51
|
Cui K, Yang W, Liu Z, Liu G, Li D, Sun Y, He G, Ma S, Cao Y, Jiang X, Chevalier S, Cornelis P, Wei Q, Wang Y. Chenodeoxycholic Acid-Amikacin Combination Enhances Eradication of Staphylococcus aureus. Microbiol Spectr 2023; 11:e0243022. [PMID: 36625660 PMCID: PMC9927322 DOI: 10.1128/spectrum.02430-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/07/2022] [Indexed: 01/11/2023] Open
Abstract
The rise of antibiotic resistance and dearth of novel antibiotics have posed a serious health crisis worldwide. In this study, we screened a combination of antibiotics and nonantibiotics providing a viable strategy to solve this issue by broadening the antimicrobial spectrum. We found that chenodeoxycholic acid (CDCA), a cholic acid derivative of the traditional Chinese medicine (TCM) Tanreqing (TRQ), synergizes with amikacin against Staphylococcus aureus in vitro, and this synergistic killing was effective against diverse methicillin-resistant S. aureus (MRSA) variants, including small-colony variants (SCVs), biofilm strains, and persisters. The CDCA-amikacin combination protects a mouse model from S. aureus infections. Mechanistically, CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates reactive oxygen species (ROS) generation by inhibiting superoxide dismutase activity. This work highlights the potential use of TCM components in treating S. aureus-associated infections and extend the use of aminoglycosides in eradicating Gram-positive pathogens. IMPORTANCE Multidrug resistance (MDR) is spreading globally with increasing speed. The search for new antibiotics is one of the key strategies in the fight against MDR. Antibiotic resistance breakers that may or may not have direct antibacterial action and can either be coadministered or conjugated with other antibiotics are being studied. To better expand the antibacterial spectrum of certain antibiotics, we identified one component from a traditional Chinese medicine, Tanreqing (TRQ), that increased the activity of aminoglycosides. We found that this so-called agent, chenodeoxycholic acid (CDCA), sensitizes Staphylococcus aureus to aminoglycoside killing and protects a mouse model from S. aureus infections. CDCA increases the uptake of aminoglycosides in a proton motive force-dependent manner by dissipating the chemical potential and potentiates ROS generation by inhibiting superoxide dismutase activity in S. aureus. Our work highlights the potential use of TCM or its effective components, such as CDCA, in treating antibiotic resistance-associated infections.
Collapse
Affiliation(s)
- Kaiyu Cui
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyuan Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guijian Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongying Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing, China
| | - Sylvie Chevalier
- Normandy University, University of Rouen Normandy, Laboratory of Microbiology Signals and Microenvironment, Evreux, France
| | - Pierre Cornelis
- Normandy University, University of Rouen Normandy, Laboratory of Microbiology Signals and Microenvironment, Evreux, France
| | - Qing Wei
- Nanchang Institute of Technology, Nanchang, Jiangxi, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
52
|
Tabassum H, Gull M, Rasheed A, Bano A, Ejaz H, Javed N. Molecular analysis of Panton-Valentine Leucocidin (pvl) gene among MRSA and MSSA isolates. BRAZ J BIOL 2023; 83:e250351. [PMID: 36753148 DOI: 10.1590/1519-6984.250351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 01/08/2022] [Indexed: 02/09/2023] Open
Abstract
The present study was conducted in order to determine the frequency of pvl gene among the pathogenic and healthy population isolates of Methicillin Resistant Staphylococcus aureus (MRSA) and Methicillin Sensitive Staphylococcus aureus (MSSA). For this purpose, nasal swab samples were collected from the healthy individuals (to be used as controls, all the samples were collected irrespective of the sex and age factors), the pathogenic samples were collected from different patients suffering from skin &soft tissue infections caused by S. aureus (to be used as test samples).Both of these population samples were analyzed for the presence of pvl gene. S.aureus were identified through conventional microbiological identification procedures. In the case of normal samples, 70 nasal swabs were collected and only 33 (47%) proved to be S. aureus while 20 pathogenic samples were collected and all (100%) were cleared as S. aureus. For further distribution of samples into MRSA and MSSA, antibiotic susceptibility pattern was checked by using the standard protocols of Kirby-Bauer disc diffusion method. Two antibiotic discs Oxacillin (OX: 1ug) and cefoxitin (FOX: 30ug) were used. Among healthy population, MRSA was found to be 79% (n=26) and MSSA were present as 21% (n= 7). Among pathogenic strains 100% MRSA was detected where n= 20. Detection of pvl gene among the MRSA and MSSA isolates was done by using the uniplex PCR followed by gel electrophoresis. MRSA and MSSA of normal healthy population carried 49% and 7% pvl gene respectively. While, pathogenic MRSA samples carried 46% pvl gene among them. Potentially alarming percentage of pvl gene is present among the normal healthy individuals which indicates a future threat and a major health concern.
Collapse
Affiliation(s)
- H Tabassum
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - M Gull
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - A Rasheed
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - A Bano
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| | - H Ejaz
- Jouf University, College of Applied Medical Sciences, Department of Clinical Laboratory Sciences, Sakaka, Saudi Arabia
| | - N Javed
- University of the Punjab, Institute of Microbiology & Molecular Genetics, Quaide Azam (new) campus, Lahore, Pakistan
| |
Collapse
|
53
|
AlSaleh A, Shahid M, Farid E, Kamal N, Bindayna K. Synergistic antimicrobial effect of ascorbic acid and nicotinamide with rifampicin and vancomycin against SCC mec type IV methicillin-resistant Staphylococcus aureus (MRSA). Access Microbiol 2023; 5:000475.v4. [PMID: 36910508 PMCID: PMC9996180 DOI: 10.1099/acmi.0.000475.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 02/05/2023] Open
Abstract
Background. Methicillin-resistant Staphylococcus aureus (MRSA) is a pathogenic bacteria involved in a wide spectrum of human diseases. Many virulence factors promote this widespread propagation. One important factor is acquiring antibiotic resistance genes, which leads to a reduction in the availability and efficacy of therapy options. Recently, research has suggested that the remarkable antimicrobial effect of antioxidants against superbugs such as MRSA shows synergistic effects when accompanied by antimicrobial therapy. This paper aims to examine the synergistic effects of ascorbic acid and nicotinamide with a panel of antibiotics used in antimicrobial therapy against MRSA. Material and Methods. Two SCCmec type IV MRSA reference strains (EMRSA-15 and USA300) and 10 MRSA clinical isolates feature in this paper. SCCmec typing was conducted on the 10 clinical isolates via multiplex PCR after identification. Synergy experiments on antioxidants and antibiotics were evaluated via checkerboard assay. The minimum inhibitory concentration (MIC) of each agent was determined in accordance with the Clinical and Laboratory Standards Institute (CLSI) M100 guidelines through twofold microdilution assay. Results and Discussion. Synergy (FIC <0.5) was demonstrated for ascorbic acid (1/2 to 1/4 MIC) with rifampicin (1/2 to 1/8 MIC), and also ascorbic acid (1/2 to 1/16 MIC) when associated with vancomycin (1/2 MIC). Similarly, nicotinamide (1/2 to 1/16 MIC) showed a synergistic effect when paired with low concentrations of rifampicin (1/2 to 1/16 MIC), and also (at 1/4 to 1/16 MIC) with vancomycin (1/2 MIC). All reduced MICs due to synergistic combinations demonstrated statistical significance (P<0.05). Conclusion. The synergistic activity demonstrated in associating antioxidants with antibiotics shows promise in managing superbugs. However, more research is required to better understand the mechanism of the synergy and for utilization in clinical care.
Collapse
Affiliation(s)
- Abdullah AlSaleh
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Mohammed Shahid
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Eman Farid
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Nermin Kamal
- AlSalmaniya Medical Complex, Microbiology Laboratory, Manama, Bahrain
| | - Khalid Bindayna
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| |
Collapse
|
54
|
Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance. Microorganisms 2023; 11:microorganisms11020259. [PMID: 36838224 PMCID: PMC9965861 DOI: 10.3390/microorganisms11020259] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Antibiotic resistant strains of bacteria are a serious threat to human health. With increasing antibiotic resistance in common human pathogens, fewer antibiotics remain effective against infectious diseases. Staphylococcus aureus is a pathogenic bacterium of particular concern to human health as it has developed resistance to many of the currently used antibiotics leaving very few remaining as effective treatment. Alternatives to conventional antibiotics are needed for treating resistant bacterial infections. A deeper understanding of the cellular characteristics of resistant bacteria beyond well characterized resistance mechanisms can allow for increased ability to properly treat them and to potentially identify targetable changes. This review looks at antibiotic resistance in S aureus in relation to its cellular components, the cell wall, cell membrane and virulence factors. Methicillin resistant S aureus bacteria are resistant to most antibiotics and some strains have even developed resistance to the last resort antibiotics vancomycin and daptomycin. Modifications in cell wall peptidoglycan and teichoic acids are noted in antibiotic resistant bacteria. Alterations in cell membrane lipids affect susceptibility to antibiotics through surface charge, permeability, fluidity, and stability of the bacterial membrane. Virulence factors such as adhesins, toxins and immunomodulators serve versatile pathogenic functions in S aureus. New antimicrobial strategies can target cell membrane lipids and virulence factors including anti-virulence treatment as an adjuvant to traditional antibiotic therapy.
Collapse
|
55
|
Shoaib M, Aqib AI, Muzammil I, Majeed N, Bhutta ZA, Kulyar MFEA, Fatima M, Zaheer CNF, Muneer A, Murtaza M, Kashif M, Shafqat F, Pu W. MRSA compendium of epidemiology, transmission, pathophysiology, treatment, and prevention within one health framework. Front Microbiol 2023; 13:1067284. [PMID: 36704547 PMCID: PMC9871788 DOI: 10.3389/fmicb.2022.1067284] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Staphylococcus aureus is recognized as commensal as well as opportunistic pathogen of humans and animals. Methicillin resistant strain of S. aureus (MRSA) has emerged as a major pathogen in hospitals, community and veterinary settings that compromises the public health and livestock production. MRSA basically emerged from MSSA after acquiring SCCmec element through gene transfer containing mecA gene responsible for encoding PBP-2α. This protein renders the MRSA resistant to most of the β-lactam antibiotics. Due to the continuous increasing prevalence and transmission of MRSA in hospitals, community and veterinary settings posing a major threat to public health. Furthermore, high pathogenicity of MRSA due to a number of virulence factors produced by S. aureus along with antibiotic resistance help to breach the immunity of host and responsible for causing severe infections in humans and animals. The clinical manifestations of MRSA consist of skin and soft tissues infection to bacteremia, septicemia, toxic shock, and scalded skin syndrome. Moreover, due to the increasing resistance of MRSA to number of antibiotics, there is need to approach alternatives ways to overcome economic as well as human losses. This review is going to discuss various aspects of MRSA starting from emergence, transmission, epidemiology, pathophysiology, disease patterns in hosts, novel treatment, and control strategies.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Iqra Muzammil
- Department of Medicine, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Noreen Majeed
- Institute of Microbiology, University of Agriculture, Faisalabad, Pakistan
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | | | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | | | - Afshan Muneer
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maheen Murtaza
- Department of Zoology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Kashif
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Furqan Shafqat
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project, Gansu Province/Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs/Lanzhou Institute of Husbandry and Pharmaceutical Sciences of the Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
56
|
Phenotypic and Molecular Detection of Biofilm Formation in Methicillin-Resistant Staphylococcus Aureus Isolated from Different Clinical Sources in Erbil City. Mediterr J Hematol Infect Dis 2023; 15:e2023016. [PMID: 36908866 PMCID: PMC10000948 DOI: 10.4084/mjhid.2023.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Background Staphylococcus aureus is an important causative pathogen. The production of biofilms is an important factor and makes these bacteria resistant to antimicrobial therapy. Objectives the current study aimed to assess the prevalence of resistance to antibacterial agents and to evaluate the phenotypic and genotypic characterization of biofilm formation among S. aureus strains. Methods This study included 50 isolates of Methicillin-resistant S. aureus (MRSA) and Methicillin-Susceptible S. aureus (MSSA). S. aureus was identified by molecular and conventional methods, and antimicrobial resistance was tested with a disc diffusion method. The biofilm formation was performed through the Microtiter plate method. Strains were subjected to PCR to determine the presence of nuc, mecA, icaA, icaB, icaC, and icaD genes. Results Of the 50 S. aureus isolates, 32(64%) and 18(36%) were MRSA and MSSA, respectively. A large number of MRSA and MSSA isolates showed resistance to Penicillin and Azithromycin, and a lower number of MRSA and MSSA isolates showed resistance to Amikacin Gentamicin. None of the isolates was resistant to Vancomycin. The MRSA strains had significantly higher resistance against antibiotics than MSSA strains (P = 0.0154). All isolates (MRSA and MSSA) were able to produce biofilm with levels ranging from strong (31.25 %), (16.6%) to moderate (53.12%), (50%) to weak (15.6%), (33.3%) respectively. The MRSA strains had a significantly higher biofilm formation ability than the MSSA strains (P = 0.0079). The biofilm-encoding genes were detected among isolates with different frequencies. The majority of S. aureus isolates, 42 (84%), were positive for the icaA. The prevalence rates of the icaB, icaC and icaD genes were found to be 37 (74%), 40 (80%) and 41 (82%), respectively. Conclusions The prevalence of biofilm encoding genes associated with multidrug resistance in S. aureus strains is high. Therefore, identifying epidemiology, molecular characteristics, and biofilm management of S. aureus infection would be helpful.
