51
|
Unek G, Ozmen A, Mendilcioglu I, Simsek M, Korgun ET. Immunohistochemical distribution of cell cycle proteins p27, p57, cyclin D3, PCNA and Ki67 in normal and diabetic human placentas. J Mol Histol 2013; 45:21-34. [DOI: 10.1007/s10735-013-9534-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/12/2013] [Indexed: 12/24/2022]
|
52
|
Yessoufou A, Gbenou J, Grissa O, Hichami A, Simonin AM, Tabka Z, Moudachirou M, Moutairou K, Khan NA. Anti-hyperglycemic effects of three medicinal plants in diabetic pregnancy: modulation of T cell proliferation. Altern Ther Health Med 2013; 13:77. [PMID: 23565805 PMCID: PMC3637230 DOI: 10.1186/1472-6882-13-77] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 03/26/2013] [Indexed: 12/02/2022]
Abstract
Background Populations in Africa mostly rely on herbal concoctions for their primarily health care, but so far scientific studies supporting the use of plants in traditional medicine remain poor. The present study was undertaken to evaluate the anti-hyperglycemic effects of Picralima nitida (seeds), Nauclea latifolia (root and stem) and Oxytenanthera abyssinica (leaves) commonly used, in diabetic pregnancy. Methods Pregnant wistar rats, rendered diabetic by multiple low injections of streptozotocin, were treated with selected plant extracts based on their antioxidant activities. Vitamin C concentrations, fatty acid compositions and phytochemical analysis of plants extracts were determined. Effect of selected plant extracts on human T cell proliferation was also analysed. Results All analysed plant extracts exhibited substantial antioxidant activities probably related to their content in polyphenols. Picralima nitida exhibited the highest antioxidant capacity. Ethanolic and butanolic extracts of Picralima nitida, butanolic extract of Nauclea latifolia and ethanolic extract of Oxytenanthera abyssinica significantly decreased hyperglycemia in the diabetic pregnant rats. Butanolic extract of Picralima, also appeared to be the most potent immunosuppressor although all of the analysed extracts exerted an immunosuppressive effect on T cell proliferation probably due to their linolenic acid (C18:3n-3) and/or alkaloids content. Nevertheless, all analysed plants seemed to be good source of saturated and monounsaturated fatty acids. Conclusion By having antioxidant, anti-hyperglycemic and immunosuppressive activities, these plants could be good candidates in the treatment of diabetes and diabetic pregnancy.
Collapse
|
53
|
Davis JN, Gunderson EP, Gyllenhammer LE, Goran MI. Impact of gestational diabetes mellitus on pubertal changes in adiposity and metabolic profiles in Latino offspring. J Pediatr 2013; 162:741-5. [PMID: 23149173 PMCID: PMC3578029 DOI: 10.1016/j.jpeds.2012.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/20/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To examine the impact of maternal gestational diabetes mellitus (GDM) status on longitudinal changes in adiposity and metabolic variables in overweight Latino offspring (from age 8-20 years) across puberty. STUDY DESIGN This longitudinal cohort of 210 overweight Latino children was measured annually for a period of 3 ± 1 years for Tanner stage through physical examination, adiposity by dual-energy X-ray absorptiometry and magnetic resonance imaging, lipids, and glucose and insulin action via the oral glucose tolerance test and frequently sampled intravenous glucose tolerance test. Linear mixed-effects modeling estimated the impact of maternal GDM status on baseline and changes in adiposity and metabolic variables across puberty. RESULTS In our cohort, 22% of offspring were from GDM pregnancies. At baseline, the GDM offspring were heavier at birth, more likely to have a family history of type 2 diabetes, and less likely to have been breastfed (for any duration). Compared with the non-GDM offspring, the GDM offspring had greater increases in total body fat (+6.5% vs +4.5%; P = .03) and steeper declines in acute insulin response (-39% vs -17%; P < .001) and disposition index (-57% vs -35%; P < .001) across Tanner stages, independent of ethnicity, sex, breastfeeding status, family history of diabetes, and baseline and changes in body composition. CONCLUSION These findings confirm the elevated risk for excess adiposity and type 2 diabetes in GDM offspring, and further underscore the need for interventions targeting Latino GDM and their offspring.
Collapse
Affiliation(s)
- Jaimie N. Davis
- Department of Nutritional Sciences, University of Texas at Austin, Austin Texas, USA
| | - Erica P. Gunderson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lauren E. Gyllenhammer
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Michael I. Goran
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA,Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
54
|
Grasemann C, Devlin MJ, Rzeczkowska PA, Herrmann R, Horsthemke B, Hauffa BP, Grynpas M, Alm C, Bouxsein ML, Palmert MR. Parental diabetes: the Akita mouse as a model of the effects of maternal and paternal hyperglycemia in wildtype offspring. PLoS One 2012; 7:e50210. [PMID: 23209676 PMCID: PMC3509145 DOI: 10.1371/journal.pone.0050210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Aim/Hypothesis Maternal diabetes and high-fat feeding during pregnancy have been linked to later life outcomes in offspring. To investigate the effects of both maternal and paternal hyperglycemia on offspring phenotypes, we utilized an autosomal dominant mouse model of diabetes (hypoinsulinemic hyperglycemia in Akita mice). We determined metabolic and skeletal phenotypes in wildtype offspring of Akita mothers and fathers. Results Both maternal and paternal diabetes resulted in phenotypic changes in wildtype offspring. Phenotypic changes were more pronounced in male offspring than in female offspring. Maternal hyperglycemia resulted in metabolic and skeletal phenotypes in male wildtype offspring. Decreased bodyweight and impaired glucose tolerance were observed as were reduced whole body bone mineral density and reduced trabecular bone mass. Phenotypic changes in offspring of diabetic fathers differed in effect size from changes in offspring of diabetic mothers. Male wildtype offspring developed a milder metabolic phenotype, but a more severe skeletal phenotype. Female wildtype offspring of diabetic fathers were least affected. Conclusions Both maternal and paternal diabetes led to the development of metabolic and skeletal changes in wildtype offspring, with a greater effect of maternal diabetes on metabolic parameters and of paternal diabetes on skeletal development. The observed changes are unlikely to derive from Mendelian inheritance, since the investigated offspring did not inherit the Akita mutation. While fetal programming may explain the phenotypic changes in offspring exposed to maternal diabetes in-utero, the mechanism underlying the effect of paternal diabetes on wildtype offspring is unclear.
Collapse
Affiliation(s)
- Corinna Grasemann
- Kinderklinik II, Division of Paediatric Endocrinology, UK- Essen and The University of Duisburg-Essen, Essen, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Differential effects of chronic pulsatile versus chronic constant maternal hyperglycemia on fetal pancreatic β-cells. J Pregnancy 2012; 2012:812094. [PMID: 23133755 PMCID: PMC3486011 DOI: 10.1155/2012/812094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/02/2012] [Indexed: 11/17/2022] Open
Abstract
Constant maternal hyperglycemia limits, while pulsatile maternal hyperglycemia may enhance, fetal glucose-stimulated insulin secretion (GSIS) in sheep. However, the impact of such different patterns of hyperglycemia on the development of the fetal β-cell is unknown. We measured the impact of one week of chronic constant hyperglycemia (CHG, n = 6) versus pulsatile hyperglycemia (PHG, n = 5) versus controls (n = 7) on the percentage of the fetal pancreas staining for insulin (β-cell area), mitotic and apoptotic indices and size of fetal β-cells, and fetal insulin secretion in sheep. Baseline insulin concentrations were higher in CHG fetuses (P < 0.05) compared to controls and PHG. GSIS was lower in the CHG group (P < 0.005) compared to controls and PHG. PHG β-cell area was increased 50% (P < 0.05) compared to controls and CHG. CHG β-cell apoptosis was increased over 400% (P < 0.05) compared to controls and PHG. These results indicate that late gestation constant maternal hyperglycemia leads to significant β-cell toxicity (increased apoptosis and decreased GSIS). Furthermore, pulsatile maternal hyperglycemia increases pancreatic β-cell area but did not increase GSIS, indicating decreased β-cell responsiveness. These findings demonstrate differential effects that the pattern of maternal hyperglycemia has on fetal pancreatic β-cell development, which might contribute to later life limitation in insulin secretion.
Collapse
|
56
|
Schellong K, Schulz S, Harder T, Plagemann A. Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS One 2012; 7:e47776. [PMID: 23082214 PMCID: PMC3474767 DOI: 10.1371/journal.pone.0047776] [Citation(s) in RCA: 258] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 09/17/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Overweight is among the major challenging health risk factors. It has been claimed that birth weight, being a critical indicator of prenatal developmental conditions, is related to long-term overweight risk. In order to check this important assumption of developmental and preventive medicine, we performed a systematic review and comprehensive meta-analysis. METHODS AND FINDINGS Relevant studies published up to January 2011 that investigated the relation between birth weight and later risk of overweight were identified through literature searches using MEDLINE and EMBASE. For meta-analysis, 66 studies from 26 countries and five continents were identified to be eligible, including 643,902 persons aged 1 to 75 years. We constructed random-effects and fixed-effects models, performed subgroup-analyses, influence-analyses, assessed heterogeneity and publication bias, performed meta-regression analysis as well as analysis of confounder adjusted data. Meta-regression revealed a linear positive relationship between birth weight and later overweight risk (p<0.001). Low birth weight (<2,500 g) was found to be followed by a decreased risk of overweight (odds ratio (OR) =0.67; 95% confidence interval (CI) 0.59-0.76). High birth weight (>4,000 g) was associated with increased risk of overweight (OR=1.66; 95% CI 1.55-1.77). Results did not change significantly by using normal birth weight (2,500-4,000 g) as reference category (OR=0.73, 95% CI 0.63-0.84, and OR=1.60, 95% CI 1.45-1.77, respectively). Subgroup- and influence-analyses revealed no indication for bias/confounding. Adjusted estimates indicate a doubling of long-term overweight risk in high as compared to normal birth weight subjects (OR=1.96, 95% CI 1.43-2.67). CONCLUSIONS Findings demonstrate that low birth weight is followed by a decreased long-term risk of overweight, while high birth weight predisposes for later overweight. Preventing in-utero overnutrition, e.g., by avoiding maternal overnutrition, overweight and/or diabetes during pregnancy, might therefore be a promising strategy of genuine overweight prevention, globally.
