51
|
Elumalai P, Ezhilarasan D, Raghunandhakumar S. Quercetin Inhibits the Epithelial to Mesenchymal Transition through Suppressing Akt Mediated Nuclear Translocation of β-Catenin in Lung Cancer Cell Line. Nutr Cancer 2021; 74:1894-1906. [PMID: 34338101 DOI: 10.1080/01635581.2021.1957487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Lung cancer is a first leading cause of cancer related death worldwide. Quercetin (QUE) has chemo-preventive effect against a variety of cancers. However, the molecular mechanism of QUE mediated inhibition of cancer cell migration and epithelial to mesenchymal transition (EMT) is not clear in lung cancer. Therefore, this study investigates the effect of QUE on EMT and metastasis of lung cancer cell line (A549). The MTT assay, scratch wound healing assay, Transwell migration and invasion assay performed to assess the cell viability and migration potential of lung cancer cells after treatment with different concentration of QUE. Further, chemokines gene expression was analyzed by qPCR and EMT markers were analyzed by immunocytochemistry and Western blot. QUE inhibits cell viability in a dose-dependent (10-80 μM) manner both at 24 and 48 h treatment. The Akt/MAPK/β-catenin and EMT marker protein expressions were decreased significantly, whereas TIMP-2 expression was increased upon QUE treatment. QUE inhibits cell migration and invasion of A-549 cells. In addition, Immunocytochemistry result showed that QUE can reduce nuclear translocalisation of β-catenin in A549 cells. Our results suggest that QUE can inhibit the metastatic potential in lung cancer by altering the Akt/MAPK/β-catenin signaling pathway and inhibiting the nuclear translocation of β-catenin.
Collapse
Affiliation(s)
- Perumal Elumalai
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Devaraj Ezhilarasan
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Subramanian Raghunandhakumar
- Department of Pharmacology, The Blue Lab, Molecular Medicine and Toxicology Division, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| |
Collapse
|
52
|
Oo Y, Nealiga JQL, Suwanborirux K, Chamni S, Ecoy GAU, Pongrakhananon V, Chanvorachote P, Chaotham C. 22-O-(N-Boc-L-glycine) ester of renieramycin M inhibits migratory activity and suppresses epithelial-mesenchymal transition in human lung cancer cells. J Nat Med 2021; 75:949-966. [PMID: 34287745 DOI: 10.1007/s11418-021-01549-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/04/2021] [Indexed: 12/19/2022]
Abstract
The incidence of metastasis stage crucially contributes to high recurrence and mortality rate in lung cancer patients. Unfortunately, no available treatment inhibits migration, a key metastasis process in lung cancer. In this study, the effect of 22-O-(N-Boc-L-glycine) ester of renieramycin M (22-Boc-Gly-RM), a semi-synthetic amino ester derivative of bistetrahydroisoquinolinequinone alkaloid isolated from Xestospongia sp., on migratory behavior of human lung cancer cells was investigated. Following 24 h of treatment, 22-Boc-Gly-RM at non-toxic concentrations (0.5-1 μM) effectively restrained motility of human lung cancer H460 cells assessed through wound healing, transwell migration, and multicellular spheroid models. The capability to invade through matrix component was also repressed in H460 cells cultured with 0.1-1 µM 22-Boc-Gly-RM. The dose-dependent reduction of phalloidin-stained actin stress fibers corresponded with the downregulated Rac1-GTP level presented via western blot analysis in 22-Boc-Gly-RM-treated cells. Treatment with 0.1-1 μM of 22-Boc-Gly-RM obviously caused suppression of p-FAK/p-Akt signal and consequent inhibition of epithelial-to-mesenchymal transition (EMT), which was evidenced with augmented level of E-cadherin and reduction of N-cadherin expression. The alteration of invasion-related proteins in 22-Boc-Gly-RM-treated H460 cells was indicated by the diminution of matrix metalloproteinases (MT1-MMP, MMP-2, MMP-7, and MMP-9), as well as the upregulation of tissue inhibitors of metalloproteinases (TIMP), TIMP2, and TIMP3. Thus, 22-Boc-Gly-RM is a promising candidate for anti-metastasis treatment in lung cancer through inhibition of migratory features associated with suppression on EMT.
Collapse
Affiliation(s)
- Yamin Oo
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Justin Quiel Lasam Nealiga
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Khanit Suwanborirux
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Gea Abigail Uy Ecoy
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Department of Pharmacy, School of Health Care Professions, University of San Carlos, 6000, Cebu, Philippines
| | - Varisa Pongrakhananon
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand. .,Cell-Based Drug and Health Products Development Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
53
|
Buranarom A, Navasumrit P, Ngaotepprutaram T, Ruchirawat M. Dichloromethane increases mutagenic DNA damage and transformation ability in cholangiocytes and enhances metastatic potential in cholangiocarcinoma cell lines. Chem Biol Interact 2021; 346:109580. [PMID: 34280354 DOI: 10.1016/j.cbi.2021.109580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/22/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Dichloromethane (DCM), a widely used chlorinated solvent, is classified by IARC (2017) as probably carcinogenic to humans. Exposure to DCM has been associated with increased incidence of cholangiocarcinoma (CCA) in humans. This study aimed to investigate how DCM could contribute to CCA development by investigating the effects of DCM on DNA damage and cell transformation in cholangiocytes (MMNK-1) and on metastatic potential as measured by invasion and cell migration in malignant CCA cell lines (HuCCA-1 and RMCCA-1). MMNK-1 cells treated with the non-cytotoxic concentration of DCM (25 μM, 24 h) significantly increased the levels of mutagenic DNA adducts including 8-hydroxydeoxyguanosine, 8-OHdG, (1.84-fold, p < 0.01) and 8-nitroguanine (1.96-fold, p < 0.01) and enhanced cell transformation by 1.47-fold (p < 0.01). In addition, the expression of various genes involved in carcinogenesis, namely, NFE2L2 (antioxidative response), CXCL8 (inflammation), CDH1 (cell adhesion), MMP9 (tissue remodeling) and MKI67 (cell proliferation) were altered in cholangiocytes treated with DCM. When MMNK-1 cells were transformed by DCM, the expression of all the aforementioned genes was also increased. In malignant cell lines (HuCCA-1 and RMCCA-1), DCM treatment resulted in increased CXCL8 and MMP9 transcription and decreased CDH1 transcription accompanied by increased invasion and migration capabilities of these cells. Taken together, this study demonstrated that DCM exposure could be linked to the development of CCA.
Collapse
Affiliation(s)
- Angkhameen Buranarom
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand
| | | | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), Thailand.
| |
Collapse
|
54
|
Li Q, Li S, Niu L, Yang S, Niu H, Cheng C. Long noncoding RNA MGC27382 inhibits proliferation and metastasis of non-small cell lung cancer cells via down-regulating AKT/GSK3β pathway. Clin Transl Oncol 2021; 23:2548-2559. [PMID: 34224057 DOI: 10.1007/s12094-021-02658-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/02/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Persistent abnormal proliferation and long distant metastasis of tumors contribute to high mortality rate in non-small cell lung cancer (NSCLC) patients. Strategies that prevent NSCLC proliferation and/or metastasis have been studied but still need to be further explored. Numerous studies have proved the diversity functions of long noncoding RNAs (lncRNAs) exerted in cancer, including NSCLC. In this study, we aim to identify and investigate the role of novel lncRNAs in NSCLC progression. METHODS RNA sequence data were retrieved from the Cancer Genome Atlas (TCGA), differentially expressed lncRNAs (DElncRNAs) were screened out based on the R language, then real-time PCR experiment was introduced to detect the DElncRNA expression levels. A series of experiments including MTT, cell cycle, transwell, and wound healing assays were employed to explore the effect of DElncRNA MGC27382 on cell proliferation and invasion ability. RESULTS We detected that DElncRNA MGC27382 is down-regulated in NSCLC tissues and cells. Overexpression of MGC27382 prevented NSCLC cell proliferation via down-regulating cyclin D1 and cyclin E. Moreover, wound healing and transwell assays indicated that the ability of cell invasion and migration could be impaired when cells were treated with MGC27382 overexpression. Further studies demonstrated that MGC27382-mediated inhibition on NSCLC progression can be impaired by LY294002, which is a frequently used inhibitor of AKT/GSK3β pathway. CONCLUSION MGC27382 is down-regulated in NSCLC. It exerts an inhibitory role in NSCLC development through suppressing the AKT/GSK3β pathway. Our results indicate that the lncRNA MGC27382 might be a tumor-suppressor gene in NSCLC. Overexpression of MGC27382 is thought to be a potential strategy for overcoming NSCLC progression.
Collapse
Affiliation(s)
- Q Li
- Department of Respiratory Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - S Li
- Department of Gastroenterology, People's Hospital of Weihaiwei, Weihai, China
| | - L Niu
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - S Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Niu
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, China
| | - C Cheng
- Department of Thoracic Surgery, Qilu Hospital, Shandong University, 107 Wenhua Xi Road, Jinan, China.
| |
Collapse
|
55
|
Dorandish S, Atali S, Ray R, Al Khashali H, Coleman KL, Guthrie J, Heyl D, Evans HG. Differences in the Relative Abundance of ProBDNF and Mature BDNF in A549 and H1299 Human Lung Cancer Cell Media. Int J Mol Sci 2021; 22:ijms22137059. [PMID: 34209215 PMCID: PMC8267635 DOI: 10.3390/ijms22137059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 01/02/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, has been linked to several human malignancies and shown to promote tumorigenesis. The purpose of this study was to explore the relative abundance of pro-brain-derived neurotrophic factor (proBDNF) and mature BDNF (mBDNF) in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher levels of proBDNF were detected in the media of A549 cells than in H1299 cell media. Using inhibitors, we found that the levels of proBDNF and mBDNF in the media are likely regulated by PI3K, AKT, and NFκB. However, the largest change in these levels resulted from MMP2/9 inhibition. Blocking p53 function in A549 cells resulted in increased mBDNF and decreased proBDNF, suggesting a role for p53 in regulating these levels. The ratio of proBDNF/mBDNF was not affected by MMP2 knockdown but increased in the media of both cell lines upon knockdown of MMP9. Downregulation of either MMP2 or MMP9 by siRNA showed that MMP9 siRNA treatment of either A549 or H1299 cells resulted in decreased cell viability and increased apoptosis, an effect diminished upon the same treatment with proBDNF immunodepleted media, suggesting that MMP9 regulates the cytotoxic effects induced by proBDNF in lung cancer cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hedeel Guy Evans
- Correspondence: ; Tel.: +1-(734)-487-1425; Fax: +1-(734)-487-1496
| |
Collapse
|
56
|
Ziyuglycoside II exerts antiproliferative and antimetastasis effects on hepatocellular carcinoma cells. Anticancer Drugs 2021; 31:819-827. [PMID: 32097137 DOI: 10.1097/cad.0000000000000918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. Phytochemicals are important candidates for developing anticancer agents. Ziyuglycoside II is a major active compound of Sanguisorba officinalis, which exhibits antiproliferation activity in several cancers; however, its action in HCC remains unknown. In this study, we investigated the antitumor activity of ziyuglycoside II against HCC and explored the potential mechanisms. We found that ziyuglycoside II exerts significant inhibitory effects on the viability and clonogenic activity of HCC cells. The proliferation repression mediated by ziyuglycoside II was mainly due to increased apoptosis and reactive oxygen species accumulation, as well as a G0/G1 phase cell-cycle arrest. Additionally, ziyuglycoside II markedly impaired HCC cell migration and invasion, two important steps during metastasis, and these suppressive effects may be attributed to the downregulation of matrix metalloproteinases MMP2 and MMP9 expression. Moreover, ziyuglycoside II blocked the epidermal growth factor receptor/nuclear factor kappa-B (EGFR/NF-kB) signaling, which may contribute to its anticancer activity. Taken together, our findings reveal antiproliferative and antimetastasis activities of ziyuglycoside II in HCC cells, implying that ziyuglycoside II might be a promising candidate for the development of novel anti-HCC drugs.
Collapse
|
57
|
Gabasa M, Radisky ES, Ikemori R, Bertolini G, Arshakyan M, Hockla A, Duch P, Rondinone O, Llorente A, Maqueda M, Davalos A, Gavilán E, Perera A, Ramírez J, Gascón P, Reguart N, Roz L, Radisky DC, Alcaraz J. MMP1 drives tumor progression in large cell carcinoma of the lung through fibroblast senescence. Cancer Lett 2021; 507:1-12. [PMID: 33684534 PMCID: PMC8026696 DOI: 10.1016/j.canlet.2021.01.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/09/2021] [Accepted: 01/28/2021] [Indexed: 12/18/2022]
Abstract
Large cell carcinoma (LCC) is a rare and aggressive lung cancer subtype with poor prognosis and no targeted therapies. Tumor-associated fibroblasts (TAFs) derived from LCC tumors exhibit premature senescence, and coculture of pulmonary fibroblasts with LCC cell lines selectively induces fibroblast senescence, which in turn drives LCC cell growth and invasion. Here we identify MMP1 as overexpressed specifically in LCC cell lines, and we show that expression of MMP1 by LCC cells is necessary for induction of fibroblast senescence and consequent tumor promotion in both cell culture and mouse models. We also show that MMP1, in combination with TGF-β1, is sufficient to induce fibroblast senescence and consequent LCC promotion. Furthermore, we implicate PAR-1 and oxidative stress in MMP1/TGF-β1-induced TAF senescence. Our results establish an entirely new role for MMP1 in cancer, and support a novel therapeutic strategy in LCC based on targeting senescent TAFs.
Collapse
Affiliation(s)
- Marta Gabasa
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Rafael Ikemori
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Giulia Bertolini
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Marselina Arshakyan
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Alexandra Hockla
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Paula Duch
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Ornella Rondinone
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Alejandro Llorente
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain
| | - Maria Maqueda
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | | | - Elena Gavilán
- Cell Dynamics and Signaling Department, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), CSIC, Sevilla, 41092, Spain
| | - Alexandre Perera
- Department of ESAII, Center for Biomedical Engineering Research, Technical University of Catalonia (UPC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, 08028, Spain
| | - Josep Ramírez
- Pathology Service, Hospital Clínic de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain
| | - Pere Gascón
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain; Department of Medicine, University of Barcelona, Barcelona, Spain
| | - Noemí Reguart
- Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, 08036, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, 20133, Italy
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| | - Jordi Alcaraz
- Unit of Biophysics and Bioengineering, Department of Biomedicine, School of Medicine and Health Sciences, Universitat de Barcelona, Barcelona, 08036, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, 28029, Spain; Thoracic Oncology Unit, Hospital Clinic Barcelona, Barcelona, 08036, Spain; Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona, 08028, Spain.
| |
Collapse
|
58
|
Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 2021; 14:85. [PMID: 34059100 PMCID: PMC8165984 DOI: 10.1186/s13045-021-01096-0] [Citation(s) in RCA: 431] [Impact Index Per Article: 143.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a disease with complex pathological process. Current chemotherapy faces problems such as lack of specificity, cytotoxicity, induction of multi-drug resistance and stem-like cells growth. Nanomaterials are materials in the nanorange 1–100 nm which possess unique optical, magnetic, and electrical properties. Nanomaterials used in cancer therapy can be classified into several main categories. Targeting cancer cells, tumor microenvironment, and immune system, these nanomaterials have been modified for a wide range of cancer therapies to overcome toxicity and lack of specificity, enhance drug capacity as well as bioavailability. Although the number of studies has been increasing, the number of approved nano-drugs has not increased much over the years. To better improve clinical translation, further research is needed for targeted drug delivery by nano-carriers to reduce toxicity, enhance permeability and retention effects, and minimize the shielding effect of protein corona. This review summarizes novel nanomaterials fabricated in research and clinical use, discusses current limitations and obstacles that hinder the translation from research to clinical use, and provides suggestions for more efficient adoption of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Zhe Cheng
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Maoyu Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Raja Dey
- Department of Nucleotide Metabolism and Drug Discovery, The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
59
|
Mottaghi S, Abbaszadeh H. Natural Lignans Honokiol and Magnolol as Potential Anticarcinogenic and Anticancer Agents. A Comprehensive Mechanistic Review. Nutr Cancer 2021; 74:761-778. [PMID: 34047218 DOI: 10.1080/01635581.2021.1931364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Plant lignans constitute an important group of polyphenols, which have been demonstrated to significantly induce cancer cell death and suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Numerous epidemiological studies have shown that the intake of lignans is associated with lower risk of several cancers. These natural compounds have the potential to inhibit carcinogenesis, tumor growth, and metastasis by targeting various signaling molecules and pathways. Growing evidence indicates that honokiol and magnolol as natural lignans possess potent anticancer activities against various types of human cancer. The aim of present review is to provide the reader with the newest findings in understanding the cellular and molecular mechanisms mediating anticancer effects of honokiol and magnolol. This review comprehensively elucidates the effects of honokiol and magnolol on the molecular targets and signal transduction pathways implicated in cancer cell proliferation and metastasis. The findings of current review indicate that honokiol and magnolol can be considered as promising carcinopreventive and anticancer agents.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
60
|
Dorandish S, Williams A, Atali S, Sendo S, Price D, Thompson C, Guthrie J, Heyl D, Evans HG. Regulation of amyloid-β levels by matrix metalloproteinase-2/9 (MMP2/9) in the media of lung cancer cells. Sci Rep 2021; 11:9708. [PMID: 33958632 PMCID: PMC8102533 DOI: 10.1038/s41598-021-88574-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, we set out to identify regulators of intact amyloid-β40/42 (Aβ) levels in A549 (p53 wild-type) and H1299 (p53-null) lung cancer cell media. Higher Aβ levels were detected in the media of A549 than H1299 cells without or with treatment with 4-methylumbelliferone (4-MU) and/or the anti-CD44 antibody (5F12). Using inhibitors, we found that PI3K, AKT, and NFκB are likely involved in regulating Aβ levels in the media. However, increased Aβ levels that more closely resembled those found upon 4-MU co-treatment resulted from MMP2/9 inhibition, suggesting that MMP2/9 maybe the main contributors to regulation of Aβ levels in the media. Differences in Aβ levels might be accounted for, in part, by p53 since blocking p53 function in A549 cells resulted in decreased Aβ levels, increased MMP2/9 levels, increased PI3K/AKT activities and the phospho/total NFκB ratio. Using siRNA targeted against MMP2 or MMP9, we found increased Aβ levels in the media, however, MMP2 knockdown led to Aβ levels closely mimicking those detected by co-treatment with 4-MU. Cell viability or apoptosis upon treatment with either MMP2 or MMP9 siRNA along with Aβ immunodepletion, showed that MMP2 is the predominant regulator of the cytotoxic effects induced by Aβ in lung cancer cells.
Collapse
Affiliation(s)
- Sadaf Dorandish
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Asana Williams
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sarah Atali
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Sophia Sendo
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deanna Price
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Colton Thompson
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Jeffrey Guthrie
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Deborah Heyl
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA
| | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI, 48197, USA.
| |
Collapse
|
61
|
Mottaghi S, Abbaszadeh H. A comprehensive mechanistic insight into the dietary and estrogenic lignans, arctigenin and sesamin as potential anticarcinogenic and anticancer agents. Current status, challenges, and future perspectives. Crit Rev Food Sci Nutr 2021; 62:7301-7318. [PMID: 33905270 DOI: 10.1080/10408398.2021.1913568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large body of evidence indicates that lignans as polyphenolic compounds are beneficial against life-threatening diseases such as cancer. Plant lignans have the potential to induce cancer cell death and interfere with carcinogenesis, tumor growth, and metastasis. Epidemiological studies have revealed that the intake of lignans is inversely associated with the risk of several cancers. Moreover, numerous experimental studies demonstrate that natural lignans significantly suppress cancer cell proliferation with minimal toxicity against non-transformed cells. Dietary lignans arctigenin and sesamin have been found to have potent antiproliferative activities against various types of human cancer. The purpose of this review is to provide the reader with a deeper understanding of the cellular and molecular mechanisms underlying anticancer effects of arctigenin and sesamin. Our review comprehensively describes the effects of arctigenin and sesamin on the signaling pathways and related molecules involved in cancer cell proliferation and invasion. The findings of present review show that the dietary lignans arctigenin and sesamin seem to be promising carcinopreventive and anticancer agents. These natural lignans can be used as dietary supplements and pharmaceuticals for prevention and treatment of cancer.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
62
|
Maimon A, Levi-Yahid V, Ben-Meir K, Halpern A, Talmi Z, Priya S, Mizraji G, Mistriel-Zerbib S, Berger M, Baniyash M, Loges S, Burstyn-Cohen T. Myeloid cell-derived PROS1 inhibits tumor metastasis by regulating inflammatory and immune responses via IL-10. J Clin Invest 2021; 131:126089. [PMID: 33848267 DOI: 10.1172/jci126089] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 04/07/2021] [Indexed: 12/11/2022] Open
Abstract
Stimulation of TAM (TYRO3, AXL, and MERTK) receptor tyrosine kinases promotes tumor progression through numerous cellular mechanisms. TAM cognate ligands GAS6 and PROS1 (for TYRO3 and MERTK) are secreted by host immune cells, an interaction which may support tumor progression. Here, we revealed an unexpected antimetastatic role for myeloid-derived PROS1: suppressing metastatic potential in lung and breast tumor models. Pros1 deletion in myeloid cells led to increased lung metastasis, independent of primary tumor infiltration. PROS1-cKO bone marrow-derived macrophages (BMDMs) led to elevated TNF-α, IL-6, Nos2, and IL-10 via modulation of the Socs3/NF-κB pathway. Conditioned medium from cKO BMDMs enhanced EMT, ERK, AKT, and STAT3 activation within tumor cells and promoted IL-10-dependent invasion and survival. Macrophages isolated from metastatic lungs modulated T cell proliferation and function, as well as expression of costimulatory molecules on DCs in a PROS1-dependent manner. Inhibition of MERTK kinase activity blocked PROS1-mediated suppression of TNF-α and IL-6 but not IL-10. Overall, using lung and breast cancer models, we identified the PROS1/MERTK axis within BMDMs as a potent regulator of adaptive immune responses with a potential to suppress metastatic seeding and revealed IL-10 regulation by PROS1 to deviate from that of TNF-α and IL-6.
Collapse
Affiliation(s)
- Avi Maimon
- The Institute for Dental Sciences, Faculty of Dental Medicine and
| | | | - Kerem Ben-Meir
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Amit Halpern
- The Institute for Dental Sciences, Faculty of Dental Medicine and
| | - Ziv Talmi
- The Institute for Dental Sciences, Faculty of Dental Medicine and
| | - Shivam Priya
- The Institute for Dental Sciences, Faculty of Dental Medicine and
| | - Gabriel Mizraji
- The Institute for Dental Sciences, Faculty of Dental Medicine and
| | - Shani Mistriel-Zerbib
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Michael Berger
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Michal Baniyash
- The Lautenberg Center for Immunology and Cancer Research, Israel-Canada Medical Research Institute, Faculty of Medicine, the Hebrew University, Jerusalem, Israel
| | - Sonja Loges
- Division of Personalized Medical Oncology (A420), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | | |
Collapse
|
63
|
Nallajennugari V, Pajaniradje S, Subramanian S, Bhat SA, D P, Bhaskaran S, M SAP, Rajagopalan R. A novel anticancer chromeno-pyrimidine analogue inhibits epithelial-mesenchymal transition in lung adenocarcinoma cells. Toxicol Mech Methods 2021; 31:401-412. [PMID: 33736563 DOI: 10.1080/15376516.2021.1902030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cancer is the second most dreaded disease worldwide. It is either acquired or inherited leading to the accompanying undesirable changes in the affected cells. Most existing chemotherapeutic drugs show enormous side effects. To minimize such effects, constant progress has been observed in the field of cancer by screening the anti-cancer effects of different chemical analogues. In the current study, we investigated the mechanism of action of a novel anticancer chromeno-pyrimidine analogue. We employed MTT, LDH assay to study cytotoxicity. DNA fragmentation, fluorescence imaging, and flow cytometric techniques have been carried out to study apoptosis, ROS generation, and cell cycle respectively. Wound healing assay and western blotting were used to evaluate the markers of epithelial-mesenchymal transition associated with metastasis. Molecular docking was used to predict possible protein targets that bind to this compound. The novel analogue induced apoptosis in lung adenocarcinoma cells and exhibited anti-metastatic activity. Increased expression of E-cadherin and inhibition of epithelial-mesenchymal transition was also observed. Docking studies with metastasis-related proteins such as Frizzled-7 (CRD), and Snail1 predict a high binding affinity of CP4b to both proteins. The novel analogue is therefore an anti-metastatic compound with EMT-inhibiting property and is hypothesized to act via binding to multiple targets in cancer cells.
Collapse
Affiliation(s)
| | | | - Srividya Subramanian
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Suhail Ahmad Bhat
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Parthasarathi D
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Savitha Bhaskaran
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Syed Ali Padusha M
- Post Graduate and Research Department of Chemistry, Jamal Mohamed College, Bharathidasan University, Tiruchirappalli, India
| | - Rukkumani Rajagopalan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
64
|
Pterostilbene promotes mitochondrial apoptosis and inhibits proliferation in glioma cells. Sci Rep 2021; 11:6381. [PMID: 33737656 PMCID: PMC7973728 DOI: 10.1038/s41598-021-85908-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Glioma is the most general primary and lethal intracranial malignant tumor. Pterostilbene (PTE), an analog of stilbene and resveratrol, has attracted attention in recent years due to its significant antitumor activity in multiple solid tumors; however, its effect on drug-resistant glioma cells and the underlying mechanism have not yet been reported. In this study, we found that pterostilbene inhibited proliferation, induced intrinsic mitochondria-mediated apoptosis and caused S phase arrest, inhibited migration and excessive invasion in glioma cells. Pretreatment with the pan-caspase-inhibitor Z-VAD-FMK attenuated the PTE-induced apoptosis of glioma cells. Moreover, PTE significantly increased the production of reactive oxygen species (ROS) and reduce the mitochondrial membrane potential (MMP). Inhibition of ROS with N-acetyl-l-cysteine not only rescued PTE-induced reduction of cellular viability but also prevented glioma cell apoptosis. We also discovered ERK 1/2 and JNK signaling pathways were activated by PTE and contributed to induce glioma cell apoptosis. In addition, specific inhibitors of ERK 1/2 and JNK attenuated PTE-induced apoptosis. Besides, PTE significantly reduced tumor volume and prolonged median survival of tumor-bearing rats in vivo. In summary, the results of this study indicate that the anti-tumor effect of PTE on glioma cells may provide a new treatment option for glioma patients.
Collapse
|
65
|
Mehta M, Paudel KR, Panth N, Xenaki D, Macloughlin R, