51
|
Ma WF, Duan XC, Han L, Zhang LL, Meng XM, Li YL, Wang M. Vanillic acid alleviates palmitic acid-induced oxidative stress in human umbilical vein endothelial cells via Adenosine Monophosphate-Activated Protein Kinase signaling pathway. J Food Biochem 2019; 43:e12893. [PMID: 31353730 DOI: 10.1111/jfbc.12893] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/10/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022]
Abstract
Vanillic acid (VA), one of the phenolic acids metabolized by anthocyanidins, can modulate vascular reactivity by reducing the superoxide. We investigated that VA alleviated fatty acid-induced oxidative stress and clarified its potential mechanisms in human umbilical vein endothelial cells (HUVECs). Our results showed that VA reduced the production of reactive oxygen species and malondialdehyde levels. It also restored mitochondrial membrane potential and enhanced the activities of antioxidant enzymes. In addition, VA promoted the expression of p-Nrf2 and HO-1 through LKB1/AMPK signaling pathway, as well as the level of SIRT1 and PGC-1α. Moreover, compound C reduced the effect of VA on the enhancement of p-Nrf2 and HO-1. These results indicated that AMPK was an important target molecule of VA in the process of alleviating oxidative stress in HUVECs, providing a new potential evidence for vascular protection of anthocyanin in vitro. PRACTICAL APPLICATIONS: As a phenolic derivative and phase II metabolite of anthocyanins in vivo, VA can be found in various edible plants and fruits. This study revealed that VA improved oxidative stress in endothelial cells stimulated by palmitic acid by activating AMPK and its downstream proteins. VA could be a potential functional material for the protection of diabetic vascular complications.
Collapse
Affiliation(s)
- Wen-Fang Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Xu-Chang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Ling-Ling Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Xue-Mei Meng
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| | - Yun-Long Li
- Institute of Agro-Food Science Technology, Shanxi Academy of Agricultural Sciences, Taiyuan, P.R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, P.R. China
| |
Collapse
|
52
|
Biomarkers of Oxidative Stress in Metabolic Syndrome and Associated Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8267234. [PMID: 31191805 PMCID: PMC6525823 DOI: 10.1155/2019/8267234] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease's severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.
Collapse
|
53
|
Hu M, Zhang Y, Guo X, Jia W, Liu G, Zhang J, Li J, Cui P, Sferruzzi-Perri AN, Han Y, Wu X, Ma H, Brännström M, Shao LR, Billig H. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am J Physiol Endocrinol Metab 2019; 316:E794-E809. [PMID: 30860876 DOI: 10.1152/ajpendo.00359.2018] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) are at increased risk of miscarriage, which often accompanies the hyperandrogenism and insulin resistance seen in these patients. However, neither the combinatorial interaction between these two PCOS-related etiological factors nor the mechanisms of their actions in the uterus during pregnancy are well understood. We hypothesized that hyperandrogensim and insulin resistance exert a causative role in miscarriage by inducing defects in uterine function that are accompanied by mitochondrial-mediated oxidative stress, inflammation, and perturbed gene expression. Here, we tested this hypothesis by studying the metabolic, endocrine, and uterine abnormalities in pregnant rats after exposure to daily injection of 5α-dihydrotestosterone (DHT; 1.66 mg·kg body wt-1·day-1) and/or insulin (6.0 IU/day) from gestational day 7.5 to 13.5. We showed that whereas DHT-exposed and insulin-exposed pregnant rats presented impaired insulin sensitivity, DHT + insulin-exposed pregnant rats exhibited hyperandrogenism and peripheral insulin resistance, which mirrors pregnant PCOS patients. Compared with controls, hyperandrogenism and insulin resistance in the dam were associated with alterations in uterine morphology and aberrant expression of genes responsible for decidualization (Prl8a2, Fxyd2, and Mt1g), placentation (Fcgr3 and Tpbpa), angiogenesis (Flt1, Angpt1, Angpt2, Ho1, Ccl2, Ccl5, Cxcl9, and Cxcl10) and insulin signaling (Akt, Gsk3, and Gluts). Moreover, we observed changes in uterine mitochondrial function and homeostasis (i.e., mitochondrial DNA copy number and the expression of genes responsible for mitochondrial fusion, fission, biogenesis, and mitophagy) and suppression of both oxidative and antioxidative defenses (i.e., reactive oxygen species, Nrf2 signaling, and interactive networks of antioxidative stress responses) in response to the hyperandrogenism and insulin resistance. These findings demonstrate that hyperandrogenism and insulin resistance induce mitochondria-mediated damage and a resulting imbalance between oxidative and antioxidative stress responses in the gravid uterus.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Xiaozhu Guo
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Wenyan Jia
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Guoqi Liu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Jiao Zhang
- Department of Acupuncture and Moxibustion, Second Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Juan Li
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Peng Cui
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Yanhua Han
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine , Harbin , China
| | - Hongxia Ma
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Guangzhou Medical University , Guangzhou , China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
54
|
Yu Z, Lin L, Jiang Y, Chin I, Wang X, Li X, Lo EH, Wang X. Recombinant FGF21 Protects Against Blood-Brain Barrier Leakage Through Nrf2 Upregulation in Type 2 Diabetes Mice. Mol Neurobiol 2019; 56:2314-2327. [PMID: 30022432 PMCID: PMC6339597 DOI: 10.1007/s12035-018-1234-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/10/2018] [Indexed: 01/02/2023]
Abstract
Blood-brain barrier (BBB) damage is a characteristic feature of diabetes mellitus pathology and plays significant roles in diabetes-associated neurological disorders. However, effective treatments for diabetes targeting BBB damage are yet to be developed. Fibroblast growth factor 21 (FGF21) is a potent regulator of lipid and glucose metabolism. In this study, we tested the hypothesis that recombinant FGF21 (rFGF21) administration may reduce type 2 diabetes (T2D)-induced BBB disruption via NF-E2-related factor-2 (Nrf2) upregulation. Our experimental results show that rFGF21 treatment significantly ameliorated BBB permeability and preserved junction protein expression in db/db mice in vivo. This protective effect was further confirmed by ameliorated transendothelial permeability and junction protein loss by rFGF21 under hyperglycemia and IL1β (HG-IL1β) condition in cultured human brain microvascular endothelial cells (HBMEC) in vitro. We further reveal that rFGF21 can activate FGF receptor 1 (FGFR1) that increases its binding with Kelch ECH-associating protein 1 (Keap1), a repressor of Nrf2, thereby reducing Keap1-Nrf2 interaction leading to Nrf2 release. These data suggest that rFGF21 administration may decrease T2D-induced BBB permeability, at least in part via FGFR1-Keap1-Nrf2 activation pathway. This study may provide an impetus for development of therapeutics targeting BBB damage in diabetes.
Collapse
Affiliation(s)
- Zhanyang Yu
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Li Lin
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Yinghua Jiang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Ian Chin
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Xiaojie Wang
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China (L. Lin, ; X. Wang, ; X. Li, )
| | - Eng H. Lo
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| | - Xiaoying Wang
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA (Z. Yu, ; Y. Jiang, ; I. Chin, ; E. Lo, ; X. Wang, )
| |
Collapse
|
55
|
Guan L, Geng X, Stone C, Cosky EEP, Ji Y, Du H, Zhang K, Sun Q, Ding Y. PM 2.5 exposure induces systemic inflammation and oxidative stress in an intracranial atherosclerosis rat model. ENVIRONMENTAL TOXICOLOGY 2019; 34:530-538. [PMID: 30672636 DOI: 10.1002/tox.22707] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVES Exposure to airborne particle (PM2.5 ) is a risk factor for intracranial atherosclerosis (ICA). Because of the established role of systemic inflammation and oxidative stress by PM2.5 , we determined whether these processes account for PM2.5 -mediated ICA, and also whether omega-3 fatty acid (O3FA) dietary supplementation could attenuate them. METHODS Adult Sprague-Dawley rats were exposed to filtered air (FA) or PM2.5 and fed either a normal chow diet (NCD) or a high-cholesterol diet (HCD), administered with or without O3FA (5 mg/kg/day by gavage) for 12 weeks. The lumen and thickness of the middle cerebral artery (MCA) were assessed. Serum tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), interleukin-1β (IL-1β), and interferon gamma (IFN-γ) were detected by ELISA. Reactive oxygen species (ROS), malondialdehyde (MDA), superoxide dismutase (SOD) activity, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity, mRNA levels of Nrf2, HO-1, NQO-1, and protein level of NOX subunit gp91 were quantified to determine the oxidative profile of brain vessels. RESULTS PM2.5 increased (P < .05) ICA, especially in the HCD group; elevated serum TNF-α, IL-6, IL-1β, and IFN-γ; increased cerebrovascular ROS, MDA, NOX activity, and gp91 protein levels; and decreased cerebrovascular SOD activity. Nrf2, HO-1, and NQO-1 mRNA levels were upregulated (P < .05) by PM2.5 exposure, especially in the HCD group. O3FA attenuated (P < .05) PM2.5 -induced systemic inflammation, vascular oxidative injury, and ICA. CONCLUSIONS PM2.5 exposure induced systemic inflammation, cerebrovascular oxidative injury, and ICA in rats with HCD. O3FA prevented ICA development, and may therefore exert a protective effect against the atherogenic potential of PM2.5 .