Collapse
Affiliation(s)
- Karen Schellong
- Clinic of Obstetrics, Division of ‘Experimental Obstetrics’, Charité – University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Sandra Schulz
- Clinic of Obstetrics, Division of ‘Experimental Obstetrics’, Charité – University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Thomas Harder
- Clinic of Obstetrics, Division of ‘Experimental Obstetrics’, Charité – University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Andreas Plagemann
- Clinic of Obstetrics, Division of ‘Experimental Obstetrics’, Charité – University Medicine Berlin, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
57
|
Rice GE, Illanes SE, Mitchell MD. Gestational diabetes mellitus: a positive predictor of type 2 diabetes? Int J Endocrinol 2012; 2012:721653. [PMID: 22675354 PMCID: PMC3366202 DOI: 10.1155/2012/721653] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/08/2012] [Indexed: 12/27/2022] Open
Abstract
The aim of this paper is to consider the relative benefits of screening for type two diabetes mellitus in women with a previous pregnancy complicated by gestational diabetes mellitus. Recent studies suggest that women who experience GDM are at a greater risk of developing type 2 diabetes within 10-20 years of their index pregnancy. If considered as a stand-alone indicator of the risk of developing type 2 diabetes, GDM is a poor diagnostic test. Most women do not develop GDM during pregnancy and of those that do most do not develop type 2 diabetes. There is, however, a clear need for better early detection of predisposition to disease and/or disease onset to significantly impact on this global pandemic. The putative benefits of multivariate approaches and first trimester and preconception screening to increase the sensitivity of risk assignment modalities for type 2 diabetes are proposed.
Collapse
Affiliation(s)
- Gregory E Rice
- The University of Queensland Centre for Clinical Research, RBWH Campus, Herston, Brisbane, QLD 4029, Australia.
| | | | | |
Collapse
|
58
|
Spadotto R, Damasceno DC, Godinho AF, Amorim EMP, Perobelli JE, Kempinas WDG. Reproductive physiology, and physical and sexual development of female offspring born to diabetic dams. ACTA ACUST UNITED AC 2012; 56:96-103. [PMID: 22584562 DOI: 10.1590/s0004-27302012000200002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 02/17/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The objective of this study was to evaluate physical and sexual development and reproductive physiology in female rat offspring that developed in hyperglycemia conditions in utero and during lactation. MATERIALS AND METHODS Maternal diabetes was induced in female rats by a single IV injection of streptozotocin before mating. Female offspring development was evaluated by means of the following parameters: physical development; age of vaginal opening and first estrus; weight and histological evaluation of uterus and ovaries; duration of the estrous cycle, sexual behavior, and fertility after natural mating. RESULTS In the female offspring, maternal diabetes caused delays in initial physical development; diminution in ovary weight and number of follicles; and inferior reproductive performance compared with the control group. CONCLUSIONS The exposure to hyperglycemia in uterus and during lactation caused delays in physical and sexual development, and affected the reproductive physiology of female rats negatively.
Collapse
Affiliation(s)
- Raquel Spadotto
- Graduate Program in Geral and Applied Biology, Institute of Biosciences, Universidade Estadual Paulista, Sao Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
59
|
Singh CK, Kumar A, LaVoie HA, DiPette DJ, Singh US. Resveratrol prevents impairment in activation of retinoic acid receptors and MAP kinases in the embryos of a rodent model of diabetic embryopathy. Reprod Sci 2012; 19:949-61. [PMID: 22534330 DOI: 10.1177/1933719112438972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Diabetes induces impairments in gene expression during embryonic development that leads to premature and improper tissue specialization. Retinoic acid receptors (RARs and retinoid X receptor [RXRs]) and mitogen-activated protein kinases (MAPKs) play crucial roles during embryonic development, and their suppression or activation has been shown as a determinant of the fate of embryonic organogenesis. We studied the activation of RARs and MAPKs in embryonic day 12 (E12) in embryos of rats under normal, diabetic, and diabetic treated with resveratrol ([RSV]; 100 mg/kg body weight) conditions. We found downregulation of RARs and RXRs expressions as well as their DNA-binding activities in the embryos exhibiting developmental delays due to diabetes. Furthermore, the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was decreased and phosphorylation of c-Jun N-terminal kinase (JNK) 1/2 and p38 was increased. Interestingly, embryos of diabetic rats treated with RSV showed normalized patterns of RARs, RXRs, neuronal markers, and ERK, JNK and p38 phosphorylation.
Collapse
Affiliation(s)
- Chandra K Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | |
Collapse
|
60
|
Maternal adaptations and inheritance in the transgenerational programming of adult disease. Cell Tissue Res 2012; 349:863-80. [PMID: 22526629 DOI: 10.1007/s00441-012-1411-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/08/2012] [Indexed: 12/17/2022]
Abstract
Adverse exposures in utero have long been linked with an increased susceptibility to adult cardio-renal and metabolic diseases. Clear gender differences exist, whereby growth-restricted females, although exhibiting some phenotypic modifications, are often protected from overt disease outcomes. One of the greatest physiological challenges facing the female gender, however, is that of pregnancy; yet little research has focused on the outcomes associated with this, as a potential 'second-hit' for those who were small at birth. We review the limited evidence suggesting that pregnancy may unmask cardio-renal and metabolic disease states and the consequences for long-term maternal health in females who were born small. Additionally, a growing area of research in this programming field is in the transgenerational transmission of low birth weight and disease susceptibility. Pathways for transmission might include an abnormal adaptation to pregnancy by the growth-restricted mother and/or inheritance via the parental germline. Strategies to optimise the pregnancy environment and/or prevent the consequences of inheritance of programmed deficits and dysfunction are of critical importance for future generations.
Collapse
|
61
|
Green AS, Chen X, Macko AR, Anderson MJ, Kelly AC, Hart NJ, Lynch RM, Limesand SW. Chronic pulsatile hyperglycemia reduces insulin secretion and increases accumulation of reactive oxygen species in fetal sheep islets. J Endocrinol 2012; 212:327-42. [PMID: 22182602 PMCID: PMC3516619 DOI: 10.1530/joe-11-0300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Children from diabetic pregnancies have a greater incidence of type 2 diabetes. Our objective was to determine if exposure to mild-moderate hyperglycemia, by modeling managed diabetic pregnancies, affects fetal β-cell function. In sheep fetuses, β-cell responsiveness was examined after 2 weeks of sustained hyperglycemia with 3 pulses/day, mimicking postprandial excursions, and compared to saline-infused controls (n = 10). Two pulsatile hyperglycemia (PHG) treatments were studied: mild (mPHG, n = 5) with +15% sustained and +55% pulse; and moderate (PHG, n = 10) with +20% sustained and +100% pulse. Fetal glucose-stimulated insulin secretion and glucose-potentiated arginine insulin secretion were lower (P < 0.05) in PHG (0.86 ± 0.13 and 2.91 ± 0.39 ng/ml plasma insulin) but not in mPHG fetuses (1.21 ± 0.08 and 4.25 ± 0.56 ng/ml) compared to controls (1.58 ± 0.25 and 4.51 ± 0.56 ng/ml). Islet insulin content was 35% lower in PHG and 35% higher in mPHG vs controls (P < 0.01). Insulin secretion and maximally stimulated insulin release were also reduced (P < 0.05) in PHG islets due to lower islet insulin content. Isolated PHG islets also had 63% greater (P < 0.01) reactive oxygen species (ROS) accumulation at 11.1 mmol/l glucose than controls (P < 0.01), but oxidative damage was not detected in islet proteins. PHG fetuses showed evidence of oxidative damage to skeletal muscle proteins (P < 0.05) but not insulin resistance. Our findings show that PHG induced dysregulation of islet ROS handling and decreased islet insulin content, but these outcomes are independent. The β-cell outcomes were dependent on the severity of hyperglycemia because mPHG fetuses had no distinguishable impairments in ROS handling or insulin secretion but greater insulin content.