Collapse
|
57
|
Altwiley D, Brignoli T, Duggan S, Massey RC. Triclosan-resistant small-colony variants of Staphylococcus aureus produce less capsule, less phenol-soluble modulins, and are attenuated in a Galleria mellonella model of infection. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001277. [PMID: 36748621 PMCID: PMC9993119 DOI: 10.1099/mic.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In recent work we identified genes that confer the slow-growing and antibiotic-resistant small-colony variant (SCV) form of Staphylococcus aureus, as associated with the amount of capsule the bacteria produce. In this study we isolated a triclosan-resistant SCV (tr-SCV) and demonstrated that it produces significantly less capsule, an effect that appears to be mediated at the transcriptional stage. As with other SCVs, we found that the tr-SCV produces less toxins, and when compared to both a capsule and an Agr mutant we found the tr-SCV to be significantly attenuated in an insect model of infection.
Collapse
Affiliation(s)
- Dina Altwiley
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Department of Biological Sciences, University of Jeddah, Jeddah, Saudi Arabia
| | - Tarcisio Brignoli
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Seána Duggan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.,Schools of Microbiology and Medicine, and the APC Microbiome Ireland, UCC, Cork, Ireland
| |
Collapse
|
58
|
Kennedy KM, de Goffau MC, Perez-Muñoz ME, Arrieta MC, Bäckhed F, Bork P, Braun T, Bushman FD, Dore J, de Vos WM, Earl AM, Eisen JA, Elovitz MA, Ganal-Vonarburg SC, Gänzle MG, Garrett WS, Hall LJ, Hornef MW, Huttenhower C, Konnikova L, Lebeer S, Macpherson AJ, Massey RC, McHardy AC, Koren O, Lawley TD, Ley RE, O'Mahony L, O'Toole PW, Pamer EG, Parkhill J, Raes J, Rattei T, Salonen A, Segal E, Segata N, Shanahan F, Sloboda DM, Smith GCS, Sokol H, Spector TD, Surette MG, Tannock GW, Walker AW, Yassour M, Walter J. Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies. Nature 2023; 613:639-649. [PMID: 36697862 PMCID: PMC11333990 DOI: 10.1038/s41586-022-05546-8] [Citation(s) in RCA: 148] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/09/2022] [Indexed: 01/26/2023]
Abstract
Whether the human fetus and the prenatal intrauterine environment (amniotic fluid and placenta) are stably colonized by microbial communities in a healthy pregnancy remains a subject of debate. Here we evaluate recent studies that characterized microbial populations in human fetuses from the perspectives of reproductive biology, microbial ecology, bioinformatics, immunology, clinical microbiology and gnotobiology, and assess possible mechanisms by which the fetus might interact with microorganisms. Our analysis indicates that the detected microbial signals are likely the result of contamination during the clinical procedures to obtain fetal samples or during DNA extraction and DNA sequencing. Furthermore, the existence of live and replicating microbial populations in healthy fetal tissues is not compatible with fundamental concepts of immunology, clinical microbiology and the derivation of germ-free mammals. These conclusions are important to our understanding of human immune development and illustrate common pitfalls in the microbial analyses of many other low-biomass environments. The pursuit of a fetal microbiome serves as a cautionary example of the challenges of sequence-based microbiome studies when biomass is low or absent, and emphasizes the need for a trans-disciplinary approach that goes beyond contamination controls by also incorporating biological, ecological and mechanistic concepts.
Collapse
Affiliation(s)
- Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Marcus C de Goffau
- Tytgat Institute for Liver and Intestinal Research, Amsterdam University Medical Centers, Amsterdam, The Netherlands
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
- Wellcome Sanger Institute, Cambridge, UK
| | - Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Marie-Claire Arrieta
- International Microbiome Center, University of Calgary, Calgary, Alberta, Canada
| | - Fredrik Bäckhed
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
| | - Thorsten Braun
- Department of Obstetrics and Experimental Obstetrics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederic D Bushman
- Department of Microbiology Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joel Dore
- Université Paris-Saclay, INRAE, MetaGenoPolis, AgroParisTech, MICALIS, Jouy-en-Josas, France
| | - Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Jonathan A Eisen
- Department of Evolution and Ecology, University of California, Davis, Davis, CA, USA
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, CA, USA
- UC Davis Genome Center, University of California, Davis, Davis, CA, USA
| | - Michal A Elovitz
- Maternal and Child Health Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephanie C Ganal-Vonarburg
- Universitätsklinik für Viszerale Chirurgie und Medizin, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Michael G Gänzle
- Department of Agriculture, Food and Nutrition Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard T.H. Chan Microbiome in Public Health Center, Boston, MA, USA
- Department of Medicine and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Lindsay J Hall
- Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
- Norwich Medical School, University of East Anglia, Norwich, UK
- Chair of Intestinal Microbiome, ZIEL-Institute for Food and Health, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Curtis Huttenhower
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liza Konnikova
- Departments of Pediatrics and Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Andrew J Macpherson
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Ruth C Massey
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alice Carolyn McHardy
- Computational Biology of Infection Research, Helmholtz Centre for Infection Research, Braunschweig, Germany
- German Center for Infection Research (DZIF), Hannover Braunschweig site, Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Trevor D Lawley
- Department of Vascular Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Liam O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Jeroen Raes
- VIB Center for Microbiology, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Thomas Rattei
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Anne Salonen
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Eran Segal
- Weizmann Institute of Science, Rehovot, Israel
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- European Institute of Oncology (IEO), IRCCS, Milan, Italy
| | - Fergus Shanahan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Gordon C S Smith
- Department of Obstetrics and Gynaecology, University of Cambridge, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre, Cambridge, UK
| | - Harry Sokol
- Gastroenterology Department, AP-HP, Saint Antoine Hospital, Centre de Recherche Saint-Antoine, CRSA, INSERM and Sorbonne Université, Paris, France
- Paris Center for Microbiome Medicine (PaCeMM), Fédération Hospitalo-Universitaire, Paris, France
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gerald W Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Moran Yassour
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Microbiology and Molecular Genetics, IMRIC, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jens Walter
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
- School of Microbiology, University College Cork, Cork, Ireland.
- Department of Medicine, University College Cork, Cork, Ireland.
| |
Collapse
|
59
|
Cui K, Yang W, Liu S, Li D, Li L, Ren X, Sun Y, He G, Ma S, Zhang J, Wei Q, Wang Y. Synergistic Inhibition of MRSA by Chenodeoxycholic Acid and Carbapenem Antibiotics. Antibiotics (Basel) 2022; 12:antibiotics12010071. [PMID: 36671273 PMCID: PMC9854648 DOI: 10.3390/antibiotics12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has posed a severe global health threat. In this study, we screened an antibiotic and non-antibiotic combination that provides a viable strategy to solve this issue by broadening the antimicrobial spectrum. We found that chenodeoxycholic acid (CDCA) could synergistically act with carbapenem antibiotics to eradicate MRSA-related infections. This synergy specifically targets MRSA and was also validated using 25 clinical MRSA strains using time-kill analysis. We speculated that the underlying mechanism was associated with the interaction of penicillin-binding proteins (PBPs). As a result, the synergistic efficiency of CDCA with carbapenems targeting PBP1 was better than that of β-lactams targeting PBPs. Moreover, we showed that CDCA did not affect the expression level of PBPs, but sensitized MRSA to carbapenems by disrupting the cell membrane. In our study, we have revealed a novel synergistic combination of antibiotics and non-antibiotics to combat potential bacterial infections.
Collapse
Affiliation(s)
- Kaiyu Cui
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Dongying Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xing Ren
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jidan Zhang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qing Wei
- Nanchang Institute of Technology, Nanchang 330044, China
- Correspondence: (Q.W.); (Y.W.)
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Correspondence: (Q.W.); (Y.W.)
| |
Collapse
|
60
|
Dohle W, Su X, Nigam Y, Dudley E, Potter BVL. Synthesis and In Vitro Antimicrobial SAR of Benzyl and Phenyl Guanidine and Aminoguanidine Hydrazone Derivatives. Molecules 2022; 28:5. [PMID: 36615201 PMCID: PMC9822361 DOI: 10.3390/molecules28010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
A series of benzyl, phenyl guanidine, and aminoguandine hydrazone derivatives was designed and in vitro antibacterial activities against two different bacterial strains (Staphylococcus aureus and Escherichia coli) were determined. Several compounds showed potent inhibitory activity against the bacterial strains evaluated, with minimal inhibitory concentration (MIC) values in the low µg/mL range. Of all guanidine derivatives, 3-[2-chloro-3-(trifluoromethyl)]-benzyloxy derivative 9m showed the best potency with MICs of 0.5 µg/mL (S. aureus) and 1 µg/mL (E. coli), respectively. Several aminoguanidine hydrazone derivatives also showed good overall activity. Compounds 10a, 10j, and 10r-s displayed MICs of 4 µg/mL against both S. aureus and E. coli. In the aminoguanidine hydrazone series, 3-(4-trifluoromethyl)-benzyloxy derivative 10d showed the best potency against S. aureus (MIC 1 µg/mL) but was far less active against E. coli (MIC 16 µg/mL). Compound 9m and the para-substituted derivative 9v also showed promising results against two strains of methicillin-resistant Staphylococcus aureus (MRSA). These results provide new and potent structural leads for further antibiotic optimisation strategies.
Collapse
Affiliation(s)
- Wolfgang Dohle
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Xiangdong Su
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Yamni Nigam
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Edward Dudley
- Faculty of Medicine, Health and Life Science, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Barry V. L. Potter
- Medicinal Chemistry & Drug Discovery, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
- Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
61
|
Diversity and Dissemination of Methicillin-Resistant Staphylococcus aureus (MRSA) Genotypes in Southeast Asia. Trop Med Infect Dis 2022; 7:tropicalmed7120438. [PMID: 36548693 PMCID: PMC9781663 DOI: 10.3390/tropicalmed7120438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a successful pathogen that has achieved global dissemination, with high prevalence rates in Southeast Asia. A huge diversity of clones has been reported in this region, with MRSA ST239 being the most successful lineage. Nonetheless, description of MRSA genotypes circulating in the Southeast Asia region has, until now, remained poorly compiled. In this review, we aim to provide a better understanding of the molecular epidemiology and distribution of MRSA clones in 11 Southeast Asian countries: Singapore, Malaysia, Thailand, Vietnam, Cambodia, Lao People's Democratic Republic (PDR), Myanmar, Philippines, Indonesia, Brunei Darussalam, and Timor-Leste. Notably, while archaic multidrug-resistant hospital-associated (HA) MRSAs, such as the ST239-III and ST241-III, were prominent in the region during earlier observations, these were then largely replaced by the more antibiotic-susceptible community-acquired (CA) MRSAs, such as ST22-IV and PVL-positive ST30-IV, in recent years after the turn of the century. Nonetheless, reports of livestock-associated (LA) MRSAs remain few in the region.