Collapse
Affiliation(s)
- Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Christopher Stone
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Eric E P Cosky
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
| | - Yu Ji
- Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Huishan Du
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan
| | - Qinghua Sun
- Division of Environmental Health Sciences, College of Public Health, Ohio State University, Columbus, Ohio
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan
- Department of Research & Development Center, John D. Dingell VA Medical Center, Detroit, Michigan
| |
Collapse
|
56
|
Takaki A, Kawano S, Uchida D, Takahara M, Hiraoka S, Okada H. Paradoxical Roles of Oxidative Stress Response in the Digestive System before and after Carcinogenesis. Cancers (Basel) 2019; 11:cancers11020213. [PMID: 30781816 PMCID: PMC6406746 DOI: 10.3390/cancers11020213] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/17/2023] Open
Abstract
Oxidative stress is recognized as a cancer-initiating stress response in the digestive system. It is produced through mitochondrial respiration and induces DNA damage, resulting in cancer cell transformation. However, recent findings indicate that oxidative stress is also a necessary anticancer response for destroying cancer cells. The oxidative stress response has also been reported to be an important step in increasing the anticancer response of newly developed molecular targeted agents. Oxidative stress might therefore be a cancer-initiating response that should be downregulated in the precancerous stage in patients at risk of cancer but an anticancer cell response that should not be downregulated in the postcancerous stage when cancer cells are still present. Many commercial antioxidant agents are marketed as “cancer-eliminating agents” or as products to improve one’s health, so cancer patients often take these antioxidant agents. However, care should be taken to avoid harming the anticancerous oxidative stress response. In this review, we will highlight the paradoxical effects of oxidative stress and antioxidant agents in the digestive system before and after carcinogenesis.
Collapse
Affiliation(s)
- Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Masahiro Takahara
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Sakiko Hiraoka
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
57
|
Zhou B, Zhang X, Wang G, Barbour KW, Berger FG, Wang Q. Drug screening assay based on the interaction of intact Keap1 and Nrf2 proteins in cancer cells. Bioorg Med Chem 2019; 27:92-99. [PMID: 30473361 DOI: 10.1016/j.bmc.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND The Nrf2-Keap1 interaction is the major regulatory pathway for cytoprotective responses against oxidative and electrophilic stresses. Keap1, a substrate protein of a Cul3-dependent E3 ubiquitin ligase complex, is a negative regulator of Nrf2. The use of chemicals to regulate the interaction between Keap1 and Nrf2 has been proposed as a strategy for the chemoprevention of degenerative diseases and cancers. RESULTS The interactions between Keap1 and Nrf2 in vitro and in vivo were investigated using fluorescence resonance energy transfer (FRET) and bimolecular fluorescence complementation (BiFC) strategies in our study. Nrf2 with its N-terminal fused to eGFP and Keap1 with its C-terminal fused to mCherry were expressed and purified in vitro. When purified eGFP-Nrf2 and Keap1-mChrry proteins were mixed together, a strong FRET signal could be detected, indicating an efficient energy transfer from eGFP to mCherry. Moreover, the FRET was detected in vivo using confocal microscopy in colon cancer HCT-116 cells that were co-transfected with eGFP-Nrf2 and Keap1-mCherry. Finally, using an eGFP BiFC approach, the Keap1-Nrf2 interaction was also detected in MCF7 cells by transfecting eGFP N-terminal fused to Nrf2 (eN158-Nrf2) and eGFP C-terminal fused to Keap1 (eC159-Keap1). Using the BiFC and FRET systems, we demonstrated that the prototypical Nrf2-activiting compound tBHQ and the antitumor drug F-dUrd might interfere with the intracellular interaction between Keap1 and Nrf2 whereas the 5-Fu have little role in activating the protective response of Nrf2 pathway in cancer cells. CONCLUSIONS By analyzing the perturbation of the energy transfer between the donor and acceptor fluorophores and the bimolecular fluorescence complementation of eGFP, we can screen potential inhibitors for the interaction between Keap1 and Nrf2.
Collapse
Affiliation(s)
- Bo Zhou
- College of Life Science, Northeast Forestry University, Harbin, China; Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Xiaolei Zhang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Guiren Wang
- Biomedical Engineering Program and Mechanical Engineering Department, University of South Carolina, Columbia, SC, USA.
| | - Karen W Barbour
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Franklin G Berger
- Center for Colon Cancer Research, University of South Carolina, Columbia, SC, USA.
| | - Qian Wang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
58
|
Matzinger M, Fischhuber K, Heiss EH. Activation of Nrf2 signaling by natural products-can it alleviate diabetes? Biotechnol Adv 2018; 36:1738-1767. [PMID: 29289692 PMCID: PMC5967606 DOI: 10.1016/j.biotechadv.2017.12.015] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (DM) has reached pandemic proportions and effective prevention strategies are wanted. Its onset is accompanied by cellular distress, the nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor boosting cytoprotective responses, and many phytochemicals activate Nrf2 signaling. Thus, Nrf2 activation by natural products could presumably alleviate DM. We summarize function, regulation and exogenous activation of Nrf2, as well as diabetes-linked and Nrf2-susceptible forms of cellular stress. The reported amelioration of insulin resistance, β-cell dysfunction and diabetic complications by activated Nrf2 as well as the status quo of Nrf2 in precision medicine for DM are reviewed.
Collapse
Affiliation(s)
- Manuel Matzinger
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Katrin Fischhuber
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Elke H Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria.
| |
Collapse
|
59
|
Liu D, Xue J, Liu Y, Gu H, Wei X, Ma W, Luo W, Ma L, Jia S, Dong N, Huang J, Wang Y, Yuan Z. Inhibition of NRF2 signaling and increased reactive oxygen species during embryogenesis in a rat model of retinoic acid-induced neural tube defects. Neurotoxicology 2018; 69:84-92. [PMID: 30267739 DOI: 10.1016/j.neuro.2018.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 08/31/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
Exposure to retinoic acid (RA) during pregnancy increases the risk of serious neural tube defects (NTDs) in the developing fetus. The precise molecular mechanism for this process is unclear; however, RA is associated with oxidative stress mediated by reactive oxygen species. Nuclear factor erythroid 2-related factor 2 (NRF2) is a master regulator of oxidative stress that directs the expression of antioxidant genes and detoxifying proteins to maintain redox homeostasis. We established a rat model of NTDs in which pregnant dams were administered all-trans (at)RA on gestational day 10, and oxidative stress levels and the spatiotemporal expression of NRF2 and its downstream targets were examined in the resulting embryos and in maternal blood. In the NTD group, total antioxidative capacity decreased and 8-hydroxy-2'-deoxyguanosine increased in maternal serum and fetal spinal cord tissues. Plasma GSH content, the GSH/GSSG ratio, and glutathione peroxidase activity in fetal spinal cords were lower in the NTD group relative to controls. We detected NRF2 protein reduction and concomitant upregulation of Kelch-like ECH-associated protein 1 (KEAP1) - a cytoplasmic inhibitor of NRF2 - in the NTD group. The mRNA and protein levels of downstream targets of NRF2 were downregulated in the spinal cords of NTD embryos. These data demonstrate substantial oxidative stress and NRF2 signaling pathway disruption in a model of NTDs induced by atRA. The inhibitory effects of atRA on NRF2 signaling may lower cellular defenses against RA-induced oxidative stress and could play important roles in NTD occurrence during embryonic development.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Jia Xue
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yusi Liu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Hui Gu
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Xiaowei Wei
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wei Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Wenting Luo
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Ling Ma
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Shanshan Jia
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Naixuan Dong
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Jieting Huang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Yanfu Wang
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China
| | - Zhengwei Yuan
- Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, PR China.
| |
Collapse
|
60
|
Willson C, Watanabe M, Tsuji-Hosokawa A, Makino A. Pulmonary vascular dysfunction in metabolic syndrome. J Physiol 2018; 597:1121-1141. [PMID: 30125956 DOI: 10.1113/jp275856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Metabolic syndrome is a critically important precursor to the onset of many diseases, such as cardiovascular disease, and cardiovascular disease is the leading cause of death worldwide. The primary risk factors of metabolic syndrome include hyperglycaemia, abdominal obesity, dyslipidaemia, and high blood pressure. It has been well documented that metabolic syndrome alters vascular endothelial and smooth muscle cell functions in the heart, brain, kidney and peripheral vessels. However, there is less information available regarding how metabolic syndrome can affect pulmonary vascular function and ultimately increase an individual's risk of developing various pulmonary vascular diseases, such as pulmonary hypertension. Here, we review in detail how metabolic syndrome affects pulmonary vascular function.
Collapse
Affiliation(s)
- Conor Willson
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | - Makiko Watanabe
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| | | | - Ayako Makino
- Department of Physiology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
61
|
Liu R, Yan X. Sulforaphane protects rabbit corneas against oxidative stress injury in keratoconus through activation of the Nrf-2/HO-1 antioxidant pathway. Int J Mol Med 2018; 42:2315-2328. [PMID: 30106111 PMCID: PMC6192721 DOI: 10.3892/ijmm.2018.3820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/30/2018] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to examine whether activation of the nuclear factor E2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) antioxidant pathway in the cornea was involved in the protective effect of sulforaphane (SF) following keratoconus (KC) injury. Following epithelial debridement, collagenase type II was applied in KC groups at room temperature for 30 min. Following this, rabbits were administered with a subconjunctival (s.c.) injection of SF or placebo (maize oil) daily for a total of 2 weeks. To investigate whether HO-1 was involved in the Nrf-2-related antioxidant pathway, rabbits were injected with zinc (II) protoporphyrin IX (ZnPP IX, s.c.) treatment in combination with SF 24 h following the application of collagenase type II. The protective effects of SF were evaluated by examining the mean keratometry (Km) and central cornea thickness (CCT), measuring reactive oxygen species (ROS) production using immunofluorescent staining, and analyzing the protein expression of NADPH oxidase (Nox) family members Nox-2 and Nox-4, and Nrf-2 and HO-1 using immunohistochemistry and western blot analysis. The mRNA levels of Nox-2, Nox-4, Nrf-2 and HO-1 were quantitatively detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. No significant difference in Km or CCT was observed among groups prior to surgery (P=0.700 and P=0.982, respectively). KC induced an apparent increase of ROS generation, and caused a significant increase in Km and a significant decrease in CCT. These changes were neutralized or reversed by SF treatment. Simultaneously, SF treatment decreased the expression of Nox-2 and Nox-4, and enhanced the expression of Nrf-2 and HO-1 in the KC corneas. The RT-qPCR results indicated that SF induced downregulation of the mRNA expression of Nox-2 and Nox-4, and upregulation of the mRNA expression of Nrf-2 and HO-1 following KC injury. The HO-1 inhibitor, ZnPP IX, counteracted the protective effects of SF on KC corneas. Therefore, the present study provided evidence that activation of the Nrf-2/HO-1 signal transduction pathway may partially promote the protective effect of the antioxidant SF in the KC cornea.
