00299. [PMID: 38241156 PMCID: PMC10903103 DOI: 10.1016/j.neurot.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 01/21/2024] Open
Abstract
The blood-brain barrier (BBB) has a key function in maintaining homeostasis in the brain, partly modulated by transporters, which are highly expressed in brain endothelial cells (BECs). Transporters mediate the uptake or efflux of compounds to and from the brain and they can also challenge the delivery of drugs for the treatment of Alzheimer's disease (AD). Currently there is a limited understanding of changes in BBB transporters in AD. To investigate this, we generated brain endothelial-like cells (iBECs) from induced pluripotent stem cells (iPSCs) with familial AD (FAD) Presenilin 1 (PSEN1) mutation and identified AD-specific differences in transporter expression compared to control (ctrl) iBECs. We first characterized the expression levels of 12 BBB transporters in AD-, Ctrl-, and isogenic (PSEN1 corrected) iBECs to identify any AD specific differences. We then exposed the cells to focused ultrasound (FUS) in the absence (FUSonly) or presence of microbubbles (MB) (FUS+MB), which is a novel therapeutic method that can be used to transiently open the BBB to increase drug delivery into the brain, however its effects on BBB transporter expression are largely unknown. Following FUSonly and FUS+MB, we investigated whether the expression or activity of key transporters could be modulated. Our findings demonstrate that PSEN1 mutant FAD (PSEN1AD) possess phenotypical differences compared to control iBECs in BBB transporter expression and function. Additionally, we show that FUSonly and FUS+MB can modulate BBB transporter expression and functional activity in iBECs, having potential implications on drug penetration and amyloid clearance. These findings highlight the differential responses of patient cells to FUS treatment, with patient-derived models likely providing an important tool for modelling therapeutic effects of FUS.
Collapse
Affiliation(s)
- Juliana C S Chaves
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Joanna M Wasielewska
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Carla Cuní-López
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Laura M Rantanen
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia
| | - Serine Lee
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neuroscience Center, Kuopio, Finland; Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Anthony R White
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QUT, Brisbane, QLD, Australia; Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Lotta E Oikari
- Mental Health and Neuroscience, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
| |
Collapse
|
54
|
Wheeler KV, Irimia A, Braskie MN. Using Neuroimaging to Study Cerebral Amyloid Angiopathy and Its Relationship to Alzheimer's Disease. J Alzheimers Dis 2024; 97:1479-1502. [PMID: 38306032 DOI: 10.3233/jad-230553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cerebral amyloid angiopathy (CAA) is characterized by amyloid-β aggregation in the media and adventitia of the leptomeningeal and cortical blood vessels. CAA is one of the strongest vascular contributors to Alzheimer's disease (AD). It frequently co-occurs in AD patients, but the relationship between CAA and AD is incompletely understood. CAA may drive AD risk through damage to the neurovascular unit and accelerate parenchymal amyloid and tau deposition. Conversely, early AD may also drive CAA through cerebrovascular remodeling that impairs blood vessels from clearing amyloid-β. Sole reliance on autopsy examination to study CAA limits researchers' ability to investigate CAA's natural disease course and the effect of CAA on cognitive decline. Neuroimaging allows for in vivo assessment of brain function and structure and can be leveraged to investigate CAA staging and explore its associations with AD. In this review, we will discuss neuroimaging modalities that can be used to investigate markers associated with CAA that may impact AD vulnerability including hemorrhages and microbleeds, blood-brain barrier permeability disruption, reduced cerebral blood flow, amyloid and tau accumulation, white matter tract disruption, reduced cerebrovascular reactivity, and lowered brain glucose metabolism. We present possible areas for research inquiry to advance biomarker discovery and improve diagnostics.
Collapse
Affiliation(s)
- Koral V Wheeler
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Corwin D. Denney Research Center, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Meredith N Braskie
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina Del Rey, CA, USA
| |
Collapse
|
55
|
Fang X, Fan F, Border JJ, Roman RJ. Cerebrovascular Dysfunction in Alzheimer's Disease and Transgenic Rodent Models. JOURNAL OF EXPERIMENTAL NEUROLOGY 2024; 5:42-64. [PMID: 38434588 PMCID: PMC10906803 DOI: 10.33696/neurol.5.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Alzheimer's Disease (AD) and Alzheimer's Disease-Related Dementia (ADRD) are the primary causes of dementia that has a devastating effect on the quality of life and is a tremendous economic burden on the healthcare system. The accumulation of extracellular beta-amyloid (Aβ) plaques and intracellular hyperphosphorylated tau-containing neurofibrillary tangles (NFTs) in the brain are the hallmarks of AD. They are also thought to be the underlying cause of inflammation, neurodegeneration, brain atrophy, and cognitive impairments that accompany AD. The discovery of APP, PS1, and PS2 mutations that increase Aβ production in families with early onset familial AD led to the development of numerous transgenic rodent models of AD. These models have provided new insight into the role of Aβ in AD; however, they do not fully replicate AD pathology in patients. Familial AD patients with mutations that elevate the production of Aβ represent only a small fraction of dementia patients. In contrast, those with late-onset sporadic AD constitute the majority of cases. This observation, along with the failure of previous clinical trials targeting Aβ or Tau and the modest success of recent trials using Aβ monoclonal antibodies, has led to a reappraisal of the view that Aβ accumulation is the sole factor in the pathogenesis of AD. More recent studies have established that cerebral vascular dysfunction is one of the earliest changes seen in AD, and 67% of the candidate genes linked to AD are expressed in the cerebral vasculature. Thus, there is an increasing appreciation of the vascular contribution to AD, and the National Institute on Aging (NIA) and the Alzheimer's Disease Foundation recently prioritized it as a focused research area. This review summarizes the strengths and limitations of the most commonly used transgenic AD animal models and current views about the contribution of Aβ accumulation versus cerebrovascular dysfunction in the pathogenesis of AD.
Collapse
Affiliation(s)
- Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Fan Fan
- Department of Physiology, Augusta University, Augusta, GA 30912, USA
| | - Jane J. Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard J. Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
56
|
Paradela RS, Justo AFO, Paes VR, Leite REP, Pasqualucci CA, Grinberg LT, Naslavsky MS, Zatz M, Nitrini R, Jacob-Filho W, Suemoto CK. Association between APOE-ε4 allele and cognitive function is mediated by Alzheimer's disease pathology: a population-based autopsy study in an admixed sample. Acta Neuropathol Commun 2023; 11:205. [PMID: 38115150 PMCID: PMC10731799 DOI: 10.1186/s40478-023-01681-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Apolipoprotein E ε4 allele (APOE-ε4) is the main genetic risk factor for late-onset Alzheimer's disease (AD) and may impact cognitive function also via other neuropathological lesions. However, there is limited evidence available from diverse populations, as APOE associations with dementia seem to differ by race. Therefore, we aimed to evaluate the pathways linking APOE-ε4 to cognitive abilities through AD and non-AD neuropathology in an autopsy study with an admixed sample. METHODS Neuropathological lesions were evaluated following international criteria using immunohistochemistry. Participants were classified into APOE-ε4 carriers (at least one ε4 allele) and non-carriers. Cognitive abilities were evaluated by the Clinical Dementia Rating Scale sum of boxes. Mediation analyses were conducted to assess the indirect association of APOE-ε4 with cognition through AD-pathology, lacunar infarcts, hyaline arteriosclerosis, cerebral amyloid angiopathy (CAA), Lewy body disease (LBD), and TAR DNA-binding protein 43 (TDP-43). RESULTS We included 648 participants (mean age 75 ± 12 years old, mean education 4.4 ± 3.7 years, 52% women, 69% White, and 28% APOE-ε4 carriers). The association between APOE-ε4 and cognitive abilities was mediated by neurofibrillary tangles (β = 0.88, 95% CI = 0.45; 1.38, p < 0.001) and neuritic plaques (β = 1.36, 95% CI = 0.86; 1.96, p < 0.001). Lacunar infarcts, hyaline arteriosclerosis, CAA, LBD, and TDP-43 were not mediators in the pathway from APOE-ε4 to cognition. CONCLUSION The association between APOE-ε4 and cognitive abilities was partially mediated by AD-pathology. On the other hand, cerebrovascular lesions and other neurodegenerative diseases did not mediate the association between APOE-ε4 and cognition.
Collapse
Affiliation(s)
- Regina Silva Paradela
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil.
| | | | - Vítor Ribeiro Paes
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Renata E P Leite
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Carlos A Pasqualucci
- Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Lea T Grinberg
- Memory and Aging Center, University of California, San Francisco, USA
| | - Michel Satya Naslavsky
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mayana Zatz
- Human Genome and Stem Cell Center, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Ricardo Nitrini
- Department of Neurology, University of São Paulo Medical School, São Paulo, Brazil
| | - Wilson Jacob-Filho
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil
| | - Claudia Kimie Suemoto
- Division of Geriatrics, University of São Paulo Medical School, 455 Doutor Arnaldo Avenue, room 1355, São Paulo, SP, Brazil
| |
Collapse
|
57
|
Cisterna-García A, Beric A, Ali M, Pardo JA, Chen HH, Fernandez MV, Norton J, Gentsch J, Bergmann K, Budde J, Perlmutter JS, Morris JC, Cruchaga C, Botia JA, Ibanez L. Cell-free RNA signatures predict Alzheimer's disease. iScience 2023; 26:108534. [PMID: 38089583 PMCID: PMC10711471 DOI: 10.1016/j.isci.2023.108534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
There is a need for affordable, scalable, and specific blood-based biomarkers for Alzheimer's disease that can be applied to a population level. We have developed and validated disease-specific cell-free transcriptomic blood-based biomarkers composed by a scalable number of transcripts that capture AD pathobiology even in the presymptomatic stages of the disease. Accuracies are in the range of the current CSF and plasma biomarkers, and specificities are high against other neurodegenerative diseases.
Collapse
Affiliation(s)
- Alejandro Cisterna-García
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Muhammad Ali
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Jose Adrian Pardo
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Hsiang-Han Chen
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Joanne Norton
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Jen Gentsch
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - John Budde
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Joel S. Perlmutter
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Radiology, Neuroscience, Physical Therapy, and Occupational Therapy, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - John C. Morris
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Pathology and Immunology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| | - Juan A. Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
58
|
Galgani A, Giorgi FS. Exploring the Role of Locus Coeruleus in Alzheimer's Disease: a Comprehensive Update on MRI Studies and Implications. Curr Neurol Neurosci Rep 2023; 23:925-936. [PMID: 38064152 PMCID: PMC10724305 DOI: 10.1007/s11910-023-01324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/18/2023]
Abstract
PURPOSE OF REVIEW Performing a thorough review of magnetic resonance imaging (MRI) studies assessing locus coeruleus (LC) integrity in ageing and Alzheimer's disease (AD), and contextualizing them with current preclinical and neuropathological literature. RECENT FINDINGS MRI successfully detected LC alterations in ageing and AD, identifying degenerative phenomena involving this nucleus even in the prodromal stages of the disorder. The degree of LC disruption was also associated with the severity of AD cortical pathology, cognitive and behavioral impairment, and the risk of clinical progression. Locus coeruleus-MRI has proved to be a useful tool to assess the integrity of the central noradrenergic system in vivo in humans. It allowed to test in patients preclinical and experimental hypothesis, thus confirming the specific and marked involvement of the LC in AD and its key pathogenetic role. Locus coeruleus-MRI-related data might represent the theoretical basis on which to start developing noradrenergic drugs to target AD.