Collapse
|
62
|
Szafraniec GM, Szeleszczuk P, Dolka B. Review on skeletal disorders caused by Staphylococcus spp. in poultry. Vet Q 2022; 42:21-40. [PMID: 35076352 PMCID: PMC8843168 DOI: 10.1080/01652176.2022.2033880] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 12/03/2021] [Accepted: 01/21/2022] [Indexed: 12/17/2022] Open
Abstract
Lameness or leg weakness is the main cause of poor poultry welfare and serious economic losses in meat-type poultry production worldwide. Disorders related to the legs are often associated with multifactorial aetiology which makes diagnosis and proper treatment difficult. Among the infectious agents, bacteria of genus Staphylococcus are one of the most common causes of bone infections in poultry and are some of the oldest bacterial infections described in poultry. Staphylococci readily infect bones and joints and are associated with bacterial chondronecrosis with osteomyelitis (BCO), spondylitis, arthritis, tendinitis, tenosynovitis, osteomyelitis, turkey osteomyelitis complex (TOC), bumblefoot, dyschondroplasia with osteomyelitis and amyloid arthropathy. Overall, 61 staphylococcal species have been described so far, and 56% of them (34/61) have been isolated from clinical cases in poultry. Although Staphylococcus aureus is the principal cause of poultry staphylococcosis, other Staphylococcus species, such as S. agnetis, S. cohnii, S. epidermidis, S. hyicus, S. simulans, have also been isolated from skeletal lesions. Antimicrobial treatment of staphylococcosis is usually ineffective due to the location and type of lesion, as well as the possible occurrence of multidrug-resistant strains. Increasing demand for antibiotic-free farming has contributed to the use of alternatives to antibiotics. Other prevention methods, such as better management strategies, early feed restriction or use of slow growing broilers should be implemented to avoid rapid growth rate, which is associated with locomotor problems. This review aims to summarise and address current knowledge on skeletal disorders associated with Staphylococcus spp. infection in poultry.
Collapse
Affiliation(s)
- Gustaw M. Szafraniec
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Piotr Szeleszczuk
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Beata Dolka
- Department of Pathology and Veterinary Diagnostics, Institute of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
63
|
Houshyar S, Yin H, Pope L, Zizhou R, Dekiwadia C, Hill-Yardin EL, Yeung JMC, John S, Fox K, Tran N, Cole I, Elbourne A, Truong VK, Truskewycz A. Smart Suture with Iodine Contrasting Nanoparticle for Computed Tomography. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
64
|
Wang Z, Wang L, Bian H, Huang Z, Zhang X, Xiao Y. Outer Surface-Labeled Bacteria as Live Sensors Accurately Quantitating Interfacial pH: A Smart Technique for Antimicrobial Resistance. ACS NANO 2022; 16:18344-18354. [PMID: 36373972 DOI: 10.1021/acsnano.2c06226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The techniques to quantitatively monitor environmental factors surrounding the bacterial outer surface rather than the host's subcellular regions (e.g., lysosomes) should be the key to evaluate bacterial immune escape behavior. We report wild Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) labeled with a fluorescent resonance energy transfer probe, 4SR-L-BDP, on their outer surfaces as smart live sensors to quantify interfacial pH. The dual emission of 4SR-L-BDP affords high sensitivity to pH change in a ratiometric way in the pH range of 4-8 with high precision. Notably, 4SR-L-BDP possesses an anchoring group to fix on the bacterial surface for sensing the microenvironment encountered. Super-resolution imaging clearly demonstrates the specific labeling of bacterial membranes. These live sensors are applied in two-channel ratiometric imaging to dynamically visualize and quantify their interfacial pH changes during infection of macrophages. It is found that the interfacial pH of MRSA is lower by 0.2 units compared to that of SA. Such small but critical difference in pH reflects MRSA's ability to adapt to microenvironmental pH inside macrophages. These labeled bacteria as live sensors are also proven to be practically applicable in mice models with immune deficiency and immune activation.
Collapse
Affiliation(s)
- Zehui Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lai Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hui Bian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
65
|
Burian M, Wolz C, Yazdi AS. Transcriptional adaptation of staphylococci during colonization of the authentic human environment: An overview of transcriptomic changes and their relationship to physiological conditions. Front Cell Infect Microbiol 2022; 12:1062329. [PMID: 36467739 PMCID: PMC9712997 DOI: 10.3389/fcimb.2022.1062329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/02/2022] [Indexed: 12/06/2023] Open
Abstract
Staphylococci are commensals of human skin and mucous membranes, but some species can also cause serious infections. Host niches during both colonization and infection differ greatly and are characterized by specific environmental conditions (pH, temperature, oxygen, nutrient availability, and microbiota) that can affect gene expression and virulence of microbes. To successfully occupy extremely different habitats at different anatomical sites, Staphylococci are equipped with a variety of regulatory elements that allow specific adaptation to the changing environments. Not surprisingly, gene expression in vivo can be significantly different from the expression pattern observed in vitro. Niche specific stimuli that influence the bacterial ability to either cause infection or maintain colonization are only partially understood. Here, we describe habitat specific conditions and discuss the available literature analyzing staphylococcal gene expression, focusing on Staphylococcus aureus and S. epidermidis during colonization of the nose and skin.
Collapse
Affiliation(s)
- Marc Burian
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen, Germany
| | - Amir S. Yazdi
- Department of Dermatology and Allergology, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
66
|
Fernandes A, Ramos C, Monteiro V, Santos J, Fernandes P. Virulence Potential and Antibiotic Susceptibility of S. aureus Strains Isolated from Food Handlers. Microorganisms 2022; 10:2155. [PMID: 36363746 PMCID: PMC9696720 DOI: 10.3390/microorganisms10112155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 08/27/2023] Open
Abstract
Staphylococcus spp. are common members of the normal human flora. However, some Staphylococcus species are recognised as human pathogens due to the production of several virulence factors and enterotoxins that are particularly worrisome in food poisoning. Since many of Staphylococcal food poisoning outbreaks are typically associated with cross-contamination, the detection of S. aureus on food handlers was performed. Hand swabs from 167 food handlers were analysed for the presence of S. aureus. More than 11% of the samples were positive for S. aureus. All S. aureus strains were isolated and analysed for the presence of virulence and enterotoxin genes, namely, sea, seb, sec, sed, seg, sei, tsst-1 and pvl. The same strains were phenotypically characterised in terms of antibiotic susceptibility using the disc diffusion method and antimicrobial agents from 12 different classes. A low prevalence of antibiotic-resistant strains was found, with 55.6% of the strains being sensitive to all of the antimicrobial agents tested. However, a high prevalence of resistance to macrolides was found, with 44.4% of the strains showing resistance to erythromycin. At least one of the virulence or toxin genes was detected in 61.1% of the strains, and seg was the most prevalent toxin gene, being detected in 44.4% of the strains.
Collapse
Affiliation(s)
- Adriana Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Carla Ramos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Victor Monteiro
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Joana Santos
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| | - Paulo Fernandes
- Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- CISAS, Escola Superior de Tecnologia e Gestão, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
| |
Collapse
|
67
|
Tritripmongkol P, Sangkanu S, Boripun R, Jeenkeawpieam J, Chuprom J, Nissapatorn V, Pereira MDL, Paul AK, Mitsuwan W. Robusta coffee extracts inhibit quorum sensing activity in Chromobacterium violaceum and reduce biofilms against Bacillus cereus and Staphylococcus aureus. Vet World 2022; 15:2391-2398. [DOI: 10.14202/vetworld.2022.2391-2398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: Bacillus cereus and Staphylococcus aureus cause foodborne intoxication in humans and animals. Pathogens can produce biofilms controlled by the quorum sensing system. The study aimed to investigate the antibacterial, antibiofilm, and anti-quorum sensing activities of Coffea canephora P. ex Fr. (Robusta coffee) extracts against B. cereus and S. aureus.
Materials and Methods: Ethanol extracts of fruit peels and seeds of Robusta coffee were tested for antibacterial activity against B. cereus and S. aureus using a broth microdilution assay. Reduction of the biofilm formation and elimination of the viability of mature biofilm-grown cells of B. cereus and S. aureus were determined. Inhibition of quorum sensing activity in Chromobacterium violaceum by the extracts was investigated using the disk diffusion method and flask incubation assay.
Results: Fresh fruit peel extract showed the strongest antibacterial activity against B. cereus and S. aureus with minimum inhibitory concentration (MIC) values of 2 and 4 mg/mL, respectively. However, the extracts did not inhibit Escherichia coli, avian pathogenic E. coli, and Pseudomonas aeruginosa at 8 mg/mL. Significant inhibition of biofilm formation at 1/2 × MIC of the fresh peel extract was detected in B. cereus (56.37%) and S. aureus (39.69 %), respectively. At 8 × MIC of the fresh peel extract, a significant elimination of the mature biofilm viability was detected in B. cereus (92.48%) and S. aureus (74.49%), respectively. The results showed that fresh and dried peel fruit extracts at 1/2 × MIC significantly reduced violacein production with the highest percentage inhibition ranging from 44.53 to 47.48% at 24 h (p ≤ 0.05).
Conclusion: The results of the present study suggest the potential therapeutic benefits of Robusta coffee extracts in inhibiting the growth, biofilm, and quorum sensing of both B. cereus and S. aureus. The results put forward an alternative strategy to control the foodborne intoxications caused by both pathogens.
Collapse
Affiliation(s)
| | - Suthinee Sangkanu
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Ratchadaporn Boripun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Juthatip Jeenkeawpieam
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Julalak Chuprom
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Southeast Asia Water Team (SEA Water Team), World Union for Herbal Drug Discovery, and Research Excellence Center for Innovation and Health Products, Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Alok K. Paul
- School of Pharmacy and Pharmacology, University of Tasmania, Hobart, TAS 7001, Australia
| | - Watcharapong Mitsuwan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Center of Excellence in Innovation of Essential Oil, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| |
Collapse
|
68
|
Gu H, Kato T, Kumeta H, Kumaki Y, Tsukamoto T, Kikukawa T, Demura M, Ishida H, Vogel HJ, Aizawa T. Three-Dimensional Structure of the Antimicrobial Peptide Cecropin P1 in Dodecylphosphocholine Micelles and the Role of the C-Terminal Residues. ACS OMEGA 2022; 7:31924-31934. [PMID: 36120057 PMCID: PMC9475619 DOI: 10.1021/acsomega.2c02778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/23/2022] [Indexed: 05/31/2023]
Abstract
Cecropin P1 (CP1) isolated from a large roundworm Ascaris suum, which is found in pig intestines, has been extensively studied as a model antimicrobial peptide (AMP). However, despite being a model AMP, its antibacterial mechanism is not well understood, particularly the function of its C-terminus. By using an Escherichia coli overexpression system with calmodulin as a fusion partner, we succeeded in the mass expression of recombinant peptides, avoiding toxicity to the host and degradation of CP1. The structure of the recombinant 15N- and 13C-labeled CP1 and its C-terminus truncated analogue in dodecylphosphocholine (DPC) micelles was determined by NMR. In this membrane-mimetic environment, CP1 formed an α-helix for almost its entire length, except for a short region at the C-terminus, and there was no evidence of a hinge, which is considered important for the expression of activity in other cecropins. Several NMR analyses showed that the entire length of CP1 was protected from water by micelles. Since the loss of the C-terminus of the analogue had little effect on the NMR structure or its interaction with the micelle, we investigated another role of the C-terminus of CP1 in its antimicrobial activity. The results showed that the C-terminal region affected the DNA-binding capacity of CP1, and this mechanism of action was also newly suggested that it contributed to the antimicrobial activity of CP1.