Collapse
Affiliation(s)
- Ruixing Liu
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| | - Xiaoming Yan
- Department of Ophthalmology, The First Hospital of Peking University, Beijing 100034, P.R. China
| |
Collapse
|
62
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
63
|
CFTR Deletion Confers Mitochondrial Dysfunction and Disrupts Lipid Homeostasis in Intestinal Epithelial Cells. Nutrients 2018; 10:nu10070836. [PMID: 29954133 PMCID: PMC6073936 DOI: 10.3390/nu10070836] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 02/07/2023] Open
Abstract
Background: Cystic Fibrosis (CF) is a genetic disease in which the intestine exhibits oxidative and inflammatory markers. As mitochondria are the central source and the main target of reactive oxygen species, we hypothesized that cystic fibrosis transmembrane conductance regulator (CFTR) defect leads to the disruption of cellular lipid homeostasis, which contributes to mitochondrial dysfunction. Methods. Mitochondrial functions and lipid metabolism were investigated in Caco-2/15 cells with CFTR knockout (CFTR-/-) engineered by the zinc finger nuclease technique. Experiments were performed under basal conditions and after the addition of the pro-oxidant iron-ascorbate (Fe/Asc) complex. Results. Mitochondria of intestinal cells with CFTR-/-, spontaneously showed an altered redox homeostasis characterised by a significant decrease in the expression of PPARα and nuclear factor like 2. Consistent with these observations, 8-oxoguanine-DNA glycosylase, responsible for repair of ROS-induced DNA lesion, was weakly expressed in CFTR-/- cells. Moreover, disturbed fatty acid β-oxidation process was evidenced by the reduced expression of CPT1 and acyl-CoA dehydrogenase long-chain in CFTR-/- cells. The decline of mitochondrial cytochrome c and B-cell lymphoma 2 expression pointing to magnified apoptosis. Mitochondrial respiration was also affected as demonstrated by the low expression of respiratory oxidative phosphorylation (OXPHOS) complexes and a high adenosine diphosphate/adenosine triphosphate ratio. In contrast, the FAS and ACC enzymes were markedly increased, thereby indicating lipogenesis stimulation. This was associated with an augmented secretion of lipids, lipoproteins and apolipoproteins in CFTR-/- cells. The addition of Fe/Asc worsened while butylated hydroxy toluene partially improved these processes. Conclusions: CFTR silencing results in lipid homeostasis disruption and mitochondrial dysfunction in intestinal epithelial cells. Further investigation is needed to elucidate the mechanisms underlying the marked abnormalities in response to CFTR deletion.
Collapse
|
64
|
Gust KA, Lotufo GR, Stanley JK, Wilbanks MS, Chappell P, Barker ND. Transcriptomics provides mechanistic indicators of mixture toxicology for IMX-101 and IMX-104 formulations in fathead minnows (Pimephales promelas). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:138-151. [PMID: 29625381 DOI: 10.1016/j.aquatox.2018.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 06/08/2023]
Abstract
Within the US military, new insensitive munitions (IMs) are rapidly replacing conventional munitions improving safety from unintended detonation. Toxicity data for IM chemicals are expanding rapidly, however IM constituents are typically deployed in mixture formulations, and very little is known about their mixture toxicology. In the present study we sought to characterize the mixture effects and toxicology of the two predominant IM formulations IMX-101 and IMX-104 in acute (48 h) larval fathead minnow (Pimephales promelas) exposures. IMX-101 consists of a mixture of 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine (NQ) while IMX-104 is composed of DNAN, NTO, and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). DNAN was the most potent constituent in IMX-101 eliciting an LC50 of 36.1 mg/L, whereas NTO and NQ did not elicit significant mortality in exposures up to 1040 and 2640 mg/L, respectively. Toxic unit calculations indicated that IMX-101 elicited toxicity representative of the component concentration of DNAN within the mixture. Toxicogenomic responses for the individual constituents of IMX-101 indicated unique transcriptional expression and functional responses characteristic of: oxidative stress, impaired energy metabolism, tissue damage and inflammatory responses in DNAN exposures; impaired steroid biosynthesis and developmental cell-signaling in NQ exposures; and altered mitogen-activated protein kinase signaling in NTO exposures. Transcriptional responses to the IMX-101 mixture were driven by the effects of DNAN where expression and functional responses were nearly identical comparing DNAN alone versus the fractional equivalent of DNAN within IMX-101. Given that each individual constituent of the IMX-101 mixture elicited unique functional responses, and NTO and NQ did not interact with DNAN within the IMX-101 mixture exposure, the overall toxicity and toxicogenomic responses within acute exposures to the IMX-101 formulation are indicative of "independent" mixture toxicology. Alternatively, in the IMX-104 exposure both DNAN and RDX were each present at concentrations sufficient to elicit lethality (RDX LC50 = 28.9 mg/L). Toxic-unit calculations for IMX-104 mixture formulation exposures indicated slight synergistic toxicity (ΣTU LC50 = 0.82, 95% confidence interval = 0.73-0.90). Unique functional responses relative to DNAN were observed in the IMX-104 exposure including responses characteristic of RDX exposure. Based on previous transcriptomics responses to acute RDX exposures in fathead minnow larvae, we hypothesize that the potentially synergistic responses within the IMX-104 mixture are related to interactive effects of each DNAN and RDX on oxidative stress mitigation pathways.
Collapse
Affiliation(s)
- Kurt A Gust
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA.
| | - Guilherme R Lotufo
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | - Jacob K Stanley
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA; Stanley Environmental Consulting, Waynesboro, MS, USA
| | - Mitchell S Wilbanks
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, USA
| | | | | |
Collapse
|
65
|
Sultan CS, Saackel A, Stank A, Fleming T, Fedorova M, Hoffmann R, Wade RC, Hecker M, Wagner AH. Impact of carbonylation on glutathione peroxidase-1 activity in human hyperglycemic endothelial cells. Redox Biol 2018; 16:113-122. [PMID: 29499564 PMCID: PMC5952877 DOI: 10.1016/j.redox.2018.02.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
AIMS High levels of glucose and reactive carbonyl intermediates of its degradation pathway such as methylglyoxal (MG) may contribute to diabetic complications partly via increased generation of reactive oxygen species (ROS). This study focused on glutathione peroxidase-1 (GPx1) expression and the impact of carbonylation as an oxidative protein modification on GPx1 abundance and activity in human umbilical vein endothelial cells (HUVEC) under conditions of mild to moderate oxidative stress. RESULTS High extracellular glucose and MG enhanced intracellular ROS formation in HUVECs. Protein carbonylation was only transiently augmented pointing to an effective antioxidant defense in these cells. Nitric oxide synthase expression was decreased under hyperglycemic conditions but increased upon exposure to MG, whereas superoxide dismutase expression was not significantly affected. Increased glutathione peroxidase (GPx) activity seemed to compensate for a decrease in GPx1 protein due to enhanced degradation via the proteasome. Mass spectrometry analysis identified Lys-114 as a possible carbonylation target which provides a vestibule for the substrate H2O2 and thus enhances the enzymatic reaction. INNOVATION Oxidative protein carbonylation has so far been associated with functional inactivation of modified target proteins mainly contributing to aging and age-related diseases. Here, we demonstrate that mild oxidative stress and subsequent carbonylation seem to activate protective cellular redox signaling pathways whereas severe oxidative stress overwhelms the cellular antioxidant defense leading to cell damage. CONCLUSIONS This study may contribute to a better understanding of redox homeostasis and its role in the development of diabetes and related vascular complications.