Collapse
Affiliation(s)
- Alessandro Galgani
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Filippo Sean Giorgi
- Department of Translational Research and of New Surgical and Medical Technologies School of Medicine, University of Pisa, Via Roma 55, 56126, Pisa, Italy.
| |
Collapse
|
59
|
Ting KK, Coleman P, Kim HJ, Zhao Y, Mulangala J, Cheng NC, Li W, Gunatilake D, Johnstone DM, Loo L, Neely GG, Yang P, Götz J, Vadas MA, Gamble JR. Vascular senescence and leak are features of the early breakdown of the blood-brain barrier in Alzheimer's disease models. GeroScience 2023; 45:3307-3331. [PMID: 37782439 PMCID: PMC10643714 DOI: 10.1007/s11357-023-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/27/2023] [Indexed: 10/03/2023] Open
Abstract
Alzheimer's disease (AD) is an age-related disease, with loss of integrity of the blood-brain barrier (BBB) being an early feature. Cellular senescence is one of the reported nine hallmarks of aging. Here, we show for the first time the presence of senescent cells in the vasculature in AD patients and mouse models of AD. Senescent endothelial cells and pericytes are present in APP/PS1 transgenic mice but not in wild-type littermates at the time of amyloid deposition. In vitro, senescent endothelial cells display altered VE-cadherin expression and loss of cell junction formation and increased permeability. Consistent with this, senescent endothelial cells in APP/PS1 mice are present at areas of vascular leak that have decreased claudin-5 and VE-cadherin expression confirming BBB breakdown. Furthermore, single cell sequencing of endothelial cells from APP/PS1 transgenic mice confirms that adhesion molecule pathways are among the most highly altered pathways in these cells. At the pre-plaque stage, the vasculature shows significant signs of breakdown, with a general loss of VE-cadherin, leakage within the microcirculation, and obvious pericyte perturbation. Although senescent vascular cells were not directly observed at sites of vascular leak, senescent cells were close to the leak area. Thus, we would suggest in AD that there is a progressive induction of senescence in constituents of the neurovascular unit contributing to an increasing loss of vascular integrity. Targeting the vasculature early in AD, either with senolytics or with drugs that improve the integrity of the BBB may be valid therapeutic strategies.
Collapse
Affiliation(s)
- Ka Ka Ting
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Hani Jieun Kim
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Yang Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| | - Jocelyne Mulangala
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Ngan Ching Cheng
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Wan Li
- Department of General Surgery, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Dilini Gunatilake
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
| | - Daniel M Johnstone
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
- School of Biomedical Sciences & Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Lipin Loo
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - G Gregory Neely
- Charles Perkins Centre, Dr. John and Anne Chong Lab for Functional Genomics, Centenary Institute, & School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Pengyi Yang
- Computational Systems Biology Group, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, 2145, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Mathew A Vadas
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia
- Heart Research Institute, Sydney, NSW, Australia
| | - Jennifer R Gamble
- Vascular Biology Program, Centenary Institute, Camperdown, NSW, Australia.
- School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
60
|
Wu W, Huang J, Han P, Zhang J, Wang Y, Jin F, Zhou Y. Research Progress on Natural Plant Molecules in Regulating the Blood-Brain Barrier in Alzheimer's Disease. Molecules 2023; 28:7631. [PMID: 38005352 PMCID: PMC10674591 DOI: 10.3390/molecules28227631] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder. With the aging population and the continuous development of risk factors associated with AD, it will impose a significant burden on individuals, families, and society. Currently, commonly used therapeutic drugs such as Cholinesterase inhibitors, N-methyl-D-aspartate antagonists, and multiple AD pathology removal drugs have been shown to have beneficial effects on certain pathological conditions of AD. However, their clinical efficacy is minimal and they are associated with certain adverse reactions. Furthermore, the underlying pathological mechanism of AD remains unclear, posing a challenge for drug development. In contrast, natural plant molecules, widely available, offer multiple targeting pathways and demonstrate inherent advantages in modifying the typical pathologic features of AD by influencing the blood-brain barrier (BBB). We provide a comprehensive review of recent in vivo and in vitro studies on natural plant molecules that impact the BBB in the treatment of AD. Additionally, we analyze their specific mechanisms to offer novel insights for the development of safe and effective targeted drugs as well as guidance for experimental research and the clinical application of drugs for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Weidong Wu
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Jiahao Huang
- Department of Chinese Pharmacology, Heilongjiang University of Chinese Medicine, Harbin 150040, China;
| | - Pengfei Han
- Science and Education Section, Zhangjiakou First Hospital, Zhangjiakou 075041, China;
| | - Jian Zhang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Yuxin Wang
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| | - Fangfang Jin
- Department of Internal Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Yanyan Zhou
- Basic Theory of Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (W.W.); (J.Z.); (Y.W.)
| |
Collapse
|
61
|
Alkhalifa AE, Al-Ghraiybah NF, Odum J, Shunnarah JG, Austin N, Kaddoumi A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023; 24:16288. [PMID: 38003477 PMCID: PMC10671257 DOI: 10.3390/ijms242216288] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The blood-brain barrier (BBB) is a unique and selective feature of the central nervous system's vasculature. BBB dysfunction has been observed as an early sign of Alzheimer's Disease (AD) before the onset of dementia or neurodegeneration. The intricate relationship between the BBB and the pathogenesis of AD, especially in the context of neurovascular coupling and the overlap of pathophysiology in neurodegenerative and cerebrovascular diseases, underscores the urgency to understand the BBB's role more deeply. Preserving or restoring the BBB function emerges as a potentially promising strategy for mitigating the progression and severity of AD. Molecular and genetic changes, such as the isoform ε4 of apolipoprotein E (ApoEε4), a significant genetic risk factor and a promoter of the BBB dysfunction, have been shown to mediate the BBB disruption. Additionally, receptors and transporters like the low-density lipoprotein receptor-related protein 1 (LRP1), P-glycoprotein (P-gp), and the receptor for advanced glycation end products (RAGEs) have been implicated in AD's pathogenesis. In this comprehensive review, we endeavor to shed light on the intricate pathogenic and therapeutic connections between AD and the BBB. We also delve into the latest developments and pioneering strategies targeting the BBB for therapeutic interventions, addressing its potential as a barrier and a carrier. By providing an integrative perspective, we anticipate paving the way for future research and treatments focused on exploiting the BBB's role in AD pathogenesis and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr., Auburn, AL 36849, USA; (A.E.A.); (N.F.A.-G.); (J.O.); (J.G.S.); (N.A.)
| |
Collapse
|
62
|
Chen Y, He Y, Han J, Wei W, Chen F. Blood-brain barrier dysfunction and Alzheimer's disease: associations, pathogenic mechanisms, and therapeutic potential. Front Aging Neurosci 2023; 15:1258640. [PMID: 38020775 PMCID: PMC10679748 DOI: 10.3389/fnagi.2023.1258640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is a common neurodegenerative disorder characterized by the accumulation of amyloid-beta (Aβ), hyperphosphorylation of tau, and neuroinflammation in the brain. The blood-brain barrier (BBB) limits solutes from circulating blood from entering the brain, which is essential for neuronal functioning. Focusing on BBB function is important for the early detection of AD and in-depth study of AD pathogenic mechanisms. However, the mechanism of BBB alteration in AD is still unclear, which hinders further research on therapeutics that target the BBB to delay the progression of AD. The exact timing of the vascular abnormalities in AD and the complex cause-and-effect relationships remain uncertain. Thus, it is necessary to summarize and emphasize this process. First, in this review, the current evidence for BBB dysfunction in AD is summarized. Then, the interrelationships and pathogenic mechanisms between BBB dysfunction and the risk factors for AD, such as Aβ, tau, neuroinflammation, apolipoprotein E (ApoE) genotype and aging, were analyzed. Finally, we discuss the current status and future directions of therapeutic AD strategies targeting the BBB. We hope that these summaries or reviews will allow readers to better understand the relationship between the BBB and AD.
Collapse
Affiliation(s)
- Yanting Chen
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Yanfang He
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jinling Han
- Department of Neurology, Shenzhen Sixth People’s Hospital, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Wenyan Wei
- Department of Gerontology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feng Chen
- Department of Neurology, Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
- Department of Intensive Care Medicine, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
63
|
Moon Y, Jeon HJ, Han SH, Min-Young N, Kim HJ, Kwon KJ, Moon WJ, Kim SH. Blood-brain barrier breakdown is linked to tau pathology and neuronal injury in a differential manner according to amyloid deposition. J Cereb Blood Flow Metab 2023; 43:1813-1825. [PMID: 37283062 PMCID: PMC10676138 DOI: 10.1177/0271678x231180035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 06/08/2023]
Abstract
The blood-brain barrier (BBB) breakdown has been suggested as an early marker for Alzheimer's disease (AD); yet the relationship between BBB breakdown and AD-specific biomarkers based on the amyloid/tau/neurodegeneration framework is not clear. This study investigated the relationship between BBB permeability, AD-specific biomarkers, and cognition in patients with cognitive impairment. In this prospective study, we enrolled 62 participants with mild cognitive impairment or dementia between January 2019 and October 2020. All participants were assessed through cognitive tests, amyloid positron emission tomography (PET), dynamic contrast-enhanced magnetic resonance imaging (MRI) for BBB permeability (Ktrans), cerebrospinal fluid studies for Aβ42/40 ratio, phosphorylated-tau Thr181 protein (p-tau), total tau protein (t-tau), and structural MRI for neurodegeneration. In amyloid PET (+) group, higher cortical Ktrans was associated with lower Aβ40 (r = -0.529 p = 0.003), higher Aβ42/40 ratio (r = 0.533, p = 0.003), lower p-tau (r = -0.452, p = 0.014) and lower hippocampal volume (r = -0.438, p = 0.017). In contrast, cortical Ktrans was positively related to t-tau level. (r = 0.489, p = 0.004) in amyloid PET (-) group. Our results suggest that BBB permeability is related to AD-specific biomarkers, but the relationship can vary by the presence of Aβ plaque accumulation.
Collapse
Affiliation(s)
- Yeonsil Moon
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Hong Jun Jeon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Psychiatry, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
| | - Noh Min-Young
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Hee-Jin Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Kyoung Ja Kwon
- Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Won-Jin Moon
- Research Institute of Medical Science, Konkuk University of Medicine, Seoul, Republic of Korea
- Department of Radiology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
64
|
Alarcon-Martinez L, Shiga Y, Villafranca-Baughman D, Cueva Vargas JL, Vidal Paredes IA, Quintero H, Fortune B, Danesh-Meyer H, Di Polo A. Neurovascular dysfunction in glaucoma. Prog Retin Eye Res 2023; 97:101217. [PMID: 37778617 DOI: 10.1016/j.preteyeres.2023.101217] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.