Collapse
Affiliation(s)
- Hao Gu
- Graduate
School of Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Takasumi Kato
- Graduate
School of Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Hiroyuki Kumeta
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Yasuhiro Kumaki
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Takashi Tsukamoto
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Takashi Kikukawa
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Makoto Demura
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| | - Hiroaki Ishida
- Department
of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Hans J. Vogel
- Department
of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tomoyasu Aizawa
- Faculty
of Advanced Life Science, Hokkaido University, N10, W8, Kita-ku, Sapporo 060-0810, Japan
| |
Collapse
|
69
|
Charoenkwan P, Kanthawong S, Schaduangrat N, Li’ P, Moni MA, Shoombuatong W. SCMRSA: a New Approach for Identifying and Analyzing Anti-MRSA Peptides Using Estimated Propensity Scores of Dipeptides. ACS OMEGA 2022; 7:32653-32664. [PMID: 36120041 PMCID: PMC9476499 DOI: 10.1021/acsomega.2c04305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Staphylococcus aureus is deemed to be one of the major causes of hospital and community-acquired infections, especially in methicillin-resistant S. aureus (MRSA) strains. Because antimicrobial peptides have captured attention as novel drug candidates due to their rapid and broad-spectrum antimicrobial activity, anti-MRSA peptides have emerged as potential therapeutics for the treatment of bacterial infections. Although experimental approaches can precisely identify anti-MRSA peptides, they are usually cost-ineffective and labor-intensive. Therefore, computational approaches that are able to identify and characterize anti-MRSA peptides by using sequence information are highly desirable. In this study, we present the first computational approach (termed SCMRSA) for identifying and characterizing anti-MRSA peptides by using sequence information without the use of 3D structural information. In SCMRSA, we employed an interpretable scoring card method (SCM) coupled with the estimated propensity scores of 400 dipeptides. Comparative experiments indicated that SCMRSA was more effective and could outperform several machine learning-based classifiers with an accuracy of 0.960 and Matthews correlation coefficient of 0.848 on the independent test data set. In addition, we employed the SCMRSA-derived propensity scores to provide a more in-depth explanation regarding the functional mechanisms of anti-MRSA peptides. Finally, in order to serve community-wide use of the proposed SCMRSA, we established a user-friendly webserver which can be accessed online at http://pmlabstack.pythonanywhere.com/SCMRSA. SCMRSA is anticipated to be an open-source and useful tool for screening and identifying novel anti-MRSA peptides for follow-up experimental studies.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern
Management and Information Technology, College of Arts, Media and
Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sakawrat Kanthawong
- Department
of Microbiology, Faculty of Medicine, Khon
Kaen University, Khon Kaen 40002, Thailand
| | - Nalini Schaduangrat
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Pietro Li’
- Department
of Computer Science and Technology, University
of Cambridge, Cambridge CB3 0FD, U.K.
| | - Mohammad Ali Moni
- Artificial
Intelligence & Digital Health, School of Health and Rehabilitation
Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland St Lucia, Queensland 4072, Australia
| | - Watshara Shoombuatong
- Center
of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
70
|
Prevalence of Constitutive and Inducible Clindamycin Resistance among Methicillin-Resistant Staphylococcus aureus Isolates in a Tertiary Care Hospital, Kashmir Valley. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2022. [DOI: 10.52547/jommid.10.3.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
71
|
Development and Evaluation of Duplex MIRA-qPCR Assay for Simultaneous Detection of Staphylococcus aureus and non-aureus Staphylococci. Microorganisms 2022; 10:microorganisms10091734. [PMID: 36144336 PMCID: PMC9502308 DOI: 10.3390/microorganisms10091734] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus spp., especially Staphylococcus aureus (S. aureus), is an important pathogen in hospital-acquired infection and food poisoning. Here, we developed a multienzyme isothermal rapid amplification combined with duplex quantitative PCR (duplex MIRA-qPCR) method, which can simultaneously detect the S. aureus species-specific conserved gene FMN-bgsfp and the Staphylococcus genus-specific conserved gene tuf. This assay enabled the amplification of DNA within 20 min at a constant temperature of 39 °C. Specificity analysis indicated that all nine common Staphylococcus species were positive and non-Staphylococcus spp. were negative for tuf gene, whereas S. aureus was positive, non-aureus Staphylococci species and non-Staphylococcus spp. were negative for FMN-bgsfp gene, suggesting that duplex MIRA-qPCR exhibited high specificity. Meanwhile, the sensitivity was tested and the limit of detection (LoD) was 3 × 102 CFU/mL. The coefficient variation values ranged from 0.13% to 2.09%, indicating that the assay had good repeatability. Furthermore, all the nine common Staphylococcus species (including S. aureus) could be detected from four kinds of simulated samples and the LoD of S. aureus was 8.56 × 103 CFU/mL. In conclusion, the duplex MIRA-qPCR has advantages of stronger specificity, lower detection threshold, shorter detection time, and simpler operation, which is an effective tool to detect S. aureus and non-aureus Staphylococci spp. infections rapidly.
Collapse
|
72
|
Characterization and antimicrobial activity of fungal endophytes from Crocus caspius (Iridaceae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
73
|
Horká M, Růžička F, Siváková A, Karásek P, Šalplachta J, Pantůček R, Roth M. Capillary electrophoretic methods for classification of methicillin-resistant Staphylococcus aureus (MRSA) clones. Anal Chim Acta 2022; 1227:340305. [DOI: 10.1016/j.aca.2022.340305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
|
74
|
Human Palatine Tonsils Are Linked to Alzheimer’s Disease through Function of Reservoir of Amyloid Beta Protein Associated with Bacterial Infection. Cells 2022; 11:cells11152285. [PMID: 35892582 PMCID: PMC9330135 DOI: 10.3390/cells11152285] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/29/2022] Open
Abstract
Amyloid-β (Aβ)-peptide production or deposition in the neuropathology of Alzheimer’s disease (AD) was shown to be caused by chronic inflammation that may be induced by infection, but the role of pathogenic-bacteria-related AD-associated Aβ is not yet clearly understood. In this study, we validated the hypothesis that there is a correlation between the Aβ-protein load and bacterial infection and that there are effects of bacteria, Staphylococcus aureus (S. aureus), on the Aβ load in the inflammatory environment of human tonsils. Here, we detected Aβ-peptide deposits in human tonsil tissue as well as tissue similar to tonsilloliths found in the olfactory cleft. Interestingly, we demonstrated for the first time the presence of Staphylococcus aureus (S. aureus) clustered around or embedded in the Aβ deposits. Notably, we showed that treatment with S. aureus upregulated the Aβ-protein load in cultures of human tonsil organoids and brain organoids, showing the new role of S. aureus in Aβ-protein aggregation. These findings suggest that a reservoir of Aβ and pathogenic bacteria may be a possible therapeutic target in human tonsils, supporting the treatment of antibiotics to prevent the deposition of Aβ peptides via the removal of pathogens in the intervention of AD pathogenesis.
Collapse
|
75
|
Skrzat-Klapaczyńska A, Paciorek M, Horban A, Kowalska JD. Factors associated with the risk of upper respiratory tract bacterial infections among HIV-positive patients. PLoS One 2022; 17:e0270770. [PMID: 35797374 PMCID: PMC9262189 DOI: 10.1371/journal.pone.0270770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/16/2022] [Indexed: 11/18/2022] Open
Abstract
Background
The risk and characteristics of upper respiratory tract (URT) bacterial infections (URT-BI) among HIV (+) patients is understudied. We analyzed factors associated with its occurrence and the spectrum of culturable pathogens among patients routinely followed at the HIV Out-Patient Clinic in Warsaw.
Methods
All HIV (+) patients with available URT swab culture were included into analyses. Patients were followed from the day of registration in the clinic until first positive URT swab culture or last clinical visit from January 1, 2007 to July 31, 2016. Cox proportional hazard models were used to identify factors associated with positive URT swabs culture (those with p<0.1 in univariate included into multivariable).
Results
In total 474 patients were included into the analyses, 166 with culturable URT swab. In general, 416 (87.8%) patients were male, 342 (72.1%) were infected through MSM contact, 253 (53.4%) were on antiretroviral therapy. Median follow-up time was 3.4 (1.3–5.7) years, age 35.2 (30.6–42.6) years and CD4+ count 528 (400–685) cells/μl. The most common cultured bacteria were S. aureus (40.4%) and S. pyogenes (13.9%) (Table 1). Patients with culturable URT-BI were more likely to be MSM (68.5% vs 78.9%; p<0.016), have detectable viral load (20.9% vs 12.0%; p<0.0001) and CD4+ cell count <500 cells/μl (55.2% vs 39.0%; p = 0.003) (Table 2). In multivariate survival analyses detectable viral load (HR3.13; 95%Cl: 2.34–4.19) and MSM (1.63;1.09–2.42) were increasing, but older age (0.63;0.58–0.69, per 5 years older) and higher CD4+ count (0.90;0.85–0.95, per 100 cells/μl) decreasing the risk of culturable URT-BI (Table 2).
Conclusions
Culturable URT-BI are common among HIV-positive patients with high CD4+ count. Similarly to general population most common cultured bacteria were S. aureus and S. pyogenes. Risk factors identified in multivariate survival analysis indicate that younger MSM patients with detectable HIV viral load are at highest risk. In clinical practice this group of patients requires special attention.
Collapse
Affiliation(s)
- Agata Skrzat-Klapaczyńska
- Department for Adult’s Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
- * E-mail:
| | - Marcin Paciorek
- Department for Adult’s Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Horban
- Department for Adult’s Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Justyna D. Kowalska
- Department for Adult’s Infectious Diseases, Hospital for Infectious Diseases, Medical University of Warsaw, Warsaw, Poland
- Hospital for Infectious Diseases, HIV Out-Patient Clinic, Warsaw, Poland
| |
Collapse
|
76
|
Menard G, Silard C, Suriray M, Rouillon A, Augagneur Y. Thirty Years of sRNA-Mediated Regulation in Staphylococcus aureus: From Initial Discoveries to In Vivo Biological Implications. Int J Mol Sci 2022; 23:ijms23137346. [PMID: 35806357 PMCID: PMC9266662 DOI: 10.3390/ijms23137346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus is a widespread livestock and human pathogen that colonizes diverse microenvironments within its host. Its adaptation to the environmental conditions encountered within humans relies on coordinated gene expression. This requires a sophisticated regulatory network, among which regulatory RNAs (usually called sRNAs) have emerged as key players over the last 30 years. In S. aureus, sRNAs regulate target genes at the post-transcriptional level through base–pair interactions. The functional characterization of a subset revealed that they participate in all biological processes, including virulence, metabolic adaptation, and antibiotic resistance. In this review, we report 30 years of S. aureus sRNA studies, from their discovery to the in-depth characterizations of some of them. We also discuss their actual in vivo contribution, which is still lagging behind, and their place within the complex regulatory network. These shall be key aspects to consider in order to clearly uncover their in vivo biological functions.
Collapse
Affiliation(s)
- Guillaume Menard
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Chloé Silard
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Marie Suriray
- CHU Rennes, INSERM, BRM (Bacterial Regulatory RNAs and Medicine), SB2H (Service de Bactériologie Hygiène-Hospitalière), University Rennes, UMR_S 1230, F-35000 Rennes, France; (G.M.); (M.S.)
| | - Astrid Rouillon
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
| | - Yoann Augagneur
- INSERM, BRM (Bacterial Regulatory RNAs and Medicine), University Rennes, UMR_S 1230, F-35000 Rennes, France; (C.S.); (A.R.)