Collapse
Affiliation(s)
- Cheryl S Sultan
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andrea Saackel
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Antonia Stank
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Heidelberg Graduate School of Mathematical and Computational Methods for the Sciences, Heidelberg D-69120, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University Hospital Heidelberg, Heidelberg D-69120, Germany
| | - Maria Fedorova
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, Center for Biotechnology and Biomedicine, Leipzig University, Leipzig D-04103, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany; Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany
| | - Andreas H Wagner
- Department of Cardiovascular Physiology, Heidelberg University, Heidelberg D-69120, Germany.
| |
Collapse
|
66
|
Xueshuantong injection (lyophilized) combined with salvianolate lyophilized injection protects against focal cerebral ischemia/reperfusion injury in rats through attenuation of oxidative stress. Acta Pharmacol Sin 2018; 39:998-1011. [PMID: 29022576 DOI: 10.1038/aps.2017.128] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/08/2017] [Indexed: 12/22/2022] Open
Abstract
Salvianolate lyophilized injection (SLI) and Xueshuantong injection (lyophilized) (XST) are two herbal standardized preparations that have been widely used in China for the treatment of acute cerebral infarction. In this study, we investigated the neuroprotective effects of SLI combined with XST in a rat model of middle cerebral artery occlusion-reperfusion (MCAO/R). Wistar rats were subjected to 1.5 h of MCAO followed by reperfusion for 3 h, then were treated with SLI or XST alone, or with their combinations via tail vein injection daily for 3 d. Edaravone (EDI, 6 mg·kg-1·d-1) was used as a positive control drug, We showed that administration of a combination of 1X1S (XST 100 mg·kg-1·d-1 plus SLI 21 mg·kg-1·d-1) more effectively protected the ischemic brains than SLI or XST used alone. Administration of 1X1S not only significantly decreased neurological deficit scores and infarct volumes and increased regional cerebral blood flow, but also inhibited the activation of both microglia and astrocytes in the hippocampus. Furthermore, administration of 1X1S significantly decreased the levels of MDA and ROS with concomitant increases in the levels of antioxidant activity (SOD, CAT and GSH) in the brain tissues as compared with SLI and XST used alone. Moreover, administration of 1X1S remarkably upregulated the expression of Nrf-2, HO-1 and NQO-1, and downregulated the expression of Keap1 and facilitated the nuclear translocation of Nrf-2 in the brain tissues as compared with XST used alone. Our study demonstrates that a combination of 1X1S effectively protects MCAO/R injury via suppressing oxidative stress and the Nrf-2/Keap1 pathway.
Collapse
|
67
|
Li X, Wu D, Tian Y. Fibroblast growth factor 19 protects the heart from oxidative stress-induced diabetic cardiomyopathy via activation of AMPK/Nrf2/HO-1 pathway. Biochem Biophys Res Commun 2018; 502:62-68. [PMID: 29778534 DOI: 10.1016/j.bbrc.2018.05.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 01/14/2023]
Abstract
Diabetes affects cardiac structure and function, where it leads to diabetic cardiomyopathy. Reactive oxygen species (ROS) produced by oxidative stress play an important role in the development of diabetic cardiomyopathy. Fibroblast growth factor (FGF) 19, an enterokine, is synthesized and released into the ileum. In the present study, we revealed that FGF19 induced an antioxidant response through stimulating the expression of nuclear erythroid factor 2 (NE-F2)-related factor 2 (Nrf2) and as well as reducing ROS production through the AMPK signaling pathway. Additionally, AMPK inhibition by the AMPK-specific inhibitor compound C decreased Nrf2 and heme oxygenase-1 (HO-1) protein expression. Taken together, these results suggested that FGF19, through the anti-oxidative defense system, attenuated the development of diabetic cardiomyopathy and restored cardiac function.
Collapse
Affiliation(s)
- Xin Li
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Di Wu
- Department of Colorectal Surgery, The Affiliated Tumor Hospital of Harbin Medical University, Harbin, China
| | - Ye Tian
- Department of Cardiology, The First Affiliated Hospital, Cardiovascular Institute, Harbin Medical University, Harbin, Heilongjiang, 150001, PR China; Department of Pathophysiology and the Key Laboratory of Cardiovascular Pathophysiology, Harbin Medical University, The Key Laboratory of Cardiovascular Research of Harbin Medical University, Ministry of Education, Harbin, Heilongjiang, 150081, PR China; Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin, Heilongjiang, 150086, PR China.
| |
Collapse
|
68
|
Robson R, Kundur AR, Singh I. Oxidative stress biomarkers in type 2 diabetes mellitus for assessment of cardiovascular disease risk. Diabetes Metab Syndr 2018; 12:455-462. [PMID: 29307576 DOI: 10.1016/j.dsx.2017.12.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/27/2017] [Indexed: 01/07/2023]
Abstract
AIMS Type-2 Diabetes Mellitus (T2DM) is one of the most prevalent and progressive metabolic conditions affecting approximately 8.5% of the global population. Individuals with T2DM have a significantly increased risk of developing chronic conditions such as cardiovascular disease (CVD) and its associated complications, therefore, it is of great importance to establish strategies for combatting T2DM and its associated chronic conditions. Current literature has identified several biomarkers that are known to play a key role in the pathogenesis of CVD. Many of these biomarkers affecting CVD are influenced by an increase in oxidative stress as seen in T2DM. The purpose of this review is to analyse and correlate the oxidative stress-related biomarkers that have been identified in the literature to provide an updated summary of their significance in CVD risk factors. DATA SYNTHESIS This review has analysed current research on T2DM, CVD, and oxidative stress. Four key cardiovascular risk factors: thrombosis, inflammation, vascular homeostasis and cellular proliferation were searched to identify potential biomarkers for this review. These biomarkers stem from seven major cellular pathways; NF-κB, Keap1-Nrf2, protein kinase-C, macrophage activation, arachidonic acid mobilisation, endothelial dysfunction and advanced glycation end products. CONCLUSIONS The pathways and biomarkers were analysed to show their role as contributing factors to CVD development and a summary is made regarding the assessment of cardiovascular risk in T2DM individuals.
Collapse
Affiliation(s)
- Roy Robson
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Avinash R Kundur
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia
| | - Indu Singh
- School of Medical Science, Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, QLD 4222, Australia.
| |
Collapse
|
69
|
Long noncoding RNA MALAT1 regulates generation of reactive oxygen species and the insulin responses in male mice. Biochem Pharmacol 2018; 152:94-103. [PMID: 29577871 DOI: 10.1016/j.bcp.2018.03.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/20/2018] [Indexed: 01/17/2023]
Abstract
The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a long noncoding RNA and its overexpression is associated with the development of many types of malignancy. MALAT1 null mice show no overt phenotype. However, in transcriptome analysis of MALAT1 null mice we found significant upregulation of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulated antioxidant genes including Nqo1 and Cat with significant reduction in reactive oxygen species (ROS) and greatly reduced ROS-generated protein carbonylation in hepatocyte and islets. We performed lncRNA pulldown assay using biotinylated antisense oligonucleotides against MALAT1 and found MALAT1 interacted with Nrf2, suggesting Nrf2 is transcriptionally regulated by MALAT1. Exposure to excessive ROS has been shown to cause insulin resistance through activation of c-Jun N-terminal kinase (JNK) which leads to inhibition of insulin receptor substrate 1 (IRS-1) and insulin-induced phosphorylation of serine/threonine kinase Akt. We found MALAT1 ablation suppressed JNK activity with concomitant insulin-induced activation of IRS-1 and phosphorylation of Akt suggesting MALAT1 regulated insulin responses. MALAT1 null mice exhibited sensitized insulin-signaling response to fast-refeeding and glucose/insulin challenges and significantly increased insulin secretion in response to glucose challenge in isolated MALAT1 null islets, suggesting an increased insulin sensitivity. In summary, we demonstrate that MALAT1 plays an important role in regulating insulin sensitivity and has the potential as a therapeutic target for the treatment of diabetes as well as other diseases caused by excessive exposure to ROS.
Collapse
|
70
|
Abstract
Purpose of Review Hypertension is either a cause or a consequence of the endothelial dysfunction and a major risk factor for cardiovascular disease (CVD). In vitro and in vivo studies established that microRNAs (miRNAs) are decisive for endothelial cell gene expression and function in various pathological conditions associated with CVD. This review provides an overview of the miRNA role in controlling the key connections between endothelial dysfunction and hypertension. Recent Findings Herein we summarize the present understanding of mechanisms underlying hypertension and its associated endothelial dysfunction as well as the miRNA role in endothelial cells with accent on the modulation of renin-angiotensin-aldosterone-system, nitric oxide, oxidative stress and on the control of vascular inflammation and angiogenesis in relation to endothelial dysfunction in hypertension. In particular, latest insights in the identification of endothelial-specific microRNAs and their targets are added to the understanding of miRNA significance in hypertension. Summary This comprehensive knowledge of the role of miRNAs in endothelial dysfunction and hypertension and of molecular mechanisms proposed for miRNA actions may offer novel diagnostic biomarkers and therapeutic targets for controlling hypertension-associated endothelial dysfunction and other cardiovascular complications.