Collapse
Affiliation(s)
- Luis Alarcon-Martinez
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
| | - Yukihiro Shiga
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Deborah Villafranca-Baughman
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Jorge L Cueva Vargas
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Isaac A Vidal Paredes
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Heberto Quintero
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada
| | - Brad Fortune
- Discoveries in Sight Research Laboratories, Devers Eye Institute and Legacy Research Institute, Legacy Healthy, Portland, OR, USA
| | - Helen Danesh-Meyer
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, New Zealand
| | - Adriana Di Polo
- Department of Neuroscience, Université de Montréal, PO Box 6128, Station centre-ville, Montreal, QC, Canada; Neuroscience Division, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montreal, QC, Canada.
| |
Collapse
|
65
|
Shi H, Koronyo Y, Fuchs DT, Sheyn J, Jallow O, Mandalia K, Graham SL, Gupta VK, Mirzaei M, Kramerov AA, Ljubimov AV, Hawes D, Miller CA, Black KL, Carare RO, Koronyo-Hamaoui M. Retinal arterial Aβ 40 deposition is linked with tight junction loss and cerebral amyloid angiopathy in MCI and AD patients. Alzheimers Dement 2023; 19:5185-5197. [PMID: 37166032 PMCID: PMC10638467 DOI: 10.1002/alz.13086] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
INTRODUCTION Vascular amyloid beta (Aβ) protein deposits were detected in retinas of mild cognitively impaired (MCI) and Alzheimer's disease (AD) patients. We tested the hypothesis that the retinal vascular tight junctions (TJs) were compromised and linked to disease status. METHODS TJ components and Aβ expression in capillaries and larger blood vessels were determined in post mortem retinas from 34 MCI or AD patients and 27 cognitively normal controls and correlated with neuropathology. RESULTS Severe decreases in retinal vascular zonula occludens-1 (ZO-1) and claudin-5 correlating with abundant arteriolar Aβ40 deposition were identified in MCI and AD patients. Retinal claudin-5 deficiency was closely associated with cerebral amyloid angiopathy, whereas ZO-1 defects correlated with cerebral pathology and cognitive deficits. DISCUSSION We uncovered deficiencies in blood-retinal barrier markers for potential retinal imaging targets of AD screening and monitoring. Intense retinal arteriolar Aβ40 deposition suggests a common pathogenic mechanism of failed Aβ clearance via intramural periarterial drainage.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ousman Jallow
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Krishna Mandalia
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stuart L. Graham
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Vivek K. Gupta
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Mehdi Mirzaei
- Macquarie Medical school, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Andrei A. Kramerov
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander V. Ljubimov
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences and Eye Program, Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Debra Hawes
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90048, USA
| | - Carol A. Miller
- Department of Pathology Program in Neuroscience, Keck School of Medicine, University of Southern California, Los Angeles, CA 90048, USA
| | - Keith L. Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Roxana O. Carare
- Department of Clinical Neuroanatomy, University of Southampton, Southampton SO16 6YD, UK
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
66
|
Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci 2023; 24:15635. [PMID: 37958619 PMCID: PMC10648512 DOI: 10.3390/ijms242115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.
Collapse
Affiliation(s)
- Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohamed Haider
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
67
|
Ko EC, Spitz S, Pramotton FM, Barr OM, Xu C, Pavlou G, Zhang S, Tsai A, Maaser-Hecker A, Jorfi M, Choi SH, Tanzi RE, Kamm RD. Accelerating the in vitro emulation of Alzheimer's disease-associated phenotypes using a novel 3D blood-brain barrier neurosphere co-culture model. Front Bioeng Biotechnol 2023; 11:1251195. [PMID: 37901842 PMCID: PMC10600382 DOI: 10.3389/fbioe.2023.1251195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
High failure rates in clinical trials for neurodegenerative disorders such as Alzheimer's disease have been linked to an insufficient predictive validity of current animal-based disease models. This has created an increasing demand for alternative, human-based models capable of emulating key pathological phenotypes in vitro. Here, a three-dimensional Alzheimer's disease model was developed using a compartmentalized microfluidic device that combines a self-assembled microvascular network of the human blood-brain barrier with neurospheres derived from Alzheimer's disease-specific neural progenitor cells. To shorten microfluidic co-culture times, neurospheres were pre-differentiated for 21 days to express Alzheimer's disease-specific pathological phenotypes prior to the introduction into the microfluidic device. In agreement with post-mortem studies and Alzheimer's disease in vivo models, after 7 days of co-culture with pre-differentiated Alzheimer's disease-specific neurospheres, the three-dimensional blood-brain barrier network exhibited significant changes in barrier permeability and morphology. Furthermore, vascular networks in co-culture with Alzheimer's disease-specific microtissues displayed localized β-amyloid deposition. Thus, by interconnecting a microvascular network of the blood-brain barrier with pre-differentiated neurospheres the presented model holds immense potential for replicating key neurovascular phenotypes of neurodegenerative disorders in vitro.
Collapse
Affiliation(s)
- Eunkyung Clare Ko
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Olivia M. Barr
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Ciana Xu
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Georgios Pavlou
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Shun Zhang
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alice Tsai
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Anna Maaser-Hecker
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
68
|
Castillo-González J, Ruiz JL, Serrano-Martínez I, Forte-Lago I, Ubago-Rodriguez A, Caro M, Pérez-Gómez JM, Benítez-Troncoso A, Andrés-León E, Sánchez-Navarro M, Luque RM, González-Rey E. Cortistatin deficiency reveals a dysfunctional brain endothelium with impaired gene pathways, exacerbated immune activation, and disrupted barrier integrity. J Neuroinflammation 2023; 20:226. [PMID: 37794493 PMCID: PMC10548650 DOI: 10.1186/s12974-023-02908-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
BACKGROUND Brain activity governing cognition and behaviour depends on the fine-tuned microenvironment provided by a tightly controlled blood-brain barrier (BBB). Brain endothelium dysfunction is a hallmark of BBB breakdown in most neurodegenerative/neuroinflammatory disorders. Therefore, the identification of new endogenous molecules involved in endothelial cell disruption is essential to better understand BBB dynamics. Cortistatin is a neuroimmune mediator with anti-inflammatory and neuroprotective properties that exerts beneficial effects on the peripheral endothelium. However, its role in the healthy and injured brain endothelium remains to be evaluated. Herein, this study aimed to investigate the potential function of endogenous and therapeutic cortistatin in regulating brain endothelium dysfunction in a neuroinflammatory/neurodegenerative environment. METHODS Wild-type and cortistatin-deficient murine brain endothelium and human cells were used for an in vitro barrier model, where a simulated ischemia-like environment was mimicked. Endothelial permeability, junction integrity, and immune response in the presence and absence of cortistatin were evaluated using different size tracers, immunofluorescence labelling, qPCR, and ELISA. Cortistatin molecular mechanisms underlying brain endothelium dynamics were assessed by RNA-sequencing analysis. Cortistatin role in BBB leakage was evaluated in adult mice injected with LPS. RESULTS The endogenous lack of cortistatin predisposes endothelium weakening with increased permeability, tight-junctions breakdown, and dysregulated immune activity. We demonstrated that both damaged and uninjured brain endothelial cells isolated from cortistatin-deficient mice, present a dysregulated and/or deactivated genetic programming. These pathways, related to basic physiology but also crucial for the repair after damage (e.g., extracellular matrix remodelling, angiogenesis, response to oxygen, signalling, and metabolites transport), are dysfunctional and make brain endothelial barrier lacking cortistatin non-responsive to any further injury. Treatment with cortistatin reversed in vitro hyperpermeability, tight-junctions disruption, inflammatory response, and reduced in vivo BBB leakage. CONCLUSIONS The neuropeptide cortistatin has a key role in the physiology of the cerebral microvasculature and its presence is crucial to develop a canonical balanced response to damage. The reparative effects of cortistatin in the brain endothelium were accompanied by the modulation of the immune function and the rescue of barrier integrity. Cortistatin-based therapies could emerge as a novel pleiotropic strategy to ameliorate neuroinflammatory/neurodegenerative disorders with disrupted BBB.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - José Luis Ruiz
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ignacio Serrano-Martínez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Irene Forte-Lago
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Ana Ubago-Rodriguez
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Marta Caro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Jesús Miguel Pérez-Gómez
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | | | - Eduardo Andrés-León
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Macarena Sánchez-Navarro
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain
| | - Raúl M Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), 14004, Cordoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Cordoba, 14004, Cordoba, Spain
- Reina Sofia University Hospital (HURS), 14004, Cordoba, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBERobn), 14004, Cordoba, Spain
| | - Elena González-Rey
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, 18016, Granada, Spain.
| |
Collapse
|
69
|
Mohan K, Gasparoni G, Salhab A, Orlich MM, Geffers R, Hoffmann S, Adams RH, Walter J, Nordheim A. Age-Associated Changes in Endothelial Transcriptome and Epigenetic Landscapes Correlate With Elevated Risk of Cerebral Microbleeds. J Am Heart Assoc 2023; 12:e031044. [PMID: 37609982 PMCID: PMC10547332 DOI: 10.1161/jaha.123.031044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023]
Abstract
Background Stroke is a leading global cause of human death and disability, with advanced aging associated with elevated incidences of stroke. Despite high mortality and morbidity of stroke, the mechanisms leading to blood-brain barrier dysfunction and development of stroke with age are poorly understood. In the vasculature of brain, endothelial cells (ECs) constitute the core component of the blood-brain barrier and provide a physical barrier composed of tight junctions, adherens junctions, and basement membrane. Methods and Results We show, in mice, the incidents of intracerebral bleeding increases with age. After isolating an enriched population of cerebral ECs from murine brains at 2, 6, 12, 18, and 24 months, we studied age-associated changes in gene expression. The study reveals age-dependent dysregulation of 1388 genes, including many involved in the maintenance of the blood-brain barrier and vascular integrity. We also investigated age-dependent changes on the levels of CpG methylation and accessible chromatin in cerebral ECs. Our study reveals correlations between age-dependent changes in chromatin structure and gene expression, whereas the dynamics of DNA methylation changes are different. Conclusions We find significant age-dependent downregulation of the Aplnr gene along with age-dependent reduction in chromatin accessibility of promoter region of the Aplnr gene in cerebral ECs. Aplnr is associated with positive regulation of vasodilation and is implicated in vascular health. Altogether, our data suggest a potential role of the apelinergic axis involving the ligand apelin and its receptor to be critical in maintenance of the blood-brain barrier and vascular integrity.