- Correspondence: ; Tel.: +33-223234631
| |
Collapse
|
77
|
Santra HK, Banerjee D. Broad-Spectrum Antimicrobial Action of Cell-Free Culture Extracts and Volatile Organic Compounds Produced by Endophytic Fungi Curvularia Eragrostidis. Front Microbiol 2022; 13:920561. [PMID: 35814705 PMCID: PMC9260591 DOI: 10.3389/fmicb.2022.920561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Endophytes are the mutualistic microorganisms that reside within the host plant and promote plant growth in adverse conditions. Plants and their endophytes are engaged in a symbiotic relationship that enables endophytes to access bioactive genes of the ethnomedicinal plants, and, as a result, endophytes are constantly addressed in the sector of pharmaceuticals and agriculture for their multidomain bio-utility. The gradual increase of antimicrobial resistance can be effectively countered by the endophytic metabolites. In these circumstances, in the present investigation, endophytic Curvularia eragrostidis HelS1 was isolated from an ethnomedicinally valuable plant Helecteris isora from East India's forests. The secondary volatile and non-volatile metabolites are extracted from HelS1 and are found to be effective broad-spectrum antimicrobials. A total of 26 secondary metabolites (9 volatiles and 17 non-volatiles) are extracted from the isolate, which exhibits effective antibacterial [against six Gram-positive and seven Gram-negative pathogens with a minimum inhibitory concentrations (MIC) value ranging from 12.5 to 400 μg ml-1] and antifungal (against seven fungal plant pathogens) activity. The secondary metabolite production was optimised by one variable at a time technique coupled with the response surface methodology. The results revealed that there was a 34% increase in antibacterial activity in parameters with 6.87 g L-1 of fructose (as a carbon source), 3.79 g L-1 of peptone (as a nitrogen source), pH 6.75, and an inoculation period of 191.5 h for fermentation. The volatile metabolite production was also found to be optimum when the medium was supplemented with yeast extract and urea (0.2 g L-1) along with dextrose (40 g L-1). Amongst extracted volatile metabolites, 1-H-indene 1 methanol acetate, tetroquinone, N, N-diphenyl-2-nitro-thio benzamide, Trans 1, 2-diethyl-trans-2-decalinol, naphthalene, and azulene are found to be the most effective. Our investigation opens up opportunities in the sector of sustainable agriculture as well as the discovery of novel antimicrobials against dreadful phyto and human pathogens.
Collapse
Affiliation(s)
| | - Debdulal Banerjee
- Microbiology and Microbial Biotechnology Laboratory, Department of Botany and Forestry, Vidyasagar University, Midnapore, India
| |
Collapse
|
78
|
Phytochemical Investigation of Cordia africana Lam. Stem Bark: Molecular Simulation Approach. Molecules 2022; 27:molecules27134039. [PMID: 35807285 PMCID: PMC9268672 DOI: 10.3390/molecules27134039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The current work planned to evaluate Cordia africana Lam. stem bark, a traditionally used herb in curing of different ailments in Africa such as gastritis and wound infections, based on phytochemical and antibacterial studies of two pathogenic microorganisms: methicillin-resistant Staphylococcus aureus (MRSA) and Helicobacter pylori. Methods: High performance liquid chromatography (HPLC) profiling was used for qualitative and quantitative investigation of the ethanol extract. The minimum inhibitory concentration (MIC) of the ethanolic extract and isolated compounds was estimated using the broth microdilution method and evidenced by molecular dynamics simulations. Results: Four compounds were isolated and identified for the first time: α-amyrin, β-sitosterol, rosmarinic acid (RA) and methyl rosmarinate (MR). HPLC analysis illustrated that MR was the dominant phenolic acid. MR showed the best bacterial inhibitory activity against MRSA and H. pylori with MIC 7.81 ± 1.7 μg/mL and 31.25 ± 0.6, respectively, when compared to clarithromycin and vancomycin, respectively. Conclusion: The antibacterial activity of the stem bark of Cordia africana Lam. was evidenced against MRSA and H. pylori. Computational modeling of the studied enzyme-ligands systems reveals that RA and MR can potentially inhibit both MRSA peptidoglycan transpeptidases and H. pylori urease, thereby creating a pathway via the use of a double target approach in antibacterial treatment.
Collapse
|
79
|
Jahn K, Handtke S, Palankar R, Kohler TP, Wesche J, Wolff M, Bayer J, Wolz C, Greinacher A, Hammerschmidt S. α-hemolysin of Staphylococcus aureus impairs thrombus formation. J Thromb Haemost 2022; 20:1464-1475. [PMID: 35303391 DOI: 10.1111/jth.15703] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Toxins are key virulence determinants of pathogens and can impair the function of host immune cells, including platelets. Insights into pathogen toxin interference with platelets will be pivotal to improve treatment of patients with bacterial bloodstream infections. MATERIALS AND METHODS In this study, we deciphered the effects of Staphylococcus aureus toxins α-hemolysin, LukAB, LukDE, and LukSF on human platelets and compared the effects with the pore forming toxin pneumolysin of Streptococcus pneumoniae. Activation of platelets and loss of platelet function were investigated by flow cytometry, aggregometry, platelet viability, fluorescence microscopy, and intracellular calcium release. Thrombus formation was assessed in whole blood. RESULTS α-hemolysin (Hla) is known to be a pore-forming toxin. Hla-induced calcium influx initially activates platelets as indicated by CD62P and αIIbβ3 integrin activation, but also induces finally alterations in the phenotype of platelets. In contrast to Hla and pneumolysin, S. aureus bicomponent pore-forming leukocidins LukAB, LukED, and LukSF do not bind to platelets and had no significant effect on platelet activation and viability. The presence of small amounts of Hla (0.2 µg/ml) in whole blood abrogates thrombus formation indicating that in systemic infections with S. aureus the stability of formed thrombi is impaired. Damage of platelets by Hla was not neutralized by intravenous immune globulins. CONCLUSION Our findings might be of clinical relevance for S. aureus induced endocarditis. Stabilizing the aortic-valve thrombi by inhibiting Hla-induced impairment of platelets might reduce the risk for septic (micro-)embolization.
Collapse
Affiliation(s)
- Kristin Jahn
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Stefan Handtke
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Thomas P Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Jan Wesche
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Martina Wolff
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Janina Bayer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
- Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| | - Andreas Greinacher
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
80
|
Xu D, Xiao J, Jiang D, Liu Y, Gou Z, Li J, Shi M, Wang X, Guo Y, Ma L, Yin H, Guo L, Zhu C, Zhang Y, Guo H. Inhibitory effects of a water-soluble jujube polysaccharide against biofilm-forming oral pathogenic bacteria. Int J Biol Macromol 2022; 208:1046-1062. [PMID: 35378158 DOI: 10.1016/j.ijbiomac.2022.03.196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 01/08/2023]
Abstract
Oral diseases caused by infectious pathogens raises significant concerns in public health. In the light of side effects of current antibiotics therapy and growing drug resistance of pathogenic bacteria, natural products have become attractive alternatives for antibiotics agents in dental practice. This current study investigated the effects of polysaccharides extracted from Zizyphus jujuba Mill. on three major oral biofilm-forming pathogenic bacteria including caries-inducing Streptococcus mutans, lesions-causing MRSA, and periodontitis-related Porphyromonas gingivalis, as well as general oral microbiota. Our results demonstrated that jujube polysaccharide prepared in this study was mainly composed by galacturonic acid with an average molecular weight 242 kDa, which were further characterized for structural features by FT-IR spectra and NMR spectroscopy analysis. This jujube polysaccharide was shown to exhibit remarkable inhibitory effects against all the tested oral bacterial pathogens through various mechanisms including growth inhibition, biofilm prevention and disruption, intervention of bacterial infection (adhesion and invasion), attenuation of cytotoxicity, modulation of excessive inflammatory response of LPS-stimulated and MRSA-infected macrophages as well as positive regulation of oral microbiota. The present study paves the way to explore jujube polysaccharides for the prevention and treatment of oral infectious diseases. Graphic Abstract.
Collapse
Affiliation(s)
- Dan Xu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Jiu Xiao
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Dazhao Jiang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yaxin Liu
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhuolun Gou
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jing Li
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Mingyao Shi
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xinyi Wang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yaxuan Guo
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Lingyan Ma
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Hong Yin
- Bio-Agriculture Institute of Shaanxi, Shaanxi Academy of Sciences, Xi'an, China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Center for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an, China
| | - Chunhui Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Hui Guo
- Department of Endocrinology, First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
81
|
Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics (Basel) 2022; 11:antibiotics11040527. [PMID: 35453277 PMCID: PMC9032627 DOI: 10.3390/antibiotics11040527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Staphylococcus aureus, the most common pathogen in skin and soft tissue infections (SSTI), harbors many well-characterized virulence genes. However, the expression of many of them in SSTIs is unknown. In this study, S. aureus virulence genes expressed in SSTI were investigated. Methods: Fifty-three subjects presenting to the outpatient’s care and emergency departments with a purulent SSTI at two medical centers in Wisconsin, USA, were enrolled in the study. Total mRNA was extracted from the purulent or swab materials, made into cDNA and sequenced on MiSeq platform. The relative cDNA counts to gmk and identifications of the transcripts were carried out with respect to USA300 reference genome and using SAMTOOLS v.1.3 and BWA, respectively. Result: A significantly higher cDNA count was observed for many of the virulence and regulatory gene transcripts in the pus samples compared to the swab samples relative to the cDNA counts for gmk, a housekeeping gene. They were for lukS-PV (18.6 vs. 14.2), isaA (13.4 vs. 8.5), ssaA (4.8 vs. 3.1), hlgC (1.4 vs. 1.33), atl (17.7 vs. 8.33), clfA (3.9 vs. 0.83), eno (6.04 vs. 3.16), fnbA (5.93 vs. 0.33), saeS (6.3 vs. 1.33), saeR (5.4 vs. 3.33) and agrC (5.6 vs. 1.5). Conclusions: A relative increase in the transcripts of several toxins, adhesion and regulatory genes with respect to a gmk in purulent materials suggests their role in situ during SSTIs, perhaps in an orchestrated manner.
Collapse
|
82
|
Pickens CI, Wunderink RG. Methicillin-Resistant Staphylococcus aureus Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia. Semin Respir Crit Care Med 2022; 43:304-309. [PMID: 35170002 PMCID: PMC10623688 DOI: 10.1055/s-0041-1740583] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP). MRSA pneumonia is associated with significant morbidity and mortality. Several virulence factors allow S. aureus to become an effective pathogen. The polysaccharide intracellular adhesin allows for the production of biofilms, some strains can produce capsular polysaccharides that protect against phagocytosis, microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) allow for colonization of epithelial surfaces, and S. aureus secretes several exotoxins that aid in tissue destruction. The α-hemolysin exotoxin secreted by S. aureus is one of the most important virulence factors for the bacteria. The diagnosis of MRSA pneumonia can be challenging; the infection may present as a mild respiratory infection or severe respiratory failure and septic shock. Many individuals are colonized with MRSA and thus a positive nasopharyngeal swab does not confirm infection in the lower respiratory tract. The management of MRSA pneumonia has evolved. Historically, vancomycin has been the primary antibiotic used to treat MRSA pneumonia. Over the past decade, prospective studies have shown that linezolid leads to higher rates of clinical cure. Monoclonal antibodies are being studied as potential therapeutic options. MRSA is an important cause of HAP/VAP; novel diagnostics may facilitate rapid diagnosis of this infection and the available literature should be used to make informed decisions on management.
Collapse
Affiliation(s)
- Chiagozie I. Pickens
- Division of Critical Care, Department of Medicine, Pulmonary, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Richard G. Wunderink
- Division of Critical Care, Department of Medicine, Pulmonary, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
83
|
Naorem RS, Pangabam BD, Bora SS, Goswami G, Barooah M, Hazarika DJ, Fekete C. Identification of Putative Vaccine and Drug Targets against the Methicillin-Resistant Staphylococcus aureus by Reverse Vaccinology and Subtractive Genomics Approaches. Molecules 2022; 27:2083. [PMID: 35408485 PMCID: PMC9000511 DOI: 10.3390/molecules27072083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an opportunistic pathogen and responsible for causing life-threatening infections. The emergence of hypervirulent and multidrug-resistant (MDR) S. aureus strains led to challenging issues in antibiotic therapy. Consequently, the morbidity and mortality rates caused by S. aureus infections have a substantial impact on health concerns. The current worldwide prevalence of MRSA infections highlights the need for long-lasting preventive measures and strategies. Unfortunately, effective measures are limited. In this study, we focus on the identification of vaccine candidates and drug target proteins against the 16 strains of MRSA using reverse vaccinology and subtractive genomics approaches. Using the reverse vaccinology approach, 4 putative antigenic proteins were identified; among these, PrsA and EssA proteins were found to be more promising vaccine candidates. We applied a molecular docking approach of selected 8 drug target proteins with the drug-like molecules, revealing that the ZINC4235426 as potential drug molecule with favorable interactions with the target active site residues of 5 drug target proteins viz., biotin protein ligase, HPr kinase/phosphorylase, thymidylate kinase, UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase, and pantothenate synthetase. Thus, the identified proteins can be used for further rational drug or vaccine design to identify novel therapeutic agents for the treatment of multidrug-resistant staphylococcal infection.
Collapse
Affiliation(s)
- Romen Singh Naorem
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Bandana Devi Pangabam
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| | - Sudipta Sankar Bora
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Gunajit Goswami
- Multidisciplinary Research Unit, Jorhat Medical College and Hospital, Jorhat 785008, India;
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
- DBT—North East Centre for Agricultural Biotechnology (DBT-AAU Center), Assam Agricultural University, Jorhat 785013, India;
| | - Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat 785013, India; (M.B.); (D.J.H.)
| | - Csaba Fekete
- Department of General and Environmental Microbiology, Institute of Biology and Sport Biology, University of Pécs, Ifusag utja. 6, 7624 Pecs, Hungary; (R.S.N.); (B.D.P.)
| |
Collapse
|
84
|
Ghaffar N, Javad S, Farrukh MA, Shah AA, Gatasheh MK, Al-Munqedhi BMA, Chaudhry O. Metal nanoparticles assisted revival of Streptomycin against MDRS Staphylococcus aureus. PLoS One 2022; 17:e0264588. [PMID: 35324924 PMCID: PMC8947119 DOI: 10.1371/journal.pone.0264588] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/06/2022] [Indexed: 11/18/2022] Open
Abstract
The ability of microorganisms to generate resistance outcompetes with the generation of new and efficient antibiotics. Therefore, it is critically required to develop novel antibiotic agents and treatments to control bacterial infections. Green synthesized metallic and metal oxide nanoparticles are considered as the potential means to target bacteria as an alternative to antibiotics. Nanoconjugates have also attracted attention because of their increased biological activity as compared to free antibiotics. In the present investigation, silver nanoparticles (AgNPs), zinc oxide nanoparticles (ZnO NPs), copper oxide nanoparticles (CuO NPs), and iron oxide nanoparticles (FeO NPs) have been synthesized by using leaf extract of Ricinus communis. Characterization of nanoparticles was done by using UV-Vis Spectroscopy, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy, Energy Dispersive X-Ray Analyzer, X-ray Diffraction Analysis, and Dynamic Light Scattering Particle Size Analyzer. Interestingly, Streptomycin when combined with AgNPs, ZnO NPs, CuO NPs, and FeO NPs showed enhanced antibacterial activity against clinical isolates of S. aureus which suggested synergism between the nanoparticles and antibiotics. The highest enhanced antibacterial potential of Streptomycin was observed in conjugation with ZnO NPs (11 ± 0.5 mm) against S. aureus. Minimum inhibitory concentration of conjugates of AgNPs, ZnO NPs, CuO NPs, and FeO NPs with streptomycin against S. aureus was found to be 3.12, 2.5,10, and 12.5 μg/mL respectively. The considerable point of the present investigation is that S. aureus, which was resistant to streptomycin becomes highly susceptible to the same antibiotic when combined with nanoparticles. This particular observation opens up windows to mitigate the current crisis due to antibiotic resistance to combat antimicrobial infections efficiently.
Collapse
Affiliation(s)
- Nadia Ghaffar
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Sumera Javad
- Department of Botany, Lahore College for Women University, Lahore, Pakistan
| | - Muhammad Akhyar Farrukh
- Department of Chemistry, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Anis Ali Shah
- Department of Botany, University of Education, Lahore, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Bander M A Al-Munqedhi
- Department Botony and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
85
|
Desouky SE, Abu-Elghait M, Fayed EA, Selim S, Yousuf B, Igarashi Y, Abdel-Wahab BA, Mohammed Alsuhaibani A, Sonomoto K, Nakayama J. Secondary Metabolites of Actinomycetales as Potent Quorum Sensing Inhibitors Targeting Gram-Positive Pathogens: In Vitro and In Silico Study. Metabolites 2022; 12:metabo12030246. [PMID: 35323689 PMCID: PMC8955454 DOI: 10.3390/metabo12030246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/07/2023] Open
Abstract
Anti-virulence agents are non-bacteriostatic and non-bactericidal emerging therapeutic options which hamper the production of virulence factors in pathogenic flora. In Staphylococcus aureus and Enterococcus faecalis, regulation of virulence genes’ expression occurs through the cyclic peptide-mediated accessory gene regulator (agr) and its ortholog fsr quorum sensing systems, respectively. In the present study, we screened a set of 54 actinomycetales secondary metabolites as novel anti-virulence compounds targeting quorum sensing system of the Gram-positive bacteria. The results indicated that four compounds, Phenalinolactones A–D, BU–4664LMe, 4,5-dehydrogeldamycin, and Questinomycin A, potentially inhibit the agr quorum sensing system and hemolytic activity of S. aureus. On the other hand, Decatromicin A and B, Okilactomycin, Rishirilide A, Abyssomicin I, and Rebeccamycin selectively blocked the fsr quorum sensing system and the gelatinase production in E. faecalis at sub-lethal concentrations. Interestingly, Synerazol uniquely showed the capability to inhibit both fsr and agr quorum sensing systems. Further, in silico molecular docking studies were performed which provided closer insights into the mode of action of these compounds and proposed that the inhibitory activity of these compounds could be attributed to their potential ability to bind to the ATP-active site of S. aureus AgrA. Taken together, our study highlights the potential of actinomycetales secondary metabolites with diverse structures as anti-virulence quorum sensing inhibitors.
Collapse
Affiliation(s)
- Said E. Desouky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (K.S.); (J.N.)
- Correspondence:
| | - Mohammed Abu-Elghait
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt;
| | - Eman A. Fayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt;
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72341, Saudi Arabia;
| | - Basit Yousuf
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (K.S.); (J.N.)
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan;
| | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 7111, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Amnah Mohammed Alsuhaibani
- Department of Physical Sport Science, College of Education, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (K.S.); (J.N.)
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (B.Y.); (K.S.); (J.N.)
| |
Collapse
|
86
|
S R, V P, D'Souza AO, Vinod R. Comparison of Phenotypic and Genotypic Characterization Methods for the Detection of Methicillin-Resistant Staphylococcus Aureus. Cureus 2022; 14:e23396. [PMID: 35481290 PMCID: PMC9033515 DOI: 10.7759/cureus.23396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Methicillin-resistant Staphylococcus aureus (MRSA) is associated with high morbidity and mortality due to the development of antimicrobial resistance secondary to irrational use of antibiotics, nonadherence to infection control practices, and increased use of intravascular devices in healthcare systems. Detection of MRSA is critical in clinical microbiology laboratories as it helps identify MRSA carriers and avoid treatment failure in patients. Hence, this study compared various phenotypic methods with the standard genotyping method to determine a method that permits rapid and accurate detection of MRSA. Materials & Methods Staphylococcus aureus (S. aureus) was initially identified based on colony morphology, Gram staining, standard biochemical tests, and antibiotic susceptibility using disk diffusion. MRSA was identified based on the detection of the mecA gene by polymerase chain reaction (PCR) and subsequent gel electrophoresis. Disk diffusion using cefoxitin or oxacillin and mannitol salt agar with 6-µg/ml oxacillin were used for phenotypic detection of MRSA. The D test was used to detect inducible clindamycin resistance in S. aureus isolates. Results Of the 100 S. aureus isolates analyzed, 37% were identified as MRSA by PCR and the cefoxitin disk diffusion method; however, only 31% were detected by the oxacillin disk diffusion method and 29% by the mannitol salt agar method. The sensitivity of the cefoxitin disk diffusion test, oxacillin disk diffusion, and mannitol salt agar methods was 86.05%, 83.78%, and 70.73%, respectively. Specificity was 100% for all the three phenotypic methods (p < 0.001). Notably, inducible clindamycin resistance was found in 37.2% of the MRSA isolates, indicating potential challenges in treatment. Conclusion Among the three phenotypic methods tested, the cefoxitin disk diffusion method had 100% sensitivity and specificity, which is similar to that of PCR-based MRSA detection. Hence, the cefoxitin disk diffusion method is recommended for use in clinical laboratories, where molecular methods are not available as it is both cost-effective and easy to perform.
Collapse
Affiliation(s)
- Rajeswarie S
- Microbiology, Al-Azhar Medical College & Super Specialty Hospital, Thodupuzha, IND
| | - Pradha V
- Microbiology, Sri Lakshmi Narayana Institute of Medical Sciences, Puducherry, IND
| | | | - R Vinod
- Microbiology, Sri Venkateshwaraa Medical College Hospital and Research Centre, Puducherry, IND
| |
Collapse
|
87
|
Ibarra-Hernández JA, Gómez-Balderas R, Nivón-Ramírez D, García-Estrada JG, Mendoza-Jiménez DA, Martínez-Zaldívar A, Cruz-Sánchez TA, Tovar-Betancourt N, Luna-Mora RA, Penieres-Carrillo JG. Novel Compounds Based on Chalcone- and Pyrazoline-DIM Hybrids as Inhibitors of Staphylococcus aureus, Synthesis, DFT Studies, Biological Evaluation and Docking Studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
88
|
Nadar S, Khan T, Patching SG, Omri A. Development of Antibiofilm Therapeutics Strategies to Overcome Antimicrobial Drug Resistance. Microorganisms 2022; 10:microorganisms10020303. [PMID: 35208758 PMCID: PMC8879831 DOI: 10.3390/microorganisms10020303] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
A biofilm is a community of stable microorganisms encapsulated in an extracellular matrix produced by themselves. Many types of microorganisms that are found on living hosts or in the environment can form biofilms. These include pathogenic bacteria that can serve as a reservoir for persistent infections, and are culpable for leading to a broad spectrum of chronic illnesses and emergence of antibiotic resistance making them difficult to be treated. The absence of biofilm-targeting antibiotics in the drug discovery pipeline indicates an unmet opportunity for designing new biofilm inhibitors as antimicrobial agents using various strategies and targeting distinct stages of biofilm formation. The strategies available to control biofilm formation include targeting the enzymes and proteins specific to the microorganism and those involved in the adhesion pathways leading to formation of resistant biofilms. This review primarily focuses on the recent strategies and advances responsible for identifying a myriad of antibiofilm agents and their mechanism of biofilm inhibition, including extracellular polymeric substance synthesis inhibitors, adhesion inhibitors, quorum sensing inhibitors, efflux pump inhibitors, and cyclic diguanylate inhibitors. Furthermore, we present the structure–activity relationships (SAR) of these agents, including recently discovered biofilm inhibitors, nature-derived bioactive scaffolds, synthetic small molecules, antimicrobial peptides, bioactive compounds isolated from fungi, non-proteinogenic amino acids and antibiotics. We hope to fuel interest and focus research efforts on the development of agents targeting the uniquely complex, physical and chemical heterogeneous biofilms through a multipronged approach and combinatorial therapeutics for a more effective control and management of biofilms across diseases.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, St. John Institute of Pharmacy and Research, Mumbai 400056, India;
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM’s Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, India;
| | - Simon G. Patching
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
- Correspondence: or (S.G.P.); (A.O.)
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada
- Correspondence: or (S.G.P.); (A.O.)
| |
Collapse
|
89
|
Hu X, Hu K, Liu Y, Zeng L, Hu N, Chen X, Zhang W. Risk factors for methicillin-resistant Staphylococcus aureus colonization and infection in patients with human immunodeficiency virus infection: A systematic review and meta-analysis. J Int Med Res 2022; 50:3000605211063019. [PMID: 35040345 PMCID: PMC8777361 DOI: 10.1177/03000605211063019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the potential factors affecting methicillin-resistant Staphylococcus aureus (MRSA) colonization and infection in patients with human immunodeficiency virus (HIV) infection. METHODS A systematic search of publications listed in electronic from inception up to August 2020 was conducted. A random-effects model was used to calculate odds ratio (OR) with 95% confidence interval (CI). RESULTS A total of 31 studies reporting 1410 MRSA events in 17 427 patients with HIV infection were included. Previous hospitalization (OR 1.80; 95% CI 1.37, 2.36), previous antibiotic therapy (OR 2.69; 95% CI 2.09, 3.45), CD4+ count (OR 1.79; 95% CI 1.41, 2.28), Centers for Disease Control and Prevention classification of stage C (OR 2.66; 95% CI 1.80, 3.93), skin lesions (OR 2.02; 95% CI 1.15, 3.55), intravenous device use (OR 2.61; 95% CI 1.59, 4.29) and an MRSA colonization history (OR 6.30; 95% CI 2.50, 15.90) were significantly associated with an increased risk of MRSA colonization and infection. Antiretroviral therapy (OR 0.71; 95% CI 0.50, 0.99) and current antibiotic use (OR 0.13; 95% CI 0.05, 0.32) were significantly associated with a reduced risk of MRSA colonization and infection. CONCLUSION MRSA colonization and infection in HIV-infected patients is associated with a number of risk factors.
Collapse
Affiliation(s)
- Xuefei Hu
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Keao Hu
- Department of Urology, The First Clinical College of Nanchang University Medical College, Nanchang, Jiangxi Province, China
| | - Yanling Liu
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lingbing Zeng
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Niya Hu
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Xiaowen Chen
- Clinical Laboratory of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Wei Zhang
- Department of Respiration, 117970First Affiliated Hospital of Nanchang University, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| |
Collapse
|
90
|
Shahbandeh M, Moosazadeh Moghaddam M, Golmohammadi R, Mirnejad R. The antimicrobial effect of quorum sensing autoinducers of Pseudomonas aeruginosa, C12-HSL and C4-HSL, against MDR Staphylococcus aureus isolates. Comp Immunol Microbiol Infect Dis 2022; 81:101747. [PMID: 35030534 DOI: 10.1016/j.cimid.2022.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 12/26/2021] [Accepted: 01/05/2022] [Indexed: 12/01/2022]
Abstract
In the current study, we investigated the antibacterial activity of main quorum sensing autoinducers of Pseudomonas aeruginosa, C12-HSL and C4-HSL, against MDR Staphylococcus aureus isolates and their synergistic effects with some common antibiotics. Forty clinical isolates of S. aureus were collected and their antibiotic susceptibility pattern was evaluated. Then, 10 resistant isolates were selected for further studies. In the following, the antibacterial activity of quorum sensing C12-HSL and C4-HSL inducers of P. aeruginosa was evaluated against selected isolates based on the microdilution method and Time Killing assay as well as their synergistic activity with selected antibiotics. The ability of inductors to hemolysis and their cytotoxicity on CHO and HeLa cell lines was also assessed. For the assessment of antibacterial activity, Acinetobacter baumannii was used as negative control. The results demonstrated that C12 and C4 have antibacterial activity against MDR S. aureus isolates but had no effect on A. baumannii. Time Killing test showed that at 2X MIC concentration, the maximum inhibition (100%) is observed after 120 min for C12 and 240 min for C4. The IC50 of inducers was about 512 μg/ml. In addition, no synergistic effects were observed.
Collapse
Affiliation(s)
- Mahsa Shahbandeh
- Young Researchers and Elite Club, Saveh Branch, Islamic Azad University, Saveh, Iran
| | | | - Reza Golmohammadi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
91
|
Laabei M, Peacock SJ, Blane B, Baines SL, Howden BP, Stinear TP, Massey RC. Significant variability exists in the cytotoxicity of global methicillin-resistant Staphylococcus aureus lineages. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34928202 PMCID: PMC8744995 DOI: 10.1099/mic.0.001119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Staphylococcus aureus is a major human pathogen where the emergence of antibiotic resistant lineages, such as methicillin-resistant S. aureus (MRSA), is a major health concern. While some MRSA lineages are restricted to the healthcare setting, the epidemiology of MRSA is changing globally, with the rise of specific lineages causing disease in healthy people in the community. In the past two decades, community-associated MRSA (CA-MRSA) has emerged as a clinically important and virulent pathogen associated with serious skin and soft-tissue infections (SSTI). These infections are primarily cytotoxin driven, leading to the suggestion that hypervirulent lineages/multi-locus sequence types (STs) exist. To examine this, we compared the cytotoxicity of 475 MRSA isolates representing five major MRSA STs (ST22, ST93, ST8, ST239 and ST36) by employing a monocyte-macrophage THP-1 cell line as a surrogate for measuring gross cytotoxicity. We demonstrate that while certain MRSA STs contain highly toxic isolates, there is such variability within lineages to suggest that this aspect of virulence should not be inferred from the genotype of any given isolate. Furthermore, by interrogating the accessory gene regulator (Agr) sequences in this collection we identified several Agr mutations that were associated with reduced cytotoxicity. Interestingly, the majority of isolates that were attenuated in cytotoxin production contained no mutations in the agr locus, indicating a role of other undefined genes in S. aureus toxin regulation.
Collapse
Affiliation(s)
- Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AY, UK
- *Correspondence: Maisem Laabei,
| | - Sharon J. Peacock
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Beth Blane
- Department of Medicine, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Box 157, Cambridge, CB2 0QQ, UK
| | - Sarah L. Baines
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Benjamin P. Howden
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ruth C. Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- *Correspondence: Ruth C. Massey,
| |
Collapse
|
92
|
Alrashidi A, Jafar M, Higgins N, Mulligan C, Varricchio C, Moseley R, Celiksoy V, Houston DMJ, Heard CM. A Time-Kill Assay Study on the Synergistic Bactericidal Activity of Pomegranate Rind Extract and Zn (II) against Methicillin-Resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Biomolecules 2021; 11:1889. [PMID: 34944534 PMCID: PMC8699308 DOI: 10.3390/biom11121889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 01/19/2023] Open
Abstract
There is a need for new antimicrobial systems due to increased global resistance to current antimicrobials. Pomegranate rind extract (PRE) and Zn (II) ions both possess a level of antimicrobial activity and work has previously shown that PRE/Zn (II) in combination possesses synergistic activity against Herpes simplex virus and Micrococcus luteus. Here, we determined whether such synergistic activity extended to other, more pathogenic, bacteria. Reference strains of methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were cultured and subjected to challenge by PRE, Zn (II), or PRE + Zn (II), in time-kill assays. Data were obtained independently by two researchers using different PRE preparations. Statistically significant synergistic activity for PRE + Zn (II) was shown for all four bacterial strains tested compared to untreated controls, although the extent of efficacy and timescales varied. Zn (II) exerted activity and at 1 h, it was not possible to distinguish with PRE + Zn (II) combination treatment in all cases. PRE alone showed low activity against all four bacteria. Reproducible synergistic bactericidal activity involving PRE and Zn (II) has been confirmed. Potential mechanisms are discussed. The development of a therapeutic system that possesses demonstrable antimicrobial activity is supported which lends itself particularly to topical delivery applications, for example MRSA infections.
Collapse
Affiliation(s)
- Amal Alrashidi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Mohammed Jafar
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Niamh Higgins
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Ciara Mulligan
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Carmine Varricchio
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Ryan Moseley
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - Vildan Celiksoy
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff CF14 4XY, UK;
| | - David M. J. Houston
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| | - Charles M. Heard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff CF10 3NB, UK; (A.A.); (M.J.); (N.H.); (C.M.); (C.V.); (V.C.); (D.M.J.H.)
| |
Collapse
|
93
|
Mohamed MA, Nasr M, Elkhatib WF, Eltayeb WN, Elshamy AA, El-Sayyad GS. Nanobiotic formulations as promising advances for combating MRSA resistance: susceptibilities and post-antibiotic effects of clindamycin, doxycycline, and linezolid. RSC Adv 2021; 11:39696-39706. [PMID: 35494109 PMCID: PMC9044563 DOI: 10.1039/d1ra08639a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial activity and post-antibiotic effects (PAEs) are both important parameters in determination of the dosage regimen of antimicrobial agents. In the present study, antimicrobial activity and PAEs of clindamycin, doxycycline, linezolid, and their nanobiotic formulations were evaluated against two methicillin resistant Staphylococcus aureus clinical isolates (MRSA) encoded (MRSA-S1 and MRSA-S2). Nanobiotic formulations increased the susceptibility of MRSA isolates by 4-64 folds as compared to their conventional ones. The PAE values were determined after exposure of MRSA isolates for 1 h to 10× the MICs of the tested antibiotics. The duration of PAEs were recorded after bacterial growth in Mueller Hinton broth (MHB) free from antibiotic has been restored. The PAE values for MRSA-S1 were 2.5 h for the conventional antibiotics. However, the PAEs for nanobiotics were 4 h for both clindamycin and linezolid, while 3 h for doxycycline. For MRSA-S2, linezolid and linezolid nanobiotics PAEs were 3 h. PAEs of clindamycin and clindamycin nanobiotics were 3.75 h and 4 h, respectively. Doxycycline and doxycycline nanobiotics revealed the same PAEs patterns of 3.5 h. The findings of the current study may positively influence the pharmacodynamics of the antibiotics and consequently the dosage regimen of nanobiotics as well as on their clinical outcome.
Collapse
Affiliation(s)
- Mennatallah A Mohamed
- Microbiology Department, Faculty of Pharmacy, Misr International University Cairo 19648 Egypt
| | - Maha Nasr
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia Cairo 11566 Egypt
| | - Walid F Elkhatib
- Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St. Abbassia Cairo 11566 Egypt +20-2-24051107 +20-2-24051120
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
| | - Wafaa N Eltayeb
- Microbiology Department, Faculty of Pharmacy, Misr International University Cairo 19648 Egypt
| | - Aliaa A Elshamy
- Microbiology and Public Health Department, Faculty of Pharmacy and Drug Technology, Heliopolis University for Sustainable Development Cairo Belbes Road Cairo 11788 Egypt
| | - Gharieb S El-Sayyad
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University New Galala City Suez Egypt
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt +20-2-22749298 +20-2-22727413
| |
Collapse
|
94
|
Miruka SA, Aboge GO, Macharia RW, Obiero GO, Omwenga IM. Beta hemolysin gene of Staphylococcus phage 3AJ_2017 genome is a suitable molecular marker for identification and characterization of pathogenic Staphylococcus aureus. Vet Med Sci 2021; 8:845-851. [PMID: 34878220 PMCID: PMC8959332 DOI: 10.1002/vms3.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Staphylococcus aureus cause diseases both in humans and animals. These diseases range from mild to fatal infections thus necessitating development of a specific molecular method for detection of pathogenic S. aureus. OBJECTIVES To identify and analyze genetic profile of pathogenic S. aureus using bacteriophage based genetic biomarkers. METHODS Using culture and biochemical methods, 148 S. aureus (87 %) were isolated from 170 raw milk samples taken from 10 dairy farms in Marsabit and Isiolo counties in Northern Kenya between June 2016 and February 2017. The samples were collected directly from dairy lactating cows previously diagnosed with S. aureus in a follow-up study. The isolates were analyzed by PCR and sequencing of beta hemolysin (hlb) gene. The genetic relationship between five Kenyan S. aureus isolates and five isolates previously identified was inferred. RESULTS From the 96 isolates screened for hlb gene, 75 (78.1%) tested positive. Some of the positive isolates yielded a band size of 975 bp, while others 1100 bp. Through Basic Local Alignment Search Tool (BLAST) search analysis, the two different band sizes (975 bp and 1100 bp) were both confirmed to be hlb gene from S. aureus isolates indicating that the difference in band size may have been due to deletions that were detected in the 975 bp hlb gene. Some S. aureus isolates from Kenya appeared to be closely related to isolates from other parts of the world, while some showed a distant relationship. CONCLUSIONS Phage-derived hlb gene is a suitable molecular marker for detection of pathogenic S. aureus.