Collapse
Affiliation(s)
- Alice S. Green
- Department of Animal Sciences, University of Arizona, Tucson AZ
| | - Xiaochuan Chen
- Department of Animal Sciences, University of Arizona, Tucson AZ
| | - Antoni R. Macko
- Department of Animal Sciences, University of Arizona, Tucson AZ
| | | | - Amy C. Kelly
- Department of Animal Sciences, University of Arizona, Tucson AZ
| | - Nathaniel J. Hart
- Departments of Pharmacology and Physiology, University of Arizona, Tucson AZ
| | - Ronald M. Lynch
- Departments of Pharmacology and Physiology, University of Arizona, Tucson AZ
| | | |
Collapse
|
62
|
Endocrine pancreas development: effects of metabolic and intergenerational programming caused by a protein-restricted diet. Pancreas 2012; 41:1-9. [PMID: 22173830 DOI: 10.1097/mpa.0b013e3182236320] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Experimental studies have demonstrated an association between low birth weight and the later development of type 2 diabetes. This association could be a result of the programming process that affects pancreatic beta-cell development due to poor fetal nutrition. This mechanism may not be limited to the first generation. In rodents, endocrine cells of the pancreas are derived from cells of the endodermal dorsal and ventral anlage that migrate and gather in clusters in a process termed isletogenesis. Islet development occurs relatively late in gestation, and islets undergo substantial remodeling immediately after birth under the regulation of a transcription factor network. Furthermore, the offspring of mice fed a protein-restricted diet exhibit a reduced pancreatic beta-cell mass at birth, lower vascularization, increased apoptosis rate, and changes in glucose metabolism in later life. Although the mechanisms underlying these relationships are unclear, it has been hypothesized that in utero nutritional conditions affect epigenetic patterns of gene transcription that persist throughout life and subsequent generations. We aimed to review the process of the formation of the endocrine pancreas in rodents, the consequences of a protein-restricted diet on offspring, and the transgenerational effects of this insult on the incidence of type 2 diabetes.
Collapse
|
63
|
Amorim EMP, Damasceno DC, Perobelli JE, Spadotto R, Fernandez CDB, Volpato GT, Kempinas WDG. Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats. Reprod Biol Endocrinol 2011; 9:154. [PMID: 22142502 PMCID: PMC3248370 DOI: 10.1186/1477-7827-9-154] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 12/06/2011] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND A suboptimal intrauterine environment may have a detrimental effect on gonadal development and thereby increases the risk for reproductive disorders and infertility in adult life. Here, we used uncontrolled maternal diabetes as a model to provoke pre- and perinatal growth restriction and evaluate the sexual development of rat male offspring. METHODS Maternal diabetes was induced in the dams through administration of a single i.v. dose of 40 mg/kg streptozotocin, 7 days before mating. Female rats presenting glycemic levels above 200 mg/dL after the induction were selected for the experiment. The male offspring was analyzed at different phases of sexual development, i.e., peripuberty, postpuberty and adulthood. RESULTS Body weight and blood glucose levels of pups, on the third postnatal day, were lower in the offspring of diabetic dams compared to controls. Maternal diabetes also provoked delayed testicular descent and preputial separation. In the offspring of diabetic dams the weight of reproductive organs at 40, 60 and 90 days-old was lower, as well as sperm reserves and sperm transit time through the epididymis. However the plasma testosterone levels were not different among experimental groups. CONCLUSIONS It is difficult to isolate the effects directly from diabetes and those from IUGR. Although the exposure to hyperglycemic environment during prenatal life and lactation delayed the onset of puberty in male rats, the IUGR, in the studied model, did not influenced the structural organization of the male gonads of the offspring at any point during sexual development. However the decrease in sperm reserves in epididymal cauda and the acceleration in sperm transit time in this portion of epididymis may lead to an impairment of sperm quality and fertility potential in these animals. Additional studies are needed in attempt to investigate the fertility of animals with intrauterine growth restriction by maternal diabetes and possible multigenerational effects.
Collapse
Affiliation(s)
- Elaine MP Amorim
- Center of Biological and Health Sciences (CCBS), State University of West Paraná (UNIOESTE), Cascavel, Paraná, Brazil
| | - Débora C Damasceno
- Department of Gynecology and Obstetrics, Botucatu Medical School, UNESP - Univ Estadual Paulista, Botucatu, São Paulo, Brazil
| | - Juliana E Perobelli
- Graduate Program in Cell and Structural Biology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
| | - Raquel Spadotto
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, 18618-970, Botucatu, São Paulo, Brazil
| | - Carla DB Fernandez
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, 18618-970, Botucatu, São Paulo, Brazil
| | - Gustavo T Volpato
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, 18618-970, Botucatu, São Paulo, Brazil
| | - Wilma DG Kempinas
- Department of Morphology, Institute of Biosciences, UNESP - Univ Estadual Paulista, 18618-970, Botucatu, São Paulo, Brazil
| |
Collapse
|
64
|
Maternal diabetes in pregnancy: early and long-term outcomes on the offspring and the concept of "metabolic memory". EXPERIMENTAL DIABETES RESEARCH 2011; 2011:218598. [PMID: 22144985 PMCID: PMC3226356 DOI: 10.1155/2011/218598] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/18/2011] [Accepted: 09/07/2011] [Indexed: 12/17/2022]
Abstract
The adverse outcomes on the offspring from maternal diabetes in pregnancy are substantially documented. In this paper, we report main knowledge on impacts of maternal diabetes on early and long-term health of the offspring, with specific comments on maternal obesity. The main adverse outcome on progenies from pregnancy complicated with maternal diabetes appears to be macrosomia, as it is commonly known that intrauterine exposure to hyperglycemia increases the risk and programs the offspring to develop diabetes and/or obesity at adulthood. This “fetal programming”, due to intrauterine diabetic milieu, is termed as “metabolic memory”. In gestational diabetes as well as in macrosomia, the complications include metabolic abnormalities, degraded antioxidant status, disrupted immune system and potential metabolic syndrome in adult offspring. Furthermore, there is evidence that maternal obesity may also increase the risk of obesity and diabetes in offspring. However, women with GDM possibly exhibit greater macrosomia than obese women. Obesity and diabetes in pregnancy have independent and additive effects on obstetric complications, and both require proper management. Management of gestational diabetes mellitus and maternal obesity is essential for maternal and offspring's good health. Increasing physical activity, preventing gestational weight gain, and having some qualitative nutritional habits may be beneficial during both the pregnancy and offspring's future life.
Collapse
|
65
|
Philipps LH, Santhakumaran S, Gale C, Prior E, Logan KM, Hyde MJ, Modi N. The diabetic pregnancy and offspring BMI in childhood: a systematic review and meta-analysis. Diabetologia 2011; 54:1957-66. [PMID: 21626451 DOI: 10.1007/s00125-011-2180-y] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 04/08/2011] [Indexed: 10/18/2022]
Abstract
AIMS/HYPOTHESIS Offspring of mothers with diabetes are at increased risk of metabolic disorders in later life. Increased offspring BMI is a plausible mediator. We performed a systematic review and meta-analysis of studies examining offspring BMI z score in childhood in relation to maternal diabetes. METHODS Papers reporting BMI z scores for offspring of diabetic (all types, and pre- and during-pregnancy onset) and non-diabetic mothers were included. Citations were identified in PubMed; bibliographies of relevant articles were hand-searched and authors contacted for additional data where necessary. We compared offspring BMI z score with and without adjustment for maternal pre-pregnancy BMI. We performed fixed effect meta-analysis except where significant heterogeneity called for use of a random effects analysis. RESULTS Data were available from nine studies. In the diabetic group unadjusted mean offspring BMI z score was 0.28 higher (all diabetic mothers vs controls (95% CI 0.09, 0.47; p = 0.004; nine studies; offspring of diabetic mothers n = 927, controls n = 26,384) and with adjustment for maternal pre-pregnancy BMI, 0.07 higher (95% CI -0.15, 0.28; p = 0.54; three studies; offspring of diabetic mothers n = 244, controls n = 11,206). There was no evidence of a difference in offspring BMI z score in relation to type of diabetes (gestational vs type 1, p = 0.95). CONCLUSIONS/INTERPRETATION Maternal diabetes is associated with increased offspring BMI z score, although this is no longer apparent after adjustment for maternal pre-pregnancy BMI in the limited number of studies in which this is reported. Causal mediators of the effect of maternal diabetes on offspring outcomes remain to be established; we recommend that future research includes adjustment for maternal pre-pregnancy BMI.