Collapse
Affiliation(s)
- Kshitij Mohan
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| | | | | | - Michael M. Orlich
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| | - Robert Geffers
- Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweigGermany
| | - Steve Hoffmann
- Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
| | - Ralf H. Adams
- Department of Tissue MorphogenesisMax Planck Institute for Molecular BiomedicineMünsterGermany
- Faculty of MedicineUniversity of MünsterMünsterGermany
| | - Jörn Walter
- Department of GeneticsUniversity of SaarlandSaarbrückenGermany
| | - Alfred Nordheim
- Interfaculty Institute of Cell BiologyUniversity of TübingenTübingenGermany
- Leibniz Institute on AgingFritz Lipmann InstituteJenaGermany
- International Max Planck Research School “From Molecules to Organisms”TübingenGermany
| |
Collapse
|
70
|
Cozachenco D, Zimmer ER, Lourenco MV. Emerging concepts towards a translational framework in Alzheimer's disease. Neurosci Biobehav Rev 2023; 152:105246. [PMID: 37236385 DOI: 10.1016/j.neubiorev.2023.105246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
Over the past decades, significant efforts have been made to understand the precise mechanisms underlying the pathogenesis of Alzheimer's disease (AD), the most common cause of dementia. However, clinical trials targeting AD pathological hallmarks have consistently failed. Refinement of AD conceptualization, modeling, and assessment is key to developing successful therapies. Here, we review critical findings and discuss emerging ideas to integrate molecular mechanisms and clinical approaches in AD. We further propose a refined workflow for animal studies incorporating multimodal biomarkers used in clinical studies - delineating critical paths for drug discovery and translation. Addressing unresolved questions with the proposed conceptual and experimental framework may accelerate the development of effective disease-modifying strategies for AD.
Collapse
Affiliation(s)
- Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Eduardo R Zimmer
- Department of Pharmacology, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Biological Sciences: Biochemistry (PPGBioq), UFRGS, Porto Alegre, RS, Brazil; Pharmacology and Therapeutics (PPGFT), UFRGS, Porto Alegre, RS, Brazil; McGill Centre for Studies in Aging, McGill University, Montreal, Canada; Brain Institute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil.
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
71
|
Aquilani R, Cotta Ramusino M, Maestri R, Iadarola P, Boselli M, Perini G, Boschi F, Dossena M, Bellini A, Buonocore D, Doria E, Costa A, Verri M. Several dementia subtypes and mild cognitive impairment share brain reduction of neurotransmitter precursor amino acids, impaired energy metabolism, and lipid hyperoxidation. Front Aging Neurosci 2023; 15:1237469. [PMID: 37655338 PMCID: PMC10466813 DOI: 10.3389/fnagi.2023.1237469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
Objective Dementias and mild cognitive impairment (MCI) are associated with variously combined changes in the neurotransmitter system and signaling, from neurotransmitter synthesis to synaptic binding. The study tested the hypothesis that different dementia subtypes and MCI may share similar reductions of brain availability in amino acid precursors (AAPs) of neurotransmitter synthesis and concomitant similar impairment in energy production and increase of oxidative stress, i.e., two important metabolic alterations that impact neurotransmission. Materials and methods Sixty-five demented patients (Alzheimer's disease, AD, n = 44; frontotemporal disease, FTD, n = 13; vascular disease, VaD, n = 8), 10 subjects with MCI and 15 control subjects (CTRL) were recruited for this study. Cerebrospinal fluid (CSF) and plasma levels of AAPs, energy substrates (lactate, pyruvate), and an oxidative stress marker (malondialdehyde, MDA) were measured in all participants. Results Demented patients and subjects with MCI were similar for age, anthropometric parameters, biohumoral variables, insulin resistance (HOMA index model), and CSF neuropathology markers. Compared to age-matched CTRL, both demented patients and MCI subjects showed low CSF AAP tyrosine (precursor of dopamine and catecholamines), tryptophan (precursor of serotonin), methionine (precursor of acetylcholine) limited to AD and FTD, and phenylalanine (an essential amino acid largely used for protein synthesis) (p = 0.03 to <0.0001). No significant differences were found among dementia subtypes or between each dementia subtype and MCI subjects. In addition, demented patients and MCI subjects, compared to CTRL, had similar increases in CSF and plasma levels of pyruvate (CSF: p = 0.023 to <0.0001; plasma: p < 0.002 to <0.0001) and MDA (CSF: p < 0.035 to 0.002; plasma: p < 0.0001). Only in AD patients was the CSF level of lactate higher than in CTRL (p = 0.003). Lactate/pyruvate ratios were lower in all experimental groups than in CTRL. Conclusion AD, FTD, and VaD dementia patients and MCI subjects may share similar deficits in AAPs, partly in energy substrates, and similar increases in oxidative stress. These metabolic alterations may be due to AAP overconsumption following high brain protein turnover (leading to phenylalanine reductions), altered mitochondrial structure and function, and an excess of free radical production. All these metabolic alterations may have a negative impact on synaptic plasticity and activity.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Matteo Cotta Ramusino
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Paolo Iadarola
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano, Italy
| | - Giulia Perini
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Dementia Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Anna Bellini
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Enrico Doria
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| | - Alfredo Costa
- Unit of Behavioral Neurology and Center for Cognitive Disorders and Dementia, IRCCS C. Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology, “Lazzaro Spallanzani,” University of Pavia, Pavia, Italy
| |
Collapse
|
72
|
Cheng J, Wang L, Guttha V, Haugstad G, Kandimalla KK. Delivery of RNA to the Blood-Brain Barrier Endothelium Using Cationic Bicelles. Pharmaceutics 2023; 15:2086. [PMID: 37631300 PMCID: PMC10459289 DOI: 10.3390/pharmaceutics15082086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Blood-brain barrier (BBB) dysfunction is prevalent in Alzheimer's disease and other neurological disorders. Restoring normal BBB function through RNA therapy is a potential avenue for addressing cerebrovascular changes in these disorders that may lead to cognitive decline. Although lipid nanoparticles have been traditionally used as drug carriers for RNA, bicelles have been emerging as a better alternative because of their higher cellular uptake and superior transfection capabilities. Cationic bicelles composed of DPPC/DC7PC/DOTAP at molar ratios of 63.8/25.0/11.2 were evaluated for the delivery of RNA in polarized hCMEC/D3 monolayers, a widely used BBB cell culture model. RNA-bicelle complexes were formed at five N/P ratios (1:1 to 5:1) by a thin-film hydration method. The RNA-bicelle complexes at N/P ratios of 3:1 and 4:1 exhibited optimal particle characteristics for cellular delivery. The cellular uptake of cationic bicelles laced with 1 mol% DiI-C18 was confirmed by flow cytometry and confocal microscopy. The ability of cationic bicelles (N/P ratio 4:1) to transfect polarized hCMEC/D3 with FITC-labeled control siRNA was tested vis-a-vis commercially available Lipofectamine RNAiMAX. These studies demonstrated the higher transfection efficiency and greater potential of cationic bicelles for RNA delivery to the BBB endothelium.
Collapse
Affiliation(s)
- Joan Cheng
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Lushan Wang
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Vineetha Guttha
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| | - Greg Haugstad
- The Characterization Facility, College of Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Karunya K. Kandimalla
- Department of Pharmaceutics, Brain Barriers Research Center, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA; (J.C.); (L.W.); (V.G.)
| |
Collapse
|
73
|
Bei J, Qiu Y, Cockrell D, Chang Q, Husseinzadeh S, Zhou C, Fang X, Bao X, Jin Y, Gaitas A, Khanipov K, Saito TB, Gong B. Identification of common sequence motifs shared exclusively among selectively packed exosomal pathogenic microRNAs during rickettsial infections. J Cell Physiol 2023; 238:1937-1948. [PMID: 37334929 DOI: 10.1002/jcp.31061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
We previously reported that microRNA (miR)23a and miR30b are selectively sorted into exosomes derived from rickettsia-infected endothelial cells (R-ECExos). Yet, the mechanism remains unknown. Cases of spotted fever rickettsioses have been increasing, and infections with these bacteria cause life-threatening diseases by targeting brain and lung tissues. Therefore, the goal of the present study is to further dissect the molecular mechanism underlying R-ECExos-induced barrier dysfunction of normal recipient microvascular endothelial cells (MECs), depending on their exosomal RNA cargos. Infected ticks transmit the rickettsiae to human hosts following a bite and injections of the bacteria into the skin. In the present study, we demonstrate that treatment with R-ECExos, which were derived from spotted fever group R parkeri infected human dermal MECs, induced disruptions of the paracellular adherens junctional protein VE-cadherin, and breached the paracellular barrier function in recipient pulmonary MECs (PMECs) in an exosomal RNA-dependent manner. We did not detect different levels of miRs in parent dermal MECs following rickettsial infections. However, we demonstrated that the microvasculopathy-relevant miR23a-27a-24 cluster and miR30b are selectively enriched in R-ECExos. Bioinformatic analysis revealed that common sequence motifs are shared exclusively among the exosomal, selectively-enriched miR23a cluster and miR30b at different levels. Taken together, these data warrant further functional identification and characterization of a monopartition, bipartition, or tripartition among ACA, UCA, and CAG motifs that guide recognition of microvasculopathy-relevant miR23a-27a-24 and miR30b, and subsequently results in their selective enrichments in R-ECExos.
Collapse
Affiliation(s)
- Jiani Bei
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yuan Qiu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Diane Cockrell
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sorosh Husseinzadeh
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Changcheng Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xiaoyong Bao
- Department of Pediatric, University of Texas Medical Branch, Galveston, Texas, USA
| | - Yang Jin
- Department of Medicine, Pulmonary and Critical Care Medicine Division, Boston University Medical Campus, Boston, Massachusetts, USA
| | - Angelo Gaitas
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kamil Khanipov
- Department of Pharmacology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Tais B Saito
- Laboratory of Bacteriology, Division of Intramural Research, NIAID-NIH, Hamilton, Montana, USA
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
74
|
Song N, Sun S, Chen K, Wang Y, Wang H, Meng J, Guo M, Zhang XD, Zhang R. Emerging nanotechnology for Alzheimer's disease: From detection to treatment. J Control Release 2023; 360:392-417. [PMID: 37414222 DOI: 10.1016/j.jconrel.2023.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/15/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Alzheimer's disease (AD), one of the most common chronic neurodegenerative diseases, is characterized by memory impairment, synaptic dysfunction, and character mutations. The pathological features of AD are Aβ accumulation, tau protein enrichment, oxidative stress, and immune inflammation. Since the pathogenesis of AD is complicated and ambiguous, it is still challenging to achieve early detection and timely treatment of AD. Due to the unique physical, electrical, magnetic, and optical properties of nanoparticles (NPs), nanotechnology has shown great potential for detecting and treating AD. This review provides an overview of the latest developments in AD detection via nanotechnology based on NPs with electrochemical sensing, optical sensing, and imaging techniques. Meanwhile, we highlight the important advances in nanotechnology-based AD treatment through targeting disease biomarkers, stem-cell therapy and immunotherapy. Furthermore, we summarize the current challenges and present a promising prospect for nanotechnology-based AD diagnosis and intervention.
Collapse
Affiliation(s)
- Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China
| | - Si Sun
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Ke Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian Meng
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China.
| |
Collapse
|
75
|
Fan H, Cai Q, Qin Z. Measurement and Modeling of Transport Across the Blood-Brain Barrier. J Biomech Eng 2023; 145:080803. [PMID: 37338461 PMCID: PMC10321147 DOI: 10.1115/1.4062737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The blood-brain barrier (BBB) is a dynamic regulatory barrier at the interface of blood circulation and the brain parenchyma, which plays a critical role in protecting homeostasis in the central nervous system. However, it also significantly impedes drug delivery to the brain. Understanding the transport across BBB and brain distribution will facilitate the prediction of drug delivery efficiency and the development of new therapies. To date, various methods and models have been developed to study drug transport at the BBB interface, including in vivo brain uptake measurement methods, in vitro BBB models, and mathematic brain vascular models. Since the in vitro BBB models have been extensively reviewed elsewhere, we provide a comprehensive summary of the brain transport mechanisms and the currently available in vivo methods and mathematic models in studying the molecule delivery process at the BBB interface. In particular, we reviewed the emerging in vivo imaging techniques in observing drug transport across the BBB. We discussed the advantages and disadvantages associated with each model to serve as a guide for model selection in studying drug transport across the BBB. In summary, we envision future directions to improve the accuracy of mathematical models, establish noninvasive in vivo measurement techniques, and bridge the preclinical studies with clinical translation by taking the altered BBB physiological conditions into consideration. We believe these are critical in guiding new drug development and precise drug administration in brain disease treatment.
Collapse
Affiliation(s)
- Hanwen Fan
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080
| | - Qi Cai
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080; Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080; Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390; Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080
| |
Collapse
|
76
|
Jullienne A, Szu JI, Quan R, Trinh MV, Norouzi T, Noarbe BP, Bedwell AA, Eldridge K, Persohn SC, Territo PR, Obenaus A. Cortical cerebrovascular and metabolic perturbations in the 5xFAD mouse model of Alzheimer's disease. Front Aging Neurosci 2023; 15:1220036. [PMID: 37533765 PMCID: PMC10392850 DOI: 10.3389/fnagi.2023.1220036] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Introduction The 5xFAD mouse is a popular model of familial Alzheimer's disease (AD) that is characterized by early beta-amyloid (Aβ) deposition and cognitive decrements. Despite numerous studies, the 5xFAD mouse has not been comprehensively phenotyped for vascular and metabolic perturbations over its lifespan. Methods Male and female 5xFAD and wild type (WT) littermates underwent in vivo 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) imaging at 4, 6, and 12 months of age to assess regional glucose metabolism. A separate cohort of mice (4, 8, 12 months) underwent "vessel painting" which labels all cerebral vessels and were analyzed for vascular characteristics such as vessel density, junction density, vessel length, network complexity, number of collaterals, and vessel diameter. Results With increasing age, vessels on the cortical surface in both 5xFAD and WT mice showed increased vessel length, vessel and junction densities. The number of collateral vessels between the middle cerebral artery (MCA) and the anterior and posterior cerebral arteries decreased with age but collateral diameters were significantly increased only in 5xFAD mice. MCA total vessel length and junction density were decreased in 5xFAD mice compared to WT at 4 months. Analysis of 18F-FDG cortical uptake revealed significant differences between WT and 5xFAD mice spanning 4-12 months. Broadly, 5xFAD males had significantly increased 18F-FDG uptake at 12 months compared to WT mice. In most cortical regions, female 5xFAD mice had reduced 18F-FDG uptake compared to WT across their lifespan. Discussion While the 5xFAD mouse exhibits AD-like cognitive deficits as early as 4 months of age that are associated with increasing Aβ deposition, we only found significant differences in cortical vascular features in males, not in females. Interestingly, 5xFAD male and female mice exhibited opposite effects in 18F-FDG uptake. The MCA supplies blood to large portions of the somatosensory cortex and portions of motor and visual cortex and increased vessel length alongside decreased collaterals which coincided with higher metabolic rates in 5xFAD mice. Thus, a potential mismatch between metabolic demand and vascular delivery of nutrients in the face of increasing Aβ deposition could contribute to the progressive cognitive deficits seen in the 5xFAD mouse model.
Collapse
Affiliation(s)
- Amandine Jullienne
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Jenny I. Szu
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Ryan Quan
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Michelle V. Trinh
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Tannoz Norouzi
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Brenda P. Noarbe
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Amanda A. Bedwell
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Kierra Eldridge
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Scott C. Persohn
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul R. Territo
- Stark Neurosciences Research Institute, School of Medicine, Indiana University, Indianapolis, IN, United States
- Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Andre Obenaus
- Department of Pediatrics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
77
|
Wen T, Zhang Z. Cellular mechanisms of fibrin (ogen): insight from neurodegenerative diseases. Front Neurosci 2023; 17:1197094. [PMID: 37529232 PMCID: PMC10390316 DOI: 10.3389/fnins.2023.1197094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
Neurodegenerative diseases are prevalent and currently incurable conditions that progressively impair cognitive, behavioral, and psychiatric functions of the central or peripheral nervous system. Fibrinogen, a macromolecular glycoprotein, plays a crucial role in the inflammatory response and tissue repair in the human body and interacts with various nervous system cells due to its unique molecular structure. Accumulating evidence suggests that fibrinogen deposits in the brains of patients with neurodegenerative diseases. By regulating pathophysiological mechanisms and signaling pathways, fibrinogen can exacerbate the neuro-pathological features of neurodegenerative diseases, while depletion of fibrinogen contributes to the amelioration of cognitive function impairment in patients. This review comprehensively summarizes the molecular mechanisms and biological functions of fibrinogen in central nervous system cells and neurodegenerative diseases, including Alzheimer's disease, Multiple Sclerosis, Parkinson's disease, Vascular dementia, Huntington's disease, and Amyotrophic Lateral Sclerosis. Additionally, we discuss the potential of fibrinogen-related treatments in the management of neurodegenerative disorders.
Collapse
|
78
|
Liu JJ, Long YF, Xu P, Guo HD, Cui GH. Pathogenesis of miR-155 on nonmodifiable and modifiable risk factors in Alzheimer's disease. Alzheimers Res Ther 2023; 15:122. [PMID: 37452431 PMCID: PMC10347850 DOI: 10.1186/s13195-023-01264-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a common age-related neurodegenerative disease in the central nervous system and is the primary cause of dementia. It is clinically characterized by the memory impairment, aphasia, apraxia, agnosia, visuospatial and executive dysfunction, behavioral changes, and so on. Incidence of this disease was bound up with age, genetic factors, cardiovascular and cerebrovascular dysfunction, and other basic diseases, but the exact etiology has not been clarified. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that were involved in the regulation of post-transcriptional gene expression. miRNAs have been extensively studied as noninvasive potential biomarkers for disease due to their relative stability in bodily fluids. In addition, they play a significant role in the physiological and pathological processes of various neurological disorders, including stroke, AD, and Parkinson's disease. MiR-155, as an important pro-inflammatory mediator of neuroinflammation, was reported to participate in the progression of β-amyloid peptide and tau via regulating immunity and inflammation. In this review, we put emphasis on the effects of miR-155 on AD and explore the underlying biological mechanisms which could provide a novel approach for diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Jia-Jia Liu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yun-Fan Long
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Peng Xu
- Affiliated Hospital of Jining Medical University, Jining, 272000, Shandong, China.
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Hong Cui
- Department of Neurology, Shanghai No. 9 People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
79
|
Zhang F, Wang D. Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases. Front Microbiol 2023; 14:1191445. [PMID: 37440890 PMCID: PMC10333588 DOI: 10.3389/fmicb.2023.1191445] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS).
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Dali Wang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
80
|
Hao Z, Liu K, Zhou L, Chen P. Precious but convenient means of prevention and treatment: physiological molecular mechanisms of interaction between exercise and motor factors and Alzheimer's disease. Front Physiol 2023; 14:1193031. [PMID: 37362440 PMCID: PMC10285460 DOI: 10.3389/fphys.2023.1193031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Disproportionate to the severity of Alzheimer's disease (AD) and the huge number of patients, the exact treatment and prevention of AD is still being explored. With increasing ageing, the search for means to prevent and treat AD has become a high priority. In the search for AD, it has been suggested that exercise may be one of the more effective and less costly means of preventing and treating AD, and therefore a large part of current research is aimed at exploring the effectiveness of exercise in the prevention and treatment of AD. However, due to the complexity of the specific pathogenesis of AD, there are multiple hypotheses and potential mechanisms for exercise interventions in AD that need to be explored. This review therefore specifically summarises the hypotheses of the interaction between exercise and AD from a molecular perspective, based on the available evidence from animal models or human experiments, and explores them categorised according to the pathologies associated with AD: exercise can activate a number of signalling pathways inhibited by AD (e.g., Wnt and PI3K/Akt signalling pathways) and reactivate the effects of downstream factors regulated by these signalling pathways, thus acting to alleviate autophagic dysfunction, relieve neuroinflammation and mitigate Aβ deposition. In addition, this paper introduces a new approach to regulate the blood-brain barrier, i.e., to restore the stability of the blood-brain barrier, reduce abnormal phosphorylation of tau proteins and reduce neuronal apoptosis. In addition, this paper introduces a new concept." Motor factors" or "Exerkines", which act on AD through autocrine, paracrine or endocrine stimulation in response to movement. In this process, we believe there may be great potential for research in three areas: (1) the alleviation of AD through movement in the brain-gut axis (2) the prevention and treatment of AD by movement combined with polyphenols (3) the continued exploration of movement-mediated activation of the Wnt signalling pathway and AD.
Collapse
Affiliation(s)
- Zikang Hao
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| | - Kerui Liu
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Lu Zhou
- Department of Sports Medicine, Daiyue Campus, Shandong First Medical University, Tai’an, Shandong, China
| | - Ping Chen
- Department of Physical Education, Laoshan Campus, Ocean University of China, Qingdao, China
| |
Collapse
|
81
|
Rudge JD. The Lipid Invasion Model: Growing Evidence for This New Explanation of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221175. [PMID: 37302030 PMCID: PMC10357195 DOI: 10.3233/jad-221175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The Lipid Invasion Model (LIM) is a new hypothesis for Alzheimer's disease (AD) which argues that AD is a result of external lipid invasion to the brain, following damage to the blood-brain barrier (BBB). The LIM provides a comprehensive explanation of the observed neuropathologies associated with the disease, including the lipid irregularities first described by Alois Alzheimer himself, and accounts for the wide range of risk factors now identified with AD, all of which are also associated with damage to the BBB. This article summarizes the main arguments of the LIM, and new evidence and arguments in support of it. The LIM incorporates and extends the amyloid hypothesis, the current main explanation of the disease, but argues that the greatest cause of late-onset AD is not amyloid-β (Aβ) but bad cholesterol and free fatty acids, let into the brain by a damaged BBB. It suggests that the focus on Aβ is the reason why we have made so little progress in treating the disease in the last 30 years. As well as offering new perspectives for further research into the diagnosis, prevention, and treatment of AD, based on protecting and repairing the BBB, the LIM provides potential new insights into other neurodegenerative diseases such as Parkinson's disease and amyotrophic lateral sclerosis/motor neuron disease.