Collapse
Affiliation(s)
- Silviane A Miruka
- Center for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Gabriel O Aboge
- Center for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya.,Public Health Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Rosaline W Macharia
- Center for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - George O Obiero
- Center for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya
| | - Isaac M Omwenga
- Center for Biotechnology and Bioinformatics, College of Biological and Physical Sciences, University of Nairobi, Nairobi, Kenya
| |
Collapse
|
95
|
Bzdil J, Zouharova M, Nedbalcova K, Sladecek V, Senk D, Holy O. Oxacillin (Methicillin) Resistant Staphylococci in Domestic Animals in the Czech Republic. Pathogens 2021; 10:pathogens10121585. [PMID: 34959540 PMCID: PMC8706185 DOI: 10.3390/pathogens10121585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to describe the prevalence of different Staphylococcus species isolated from pathological processes and lesions in domestic animals in the Czech Republic and to detect and describe oxacillin (methicillin)-resistant strains (MRS). During the years 2019–2020, a total of 5218 veterinary clinical samples from the Czech Republic were tested. Testing was performed by culture methods and typing by molecular phenotypic methods MALDI-TOF MS and PCR. Antimicrobial susceptibility testing of the strains was performed by the disk diffusion method. A total of 854 staphylococci strains were identified (16.37% prevalence), out of which 43 strains of 6 species of staphylococci were MRS (n = 43; 0.82% prevalence). Of the MRS strains, the most prevalent species were Staphylococcus pseudintermedius (n = 24; 0.46% prevalence) and Staphylococcus aureus (n = 7; 0.13% prevalence). Susceptibility testing showed resistance to beta-lactam antibiotics and, depending on the species, also to trimethoprim/sulfamethoxazole, gentamicin, tetracycline, erythromycin, clindamycin, and enrofloxacin. For further characterization of MRS, PCR assay for virulence factor genes was performed. Seven of the 14 target genes were observed only in S. aureus, except for the eno gene encoding laminin-binding protein, which was also detected in other staphylococci. It is necessary to emphasize the issue of correct using of antimicrobials in practice and antibiotic policy in university teaching and to create stricter legislation that would prevent the widespread use of antimicrobials in veterinary medicine, especially in livestock to reduce the emergence and spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Jaroslav Bzdil
- Ptacy s.r.o., Valasska Bystrice 194, 75627 Valasska Bystrice, Czech Republic; (J.B.); (V.S.); (D.S.)
| | - Monika Zouharova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute Brno, Hudcova 296/70, 62100 Brno, Czech Republic; (M.Z.); (K.N.)
| | - Katerina Nedbalcova
- Department of Infectious Diseases and Preventive Medicine, Veterinary Research Institute Brno, Hudcova 296/70, 62100 Brno, Czech Republic; (M.Z.); (K.N.)
| | - Vladimir Sladecek
- Ptacy s.r.o., Valasska Bystrice 194, 75627 Valasska Bystrice, Czech Republic; (J.B.); (V.S.); (D.S.)
| | - David Senk
- Ptacy s.r.o., Valasska Bystrice 194, 75627 Valasska Bystrice, Czech Republic; (J.B.); (V.S.); (D.S.)
| | - Ondrej Holy
- Science and Research Centre, Faculty of Health Sciences, Palacky University Olomouc, Hnevotinska 3, 77515 Olomouc, Czech Republic
- Correspondence: ; Tel.: +420-585632818
| |
Collapse
|
96
|
Isolation and Genetic Characterization of Vancomycin-resistant and mecC+ Methicillin-resistant Staphylococcus aureus Strains in Clinical Samples of Bojnurd, Northeastern Iran. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.118949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The emergence of antibiotic-resistant Staphylococcus aureus strains is one of the major concerns about the various staphylococcal infections. Vancomycin is one the most important effective antibiotics on staphylococcal lethal infections. To date, vancomycin-resistant strains are increasingly isolated in different parts of the world, and it is alerting. Objectives: The current study was designed to evaluate the prevalence, and antibiotic susceptibility pattern of methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) isolates in the main tertiary hospital of Bojnurd, Iran. Methods: Staphylococcus aureus isolates were collected from different clinical samples in Imam Reza Hospital of Bojnurd. After identification of isolates through using conventional methods, they were evaluated by agar screening, disk diffusion, and minimum inhibitory concentration (MIC) methods to determine resistance to vancomycin and methicillin. We also performed polymerase chain reaction (PCR) for the detection of mecA, mecC, vanA, and vanB genes. After confirmation of vancomycin resistance, genetic analysis was performed using SCCmec, agr, and spa typing, and multilocus sequence typing (MLST) methods on VRSA isolates. Results: We found four vancomycin-resistant isolates (1.29%). Also, 75% of isolates were resistant to cefoxitin. Using the PCR method, mecA was found in 73%, mecC in 0.64%, and vanA in 1.29% of isolates. Interestingly, we found two mecC positive isolates in MRSA isolates. The alpha-hemolysin (81.81%) and enterotoxin C (27%) had the highest and lowest toxins percentage, respectively. Among mecA positive isolates, SCCmec IV (37%), SCCmec III (31.27%), SCCmec I (14%), SCCmec II (11%), and SCCmec V (5.7%) were the most prevalent SCCmec types, respectively. It should be noted that the two mecC positive isolates belonged to SCCmec XI. Agr I (76.29%) was the highest agr type. We recognized t037 as the dominant spa type, and ST239, ST6, ST97, and ST8 were found in VRSA isolates. Conclusions: In our study, the frequency of mecA genes in MRSA isolates was very high. It seems that the resistant isolates belonged to endemic clones of Iran.
Collapse
|
97
|
Zhao L, Huang X, Zhang T, Zhang X, Jiang M, Lu H, Sui G, Zhao Y, Zhao W, Liu X. A point-of-care test device for MRSA rapid detection. J Pharm Biomed Anal 2021; 209:114464. [PMID: 34915322 DOI: 10.1016/j.jpba.2021.114464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
Staphylococcus aureus (SA) is one of the most common pathogenic bacteria, and methicillin-resistant SA (MRSA) is an equally common drug-resistant bacteria. MRSA detection is of great significance for clinical diagnosis, medication guidance, and prevention of antibiotic abuse. Traditional MRSA detection using the culture method is time-consuming, laborious, and difficult to conduct rapid on-site detection. In this research, we developed a device for rapid MRSA detection, which can detect the nuc gene in SA and mecA gene in MRSA simultaneously for 30-40 min. After simple sample processing, the mixture can be directly loaded onto the chip device. The detection results can be directly determined by a color change, with a limitation of approximately 102 copies. This isothermal amplification chip device can be widely applied in many fields, with simple operation and low contamination.
Collapse
Affiliation(s)
- Linlin Zhao
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Xiaochun Huang
- Department of Laboratory, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Tong Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Xinlian Zhang
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Mengni Jiang
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China
| | - Huijun Lu
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Guodong Sui
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China
| | - Yue Zhao
- Liaocheng Center for Disease Control and Prevention, 2 East Hunan Road, Liaocheng 252000, Shandong, PR China
| | - Wang Zhao
- Shanghai Key laboratory of Atmospheric Particle Pollution Prevention (LAP3), Department of Environmental Science & Engineering, Fudan University, 2005 Songhu Road, Shanghai 200438, PR China.
| | - Xiao Liu
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai 200433, PR China.
| |
Collapse
|
98
|
Shape shifter: redirection of prolate phage capsid assembly by staphylococcal pathogenicity islands. Nat Commun 2021; 12:6408. [PMID: 34737316 PMCID: PMC8569155 DOI: 10.1038/s41467-021-26759-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus pathogenicity islands (SaPIs) are molecular parasites that hijack helper phages for their transfer. SaPIbov5, the prototypical member of a family of cos type SaPIs, redirects the assembly of ϕ12 helper capsids from prolate to isometric. This size and shape shift is dependent on the SaPIbov5-encoded protein Ccm, a homolog of the ϕ12 capsid protein (CP). Using cryo-electron microscopy, we have determined structures of prolate ϕ12 procapsids and isometric SaPIbov5 procapsids. ϕ12 procapsids have icosahedral end caps with Tend = 4 architecture and a Tmid = 14 cylindrical midsection, whereas SaPIbov5 procapsids have T = 4 icosahedral architecture. We built atomic models for CP and Ccm, and show that Ccm occupies the pentameric capsomers in the isometric SaPIbov5 procapsids, suggesting that preferential incorporation of Ccm pentamers prevents the cylindrical midsection from forming. Our results highlight that pirate elements have evolved diverse mechanisms to suppress phage multiplication, including the acquisition of phage capsid protein homologs. Phage-inducible chromosomal islands (PICIs) are a group of mobile genetic elements that hijack the replication and assembly machinery of helper bacteriophages. Here the authors describe a mechanism by which a group of PICIs from Staphylococcus aureus re-direct the assembly pathway of their helpers using a capsid protein homolog.
Collapse
|
99
|
Katsukunya J, Makurira R, Mukanganyama S. Ozoroa insignis reticulata (Baker f.) R. Fern. & A. Fern. Root Extract Inhibits the Production of Extracellular Proteases by Staphylococcus aureus. Biochem Res Int 2021; 2021:5599129. [PMID: 34745663 PMCID: PMC8570894 DOI: 10.1155/2021/5599129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 07/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Treatment of infections caused by S. aureus has become a challenge due to the emergency of resistant strains. Ozoroa reticulata root extracts have been used in traditional medicine to treat throat and chest pains in Zimbabwe. The objective of the study was to determine the effects of O. reticulata root bark extracts on the production of extracellular proteases by S. aureus. The root barks were collected, dried, and crushed into powder. To obtain different phytoconstituents, plant extractions were performed. Extractions were carried out using two solvent mixtures: ethanol : water (50 : 50 v/v) and dichloromethane : methanol (50 : 50 v/v). Serial exhaustive extractions were also performed using methanol, ethanol, dichloromethane, acetone, ethyl acetate, hexane, and water. The broth microdilution assays were used to assess the antibacterial effects of the Ozoroa reticulata root bark extracts against S. aureus. Ciprofloxacin was used as a positive control. Qualitative screening for extracellular protease production by S. aureus on BCG-skim milk agar plates using the most potent extract was carried out. The proteolytic zones were measured and expressed as the ratio of the diameter of the colony to the total diameter of the colony plus the zone of hydrolysis (P z values). The ethyl acetate extract was found to be the most potent inhibitor of the growth of S. aureus with 99% inhibition and a minimum inhibitory concentration (MIC) of 100 µg/mL. Inhibition of extracellular protease production was directly proportional to the concentration of the extract. At 100 µg/mL, the ethyl acetate extract had a P z value of 0.84, indicative of mild proteolytic activity. A P z value of 0.94 was observed at a concentration of 200 µg/mL and signified weak proteolytic activity. In conclusion, the extract inhibited the production of extracellular proteases in S. aureus. Further work on the isolation and purification of bioactive compounds responsible for inhibiting the production of extracellular proteases is of importance in the discovery of agents with antivirulent effects on S. aureus.
Collapse
Affiliation(s)
- Jonathan Katsukunya
- Department of Biotechnology and Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt. Pleasant, Harare, Zimbabwe
| | - Rumbidzai Makurira
- Department of Biotechnology and Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt. Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Biotechnology and Biochemistry, University of Zimbabwe, P.O. Box MP 167, Mt. Pleasant, Harare, Zimbabwe
| |
Collapse
|
100
|
Contribution of Coagulase and Its Regulator SaeRS to Lethality of CA-MRSA 923 Bacteremia. Pathogens 2021; 10:pathogens10111396. [PMID: 34832552 PMCID: PMC8623987 DOI: 10.3390/pathogens10111396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Coagulase is a critical factor for distinguishing Staphylococcus aureus and coagulase-negative Staphylococcus. Our previous studies demonstrated that the null mutation of coagulase (coa) or its direct regulator, SaeRS, significantly enhanced the ability of S. aureus (CA-MRSA 923) to survive in human blood in vitro. This led us to further investigate the role of coagulase and its direct regulator, SaeRS, in the pathogenicity of CA-MRSA 923 in bacteremia during infection. In this study, we found that the null mutation of coa significantly decreased the mortality of CA-MRSA 923; moreover, the single null mutation of saeRS and the double deletion of coa/saeRS abolished the virulence of CA-MRSA 923. Moreover, the mice infected with either the saeRS knockout or the coa/saeRS double knockout mutant exhibited fewer histological lesions and less neutrophils infiltration in the infected kidneys compared to those infected with the coa knockout mutant or their parental control. Furthermore, we examined the impact of coa and saeRS on bacterial survival in vitro. The null mutation of coa had no impact on bacterial survival in mice blood, whereas the deletion mutation of saeRS or coa/saeRS significantly enhanced bacterial survival in mice blood. These data indicate that SaeRS plays a key role in the lethality of CA-MRSA 923 bacteremia, and that coagulase is one of the important virulence factors that is regulated by SaeRS and contributes to the pathogenicity of CA-MRSA 923.
Collapse
|