Collapse
Affiliation(s)
- Miruna Nemecz
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania
| | - Nicoleta Alexandru
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania
| | - Gabriela Tanko
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania.
| | - Adriana Georgescu
- Department of Pathophysiology and Pharmacology, Institute of Cellular Biology and Pathology, 'Nicolae Simionescu' of Romanian Academy, 8, BP Hasdeu Street, PO Box 35-14, 050568, Bucharest, Romania.
| |
Collapse
|
71
|
Gou L, Zhao L, Song W, Wang L, Liu J, Zhang H, Huang Y, Lau CW, Yao X, Tian XY, Wong WT, Luo JY, Huang Y. Inhibition of miR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in db/db Mice. Antioxid Redox Signal 2018; 28:358-370. [PMID: 28683566 DOI: 10.1089/ars.2017.7005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Inhibition of microRNA-92a (miR-92a) is reported to suppress endothelial inflammation and delay atherogenesis. We hypothesize that miR-92a inhibition protects endothelial function through suppressing oxidative stress in diabetic db/db mice. RESULTS In this study, we found elevated expression of miR-92a in aortic endothelium from db/db mice and in renal arteries from diabetic subjects. Endothelial cells (ECs) exposed to advanced glycation end products (AGEs) and oxidized low-density lipoprotein express higher level of miR-92a. Overexpression of miR-92a impairs endothelium-dependent relaxations (EDRs) in C57BL/6 mouse aortas. Overexpression of miR-92a suppresses expression of heme oxygenase-1 (HO-1), a critical cytoprotective enzyme, whereas inhibition of miR-92a increases HO-1 expression in human umbilical vein ECs (HUVECs) and db/db mouse aortas. Importantly, miR-92a inhibition by Ad-anti-miR-92a improved EDRs and reduced reactive oxygen species (ROS) production in db/db mouse aortas. HO-1 inhibition by SnMP or HO-1 knockdown by shHO-1 reversed the suppressive effect of miR-92a inhibition on ROS production induced by AGE treatment in C57BL/6 mouse aortas. In addition, SnMP reversed miR-92a inhibition-induced improvement of EDRs in AGE-treated C57BL/6 mouse aortas and in db/db mouse aortas. INNOVATION Expression of miR-92a is increased in diabetic aortic endothelium and inhibition of miR-92a exerts vasoprotective effect in diabetic mice through HO-1 upregulation in ECs. CONCLUSION MiR-92a expression is elevated in diabetic ECs. MiR-92a overexpression impairs endothelial function and suppresses HO-1 expression in ECs. Inhibition of miR-92a attenuates oxidative stress and improves endothelial function through enhancing HO-1 expression and activity in db/db mouse aortas. Antioxid. Redox Signal. 28, 358-370.
Collapse
Affiliation(s)
- Lingshan Gou
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Lei Zhao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wencong Song
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Li Wang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jian Liu
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Hongsong Zhang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yuhong Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Chi Wai Lau
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiaoqiang Yao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiao Yu Tian
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wing Tak Wong
- 3 School of Life Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jiang-Yun Luo
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yu Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| |
Collapse
|
72
|
Serbulea V, Upchurch CM, Ahern KW, Bories G, Voigt P, DeWeese DE, Meher AK, Harris TE, Leitinger N. Macrophages sensing oxidized DAMPs reprogram their metabolism to support redox homeostasis and inflammation through a TLR2-Syk-ceramide dependent mechanism. Mol Metab 2018; 7:23-34. [PMID: 29153923 PMCID: PMC5784323 DOI: 10.1016/j.molmet.2017.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 10/28/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Macrophages control tissue homeostasis and inflammation by sensing and responding to environmental cues. However, the metabolic adaptation of macrophages to oxidative tissue damage and its translation into inflammatory mechanisms remains enigmatic. METHODS Here we identify the critical regulatory pathways that are induced by endogenous oxidation-derived DAMPs (oxidized phospholipids, OxPL) in vitro, leading to formation of a unique redox-regulatory metabolic phenotype (Mox), which is strikingly different from conventional classical or alternative macrophage activation. RESULTS Unexpectedly, metabolomic analyses demonstrated that Mox heavily rely on glucose metabolism and the pentose phosphate pathway (PPP) to support GSH production and Nrf2-dependent antioxidant gene expression. While the metabolic adaptation of macrophages to OxPL involved transient suppression of aerobic glycolysis, it also led to upregulation of inflammatory gene expression. In contrast to classically activated (M1) macrophages, Hif1α mediated expression of OxPL-induced Glut1 and VEGF but was dispensable for Il1β expression. Mechanistically, we show that OxPL suppress mitochondrial respiration via TLR2-dependent ceramide production, redirecting TCA metabolites to GSH synthesis. Finally, we identify spleen tyrosine kinase (Syk) as a critical downstream signaling mediator that translates OxPL-induced effects into ceramide production and inflammatory gene regulation. CONCLUSIONS Together, these data demonstrate the metabolic and bioenergetic requirements that enable macrophages to translate tissue oxidation status into either antioxidant or inflammatory responses via sensing OxPL. Targeting dysregulated redox homeostasis in macrophages could therefore lead to novel therapies to treat chronic inflammation.
Collapse
Affiliation(s)
- Vlad Serbulea
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Clint M Upchurch
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Katelyn W Ahern
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Gael Bories
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Paxton Voigt
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Dory E DeWeese
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Akshaya K Meher
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Norbert Leitinger
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22903, USA; Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
73
|
The Role of Nrf2 in Cardiovascular Function and Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9237263. [PMID: 29104732 PMCID: PMC5618775 DOI: 10.1155/2017/9237263] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023]
Abstract
Free radicals, reactive oxygen/nitrogen species (ROS/RNS), hydrogen sulphide, and hydrogen peroxide play an important role in both intracellular and intercellular signaling; however, their production and quenching need to be closely regulated to prevent cellular damage. An imbalance, due to exogenous sources of free radicals and chronic upregulation of endogenous production, contributes to many pathological conditions including cardiovascular disease and also more general processes involved in aging. Nuclear factor erythroid 2-like 2 (NFE2L2; commonly known as Nrf2) is a transcription factor that plays a major role in the dynamic regulation of a network of antioxidant and cytoprotective genes, through binding to and activating expression of promoters containing the antioxidant response element (ARE). Nrf2 activity is regulated by many mechanisms, suggesting that tight control is necessary for normal cell function and both hypoactivation and hyperactivation of Nrf2 are indicated in playing a role in different aspects of cardiovascular disease. Targeted activation of Nrf2 or downstream genes may prove to be a useful avenue in developing therapeutics to reduce the impact of cardiovascular disease. We will review the current status of Nrf2 and related signaling in cardiovascular disease and its relevance to current and potential treatment strategies.
Collapse
|
74
|
Xu J, Zhang W, Lu Z, Zhang F, Ding W. Airborne PM 2.5-Induced Hepatic Insulin Resistance by Nrf2/JNK-Mediated Signaling Pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14070787. [PMID: 28708100 PMCID: PMC5551225 DOI: 10.3390/ijerph14070787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/07/2017] [Accepted: 07/10/2017] [Indexed: 12/20/2022]
Abstract
Animal and epidemiological studies have suggested that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is associated with the risk of developing type 2 diabetes. However, the mechanism underlying this risk is poorly understood. In the present study, we investigated the effects of PM2.5 exposure on glucose homeostasis and related signaling pathways in mice. Wild-type and nuclear factor erythroid 2-related factor 2 (Nrf2) knockout (Nrf2−/−) C57BL/6 male mice were exposed to either ambient concentrated PM2.5 or filtered air (FA) for 12 weeks through a whole-body PM exposure system. At the end of the exposure, we assessed liver damage, and performed metabolic studies, gene expressions, as well as molecular signal transductions to determine the signaling pathways involving oxidative responses, insulin signaling, and glucose metabolism. Our results indicated that PM2.5 exposure for 12 weeks caused significant liver damage as evidenced by elevated levels of aminotransferase (AST) and alanine aminotransferase (ALT). Furthermore, PM2.5 exposure induced impaired glucose tolerance and inhibited glycogen synthesis, leading to hepatic insulin resistance indicated by higher glucose levels, higher area under the curve (AUC), and homeostasis model assessment of insulin resistance (HOMA-IR) values. We further found that PM2.5 exposure significantly increased the expressions of Nrf2 and Nrf2-regulated antioxidant genes. Moreover, PM2.5 exposure activated the c-Jun N-terminal kinase (JNK) signaling pathway and increased insulin receptor substrate-1 (IRS-1) phosphorylation at Ser307, but reduced protein kinase B phosphorylation at Ser473. Taken together, our study demonstrated PM2.5 exposure triggered Nrf2-mediated oxidative responses and activated the JNK-mediated inhibitory signaling pathway, resulting in hepatic insulin resistance.
Collapse
Affiliation(s)
- Jinxia Xu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
- Sino-Danish College, University of Chinese Academy of Sciences, No. 3 Zhongguancun South 1st Alley, Beijing 100190, China.
| | - Wei Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
75
|
Mahmoud AM, Wilkinson FL, McCarthy EM, Moreno-Martinez D, Langford-Smith A, Romero M, Duarte J, Alexander MY. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress. FASEB J 2017; 31:4636-4648. [PMID: 28687612 PMCID: PMC5714503 DOI: 10.1096/fj.201601244rr] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni Suef, Egypt
| | - Fiona L Wilkinson
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Eoghan M McCarthy
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Centre for Musculoskeletal Research, Institute of Inflammation and Repair, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom.,Musculoskeletal Biomedical Research Unit, National Institute for Health Research Manchester, Central Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom
| | - Daniel Moreno-Martinez
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alexander Langford-Smith
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Granada, Spain
| | - Juan Duarte
- Instituto de Investigación Biosanitaria de Granada, Granada, Spain
| | - M Yvonne Alexander
- Healthcare Science Research Centre, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom; .,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
76
|
The Transcription Factor Nrf2 Protects Angiogenic Capacity of Endothelial Colony-Forming Cells in High-Oxygen Radical Stress Conditions. Stem Cells Int 2017; 2017:4680612. [PMID: 28607561 PMCID: PMC5451769 DOI: 10.1155/2017/4680612] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 03/02/2017] [Accepted: 04/16/2017] [Indexed: 02/07/2023] Open
Abstract
Background Endothelial colony forming cells (ECFCs) have shown a promise in tissue engineering of vascular constructs, where they act as endothelial progenitor cells. After implantation, ECFCs are likely to be subjected to elevated reactive oxygen species (ROS). The transcription factor Nrf2 regulates the expression of antioxidant enzymes in response to ROS. Methods Stable knockdown of Nrf2 and Keap1 was achieved by transduction with lentiviral shRNAs; activation of Nrf2 was induced by incubation with sulforaphane (SFN). Expression of Nrf2 target genes was assessed by qPCR, oxidative stress was assessed using CM-DCFDA, and angiogenesis was quantified by scratch-wound and tubule-formation assays Results. Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Results Nrf2 knockdown led to a reduction of antioxidant gene expression and increased ROS. Angiogenesis was disturbed after Nrf2 knockdown even in the absence of ROS. Conversely, angiogenesis was preserved in high ROS conditions after knockdown of Keap1. Preincubation of ECFCs with SFN reduced intracellular ROS in the presence of H2O2 and preserved scratch-wound closure and tubule-formation. Conclusion The results of this study indicate that Nrf2 plays an important role in the angiogenic capacity of ECFCs, particularly under conditions of increased oxidative stress. Pretreatment of ECFCs with SFN prior to implantation may be a protective strategy for tissue-engineered constructs or cell therapies.