Collapse
|
82
|
Reekes TH, Ledbetter CR, Alexander JS, Stokes KY, Pardue S, Bhuiyan MAN, Patterson JC, Lofton KT, Kevil CG, Disbrow EA. Elevated plasma sulfides are associated with cognitive dysfunction and brain atrophy in human Alzheimer's disease and related dementias. Redox Biol 2023; 62:102633. [PMID: 36924684 PMCID: PMC10026043 DOI: 10.1016/j.redox.2023.102633] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Emerging evidence indicates that vascular stress is an important contributor to the pathophysiology of Alzheimer's disease and related dementias (ADRD). Hydrogen sulfide (H2S) and its metabolites (acid-labile (e.g., iron-sulfur clusters) and bound (e.g., per-, poly-) sulfides) have been shown to modulate both vascular and neuronal homeostasis. We recently reported that elevated plasma sulfides were associated with cognitive dysfunction and measures of microvascular disease in ADRD. Here we extend our previous work to show associations between elevated sulfides and magnetic resonance-based metrics of brain atrophy and white matter integrity. Elevated bound sulfides were associated with decreased grey matter volume, while increased acid labile sulfides were associated with decreased white matter integrity and greater ventricular volume. These findings are consistent with alterations in sulfide metabolism in ADRD which may represent maladaptive responses to oxidative stress.
Collapse
Affiliation(s)
- Tyler H Reekes
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States
| | - Christina R Ledbetter
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurosurgery, LSU Health Shreveport, United States
| | - J Steven Alexander
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Karen Y Stokes
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Molecular and Cellular Physiology, LSU Health Shreveport, United States
| | - Sibile Pardue
- Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States
| | | | - James C Patterson
- Center for Brain Health, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Katelyn T Lofton
- Center for Brain Health, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States; Department of Psychiatry and Behavioral Medicine, LSU Health Shreveport, United States
| | - Christopher G Kevil
- Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Pathology and Translational Pathobiology, LSU Health Shreveport, United States.
| | - Elizabeth A Disbrow
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Shreveport, United States; Center for Brain Health, LSU Health Shreveport, United States; Center for Cardiovascular Diseases and Sciences, LSU Health Shreveport, United States; Department of Neurology, LSU Health Shreveport, United States.
| |
Collapse
|
83
|
Zhang X, Zhang Y, Zhang L, Qin C. Overexpression of ACE2 ameliorates Aβ-induced blood-brain barrier damage and angiogenesis by inhibiting NF-κB/VEGF/VEGFR2 pathway. Animal Model Exp Med 2023; 6:237-244. [PMID: 37183346 PMCID: PMC10272905 DOI: 10.1002/ame2.12324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Pathological angiogenesis and blood-brain barrier damage may play an important role in Alzheimer's disease (AD). ACE2 is mainly expressed on the surface of endothelial cells in brain. Recent studies have shown that the expression of ACE2 in AD is reduced, but its role in AD is still unclear. METHOD We induced AD damage in endothelial cells using Aβ25-35 and overexpressed ACE2 in bEend.3 cells through lentiviral transfection. We detected the effect of Aβ25-35 on cell viability using the CCK-8 assay and examined the effect of overexpressing ACE2 on angiogenesis using an angiogenesis assay. We used western blot and cell immunofluorescence to detect changes in the expression of the VEGF/VEGFR2 pathway, tight junction protein, and NF-κB pathway. RESULTS Aβ25-35 treatment significantly decreased the expression of ACE2 and reduced cell viability. ACE2 overexpression (1) reduced the number of branches and junctions in tube formation, (2) inhibited the activation of the VEGF/VEGFR2 pathway induced by Aβ25-35 , (3) increased the expression of TJPs, including ZO-1 and claudin-5, and (4) restored Aβ25-35 -induced activation of the NF-κB pathway. CONCLUSION Overexpression of ACE2 can improve pathological angiogenesis and blood-brain barrier damage in AD models in vitro by inhibiting NF-κB/VEGF/VEGFR2 pathway activity. ACE2 may therefore represent a therapeutic target for endothelial cell dysfunction in AD.
Collapse
Affiliation(s)
- Xueling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
| | - Yu Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Ling Zhang
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, CAMS & PUMCBeijingChina
- National Human Diseases Animal Model Resource CenterBeijingChina
- NHC Key Laboratory of Human Disease Comparative MedicineBeijingChina
- Changping National Laboratory (CPNL)BeijingChina
| |
Collapse
|
84
|
Chandrashekar DV, Steinberg RA, Han D, Sumbria RK. Alcohol as a Modifiable Risk Factor for Alzheimer's Disease-Evidence from Experimental Studies. Int J Mol Sci 2023; 24:9492. [PMID: 37298443 PMCID: PMC10253673 DOI: 10.3390/ijms24119492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by cognitive impairment and memory loss. Epidemiological evidence suggests that heavy alcohol consumption aggravates AD pathology, whereas low alcohol intake may be protective. However, these observations have been inconsistent, and because of methodological discrepancies, the findings remain controversial. Alcohol-feeding studies in AD mice support the notion that high alcohol intake promotes AD, while also hinting that low alcohol doses may be protective against AD. Chronic alcohol feeding to AD mice that delivers alcohol doses sufficient to cause liver injury largely promotes and accelerates AD pathology. The mechanisms by which alcohol can modulate cerebral AD pathology include Toll-like receptors, protein kinase-B (Akt)/mammalian target of rapamycin (mTOR) pathway, cyclic adenosine monophosphate (cAMP) response element-binding protein phosphorylation pathway, glycogen synthase kinase 3-β, cyclin-dependent kinase-5, insulin-like growth factor type-1 receptor, modulation of β-amyloid (Aβ) synthesis and clearance, microglial mediated, and brain endothelial alterations. Besides these brain-centric pathways, alcohol-mediated liver injury may significantly affect brain Aβ levels through alterations in the peripheral-to-central Aβ homeostasis. This article reviews published experimental studies (cell culture and AD rodent models) to summarize the scientific evidence and probable mechanisms (both cerebral and hepatic) by which alcohol promotes or protects against AD progression.
Collapse
Affiliation(s)
- Devaraj V. Chandrashekar
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
| | - Ross A. Steinberg
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Derick Han
- School of Pharmacy and Health Sciences, Keck Graduate Institute, Claremont, CA 91711, USA; (R.A.S.); (D.H.)
| | - Rachita K. Sumbria
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, CA 92618, USA;
- Department of Neurology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
85
|
Stevenson M, Varghese R, Hebron ML, Liu X, Ratliff N, Smith A, Turner RS, Moussa C. Inhibition of discoidin domain receptor (DDR)-1 with nilotinib alters CSF miRNAs and is associated with reduced inflammation and vascular fibrosis in Alzheimer's disease. J Neuroinflammation 2023; 20:116. [PMID: 37194065 PMCID: PMC10186647 DOI: 10.1186/s12974-023-02802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/10/2023] [Indexed: 05/18/2023] Open
Abstract
Discoidin Domain Receptor (DDR)-1 is activated by collagen. Nilotinib is a tyrosine kinase inhibitor that is FDA-approved for leukemia and potently inhibits DDR-1. Individuals diagnosed with mild-moderate Alzheimer's disease (AD) treated with nilotinib (versus placebo) for 12 months showed reduction of amyloid plaque and cerebrospinal fluid (CSF) amyloid, and attenuation of hippocampal volume loss. However, the mechanisms are unclear. Here, we explored unbiased next generation whole genome miRNA sequencing from AD patients CSF and miRNAs were matched with their corresponding mRNAs using gene ontology. Changes in CSF miRNAs were confirmed via measurement of CSF DDR1 activity and plasma levels of AD biomarkers. Approximately 1050 miRNAs are detected in the CSF but only 17 miRNAs are specifically altered between baseline and 12-month treatment with nilotinib versus placebo. Treatment with nilotinib significantly reduces collagen and DDR1 gene expression (upregulated in AD brain), in association with inhibition of CSF DDR1. Pro-inflammatory cytokines, including interleukins and chemokines are reduced along with caspase-3 gene expression. Specific genes that indicate vascular fibrosis, e.g., collagen, Transforming Growth Factors (TGFs) and Tissue Inhibitors of Metalloproteases (TIMPs) are altered by DDR1 inhibition with nilotinib. Specific changes in vesicular transport, including the neurotransmitters dopamine and acetylcholine, and autophagy genes, including ATGs, indicate facilitation of autophagic flux and cellular trafficking. Inhibition of DDR1 with nilotinib may be a safe and effective adjunct treatment strategy involving an oral drug that enters the CNS and adequately engages its target. DDR1 inhibition with nilotinib exhibits multi-modal effects not only on amyloid and tau clearance but also on anti-inflammatory markers that may reduce cerebrovascular fibrosis.
Collapse
Affiliation(s)
- Max Stevenson
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Rency Varghese
- Genomics and Epigenomics Shared Resource, Department of Oncology, Georgetown University Medical Center, Building D, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Michaeline L Hebron
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Xiaoguang Liu
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Nick Ratliff
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Amelia Smith
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - R Scott Turner
- Memory Disorders Program, Department of Neurology, Georgetown University Medical Center, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program, Laboratory for Dementia and Parkinsonism, Department of Neurology, Georgetown University Medical Center, Building D, Room 265, 4000 Reservoir Rd, NW, Washington, DC, 20057, USA.
| |
Collapse
|
86
|
Kim S, Sharma C, Jung UJ, Kim SR. Pathophysiological Role of Microglial Activation Induced by Blood-Borne Proteins in Alzheimer's Disease. Biomedicines 2023; 11:biomedicines11051383. [PMID: 37239054 DOI: 10.3390/biomedicines11051383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The blood-brain barrier (BBB) restricts entry of neurotoxic plasma components, blood cells, and pathogens into the brain, leading to proper neuronal functioning. BBB impairment leads to blood-borne protein infiltration such as prothrombin, thrombin, prothrombin kringle-2, fibrinogen, fibrin, and other harmful substances. Thus, microglial activation and release of pro-inflammatory mediators commence, resulting in neuronal damage and leading to impaired cognition via neuroinflammatory responses, which are important features observed in the brain of Alzheimer's disease (AD) patients. Moreover, these blood-borne proteins cluster with the amyloid beta plaque in the brain, exacerbating microglial activation, neuroinflammation, tau phosphorylation, and oxidative stress. These mechanisms work in concert and reinforce each other, contributing to the typical pathological changes in AD in the brain. Therefore, the identification of blood-borne proteins and the mechanisms involved in microglial activation and neuroinflammatory damage can be a promising therapeutic strategy for AD prevention. In this article, we review the current knowledge regarding the mechanisms of microglial activation-mediated neuroinflammation caused by the influx of blood-borne proteins into the brain via BBB disruption. Subsequently, the mechanisms of drugs that inhibit blood-borne proteins, as a potential therapeutic approach for AD, along with the limitations and potential challenges of these approaches, are also summarized.
Collapse
Affiliation(s)
- Sehwan Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Chanchal Sharma
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Un Ju Jung
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang Ryong Kim
- School of Life Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Brain Science and Engineering Institute, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
87
|
Shao X, Zhao C, Shou Q, St Lawrence KS, Wang DJJ. Quantification of blood-brain barrier water exchange and permeability with multidelay diffusion-weighted pseudo-continuous arterial spin labeling. Magn Reson Med 2023; 89:1990-2004. [PMID: 36622951 PMCID: PMC10079266 DOI: 10.1002/mrm.29581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To present a pulse sequence and mathematical models for quantification of blood-brain barrier water exchange and permeability. METHODS Motion-compensated diffusion-weighted (MCDW) gradient-and-spin echo (GRASE) pseudo-continuous arterial spin labeling (pCASL) sequence was proposed to acquire intravascular/extravascular perfusion signals from five postlabeling delays (PLDs, 1590-2790 ms). Experiments were performed on 11 healthy subjects at 3 T. A comprehensive set of perfusion and permeability parameters including cerebral blood flow (CBF), capillary transit time (τc ), and water exchange rate (kw ) were quantified, and permeability surface area product (PSw ), total extraction fraction (Ew ), and capillary volume (Vc ) were derived simultaneously by a three-compartment single-pass approximation (SPA) model on group-averaged data. With information (i.e., Vc and τc ) obtained from three-compartment SPA modeling, a simplified linear regression of logarithm (LRL) approach was proposed for individual kw quantification, and Ew and PSw can be estimated from long PLD (2490/2790 ms) signals. MCDW-pCASL was compared with a previously developed diffusion-prepared (DP) pCASL sequence, which calculates kw by a two-compartment SPA model from PLD = 1800 ms signals, to evaluate the improvements. RESULTS Using three-compartment SPA modeling, group-averaged CBF = 51.5/36.8 ml/100 g/min, kw = 126.3/106.7 min-1 , PSw = 151.6/93.8 ml/100 g/min, Ew = 94.7/92.2%, τc = 1409.2/1431.8 ms, and Vc = 1.2/0.9 ml/100 g in gray/white matter, respectively. Temporal SNR of MCDW-pCASL perfusion signals increased 3-fold, and individual kw maps calculated by the LRL method achieved higher spatial resolution (3.5 mm3 isotropic) as compared with DP pCASL (3.5 × 3.5 × 8 mm3 ). CONCLUSION MCDW-pCASL allows visualization of intravascular/extravascular ASL signals across multiple PLDs. The three-compartment SPA model provides a comprehensive measurement of blood-brain barrier water dynamics from group-averaged data, and a simplified LRL method was proposed for individual kw quantification.
Collapse
Affiliation(s)
- Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenyang Zhao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Qinyang Shou
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Keith S St Lawrence
- Lawson Health Research Institute, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Danny JJ Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
88
|
Bei J, Miranda-Morales EG, Gan Q, Qiu Y, Husseinzadeh S, Liew JY, Chang Q, Krishnan B, Gaitas A, Yuan S, Felicella M, Qiu WQ, Fang X, Gong B. Circulating exosomes from Alzheimer's disease suppress VE-cadherin expression and induce barrier dysfunction in recipient brain microvascular endothelial cell. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535441. [PMID: 37066187 PMCID: PMC10103966 DOI: 10.1101/2023.04.03.535441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Blood-brain barrier (BBB) breakdown is a component of the progression and pathology of Alzheimer's disease (AD). BBB dysfunction is primarily caused by reduced or disorganized tight junction or adherens junction proteins of brain microvascular endothelial cell (BMEC). While there is growing evidence of tight junction disruption in BMECs in AD, the functional role of adherens junctions during BBB dysfunction in AD remains unknown. Exosomes secreted from senescent cells have unique characteristics and contribute to modulating the phenotype of recipient cells. However, it remains unknown if and how these exosomes cause BMEC dysfunction in AD. Objectives This study aimed to investigate the potential roles of AD circulating exosomes and their RNA cargos in brain endothelial dysfunction in AD. Methods We isolated exosomes from sera of five cases of AD compared with age- and sex-matched cognitively normal controls using size-exclusion chromatography technology. We validated the qualities and particle sizes of isolated exosomes with nanoparticle tracking analysis and atomic force microscopy. We measured the biomechanical natures of the endothelial barrier of BMECs, the lateral binding forces between live BMECs, using fluidic force miscopy. We visualized the paracellular expressions of the key adherens junction protein VE-cadherin in BMEC cultures and a 3D BBB model that employs primary human BMECs and pericytes with immunostaining and evaluated them using confocal microscopy. We also examined the VE-cadherin signal in brain tissues from five cases of AD and five age- and sex-matched cognitively normal controls. Results We found that circulating exosomes from AD patients suppress the paracellular expression levels of VE-cadherin and impair the barrier function of recipient BMECs. Immunostaining analysis showed that AD circulating exosomes damage VE-cadherin integrity in a 3D model of microvascular tubule formation. We found that circulating exosomes in AD weaken the BBB depending on the RNA cargos. In parallel, we observed that microvascular VE-cadherin expression is diminished in AD brains compared to normal controls. Conclusion Using in vitro and ex vivo models, our study illustrates that circulating exosomes from AD patients play a significant role in mediating the damage effect on adherens junction of recipient BMEC of the BBB in an exosomal RNA-dependent manner. This suggests a novel mechanism of peripheral senescent exosomes for AD risk.
Collapse
|
89
|
Sulimai N, Brown J, Lominadze D. Vascular Effects on Cerebrovascular Permeability and Neurodegeneration. Biomolecules 2023; 13:biom13040648. [PMID: 37189395 DOI: 10.3390/biom13040648] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/17/2023] Open
Abstract
Neurons and glial cells in the brain are protected by the blood brain barrier (BBB). The local regulation of blood flow is determined by neurons and signal conducting cells called astrocytes. Although alterations in neurons and glial cells affect the function of neurons, the majority of effects are coming from other cells and organs of the body. Although it seems obvious that effects beginning in brain vasculature would play an important role in the development of various neuroinflammatory and neurodegenerative pathologies, significant interest has only been directed to the possible mechanisms involved in the development of vascular cognitive impairment and dementia (VCID) for the last decade. Presently, the National Institute of Neurological Disorders and Stroke applies considerable attention toward research related to VCID and vascular impairments during Alzheimer's disease. Thus, any changes in cerebral vessels, such as in blood flow, thrombogenesis, permeability, or others, which affect the proper vasculo-neuronal connection and interaction and result in neuronal degeneration that leads to memory decline should be considered as a subject of investigation under the VCID category. Out of several vascular effects that can trigger neurodegeneration, changes in cerebrovascular permeability seem to result in the most devastating effects. The present review emphasizes the importance of changes in the BBB and possible mechanisms primarily involving fibrinogen in the development and/or progression of neuroinflammatory and neurodegenerative diseases resulting in memory decline.
Collapse
Affiliation(s)
- Nurul Sulimai
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - Jason Brown
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| | - David Lominadze
- Department of Surgery, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
- Department of Molecular Pharmacology and Physiology, College of Medicine, University of South Florida Morsani, Tampa, FL 33612, USA
| |
Collapse
|
90
|
Petrushanko IY, Mitkevich VA, Makarov AA. Effect of β-amyloid on blood-brain barrier properties and function. Biophys Rev 2023; 15:183-197. [PMID: 37124923 PMCID: PMC10133432 DOI: 10.1007/s12551-023-01052-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The deposition of beta-amyloid (Aβ) aggregates in the brain, accompanied by impaired cognitive function, is a characteristic feature of Alzheimer's disease (AD). An important role in this process is played by vascular disorders, in particular, a disturbance of the blood-brain barrier (BBB). The BBB controls the entry of Aβ from plasma to the brain via the receptor for advanced glycation end products (RAGE) and the removal of brain-derived Aβ via the low-density lipoprotein receptor-related protein (LRP1). The balance between the input of Aβ to the brain from the periphery and its output is disturbed during AD. Aβ changes the redox-status of BBB cells, which in turn changes the functioning of mitochondria and disrupts the barrier function of endothelial cells by affecting tight junction proteins. Aβ oligomers have the greatest toxic effect on BBB cells, and oligomers are most rapidly transferred by transcytosis from the brain side of the BBB to the blood side. Both the cytotoxic effect of Aβ and the impairment of barrier function are partly due to the interaction of Aβ monomers and oligomers with membrane-bound RAGE. AD therapies based on the disruption of this interaction or the creation of decoys for Aβ are being developed. The question of the transfer of various Aβ isoforms through the BBB is important, since it can influence the development of AD. It is shown that the rate of input of Aβ40 and Aβ42 from the blood into the brain is different. The actual question of the transfer of pathogenic Aβ isoforms with post-translational modifications or mutations through the BBB still remains open.
Collapse
Affiliation(s)
- Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
91
|
Choi SH, Tanzi RE. Adult neurogenesis in Alzheimer's disease. Hippocampus 2023; 33:307-321. [PMID: 36748337 DOI: 10.1002/hipo.23504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/08/2023]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia, characterized by progressive memory loss and cognitive disturbances. The hippocampus, where adult hippocampal neurogenesis (AHN), a relatively novel form of brain plasticity that refers to the birth of new neurons, occurs, is one of the first brain regions to be affected in AD patients. Recent studies showed that AHN persists throughout life in humans, but it drops sharply in AD patients. Next questions to consider would be whether AHN impairment is a contributing factor to learning and memory impairment in AD and whether restoring AHN could ameliorate or delay cognitive dysfunction. Here, we outline and discuss the current knowledge about the state of AHN in AD patients, AHN impairment as a potentially relevant mechanism underlying memory deficits in AD, therapeutic potential of activating AHN in AD, and the mechanisms of AHN impairment in AD.
Collapse
Affiliation(s)
- Se Hoon Choi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
- McCance Center for Brain Health, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
92
|
Siew JJ, Chern Y, Khoo KH, Angata T. Roles of Siglecs in neurodegenerative diseases. Mol Aspects Med 2023; 90:101141. [PMID: 36089405 DOI: 10.1016/j.mam.2022.101141] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 02/08/2023]
Abstract
Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.
Collapse
Affiliation(s)
- Jian Jing Siew
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yijuang Chern
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
93
|
Nugumanova G, Ponomarev ED, Askarova S, Fasler-Kan E, Barteneva NS. Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases. Toxins (Basel) 2023; 15:toxins15030233. [PMID: 36977124 PMCID: PMC10057253 DOI: 10.3390/toxins15030233] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Galina Nugumanova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Eugene D Ponomarev
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
| | - Sholpan Askarova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan
| | - Elizaveta Fasler-Kan
- Department of Pediatric Surgery, Children's Hospital, Inselspital Bern, University of Bern, 3010 Bern, Switzerland
| | - Natasha S Barteneva
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan
- The Environment & Resource Efficiency Cluster (EREC), Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
94
|
Wang M, Zhang H, Liang J, Huang J, Chen N. Exercise suppresses neuroinflammation for alleviating Alzheimer's disease. J Neuroinflammation 2023; 20:76. [PMID: 36935511 PMCID: PMC10026496 DOI: 10.1186/s12974-023-02753-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/28/2023] [Indexed: 03/21/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease, with the characteristics of neurofibrillary tangle (NFT) and senile plaque (SP) formation. Although great progresses have been made in clinical trials based on relevant hypotheses, these studies are also accompanied by the emergence of toxic and side effects, and it is an urgent task to explore the underlying mechanisms for the benefits to prevent and treat AD. Herein, based on animal experiments and a few clinical trials, neuroinflammation in AD is characterized by long-term activation of pro-inflammatory microglia and the NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasomes. Damaged signals from the periphery and within the brain continuously activate microglia, thus resulting in a constant source of inflammatory responses. The long-term chronic inflammatory response also exacerbates endoplasmic reticulum oxidative stress in microglia, which triggers microglia-dependent immune responses, ultimately leading to the occurrence and deterioration of AD. In this review, we systematically summarized and sorted out that exercise ameliorates AD by directly and indirectly regulating immune response of the central nervous system and promoting hippocampal neurogenesis to provide a new direction for exploring the neuroinflammation activity in AD.
Collapse
Affiliation(s)
- Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, China.
| |
Collapse
|
95
|
Lee RL, Funk KE. Imaging blood–brain barrier disruption in neuroinflammation and Alzheimer’s disease. Front Aging Neurosci 2023; 15:1144036. [PMID: 37009464 PMCID: PMC10063921 DOI: 10.3389/fnagi.2023.1144036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The blood–brain barrier (BBB) is the neurovascular structure that regulates the passage of cells and molecules to and from the central nervous system (CNS). Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with gradual breakdown of the BBB, permitting entry of plasma-derived neurotoxins, inflammatory cells, and microbial pathogens into the CNS. BBB permeability can be visualized directly in AD patients using imaging technologies including dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging, and recent studies employing these techniques have shown that subtle changes in BBB stability occur prior to deposition of the pathological hallmarks of AD, senile plaques, and neurofibrillary tangles. These studies suggest that BBB disruption may be useful as an early diagnostic marker; however, AD is also accompanied by neuroinflammation, which can complicate these analyses. This review will outline the structural and functional changes to the BBB that occur during AD pathogenesis and highlight current imaging technologies that can detect these subtle changes. Advancing these technologies will improve both the diagnosis and treatment of AD and other neurodegenerative diseases.
Collapse
|
96
|
Lv X, Zhang M, Cheng Z, Wang Q, Wang P, Xie Q, Ni M, Shen Y, Tang Q, Gao F. Changes in CSF sPDGFRβ level and their association with blood-brain barrier breakdown in Alzheimer's disease with or without small cerebrovascular lesions. Alzheimers Res Ther 2023; 15:51. [PMID: 36915135 PMCID: PMC10012584 DOI: 10.1186/s13195-023-01199-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND CSF-soluble platelet-derived growth factor receptor beta (sPDGFRβ) is closely associated with pericyte damage. However, the changes in CSF sPDGFRβ levels and their role in blood-brain barrier (BBB) leakage at different stages of Alzheimer's disease (AD), with or without cerebral small vessel disease (CSVD) burden, remain unclear. METHODS A total of 158 individuals from the China Aging and Neurodegenerative Disorder Initiative cohort were selected, including 27, 48, and 83 individuals with a clinical dementia rating (CDR) score of 0, 0.5, and 1-2, respectively. CSF total tau, phosphorylated tau181 (p-tau181), Aβ40, and Aβ42 were measured using the Simoa assay. Albumin and CSF sPDGFRβ were measured by commercial assay kits. CSVD burden was assessed by magnetic resonance imaging. RESULTS CSF sPDGFRβ was the highest level in the CDR 0.5 group. CSF sPDGFRβ was significantly correlated with the CSF/serum albumin ratio (Q-alb) in the CDR 0-0.5 group (β = 0.314, p = 0.008) but not in the CDR 1-2 group (β = - 0.117, p = 0.317). In the CDR 0-0.5 group, CSF sPDGFRβ exhibited a significant mediating effect between Aβ42/Aβ40 levels and Q-alb (p = 0.038). Q-alb, rather than CSF sPDGFRβ, showed a significant difference between individuals with or without CSVD burden. Furthermore, in the CDR 0.5 group, CSF sPDGFRβ was higher in subjects with progressive mild cognitive impairment than in those with stable mild cognitive impairment subjects (p < 0.001). Meanwhile, CSF sPDGFRβ was significantly associated with yearly changes in MMSE scores in the CDR 0.5 group (β = - 0.400, p = 0.020) and CDR 0.5 (A+) subgroup (β = - 0.542, p = 0.019). CONCLUSIONS We provide evidence that increased CSF sPDGFRβ is associated with BBB leakage in the early cognitive impairment stage of AD, which may contribute to cognitive impairment in AD progression.
Collapse
Affiliation(s)
- Xinyi Lv
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengguo Zhang
- Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaozhao Cheng
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiong Wang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peng Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiang Xie
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ming Ni
- Department of Nuclear Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.,Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China
| | - Qiqiang Tang
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Feng Gao
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China. .,Anhui Province Key Laboratory of Biomedical Aging Research, Hefei, China.
| | | |
Collapse
|
97
|
Contreras EG, Klämbt C. The Drosophila blood-brain barrier emerges as a model for understanding human brain diseases. Neurobiol Dis 2023; 180:106071. [PMID: 36898613 DOI: 10.1016/j.nbd.2023.106071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The accurate regulation of the microenvironment within the nervous system is one of the key features characterizing complex organisms. To this end, neural tissue has to be physically separated from circulation, but at the same time, mechanisms must be in place to allow controlled transport of nutrients and macromolecules into and out of the brain. These roles are executed by cells of the blood-brain barrier (BBB) found at the interface of circulation and neural tissue. BBB dysfunction is observed in several neurological diseases in human. Although this can be considered as a consequence of diseases, strong evidence supports the notion that BBB dysfunction can promote the progression of brain disorders. In this review, we compile the recent evidence describing the contribution of the Drosophila BBB to the further understanding of brain disease features in human patients. We discuss the function of the Drosophila BBB during infection and inflammation, drug clearance and addictions, sleep, chronic neurodegenerative disorders and epilepsy. In summary, this evidence suggests that the fruit fly, Drosophila melanogaster, can be successfully employed as a model to disentangle mechanisms underlying human diseases.
Collapse
Affiliation(s)
- Esteban G Contreras
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| | - Christian Klämbt
- University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, Münster, Germany.
| |
Collapse
|
98
|
Establishing Co-Culture Blood–Brain Barrier Models for Different Neurodegeneration Conditions to Understand Its Effect on BBB Integrity. Int J Mol Sci 2023; 24:ijms24065283. [PMID: 36982361 PMCID: PMC10049378 DOI: 10.3390/ijms24065283] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
The blood–brain barrier (BBB) is a functional interface that provides selective permeability, protection from toxic substances, transport of nutrients, and clearance of brain metabolites. Additionally, BBB disruption has been shown to play a role in many neurodegenerative conditions and diseases. Therefore, the aim of this study was to establish a functional, convenient, and efficient in vitro co-cultured BBB model that can be used for several physiological conditions related to BBB disruption. Mouse brain-derived endothelial (bEnd.3) and astrocyte (C8-D1A) cells were co-cultured on transwell membranes to establish an intact and functional in vitro model. The co-cultured model and its effects on different neurological diseases and stress conditions, including Alzheimer’s disease (AD), neuroinflammation, and obesity, have been examined by transendothelial electrical resistance (TEER), fluorescein isothiocyanate (FITC) dextran, and tight junction protein analyses. Scanning electron microscope images showed evidence of astrocyte end-feet processes passing through the membrane of the transwell. Moreover, the co-cultured model showed effective barrier properties in the TEER, FITC, and solvent persistence and leakage tests when compared to the mono-cultured model. Additionally, the immunoblot results showed that the expression of tight junction proteins such as zonula occludens-1 (ZO-1), claudin-5, and occludin-1 was enhanced in the co-culture. Lastly, under disease conditions, the BBB structural and functional integrity was decreased. The present study demonstrated that the co-cultured in vitro model mimicked the BBB’s structural and functional integrity and, under disease conditions, the co-cultured model showed similar BBB damages. Therefore, the present in vitro BBB model can be used as a convenient and efficient experimental tool to investigate a wide range of BBB-related pathological and physiological studies.
Collapse
|
99
|
Jiang G, Long Z, Wang Y, Wang Y, Xue P, Chen M, Yang K, Li W. Inhibition of mammalian target of rapamycin complex 1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the sterol-regulatory element-binding protein 1/lipoprotein receptor-associated protein 1 signaling pathway. CNS Neurosci Ther 2023. [PMID: 36890627 DOI: 10.1111/cns.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
AIMS Mammalian target of rapamycin complex 1 (mTORC1) is highly activated in diabetes, and the decrease of low-density lipoprotein receptor-associated protein 1 (LRP1) in brain microvascular endothelial cells (BMECs) is a key factor leading to amyloid-β (Aβ) deposition in the brain and diabetic cognitive impairment, but the relationship between them is still unknown. METHODS In vitro, BMECs were cultured with high glucose, and the activation of mTORC1 and sterol-regulatory element-binding protein 1 (SREBP1) was observed. mTORC1 was inhibited by rapamycin and small interfering RNA (siRNA) in BMECs. Betulin and siRNA inhibited SREBP1, observed the mechanism of mTORC1-mediated effects on Aβ efflux in BMECs through LRP1 under high-glucose conditions. Constructed cerebrovascular endothelial cell-specific Raptor-knockout (Raptorfl/+ ) mice to investigate the role of mTORC1 in regulating LRP1-mediated Aβ efflux and diabetic cognitive impairment at the tissue level. RESULTS mTORC1 activation was observed in HBMECs cultured in high glucose, and this change was confirmed in diabetic mice. Inhibiting mTORC1 corrected the reduction in Aβ efflux under high-glucose stimulation. In addition, high glucose activated the expression of SREBP1, and inhibiting of mTORC1 reduced the activation and expression of SREBP1. After inhibiting the activity of SREBP1, the presentation of LRP1 was improved, and the decrease of Aβ efflux mediated by high glucose was corrected. Raptorfl/+ diabetic mice had significantly inhibited activation of mTORC1 and SREBP1, increased LRP1 expression, increased Aβ efflux, and improved cognitive impairment. CONCLUSION Inhibiting mTORC1 in the brain microvascular endothelium ameliorates diabetic Aβ brain deposition and cognitive impairment via the SREBP1/LRP1 signaling pathway, suggesting that mTORC1 may be a potential target for the treatment of diabetic cognitive impairment.
Collapse
Affiliation(s)
- Gege Jiang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Long
- Xiang Yang No. 1 People Hospital, Affiliated Hospital of Hubei University Medicine, XiangYang, China
| | - Yaoling Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaofeng Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Department of Geriatrics, Li-Yuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minfang Chen
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Yang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
100
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|