Collapse
Affiliation(s)
- L H Philipps
- Section of Neonatal Medicine, Department of Medicine, Imperial College London, Chelsea and Westminster Campus, 369 Fulham Road, London, SW10 9NH, UK
| | | | | | | | | | | | | |
Collapse
|
66
|
Lau SL, Gunton JE, Athayde NP, Byth K, Cheung NW. Serum 25‐hydroxyvitamin D and glycated haemoglobin levels in women with gestational diabetes mellitus. Med J Aust 2011; 194:334-7. [DOI: 10.5694/j.1326-5377.2011.tb03000.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Affiliation(s)
- Sue Lynn Lau
- Westmead Hospital, Sydney, NSW
- Diabetes and Transcription Factors Laboratory, Garvan Institute of Medical Research, Sydney, NSW
- Western Clinical School, University of Sydney, Sydney, NSW
| | - Jenny E Gunton
- Westmead Hospital, Sydney, NSW
- Diabetes and Transcription Factors Laboratory, Garvan Institute of Medical Research, Sydney, NSW
- Western Clinical School, University of Sydney, Sydney, NSW
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW
| | | | | | - N Wah Cheung
- Westmead Hospital, Sydney, NSW
- Western Clinical School, University of Sydney, Sydney, NSW
| |
Collapse
|
67
|
Grant WF, Gillingham MB, Batra AK, Fewkes NM, Comstock SM, Takahashi D, Braun TP, Grove KL, Friedman JE, Marks DL. Maternal high fat diet is associated with decreased plasma n-3 fatty acids and fetal hepatic apoptosis in nonhuman primates. PLoS One 2011; 6:e17261. [PMID: 21364873 PMCID: PMC3045408 DOI: 10.1371/journal.pone.0017261] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Accepted: 01/27/2011] [Indexed: 02/06/2023] Open
Abstract
To begin to understand the contributions of maternal obesity and over-nutrition to human development and the early origins of obesity, we utilized a non-human primate model to investigate the effects of maternal high-fat feeding and obesity on breast milk, maternal and fetal plasma fatty acid composition and fetal hepatic development. While the high-fat diet (HFD) contained equivalent levels of n-3 fatty acids (FA's) and higher levels of n-6 FA's than the control diet (CTR), we found significant decreases in docosahexaenoic acid (DHA) and total n-3 FA's in HFD maternal and fetal plasma. Furthermore, the HFD fetal plasma n-6∶n-3 ratio was elevated and was significantly correlated to the maternal plasma n-6∶n-3 ratio and maternal hyperinsulinemia. Hepatic apoptosis was also increased in the HFD fetal liver. Switching HFD females to a CTR diet during a subsequent pregnancy normalized fetal DHA, n-3 FA's and fetal hepatic apoptosis to CTR levels. Breast milk from HFD dams contained lower levels of eicosopentanoic acid (EPA) and DHA and lower levels of total protein than CTR breast milk. This study links chronic maternal consumption of a HFD with fetal hepatic apoptosis and suggests that a potentially pathological maternal fatty acid milieu is replicated in the developing fetal circulation in the nonhuman primate.
Collapse
Affiliation(s)
- Wilmon F. Grant
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- Human Investigations Program of the Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Melanie B. Gillingham
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ayesha K. Batra
- Center for the Study of Weight Regulation, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Natasha M. Fewkes
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Sarah M. Comstock
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Diana Takahashi
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Theodore P. Braun
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Kevin L. Grove
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jacob E. Friedman
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, United States of America
| | - Daniel L. Marks
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon, United States of America
- Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, United States of America
- Center for the Study of Weight Regulation, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
68
|
Abstract
The worldwide increase in the incidence of diabetes, the increase in type 2 diabetes in women at reproductive ages, and the cross-generation of the intrauterine programming of type 2 diabetes are the bases for the growing interest in the use of experimental diabetic models in order to gain insight into the mechanisms of induction of developmental alterations in maternal diabetes. In this scenario, experimental models that present the most common features of diabetes in pregnancy are highly required. Several important aspects of human diabetic pregnancies such as the increased rates of spontaneous abortions, malformations, fetoplacental impairments, and offspring diseases in later life can be approached by using the appropriate animal models. The purpose of this review is to give a practical and critical guide into the most frequently used experimental models in diabetes and pregnancy, discuss their advantages and limitations, and describe the aspects of diabetes and pregnancy for which these models are thought to be adequate. This review provides a comprehensive view and an extensive analysis of the different models and phenotypes addressed in diabetic animals throughout pregnancy. The review includes an analysis of the surgical, chemical-induced, and genetic experimental models of diabetes and an evaluation of their use to analyze early pregnancy defects, induction of congenital malformations, placental and fetal alterations, and the intrauterine programming of metabolic diseases in the offspring's later life.
Collapse
Affiliation(s)
- Alicia Jawerbaum
- Laboratory of Reproduction and Metabolism, Centro de Estudios Farmacológicos y Botánicos-Consejo Nacional de Investigaciones Científicas y Técnicas-School of Medicine, University of Buenos Aires, Buenos Aires, Argentina.
| | | |
Collapse
|
69
|
Van Assche FA, Devlieger R, Harder T, Plagemann A. Mitogenic effect of insulin and developmental programming. Diabetologia 2010; 53:1243. [PMID: 20225130 DOI: 10.1007/s00125-010-1712-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 11/25/2022]
|
70
|
Geifman-Holtzman O, Machtinger R, Spiliopoulos M, Schiff E, Koren-Morag N, Dulitzki M. The clinical utility of oral glucose tolerance test at term: can it predict fetal macrosomia? Arch Gynecol Obstet 2009; 281:817-21. [DOI: 10.1007/s00404-009-1160-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
71
|
Pustovrh MC, Jawerbaum A, Capobianco E, White V, Martínez N, López-Costa JJ, González E. Oxidative stress promotes the increase of matrix metalloproteinases-2 and -9 activities in the feto-placental unit of diabetic rats. Free Radic Res 2009; 39:1285-93. [PMID: 16298858 DOI: 10.1080/10715760500188796] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Maternal diabetes increases the risk of congenital malformations, placental dysfunction and diseases in both the neonate and the offspring's later life. Oxidative stress has been involved in the etiology of these abnormalities. Matrix metalloproteases (MMPs), involved in multiple developmental pathways, are increased in the fetus and placenta from diabetic experimental models. As oxidants could be involved in the activation of latent MMPs, we investigated a putative relationship between MMPs activities and oxidative stress in the feto-placental unit of diabetic rats at midgestation. We found that H2O2 enhanced and that superoxide dismutase (SOD) reduced MMPs activities in the maternal side of the placenta and in the fetuses from control and diabetic rats. MMPs were not modified by oxidative status in the fetal side of the placenta. Lipid peroxidation was enhanced in the maternal and fetal sides of the placenta and in the fetus from diabetic rats when compared to controls, and gradually decreased from the maternal placental side to the fetus in diabetic animals. The activities of the antioxidant enzymes SOD and catalase were decreased in the maternal placental side, catalase activity was enhanced in the fetal placental side and both enzymes were increased in the fetuses from diabetic rats when compared to controls. Our data demonstrate changes in the oxidative balance and capability of oxidants to upregulate MMPs activity in the feto-placental unit from diabetic rats, a basis to elucidate links between oxidative stress and alterations in the developmental pathways in which MMPs are involved.
Collapse
Affiliation(s)
- María Carolina Pustovrh
- Laboratorio de Reproducción y Metabolismo, Centro de Estudios Farmacológicos y Botánicos (CEFYBO-CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
72
|
Patel MS, Srinivasan M, Laychock SG. Metabolic programming: Role of nutrition in the immediate postnatal life. J Inherit Metab Dis 2009; 32:218-28. [PMID: 19096914 DOI: 10.1007/s10545-008-1033-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 10/30/2008] [Accepted: 11/06/2008] [Indexed: 01/21/2023]
Abstract
Although genes and dietary habits are generally implicated in the aetiology of the prevailing obesity epidemic, the steep increase in the incidence of obesity within a relatively short span of time suggests that other contributing factors may be at play. The role of nutritional experience during the very early periods of life is increasingly being recognized as contributing to growth and metabolic changes in later life. Epidemiological data and studies from animal models have established a strong correlation between an aberrant intrauterine environment and adult-onset disorders in offspring. The nutritional experience in the immediate postnatal life is another independent factor contributing to the development of metabolic diseases in adulthood. Although studies on the small-litter rat model have shown that overnourishment during the suckling period results in adult-onset metabolic disorders, our studies have shown that a change in the quality of calories-specifically, increased carbohydrate intake by newborn rat pups in the immediate postnatal period-results in chronic hyperinsulinaemia and adult-onset obesity. Several functional alterations in islets and in the hypothalamic energy homeostatic mechanism appear to support this phenotype. Remarkably, female rats that underwent the high-carbohydrate dietary modification as neonates spontaneously transmitted the obesity phenotype to their offspring, thus establishing a vicious generational effect. The high-carbohydrate diet-fed rat model has particular relevance in the context of the current human infant feeding practices: reduction in breast feeding and increase in formula feeding for infants, accompanied by early introduction of carbohydrate-enriched baby foods.
Collapse
Affiliation(s)
- M S Patel
- Department of Biochemistry, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, NY, 14214, USA.
| | | | | |
Collapse
|
73
|
Georgiou HM, Lappas M, Georgiou GM, Marita A, Bryant VJ, Hiscock R, Permezel M, Khalil Z, Rice GE. Screening for biomarkers predictive of gestational diabetes mellitus. Acta Diabetol 2008; 45:157-65. [PMID: 18496643 DOI: 10.1007/s00592-008-0037-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2007] [Accepted: 03/25/2008] [Indexed: 01/22/2023]
Abstract
Screening for glucose intolerance during pregnancy provides an opportunity to offer management to those women diagnosed with gestational diabetes mellitus. However, there is a need to diagnose gestational diabetes early to minimize exposure of the developing fetus to suboptimal conditions and prevent perinatal complications and their sequelae. The purpose of this study was to identify potential biomarkers for impending gestational diabetes that appear in the plasma before impaired glucose tolerance. Pregnant women were prospectively recruited to the study and blood was collected at the first antenatal visit and at the time of routine oral glucose tolerance test. Women diagnosed with gestational diabetes were matched with an equal number of normal pregnant (control) women. Biomarkers under investigation included endocrine and metabolic hormones, cytokines and chemokines, and surrogate markers of oxidative stress. Compared to controls, women with gestational diabetes exhibited elevated plasma insulin and reduced plasma adiponectin concentrations at 28 weeks gestation. Significant differences in insulin and adiponectin concentrations were also observed in plasma at 11 weeks gestation. Bivariate logistic regression analysis showed that both insulin and adiponectin are associated with subsequent development of gestational diabetes. Plasma insulin and adiponectin concentrations, when measured at 11 weeks, may be predictive of impending gestational diabetes. Further studies are warranted to determine the reliability of these biomarkers.
Collapse
Affiliation(s)
- Harry M Georgiou
- Department of Obstetrics and Gynecology, University of Melbourne, Parkville, VIC, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Capobianco E, White V, Higa R, Martinez N, Jawerbaum A. Effects of natural ligands of PPAR on lipid metabolism in placental tissues from healthy and diabetic rats. Mol Hum Reprod 2008; 14:491-9. [DOI: 10.1093/molehr/gan039] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
75
|
Zhang X, Decker A, Platt RW, Kramer MS. How big is too big? The perinatal consequences of fetal macrosomia. Am J Obstet Gynecol 2008; 198:517.e1-6. [PMID: 18455528 DOI: 10.1016/j.ajog.2007.12.005] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 10/11/2007] [Accepted: 12/10/2007] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The objective of the study was to examine the birthweight at which risks of perinatal death, neonatal morbidity, and cesarean delivery begin to rise and the causes and timing (antenatal, early or late neonatal, or postneonatal) of these risks. STUDY DESIGN This was a cohort study based on 1999-2001 US-linked stillbirth, live birth, and infant death records. Singletons weighing 2500 g or larger born to white non-Hispanic mothers at 37-44 weeks of gestation were selected (n = 5,983,409). RESULTS Infants with birthweights from 4000 to 4499 g were not at increased risk of mortality or morbidity vs those at 3500-3999 g, whereas those 4500-4999 g had significantly increased risks of stillbirth, neonatal mortality (especially because of birth asphyxia), birth injury, neonatal asphyxia, meconium aspiration, and cesarean delivery. Births at 5000 g or larger had even higher risks, including risk of sudden infant death syndrome. CONCLUSION Birthweight greater than 4500 g, and especially greater than 5000 g, is associated with increased risks of perinatal and infant mortality and morbidity.
Collapse
|
76
|
Newham JJ, Thomas SH, MacRitchie K, McElhatton PR, McAllister-Williams RH. Birth weight of infants after maternal exposure to typical and atypical antipsychotics: prospective comparison study. Br J Psychiatry 2008; 192:333-7. [PMID: 18450655 DOI: 10.1192/bjp.bp.107.041541] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND The effects of in utero exposure to atypical antipsychotics on infant birth weight are unknown. AIMS To determine whether atypical and typical antipsychotics differ in their effects on birth weight after maternal exposure during pregnancy. METHOD Prospective data on gestational age and birth weight collected by the National Teratology Information Service for infants exposed to typical (n=45) and atypical (n=25) antipsychotics was compared with data for a reference group of infants (n=38). RESULTS Infants exposed to atypical antipsychotics had a significantly higher incidence of large for gestational age (LGA) than both comparison groups and a mean birth weight significantly heavier than those exposed to typical antipsychotics. In contrast those exposed to typical antipsychotics had a significantly lower mean birth weight and a higher incidence of small for gestational age infants than the reference group. CONCLUSIONS In utero exposure to atypical antipsychotic drugs may increase infant birth weight and risk of LGA.
Collapse
Affiliation(s)
- James J Newham
- University of Newcastle, Leazes Wing, Royal Victoria Infirmary, Newcastle upon Tyne, UK.
| | | | | | | | | |
Collapse
|
77
|
de Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol 2008; 46:4-14. [PMID: 16441686 DOI: 10.1111/j.1479-828x.2006.00506.x] [Citation(s) in RCA: 395] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Many studies have provided evidence for the hypothesis that size at birth is related to the risk of developing disease in later life. In particular, links are well established between reduced birthweight and increased risk of coronary heart disease, diabetes, hypertension and stroke in adulthood. These relationships are modified by patterns of postnatal growth. The most widely accepted mechanisms thought to underlie these relationships are those of fetal programming by nutritional stimuli or excess fetal glucocorticoid exposure. It is suggested that the fetus makes physiological adaptations in response to changes in its environment to prepare itself for postnatal life. These changes may include epigenetic modification of gene expression. Less clear at this time are the relevance of fetal programming phenomena to twins and preterm babies, and whether any of these effects can be reversed after birth. Much current active research in this field will be of direct relevance to future obstetric practice.
Collapse
Affiliation(s)
- Hendrina A de Boo
- Liggins Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
78
|
Abstract
PURPOSE OF REVIEW It has been known for decades that diabetic women have somewhat decreased fertility and that their offspring have an increased risk of being born with developmental abnormalities. We review results from studies examining the impact of maternal hyperglycemia and diabetes on oocyte and early embryo development. We focus on the effects of the maternal milieu on metabolism, cell signaling and the regulation of glucose-transporter expression in the developing oocyte and embryo. RECENT FINDINGS Offspring of diabetic mothers have metabolic disease at higher rates than can be explained by genetic inheritance alone. Oocytes from hyperglycemic animals display several abnormalities and are of lower quality than oocytes from control animals. There appears to be a decrease in glucose transport in embryos exposed to a hyperglycemic environment, which may lead to programmed cell death. SUMMARY Maternal hyperglycemia and diabetes have detrimental effects on the developing embryo at several stages of development. Although the exact pathophysiology of the developmental defects seen in infants born to diabetic mothers remains unclear, the role of glucose transport and regulation seems to play a critical role in early growth and development.
Collapse
Affiliation(s)
- Manuel Doblado
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
79
|
Remacle C, Dumortier O, Bol V, Goosse K, Romanus P, Theys N, Bouckenooghe T, Reusens B. Intrauterine programming of the endocrine pancreas. Diabetes Obes Metab 2007; 9 Suppl 2:196-209. [PMID: 17919194 DOI: 10.1111/j.1463-1326.2007.00790.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Epidemiological studies have revealed strong relationships between poor foetal growth and subsequent development of the metabolic syndrome. Persisting effects of early malnutrition become translated into pathology, thereby determine chronic risk for developing glucose intolerance and diabetes. These epidemiological observations identify the phenomena of foetal programming without explaining the underlying mechanisms that establish the causal link. Animal models have been established and studies have demonstrated that reduction in the availability of nutrients during foetal development programs the endocrine pancreas and insulin-sensitive tissues. Whatever the type of foetal malnutrition, whether there are not enough calories or protein in food or after placental deficiency, malnourished pups are born with a defect in their beta-cell population that will never completely recover, and insulin-sensitive tissues will be definitively altered. Despite the similar endpoint, different cellular and physiological mechanisms are proposed. Hormones operative during foetal life like insulin itself, insulin-like growth factors and glucocorticoids, as well as specific molecules like taurine, or islet vascularization were implicated as possible factors amplifying the defect. The molecular mechanisms responsible for intrauterine programming of the beta cells are still elusive, but two hypotheses recently emerged: the first one implies programming of mitochondria and the second, epigenetic regulation.
Collapse
Affiliation(s)
- C Remacle
- Laboratory of Cell Biology, Institute of Life Sciences, Catholic University of Louvain, Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Pustovrh MC, Jawerbaum A, White V, Capobianco E, Higa R, Martínez N, López-Costa JJ, González E. The role of nitric oxide on matrix metalloproteinase 2 (MMP2) and MMP9 in placenta and fetus from diabetic rats. Reproduction 2007; 134:605-13. [PMID: 17890296 DOI: 10.1530/rep-06-0267] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Matrix metalloproteinases (MMPs) play an important role in tissue remodeling that accompanies the rapid growth, differentiation, and structural changes of the placenta and several fetal organs. In the present study, we investigated whether the diabetic maternal environment may alter the regulatory homeostasis exerted by nitric oxide (NO) on MMPs activity in the feto-placental unit from rats at midgestation. We found that NADPH-diaphorase activity, which reflects the distribution and activity of NO synthases (NOS), was increased in both placenta and fetuses from diabetic rats when compared with controls. In addition, while a NO donor enhanced MMP2 and MMP9 activities, a NOS inhibitor reduced these activities in the maternal side of the placenta from control rats. This regulatory effect of NO was only observed on MMP9 in the diabetic group. On the other hand, the NO donor did not modify MMP2 and MMP9 activities, while the NOS inhibitor reduced MMP9 activity in the fetal side of both control and diabetic placentas. In the fetuses, MMP2 was enhanced by the NO donor and reduced by the NO inhibitor in both fetuses from control and diabetic rats. Overall, this study demonstrates that NO is able to modulate the activation of MMPs in the feto-placental unit, and provides supportive evidence that increased NOS activity leads to NO overproduction in the feto-placental unit from diabetic rats, an alteration closely related to the observed MMPs dysregulation that may have profound implications in the formation and function of the placenta and the fetal organs.
Collapse
Affiliation(s)
- M C Pustovrh
- Laboratory of Reproduction and Metabolism, Center for Pharmacological and Botanical Studies, CEFyBO-CONICET, University of Buenos Aires, Paraguay, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
Gestational diabetes mellitus (GDM) should be regarded as a sentinel event in a woman's life that presents challenges and disease prevention opportunities to all providers of health care for women of reproductive age. Prediabetic risk factors are rising in prevalence and include dietary and lifestyle habits, which when superimposed on genetic predisposition contribute to the rising prevalence of type 2 diabetes and GDM. There is growing evidence that treatment of GDM matters, with a continuum of adverse pregnancy outcome risks proportional to degrees of maternal glucose intolerance. GDM in an index pregnancy increases the risk of recurrent GDM in subsequent pregnancies, and recurrence rates of up to 70% have been reported. GDM recurrence rates are influenced by maternal health characteristics and past pregnancy history. The risk of later metabolic syndrome and type 2 diabetes is increased in women with a history of GDM and women should be screened for postpartum glucose intolerance. Opportunities to prevent recurrent GDM and later type 2 diabetes require attention to risk factors and plasma glucose status with identification of impaired fasting glucose or impaired glucose tolerance.
Collapse
Affiliation(s)
- Joseph N Bottalico
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, UMDNJ-School of Osteopathic Medicine, Stratford, NJ 08084-1504, USA.
| |
Collapse
|
82
|
Hussain A, Claussen B, Ramachandran A, Williams R. Prevention of type 2 diabetes: a review. Diabetes Res Clin Pract 2007; 76:317-26. [PMID: 17069920 DOI: 10.1016/j.diabres.2006.09.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Accepted: 09/19/2006] [Indexed: 11/30/2022]
Abstract
One of the major public health challenges of the 21st century is type 2 diabetes. WHO estimates that by 2025 as many as 200-300 million people worldwide will have developed the disease. A distressing increase in children is perhaps the most alarming sign of something going wrong. Roughly half of the risk of type 2 diabetes can be attributed to environmental exposure and the other half to genetics. Central themes for prevention are the risk factors overweight, sedentary lifestyle, certain dietary components and perinatal factors. Overweight is the most critical risk factor, and should be targeted for prevention of type 2 diabetes especially among children and youths. Ethnicity and perinatal factors are also worth considering. Today we know that prevention helps. In the US Diabetes Prevention Programme for high risk individuals, there was a 58% relative reduction in the progression to diabetes in the lifestyle group compared with the controls. Within the lifestyle group, 50% achieved the goal of more than 7% weight reduction, and 74% maintained at least 150 min of moderately intense activity each week. This review discusses different forms of prevention, and proposes first of all to target people with Impaired Glucose Tolerance with increasing activity and altering dietary factors. And secondly, population-based measures to encourage increased physical activity and decreased consumption of energy-dense foods are important, and may target school children and young people, certain ethnic groups and women with gestational diabetes.
Collapse
Affiliation(s)
- A Hussain
- Department of General Practice and Community Medicine, University of Oslo, Post Box 1130 Blindern, Oslo, Norway.
| | | | | | | |
Collapse
|
83
|
Abstract
This review focuses on different animal models of nutrient perturbations, inclusive of restrictive and excessive states mimicking human situations during pregnancy and lactation that cause aberrations in the offspring. These aberrations consist of diminished insulin sensitivity in the presence of defective insulin production. These phenotypic changes are due to altered peripheral tissue post-insulin receptor signaling mechanisms and pancreatic beta-islet insulin synthesis and secretion defects. While these changes during in utero or postnatal life serve as essential adaptations to overcome adverse conditions, they become maladaptive subsequently and set the stage for type 2 diabetes mellitus. Pregnancy leads to gestational diabetes with trans-generational propagation of the insulin resistant phenotype. This is in response to the metabolically aberrant maternal in utero environment, and tissue specific epigenetic perturbations that permanently alter expression of critical genes transmitted to future generations. These heritable aberrations consisting of altered DNA methylation and histone modifications remodel chromatin and affect transcription of key genes. Along with an altered in utero environment, these chromatin modifications contribute to the world-wide epidemic of type 2 diabetes mellitus, with nutrient excess dominating in developed and nutrient restriction in developing countries.
Collapse
Affiliation(s)
- Sherin U Devaskar
- Division of Neonatology & Developmental Biology and the Neonatal Research Center, Department of Pediatrics, David Geffen School of Medicine UCLA, Los Angeles, CA 90095-1752, USA.
| | | |
Collapse
|
84
|
Abstract
It is widely accepted that an association exists between the intrauterine environment in which a fetus grows and develops and the subsequent development of type 2 diabetes. Any disturbance in maternal ability to provide nutrients and oxygen to the fetus can lead to fetal intrauterine growth restriction (IUGR). Here we will review IUGR in rodent models, in which maternal metabolism has been experimentally manipulated to investigate the molecular basis of the relationship between IUGR and development of type 2 diabetes in later life, and the identification of the molecular derangements in specific metabolically - sensitive organs/tissues.
Collapse
Affiliation(s)
- M S Martin-Gronert
- Department of Clinical Biochemistry, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
85
|
Srinivasan M, Katewa SD, Palaniyappan A, Pandya JD, Patel MS. Maternal high-fat diet consumption results in fetal malprogramming predisposing to the onset of metabolic syndrome-like phenotype in adulthood. Am J Physiol Endocrinol Metab 2006; 291:E792-9. [PMID: 16720630 DOI: 10.1152/ajpendo.00078.2006] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic consumption of a high-fat (HF) diet by female rats in their postweaning period resulted in significant increases in body weight and plasma levels of insulin, glucose, and triglycerides during pregnancy compared with female rats consuming a standard rodent laboratory chow (LC). On gestational day 21, plasma insulin levels and the insulin secretory response of islets to various secretogogues were significantly increased in HF fetuses. The HF male progeny weaned onto LC (HF/LC) demonstrated increases in body weight from postnatal day 60 onward. In adulthood, HF/LC male rats were significantly heavier than controls, had increased plasma levels of insulin, glucose, free fatty acids, and triglycerides, and demonstrated glucose intolerance. HF/LC male islets secreted increased amounts of insulin in response to low glucose concentrations, but their response to a high glucose concentration was similar to that of LC/LC islets. In another set of experiments, when the male progeny of HF female rats were weaned onto a high-sucrose diet (HF/HSu), their metabolic profile was further worsened. These results indicate that chronic consumption of a HF diet by female rats malprograms the male progeny for glucose intolerance and development of increased body weight in adulthood. The long-term high-fat feeding to female rats employed in this study bears resemblance to the dietary habits in Western societies. The results of this study implicate dietary practices of women in the etiology of the present epidemic of human obesity and related disorders.
Collapse
Affiliation(s)
- Malathi Srinivasan
- Department of Biochemistry, School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, 140 Farber Hall, 3435 Main St., Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
86
|
Srinivasan M, Aalinkeel R, Song F, Mitrani P, Pandya JD, Strutt B, Hill DJ, Patel MS. Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype. Am J Physiol Endocrinol Metab 2006; 290:E129-E134. [PMID: 16144815 DOI: 10.1152/ajpendo.00248.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that artificial rearing of newborn female rat pups on a high-carbohydrate (HC) milk formula resulted in chronic hyperinsulinemia and adult-onset obesity (HC phenotype) and that the maternal HC phenotype was transmitted to their progeny (2-HC rats) because of fetal development in the HC female rat. The aims of this study were to investigate 1) the fetal adaptations that predisposed the progeny for the expression of the HC phenotype in adulthood and 2) whether the transfer of the HC phenotype to the progeny could be reversed by maternal food restriction. Fetal parameters such as plasma insulin and glucose levels, mRNA level of preproinsulin gene, pancreatic insulin content, and islet insulin secretory response in vitro were determined. On gestational day 21, 2-HC fetuses were hyperinsulinemic, had increased insulin content and mRNA level of the preproinsulin gene in their pancreata and demonstrated an altered glucose-stimulated insulin secretory response by isolated islets. Modification of the intrauterine environment in HC female rats was achieved by pair feeding them to the amount of diet consumed by age-matched control rats from the time of their weaning. This mild dietary restriction reversed their HC phenotype and also prevented the development of the HC phenotype in their progeny. These findings show that mal-programming of the progeny of the hyperinsulinemic-obese HC female for the expression of the HC phenotype is initiated in utero and that normalization of the maternal environment in HC female rats by mild food restriction resulted in the normal phenotype in their progeny.
Collapse
Affiliation(s)
- Malathi Srinivasan
- Dept. of Biochemistry, School of Medicine and Biomedical Sciences, SUNY-Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Yu Y, Lyons TJ. A lethal tetrad in diabetes: hyperglycemia, dyslipidemia, oxidative stress, and endothelial dysfunction. Am J Med Sci 2005; 330:227-32. [PMID: 16284482 DOI: 10.1097/00000441-200511000-00005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This paper addresses the consequences of diabetes and obesity, diseases that have become epidemic in our society, particularly in the past 20 years. Specifically, it summarizes current knowledge about some of the risk factors and mechanisms for the vascular complications of diabetes. These complications can be broadly divided into microvascular disease, such as diabetic retinopathy and diabetic nephropathy, and macrovascular disease, such as accelerated atherosclerosis, and they are the main cause for morbidity and premature mortality among diabetic patients. The roles of hyperglycemia, dyslipidemia and dyslipoproteinemia, oxidative stress, and endothelial dysfunction will be considered. Finally, the "treatment gap" will be addressed. This gap refers to our failure to achieve currently accepted goals to reduce established risk factors for complications in the clinical management of diabetic patients.
Collapse
Affiliation(s)
- Yongxin Yu
- Section of Endocrinology and Diabetes, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | |
Collapse
|
88
|
Zambrano E, Bautista CJ, Deás M, Martínez-Samayoa PM, González-Zamorano M, Ledesma H, Morales J, Larrea F, Nathanielsz PW. A low maternal protein diet during pregnancy and lactation has sex- and window of exposure-specific effects on offspring growth and food intake, glucose metabolism and serum leptin in the rat. J Physiol 2005; 571:221-30. [PMID: 16339179 PMCID: PMC1805642 DOI: 10.1113/jphysiol.2005.100313] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extensive epidemiological and experimental evidence indicates that a sub-optimal environment during fetal and neonatal development in both humans and animals may programme offspring susceptibility to later development of chronic diseases including obesity and diabetes that are the result of altered carbohydrate metabolism. We determined the effects of protein restriction during pregnancy and/or lactation on growth, serum leptin, and glucose and insulin responses to a glucose tolerance test in male and female offspring at 110 days postnatal life. We fed Wistar rats a normal control 20% casein diet (C) or a restricted diet (R) of 10% casein during pregnancy. Female but not male R pups weighed less than C at birth. After delivery, mothers received the C or R diet during lactation to provide four offspring groups: CC (first letter maternal pregnancy diet and second maternal lactation diet), RR, CR and RC. All offspring were fed ad libitum with C diet after weaning. Relative food intake correlated inversely with weight. Offspring serum leptin correlated with body weight and relative, but not absolute, food intake in both male and female pups. Serum leptin was reduced in RR female pups compared with CC and increased in RC males compared with CC at 110 days of age. Offspring underwent a glucose tolerance test (GTT) at 110 days postnatal life. Female RR and CR offspring showed a lower insulin to glucose ratio than CC. At 110 days of age male RR and CR also showed some evidence of increased insulin sensitivity. Male but not female RC offspring showed evidence of insulin resistance compared with CC. Cholesterol was similar and triglycerides (TG) higher in male compared with female CC. Cholesterol and TG were higher in males than females in RR, CR and RC (P < 0.05). Cholesterol and TG did not differ between groups in females. Cholesterol and TG were elevated in RC compared with CC males. Nutrient restriction in lactation increased relative whole protein and decreased whole lipid in both males and females. RC females showed decreased relative levels of protein and increased fat. We conclude that maternal protein restriction during either pregnancy and/or lactation alters postnatal growth, appetitive behaviour, leptin physiology, TG and cholesterol concentrations and modifies glucose metabolism and insulin resistance in a sex- and time window of exposure-specific manner.
Collapse
Affiliation(s)
- E Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Vasco de Quiroga 15, 14000, México, D.F. México.
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Zambrano E, Martínez-Samayoa PM, Bautista CJ, Deás M, Guillén L, Rodríguez-González GL, Guzmán C, Larrea F, Nathanielsz PW. Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 2005; 566:225-36. [PMID: 15860532 PMCID: PMC1464716 DOI: 10.1113/jphysiol.2005.086462] [Citation(s) in RCA: 240] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Compelling epidemiological and experimental evidence indicates that a suboptimal environment during fetal and neonatal development in both humans and animals may programme offspring susceptibility to later development of several chronic diseases including obesity and diabetes in which altered carbohydrate metabolism plays a central role. One of the most interesting and significant features of developmental programming is the evidence from several studies that the adverse consequences of altered intrauterine environments can be passed transgenerationally from mother (F0) to daughter (F1) to second generation offspring (F2). We determined whether when F0 female rats are exposed to protein restriction during pregnancy and/or lactation their F1 female pups deliver F2 offspring with in vivo evidence of altered glucose and insulin metabolism. We fed F0 virgin Wistar rats a normal control 20% casein diet (C) or a protein restricted isocaloric diet (R) containing 10% casein during pregnancy. F1 female R pups weighed less than C at birth. After delivery, mothers received C or R diet during lactation to provide four F1 offspring groups CC (first letter pregnancy diet and second lactation diet), RR, CR and RC. All F1 female offspring were fed ad libitum with C diet after weaning and during their first pregnancy and lactation. As they grew female offspring (F1) of RR and CR mothers exhibited low body weight and food intake with increased sensitivity to insulin during a glucose tolerance test at 110 days of postnatal life. Male F2 CR offspring showed evidence of insulin resistance. In contrast RC F2 females showed evidence of insulin resistance. Sex differences were also observed in F2 offspring in resting glucose and insulin and insulin: glucose ratios. These sex differences also showed differences specific to stage of development time window. We conclude that maternal protein restriction adversely affects glucose and insulin metabolism of male and female F2 offspring in a manner specific to sex and developmental time window during their mother's (the F1) fetal and neonatal development.
Collapse
Affiliation(s)
- E Zambrano
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán. Vasco de Quiroga 15, 14000, México, DF México.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Armitage JA, Taylor PD, Poston L. Experimental models of developmental programming: consequences of exposure to an energy rich diet during development. J Physiol 2005; 565:3-8. [PMID: 15695245 PMCID: PMC1464498 DOI: 10.1113/jphysiol.2004.079756] [Citation(s) in RCA: 270] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Studies in both humans and experimental animals addressing the 'Fetal Origins of Adult Disease' hypothesis have established a relationship between an adverse intrauterine environment and offspring disease in adult life. This phenomenon, termed 'fetal programming' describes a process whereby a stimulus in utero establishes a permanent response in the fetus leading to enhanced susceptibility to later disease. However, the environment, during periods of developmental plasticity in postnatal life, can also 'programme' function. Thus, the terms 'developmental programming' and the 'Developmental Origins of Adult Health and Disease' are preferentially utilized. The 'Thrifty Phenotype' hypothesis explained the association between insufficient in utero nutrition and the later development of Type 2 diabetes. Most recently the 'Predictive Adaptive Response' hypothesis proposes that the degree of mismatch between the pre- and postnatal environments is an important determinant of subsequent disease. Epidemiological studies have indicated that fetal growth restriction correlates with later disease, implying that fetal nutritional deprivation is a strong programming stimulus. This prompted the development of experimental animal models using controlled maternal calorie, protein or macronutrient deficiency during key periods of gestation. However, in many societies, maternal and postnatal nutrition are either sufficient or excessive. Here, we examine findings from a range of nutritional studies examining maternal and/or postnatal nutritional excess. There is supportive evidence from a limited number of studies to test the 'Predictive Adaptive Response' hypothesis. These suggest that maternal over-nutrition is deleterious to the health of offspring and can result in a phenotype of the offspring that is characteristic of metabolic syndrome.
Collapse
Affiliation(s)
- James A Armitage
- Maternal and Fetal Research Unit, Division of Reproductive Health, Endocrinology and Development, GKT School of Medicine, St Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK.
| | | | | |
Collapse
|
91
|
Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol 2004; 561:355-77. [PMID: 15459241 PMCID: PMC1665360 DOI: 10.1113/jphysiol.2004.072009] [Citation(s) in RCA: 429] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 09/28/2004] [Indexed: 12/24/2022] Open
Abstract
The incidence of the metabolic syndrome, a cluster of abnormalities focusing on insulin resistance and associated with high risk for cardiovascular disease and diabetes, is reaching epidemic proportions. Prevalent in both developed and developing countries, the metabolic syndrome has largely been attributed to altered dietary and lifestyle factors that favour the development of central obesity. However, population-based studies have suggested that predisposition to the metabolic syndrome may be acquired very early in development through inappropriate fetal or neonatal nutrition. Further evidence for developmental programming of the metabolic syndrome has now been suggested by animal studies in which the fetal environment has been manipulated through altered maternal dietary intake or modification of uterine artery blood flow. This review examines these studies and assesses whether the metabolic syndrome can be reliably induced by the interventions made. The validity of the different species, diets, feeding regimes and end-point measures used is also discussed.
Collapse
Affiliation(s)
- James A Armitage
- Maternal and Fetal Research Unit, Department of Women's Health, Guy's, King's and St Thomas' School of Medicine, King's College London, UK.
| | | | | | | | | |
Collapse
|
92
|
Lampl M, Jeanty P. Exposure to maternal diabetes is associated with altered fetal growth patterns: A hypothesis regarding metabolic allocation to growth under hyperglycemic-hypoxemic conditions. Am J Hum Biol 2004; 16:237-63. [PMID: 15101051 DOI: 10.1002/ajhb.20015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prevalence of diabetes is rising worldwide, including women who grew poorly in early life, presenting intergenerational health problems for their offspring. It is well documented that fetuses exposed to maternal diabetes during pregnancy experience both macrosomia and poor growth outcomes in birth size. Less is known about the in utero growth patterns that precede these risk factor expressions. Fetal growth patterns and the effects of clinical class and glycemic control were investigated in 37 diabetic pregnant women and their fetuses and compared to 29 nondiabetic, nonsmoking maternal/fetal pairs who were participants in a biweekly longitudinal ultrasound study with measurements of the head, limb, and trunk dimensions. White clinical class of the diabetic women was recorded (A2-FR) and glycosylated hemoglobin levels taken at the time of measurement assessed glycemic control (median 6.9%, interquartile range 5.6-9.2%). No significant difference in fetal weight was found by exposure. The exposed sample had greater abdominal circumferences from 21 weeks (P < or = 0.05) and shorter legs, but greater upper arm and thigh circumferences accompanied increasing glycemia in the second trimester. In the third trimester, exposed fetuses had a smaller slope for the occipital frontal diameter (P = 0.00) and were brachycephalic. They experienced a proximal/distal growth gradient in limb proportionality with higher humerus / femur ratios (P = 0.04) and arms relatively long by comparison with legs (P = 0.02). HbA1c levels above 7.5% accompanied shorter femur length for thigh circumference after 30 gestational weeks of age. Significant effects of diabetic clinical class and glycemic control were identified in growth rate timing. These growth patterns suggest that hypoxemic and hyperglycemic signals cross-talk with their target receptors in a developmentally regulated, hierarchical sequence. The increase in fetal fat often documented with diabetic pregnancy may reflect altered growth at the level of cell differentiation and proximate mechanisms controlling body composition. These data suggest that the maternal-fetal interchange circuit, designed to share and capture resources on the fetal side, may not have had a long evolutionary history of overabundance as a selective force, and modern health problems drive postnatal sequelae that become exacerbated by increasing longevity.
Collapse
Affiliation(s)
- Michelle Lampl
- Department of Anthropology, Emory University, Atlanta, Georgia 30324, USA.
| | | |
Collapse
|
93
|
Leloup C, Magnan C, Alquier T, Mistry S, Offer G, Arnaud E, Kassis N, Ktorza A, Pénicaud L. Intrauterine hyperglycemia increases insulin binding sites but not glucose transporter expression in discrete brain areas in term rat fetuses. Pediatr Res 2004; 56:263-7. [PMID: 15181191 DOI: 10.1203/01.pdr.0000132853.35660.27] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diabetic pregnancy results in several metabolic and hormonal disorders, both in the embryo and the fetus of different species, including humans. Insulin is a potent modulator of brain development and is suggested to promote the differentiation and maturation of hypothalamic or related extrahypothalamic structures, which are directly involved in neural inputs to the pancreas. Because these structures are known to be specifically responsive both to insulin and glucose, we examined the effects of 48-h hyperglycemic clamps in unrestrained pregnant rats on insulin binding and glucose transporter expression in hypothalamic and extrahypothalamic-related areas of their fetal offspring. The main result was an increase in insulin binding in the ventromedial hypothalamic nucleus (VMH), the arcuate nucleus (AN), and the lateral hypothalamus (LH), and in the nucleus of the tractus solitarius (NTS) for extrahypothalamic areas (+30% in the VMH, +37% in the AN, +25.8% in the LH, and +37.3% in the NTS). The deleterious effect of brain hyperinsulinism during the late gestational stage does not seem to act through glucose transporter (GLUT) expression, inasmuch as no relationship between GLUT level and hyperinsulinism in brain areas could be observed. The specific increase in insulin binding in areas involved in the nervous control of metabolism could be a factor in the increased glucose intolerance and impairment of insulin secretion that was previously observed in the adult rats from hyperglycemic mothers.
Collapse
Affiliation(s)
- Corinne Leloup
- CNRS UMR 5018-UPS, CHU de Rangueil, 1 Ave Jean Poulhès, 31 403 Toulouse cedex, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Boksa P. Animal models of obstetric complications in relation to schizophrenia. ACTA ACUST UNITED AC 2004; 45:1-17. [PMID: 15063096 DOI: 10.1016/j.brainresrev.2004.01.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2004] [Indexed: 12/16/2022]
Abstract
Epidemiological studies have provided strong evidence that exposure to obstetric complications is associated with an increased risk for later development of schizophrenia. These human studies have now begun to tease out which specific pregnancy, labor/delivery or neonatal complications might confer greatest risk for schizophrenia. Animal modeling can be a useful tool to directly ask if a particular obstetric complication can actually cause changes in brain function or behavior resembling changes in schizophrenia. This review describes currently available animal models for some of the obstetric complications with greatest effect size for schizophrenia, including maternal diabetes, preeclampsia, infection and stress during pregnancy, intrauterine growth retardation and fetal/neonatal hypoxia. Where available, evidence that these types of obstetric complications in animals produce alterations in CNS function or behavior, related to features of schizophrenic pathology, is presented. Animal models might provide insights into the mechanisms by which specific obstetric complications have long-term influence on brain development leading to increased risk for schizophrenia. Factors common to several obstetric complications associated with schizophrenia may also be discerned. In this way, animal modeling may provide the framework for human studies to ask further more refined questions concerning the role of specific obstetric factors contributing to schizophrenia, and may provide clues to prevention.
Collapse
Affiliation(s)
- Patricia Boksa
- Department of Psychiatry, McGill University, Douglas Hospital Research Centre, 6875 LaSalle Boulevard, Montreal, Quebec, Canada H4H 1R3.
| |
Collapse
|
95
|
Ritchie LD, Ganapathy S, Woodward-Lopez G, Gerstein DE, Fleming SE. Prevention of type 2 diabetes in youth: etiology, promising interventions and recommendations. Pediatr Diabetes 2003; 4:174-209. [PMID: 14710778 DOI: 10.1111/j.1399-543x.2003.00030.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Lorrene D Ritchie
- Center for Weight and Health, College of Natural Resources, University of California, Berkeley, CA, USA
| | | | | | | | | |
Collapse
|
96
|
Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P, Porcher R, Hadjadj S, Pratley R, Tataranni PA, Calvo F, Gautier JF. Effect of a diabetic environment in utero on predisposition to type 2 diabetes. Lancet 2003; 361:1861-5. [PMID: 12788573 DOI: 10.1016/s0140-6736(03)13505-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Type 2 diabetes is affected by genetics and environmental factors. We aimed to assess the effect of an in-utero diabetic environment independently of the genetic background for type 2 diabetes. METHODS We measured insulin sensitivity and insulin secretion in response to oral and intravenous glucose in 15 non-diabetic adult offspring of mothers with type 1 diabetes (exposed participants) and 16 offspring of type 1 diabetic fathers (controls). No participants had type 1 diabetes-associated autoantibodies. We also measured pancreatic polypeptide, a marker of parasympathetic drive to the pancreas. FINDINGS There was no difference between the groups with respect to percent body fat and insulin sensitivity. Five of the 15 exposed participants, but none of the controls had impaired glucose tolerance (p=0.02). Early insulin secretion after an oral glucose tolerance test was lower in exposed participants than in controls: 8.6 IU/mmol (SD 5.4) in exposed participants with impaired glucose tolerance, 14.2 IU/mmol (6.5) in those with normal glucose tolerance and 17.7 IU/mmol (10.9) in controls (p=0.04). Mean insulin secretion rate during glucose infusion study was 4.7 pmol/kg per min (3.6) in people with impaired glucose tolerance, 5.5 pmol/kg per min (4.5) in exposed participants with normal glucose tolerance and 7.5 pmol/kg per min (6.1) in controls (p<0.0001). The area under the curve of pancreatic polypeptide 120 min after oral glucose ingestion was 1007 (429) in people with impaired glucose tolerance, 2829 (1701) in those with normal glucose tolerance, and 3224 (1352) in controls (p=0.04). INTERPRETATION Exposure to a diabetic environment in utero is associated with increased occurrence of impaired glucose tolerance and a defective insulin secretory response in adult offspring, independent of genetic predisposition to type 2 diabetes. This insulin secretory defect could be related to low parasympathetic tone. Epidemiological studies are needed to confirm our observations before therapeutic strategies can be devised.
Collapse
Affiliation(s)
- Eugène Sobngwi
- Department of Endocrinology and Diabetes, Saint-Louis Hospital, Assistance Publique, Hôpitaux de Paris, University of Paris VII-Medical School;, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Klupa T, Warram JH, Antonellis A, Pezzolesi M, Nam M, Malecki MT, Doria A, Rich SS, Krolewski AS. Determinants of the development of diabetes (maturity-onset diabetes of the young-3) in carriers of HNF-1alpha mutations: evidence for parent-of-origin effect. Diabetes Care 2002; 25:2292-301. [PMID: 12453976 DOI: 10.2337/diacare.25.12.2292] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the distribution of the age at onset of diabetes (maturity-onset diabetes of the young-3 [MODY3]) and to identify determinants of the onset of diabetes in carriers of HNF-1alpha mutations. RESEARCH DESIGN AND METHODS Extended families (n = 104) with type 2 diabetes inherited in a dominant pattern were recruited and screened for diabetes-causing mutations in HNF-1alpha. RESULTS HNF-1alpha mutations cosegregated with diabetes in only 13 families, all with a mean age at onset <35 years. Insulin secretion was diminished or absent in mutation carriers (n = 101), and diabetes developed in 65% by age 25 years and in 100% by age 50 years. If the mutation was inherited from the mother, diabetes onset was very young in those exposed to diabetes in utero; 57 +/- 8% were affected by age 15 years as compared with 0.0% in those not exposed (P < 7 x 10(-6)). By age 25 years, the difference was reduced (85 +/- 6 and 55 +/- 12%, respectively; P = 0.02). If the mutation was inherited from the father, diabetes developed in 52 +/- 8% by age 25 years. Age at diagnosis was shown to be highly heritable (h(2) = 0.47, P = 0.003). When parent of origin was included in the analyses, the magnitude of genetic contribution increased markedly (h(2) = 0.91). CONCLUSIONS Mutations in HNF-1alpha accounts for diabetes in a small proportion of families with a dominant pattern of inheritance. Age at onset of diabetes in MODY3 families varied widely and was influenced by familial factors (including modifying genes) and parent of origin (whether a mutation carrier was exposed to diabetes in utero).
Collapse
Affiliation(s)
- Tomasz Klupa
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|