Collapse
|
77
|
Tsai CY, Wen SY, Cheng SY, Wang CH, Yang YC, Viswanadha VP, Huang CY, Kuo WW. Nrf2 Activation as a Protective Feedback to Limit Cell Death in High Glucose-Exposed Cardiomyocytes. J Cell Biochem 2017; 118:1659-1669. [PMID: 27859591 DOI: 10.1002/jcb.25785] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/07/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Cheng-Yen Tsai
- Department of Pediatrics; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- School of Chinese Medicine; College of Chinese Medicine; China Medical University; Taichung 40402 Taiwan
| | - Su-Ying Wen
- Department of Dermatology; Taipei City Hospital; Renai Branch; Taipei Taiwan
- Center for General Education; Mackay Junior College of Medicine; Nursing, and Management; Taipei Taiwan
| | - Shi-Yann Cheng
- Department of Medical Education and Research and Department of Obstetrics and Gynecology; China Medical University Beigang Hospital; Yunlin 651 Taiwan,ROC
- Department of Obstetrics and Gynecology; China Medical University An Nan Hospital; Yunlin 651 Taiwan,ROC
- Obstetrics and Gynecology; School of Medicine; China Medical University; Taichung Taiwan
| | - Chung-Hsing Wang
- Department of Pediatrics; China Medical University Hospital; Taichung 404 Taiwan,ROC
| | - Yao-Chih Yang
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| | | | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science; China Medical University; Taichung 404 Taiwan,ROC
- Department of Chinese Medicine; China Medical University Hospital; Taichung 404 Taiwan,ROC
- Department of Health and Nutrition Biotechnology; Asia University; Taichung 413 Taiwan,ROC
| | - Wei-Wen Kuo
- Department of Biological Science and Technology; College of Biopharmaceutical and Food Sciences; China Medical University; Taichung 404 Taiwan,ROC
| |
Collapse
|
78
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
79
|
Kowluru RA, Mishra M. Epigenetic regulation of redox signaling in diabetic retinopathy: Role of Nrf2. Free Radic Biol Med 2017; 103:155-164. [PMID: 28012783 PMCID: PMC5258851 DOI: 10.1016/j.freeradbiomed.2016.12.030] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 12/24/2022]
Abstract
Diabetic retinopathy is a major vision threatening disease among working age adults, and increased oxidative stress is one of the prime causative factors in its pathogenesis. Increased reactive oxygen species (ROS) in the cytosol damage mitochondria, and due to compromised antioxidant signaling system and dysfunctional mitochondria with damaged mitochondrial DNA, ROS continue to pile up, accelerating capillary cell loss. In addition to other cellular and enzymatic defense systems, the retina is also equipped with the nuclear erythroid-2-p45-related factor-2 (Nrf2) antioxidant response element signaling pathway, which controls the expression of genes important in detoxification and elimination of ROS. However, in diabetes, its transcriptional activity is impaired, further exacerbating and exposing the retina to elevated stress. Diabetic milieu also alters epigenetic factors responsible for chromatin modifications and gene regulation, and kelch-like ECH-associated protein 1 (Keap1), important in regulating Nrf2-antioxidant signaling axis, is epigenetically modified, impeding nuclear translocation of Nrf2, and this inhibits the transcription of genes with Antioxidant Response Element. This review discusses antioxidant signaling, especially the role of Nrf2, in diabetic retinopathy, and possible involvement of epigenetic modifications in antioxidant signaling and Nrf2 transcriptional activity. Therapies targeting Nrf2 activation, including epigenetic modifications, have potentional to prevent mitochondrial damage and inhibit the development, and progression of this sight-threatening disease which most of the patients get after 20-25 years of diabetes.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, United States.
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
80
|
A novel role for small molecule glycomimetics in the protection against lipid-induced endothelial dysfunction: Involvement of Akt/eNOS and Nrf2/ARE signaling. Biochim Biophys Acta Gen Subj 2017; 1861:3311-3322. [DOI: 10.1016/j.bbagen.2016.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/20/2016] [Accepted: 08/19/2016] [Indexed: 02/07/2023]
|
81
|
Hyperglycemia Aggravates Hepatic Ischemia Reperfusion Injury by Inducing Chronic Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3919627. [PMID: 27656261 PMCID: PMC5021880 DOI: 10.1155/2016/3919627] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/28/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022]
Abstract
Aim. To investigate whether hyperglycemia will aggravate hepatic ischemia reperfusion injury (HIRI) and the underlying mechanisms. Methods. Control and streptozotocin-induced diabetic Sprague-Dawley rats were subjected to partial hepatic ischemia reperfusion. Liver histology, transferase, inflammatory cytokines, and oxidative stress were assessed accordingly. Similarly, BRL-3A hepatocytes were subjected to hypoxia/reoxygenation (H/R) after high (25 mM) or low (5.5 mM) glucose culture. Cell viability, reactive oxygen species (ROS), and activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) were determined. Results. Compared with control, diabetic rats presented more severe hepatic injury and increased hepatic inflammatory cytokines and oxidative stress. HIRI in diabetic rats could be ameliorated by pretreatment of N-acetyl-L-cysteine (NAC) or apocynin. Excessive ROS generation and consequent Nrf2 and NF-κB translocation were determined after high glucose exposure. NF-κB translocation and its downstream cytokines were further increased in high glucose cultured group after H/R. While proper regulation of Nrf2 to its downstream antioxidases was observed in low glucose cultured group, no further induction of Nrf2 pathway by H/R after high glucose culture was identified. Conclusion. Hyperglycemia aggravates HIRI, which might be attributed to chronic oxidative stress and inflammation and potential malfunction of antioxidative system.
Collapse
|
82
|
Williams MJ, Perland E, Eriksson MM, Carlsson J, Erlandsson D, Laan L, Mahebali T, Potter E, Frediksson R, Benedict C, Schiöth HB. Recurrent Sleep Fragmentation Induces Insulin and Neuroprotective Mechanisms in Middle-Aged Flies. Front Aging Neurosci 2016; 8:180. [PMID: 27531979 PMCID: PMC4969361 DOI: 10.3389/fnagi.2016.00180] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/13/2016] [Indexed: 11/24/2022] Open
Abstract
Lack of quality sleep increases central nervous system oxidative stress and impairs removal of neurotoxic soluble metabolites from brain parenchyma. During aging poor sleep quality, caused by sleep fragmentation, increases central nervous system cellular stress. Currently, it is not known how organisms offset age-related cytotoxic metabolite increases in order to safeguard neuronal survival. Furthermore, it is not understood how age and sleep fragmentation interact to affect oxidative stress protection pathways. We demonstrate sleep fragmentation increases systems that protect against oxidative damage and neuroprotective endoplasmic reticulum molecular chaperones, as well as neuronal insulin and dopaminergic expression in middle-aged Drosophila males. Interestingly, even after sleep recovery the expression of these genes was still upregulated in middle-aged flies. Finally, sleep fragmentation generates higher levels of reactive oxygen species (ROS) in middle-aged flies and after sleep recovery these levels remain significantly higher than in young flies. The fact that neuroprotective pathways remain upregulated in middle-aged flies beyond sleep fragmentation suggests it might represent a strong stressor for the brain during later life.
Collapse
Affiliation(s)
- Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Emelie Perland
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Mikaela M Eriksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Josef Carlsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Daniel Erlandsson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Loora Laan
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Tabusi Mahebali
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Ella Potter
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Robert Frediksson
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Christian Benedict
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| | - Helgi B Schiöth
- Functional Pharmacology, Department of Neuroscience, Uppsala University Uppsala, Sweden
| |
Collapse
|
83
|
Jiang WD, Qu B, Feng L, Jiang J, Kuang SY, Wu P, Tang L, Tang WN, Zhang YA, Zhou XQ, Liu Y. Histidine Prevents Cu-Induced Oxidative Stress and the Associated Decreases in mRNA from Encoding Tight Junction Proteins in the Intestine of Grass Carp (Ctenopharyngodon idella). PLoS One 2016; 11:e0157001. [PMID: 27280406 PMCID: PMC4900568 DOI: 10.1371/journal.pone.0157001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/22/2016] [Indexed: 01/14/2023] Open
Abstract
Copper (Cu) is a common heavy metal pollutant in aquatic environments that originates from natural as well as anthropogenic sources. The present study investigated whether Cu causes oxidative damage and induces changes in the expression of genes that encode tight junction (TJ) proteins, cytokines and antioxidant-related genes in the intestine of the grass carp (Ctenopharyngodon idella). We demonstrated that Cu decreases the survival rate of fish and increases oxidative damage as measured by increases in malondialdehyde and protein carbonyl contents. Cu exposure significantly decreased the expression of genes that encode the tight junction proteins, namely, claudin (CLDN)-c, -3 and -15 as well as occludin and zonula occludens-1, in the intestine of fish. In addition, Cu exposure increases the mRNA levels of the pro-inflammatory cytokines, specifically, IL-8, TNF-α and its related signalling factor (nuclear factor kappa B, NF-κB), which was partly correlated to the decreased mRNA levels of NF-κB inhibitor protein (IκB). These changes were associated with Cu-induced oxidative stress detected by corresponding decreases in glutathione (GSH) content, as well as decreases in the copper, zinc-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) activities and mRNA levels, which were associated with the down-regulated antioxidant signalling factor NF-E2-related factor-2 (Nrf2) mRNA levels, and the Kelch-like-ECH-associated protein1 (Keap1) mRNA levels in the intestine of fish. Histidine supplementation in diets (3.7 up to 12.2 g/kg) blocked Cu-induced changes. These results indicated that Cu-induced decreases in intestinal TJ proteins and cytokine mRNA levels might be partially mediated by oxidative stress and are prevented by histidine supplementation in fish diet.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Biao Qu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, 610066, Chengdu, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
84
|
Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE Pathway As a Potential Preventive and Therapeutic Target: An Update. Med Res Rev 2016; 36:924-63. [PMID: 27192495 DOI: 10.1002/med.21396] [Citation(s) in RCA: 535] [Impact Index Per Article: 66.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
The Keap1-Nrf2-ARE ((Kelch-like ECH-Associating protein 1) nuclear factor erythroid 2 related factor 2-antioxidant response element) pathway is one of the most important defense mechanisms against oxidative and/or electrophilic stresses, and it is closely associated with inflammatory diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and aging. In recent years, progress has been made in strategies aimed at modulating the Keap1-Nrf2-ARE pathway. The Nrf2 activator DMF (Dimethylfumarates) has been approved by the FDA as a new first-line oral drug to treat patients with relapsing forms of multiple sclerosis, while a phase 3 study of another promising candidate, CDDO-Me, was terminated for safety reasons. Directly inhibiting Keap1-Nrf2 protein-protein interactions as a novel Nrf2-modulating strategy has many advantages over using electrophilic Nrf2 activators. The development of Keap1-Nrf2 protein-protein interaction inhibitors has become a topic of intense research, and potent inhibitors of this target have been identified. In addition, inhibiting Nrf2 activity has attracted an increasing amount of attention because it may provide an alternative cancer therapy. This review summarizes the molecular mechanisms and biological functions of the Keap1-Nrf2-ARE system. The main focus of this review is on recent progress in studies of agents that target the Keap1-Nrf2-ARE pathway and the therapeutic applications of such agents.
Collapse
Affiliation(s)
- Meng-Chen Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian-Ai Ji
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng-Yu Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China.,Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
85
|
|
86
|
Mann GE. Cardiovascular and skeletal muscle ageing: consequences for longevity. J Physiol 2016; 594:1961-3. [PMID: 27079628 PMCID: PMC4933101 DOI: 10.1113/jp270578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 02/04/2016] [Indexed: 01/16/2023] Open
Affiliation(s)
- Giovanni E Mann
- Cardiovascular Division, BHF Centre of Research Excellence, Faculty of Life & Health Sciences, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| |
Collapse
|
87
|
Margaritelis NV, Cobley JN, Paschalis V, Veskoukis AS, Theodorou AA, Kyparos A, Nikolaidis MG. Principles for integrating reactive species into in vivo biological processes: Examples from exercise physiology. Cell Signal 2016; 28:256-71. [DOI: 10.1016/j.cellsig.2015.12.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/07/2015] [Accepted: 12/20/2015] [Indexed: 12/14/2022]
|
88
|
Onyango IG, Dennis J, Khan SM. Mitochondrial Dysfunction in Alzheimer's Disease and the Rationale for Bioenergetics Based Therapies. Aging Dis 2016; 7:201-14. [PMID: 27114851 PMCID: PMC4809610 DOI: 10.14336/ad.2015.1007] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/07/2015] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized by the progressive loss of cholinergic neurons, leading to the onset of severe behavioral, motor and cognitive impairments. It is a pressing public health problem with no effective treatment. Existing therapies only provide symptomatic relief without being able to prevent, stop or reverse the pathologic process. While the molecular basis underlying this multifactorial neurodegenerative disorder remains a significant challenge, mitochondrial dysfunction appears to be a critical factor in the pathogenesis of this disease. It is therefore important to target mitochondrial dysfunction in the prodromal phase of AD to slow or prevent the neurodegenerative process and restore neuronal function. In this review, we discuss mechanisms of action and translational potential of current mitochondrial and bioenergetic therapeutics for AD including: mitochondrial enhancers to potentiate energy production; antioxidants to scavenge reactive oxygen species and reduce oxidative damage; glucose metabolism and substrate supply; and candidates that target apoptotic and mitophagy pathways to remove damaged mitochondria. While mitochondrial therapeutic strategies have shown promise at the preclinical stage, there has been little progress in clinical trials thus far.
Collapse
Affiliation(s)
- Isaac G Onyango
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Jameel Dennis
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| | - Shaharyah M Khan
- Gencia Biotechnology, 706 B Forest St, Charlottesville, VA 22903, USA
| |
Collapse
|
89
|
Vurusaner B, Gamba P, Gargiulo S, Testa G, Staurenghi E, Leonarduzzi G, Poli G, Basaga H. Nrf2 antioxidant defense is involved in survival signaling elicited by 27-hydroxycholesterol in human promonocytic cells. Free Radic Biol Med 2016; 91:93-104. [PMID: 26689473 DOI: 10.1016/j.freeradbiomed.2015.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023]
Abstract
Cholesterol oxidation products such as oxysterols are considered critical factors in the atherosclerotic plaque formation since they induce oxidative stress, inflammation and apoptotic cell death. 27-hydroxycholesterol (27-OH) is one of the most represented oxysterols in atherosclerotic lesions. We recently showed that relatively low concentrations of 27-OH generated a strong survival signaling through an early and transient increase of cellular ROS level, that enhanced MEK-ERK/PI3K-Akt phosphorylation, in turn responsible of a sustained quenching of ROS production. It remains to identify the link between ERK/Akt up-regulation and the consequent quenching effect on ROS intracellular level that efficiently and markedly delay the pro-apoptotic effect of the oxysterol. Here we report on the potent activation of Nrf2 redox-sensitive transcription factor by low micromolar amount of 27-OH added to U937 promonocytic cells. The 27-OH-exerted induction of Nrf2 and subsequently of the target genes, HO-1 and NQO-1, was proved to be: (i) dependent upon the activation of ERK and Akt pathways, (ii) directly responsible for the quenching of intracellular oxidative stress and by this way (iii) ultimately responsible for the observed oxysterol-induced pro-survival response.
Collapse
Affiliation(s)
- Beyza Vurusaner
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Simona Gargiulo
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Torino, Torino, Italy.
| | - Huveyda Basaga
- Biological Sciences and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Orhanli-Tuzla, 34956 Istanbul, Turkey.
| |
Collapse
|
90
|
Muralidharan P, Hayes D, Black SM, Mansour HM. Microparticulate/Nanoparticulate Powders of a Novel Nrf2 Activator and an Aerosol Performance Enhancer for Pulmonary Delivery Targeting the Lung Nrf2/Keap-1 Pathway. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2016; 1:48-65. [PMID: 27774309 PMCID: PMC5072457 DOI: 10.1039/c5me00004a] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This systematic and comprehensive study reports for the first time on the successful rational design of advanced inhalable therapeutic dry powders containing dimethyl fumarate, a first-in-class Nrf2 activator drug to treat pulmonary inflammation, using particle engineering design technology for targeted delivery to the lungs as advanced spray dried (SD) one-component DPIs. In addition, two-component co-spray dried (co-SD) DMF:D-Man DPIs with high drug loading were successfully designed for targeted lung delivery as advanced DPIs using organic solution advanced spray drying in closed mode. Regional targeted deposition using design of experiments (DoE) for in vitro predictive lung modeling based on aerodynamic properties was tailored based on composition and spray drying parameters. These findings indicate the significant potential of using D-Man in spray drying to improve particle formation and aerosol performance of small molecule with a relatively low melting point. These respirable microparticles/nanoparticles in the solid-state exhibited excellent aerosol dispersion performance with an FDA-approved human DPI device. Using in vitro predictive lung deposition modeling, the aerosol deposition patterns of these particles show the capability to reach lower airways to treat inflammation in this region in pulmonary diseases such as acute lung injury (ALI), chronic obstructive pulmonary disease (COPD), pulmonary hypertension (PH), and pulmonary endothelial disease.
Collapse
Affiliation(s)
- Priya Muralidharan
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA
| | - Don Hayes
- Departments of Pediatrics and Internal Medicine, Lung and Heart-Lung Transplant Programs, The Ohio State University College of Medicine, Columbus, OH 43205, USA; The Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Stephen M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Heidi M Mansour
- College of Pharmacy, Skaggs Pharmaceutical Sciences Center, The University of Arizona, Tucson, AZ, 85721, USA; Institute of the Environment, The University of Arizona, Tucson, AZ 85721, USA; National Cancer Institute Comprehensive Cancer Center, The University of Arizona, Tucson, AZ 85721, USA; The BIO5 Research Institute, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
91
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
92
|
He M, Nitti M, Piras S, Furfaro AL, Traverso N, Pronzato MA, Mann GE. Heme oxygenase-1-derived bilirubin protects endothelial cells against high glucose-induced damage. Free Radic Biol Med 2015; 89:91-8. [PMID: 26391462 DOI: 10.1016/j.freeradbiomed.2015.07.151] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022]
Abstract
Hyperglycemia and diabetes are associated with endothelial cell dysfunction arising from enhanced oxidative injury, leading to the progression of diabetic vascular pathologies. The redox-sensitive transcription factor nuclear factor-E2-related factor 2 (Nrf2) is a master regulator of antioxidant genes, such as heme oxygenase-1 (HO-1), involved in cellular defenses against oxidative stress. We have investigated the pathways involved in high glucose-induced activation of HO-1 in endothelial cells and examined the molecular mechanisms underlying cytoprotection. Elevated d-glucose increased intracellular generation of reactive oxygen species (ROS), leading to nuclear translocation of Nrf2 and HO-1 expression in bovine aortic endothelial cells, with no changes in cell viability. Superoxide scavenging and inhibition of endothelial nitric oxide synthase (eNOS) abrogated upregulation of HO-1 expression by elevated glucose. Inhibition of HO-1 increased the sensitivity of endothelial cells to high glucose-mediated damage, while addition of bilirubin restored cell viability. Our findings establish that exposure of endothelial cells to high glucose leads to activation of endogenous antioxidant defense genes via the Nrf2/ARE pathway. Upregulation of HO-1 provides cytoprotection against high glucose-induced oxidative stress through the antioxidant properties of bilirubin. Modulation of the Nrf2 pathway in the early stages of diabetes may thus protect against sustained damage by hyperglycemia during progression of the disease.
Collapse
Affiliation(s)
- Meihua He
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Mariapaola Nitti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 2L.B. Alberti Street, Genoa, Italy
| | - Sabrina Piras
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 2L.B. Alberti Street, Genoa, Italy
| | | | - Nicola Traverso
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 2L.B. Alberti Street, Genoa, Italy
| | - Maria Adelaide Pronzato
- Department of Experimental Medicine, General Pathology Section, University of Genoa, 2L.B. Alberti Street, Genoa, Italy
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation Centre of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
93
|
LEI XIAOFENG, LEI LIJIAN, ZHANG ZHELIN, CHENG YAN. Neuroprotective effects of lycopene pretreatment on transient global cerebral ischemia-reperfusion in rats: The role of the Nrf2/HO-1 signaling pathway. Mol Med Rep 2015; 13:412-8. [DOI: 10.3892/mmr.2015.4534] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Accepted: 10/09/2015] [Indexed: 11/06/2022] Open
|
94
|
Assar ME, Angulo J, Rodríguez-Mañas L. Diabetes and ageing-induced vascular inflammation. J Physiol 2015; 594:2125-46. [PMID: 26435167 DOI: 10.1113/jp270841] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 12/16/2022] Open
Abstract
Diabetes and the ageing process independently increase the risk for cardiovascular disease (CVD). Since incidence of diabetes increases as people get older, the diabetic older adults represent the largest population of diabetic subjects. This group of patients would potentially be threatened by the development of CVD related to both ageing and diabetes. The relationship between CVD, ageing and diabetes is explained by the negative impact of these conditions on vascular function. Functional and clinical evidence supports the role of vascular inflammation induced by the ageing process and by diabetes in vascular impairment and CVD. Inflammatory mechanisms in both aged and diabetic vasculature include pro-inflammatory cytokines, vascular hyperactivation of nuclear factor-кB, increased expression of cyclooxygenase and inducible nitric oxide synthase, imbalanced expression of pro/anti-inflammatory microRNAs, and dysfunctional stress-response systems (sirtuins, Nrf2). In contrast, there are scarce data regarding the interaction of these mechanisms when ageing and diabetes co-exist and its impact on vascular function. Older diabetic animals and humans display higher vascular impairment and CVD risk than those either aged or diabetic, suggesting that chronic low-grade inflammation in ageing creates a vascular environment favouring the mechanisms of vascular damage driven by diabetes. Further research is needed to determine the specific inflammatory mechanisms responsible for exacerbated vascular impairment in older diabetic subjects in order to design effective therapeutic interventions to minimize the impact of vascular inflammation. This would help to prevent or delay CVD and the specific clinical manifestations (cognitive decline, frailty and disability) promoted by diabetes-induced vascular impairment in the elderly.
Collapse
Affiliation(s)
- Mariam El Assar
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain
| | - Javier Angulo
- Instituto Ramón y Cajal de Investigación Sanitaria, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Leocadio Rodríguez-Mañas
- Instituto de Investigación Sanitaria del Hospital Universitario de Getafe, Getafe, Spain.,Servicio de Geriatría, Hospital Universitario de Getafe, Getafe, Spain
| |
Collapse
|
95
|
Chapple SJ, Puszyk WM, Mann GE. Keap1-Nrf2 regulated redox signaling in utero: Priming of disease susceptibility in offspring. Free Radic Biol Med 2015; 88:212-220. [PMID: 26279476 DOI: 10.1016/j.freeradbiomed.2015.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 12/30/2022]
Abstract
Intrauterine exposure to gestational diabetes, pre-eclampsia or intrauterine growth restriction alters the redox status of the developing fetus. Such pregnancy-related diseases in most cases do not have a readily identifiable genetic cause, and epigenetic 'priming' mechanisms in utero may predispose both mother and child to later-life onset of cardiovascular and metabolic diseases. The concept of 'fetal programing' or 'developmental priming' and its association with an increased risk of disease in childhood or adulthood has been reviewed extensively. This review focuses on adaptive changes in the in utero redox environment during normal pregnancy and the consequences of alterations in redox control associated with pregnancies characterized by oxidative stress. We evaluate the evidence that the Keap1-Nrf2 pathway is important for protecting the fetus against adverse conditions in utero and may itself be subject to epigenetic priming, potentially contributing to an increased risk of vascular disease and insulin resistance in later life.
Collapse
Affiliation(s)
- Sarah J Chapple
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - William M Puszyk
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Giovanni E Mann
- Cardiovascular Division, British Heart Foundation of Research Excellence, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| |
Collapse
|
96
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 616] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
97
|
Mann GE, Forman HJ. Introduction to Special Issue on 'Nrf2 Regulated Redox Signaling and Metabolism in Physiology and Medicine. Free Radic Biol Med 2015; 88:91-92. [PMID: 26303332 DOI: 10.1016/j.freeradbiomed.2015.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Giovanni E Mann
- Cardiovascular Division, BHF Centre of Research Excellence, Faculty of Life & Health Sciences, King's College London, 150 Stamford Street, London SE1 9NH, UK.
| | - Henry J Forman
- Davis School of Gerontology, University of Southern California, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA.
| |
Collapse
|
98
|
The role of Nrf2 in protection against Pb-induced oxidative stress and apoptosis in SH-SY5Y cells. Food Chem Toxicol 2015; 86:191-201. [PMID: 26498409 DOI: 10.1016/j.fct.2015.10.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/06/2015] [Accepted: 10/16/2015] [Indexed: 11/21/2022]
Abstract
Lead exerts severe adverse effects on the nervous system in which oxidative stress might mediate impairments. In this study, we focused on Nrf2, which has been identified to significantly influence the protection of a cellular system against many xenobiotic compounds. We found that PbAc exhibited neurotoxicity mainly through oxidant-based processes and could be inhibited by NAC and DPI in SH-SY5Y cells. As a defense response, Nrf2 was activated when exposed to PbAc, thereby inducing a rapid increase in Nrf2 nuclear accumulation, as well as Nrf2-ARE binding activities in a ROS-dependent manner. Analysis of Nrf2-regulated gene expression and protein showed that PbAc could induce the mRNA transcription of HO-1, GSTα1, GCLM, GCLC, and NQO1, as well as the protein expression of HO-1 and γ-GCS. The responses of these genes to PbAc were regulated by Nrf2. Silencing Nrf2 expression in SH-SY5Y cells inhibited PbAc-induced gene transcription and protein expression. Overexpression of Nrf2 led to decreased ROS production and cell apoptosis, as well as increased cell viability under PbAc exposure. These results indicated that the Nrf2-ARE system exhibited a protective role in Pb-induced neurotoxicity, providing potential therapeutic strategies for the prevention and treatment of Pb-related diseases.
Collapse
|
99
|
Bertrand HC, Schaap M, Baird L, Georgakopoulos ND, Fowkes A, Thiollier C, Kachi H, Dinkova-Kostova AT, Wells G. Design, Synthesis, and Evaluation of Triazole Derivatives That Induce Nrf2 Dependent Gene Products and Inhibit the Keap1–Nrf2 Protein–Protein Interaction. J Med Chem 2015; 58:7186-94. [DOI: 10.1021/acs.jmedchem.5b00602] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hélène C. Bertrand
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Marjolein Schaap
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Liam Baird
- Jacqui
Wood Cancer Centre, Division of Cancer Research, Medical Research
Institute, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
| | - Nikolaos D. Georgakopoulos
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Adrian Fowkes
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Clarisse Thiollier
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Hiroko Kachi
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Albena T. Dinkova-Kostova
- Jacqui
Wood Cancer Centre, Division of Cancer Research, Medical Research
Institute, University of Dundee, Dundee, DD1 9SY, Scotland, United Kingdom
- Departments
of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Geoff Wells
- UCL
School of Pharmacy, University College London, 29/39 Brunswick Square, London, WC1N 1AX, United Kingdom
| |
Collapse
|
100
|
Controlled and Impaired Mitochondrial Quality in Neurons: Molecular Physiology and Prospective Pharmacology. Pharmacol Res 2015; 99:410-24. [DOI: 10.1016/j.phrs.2015.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 03/27/2015] [Accepted: 03/27/2015] [Indexed: 01/08/2023]
|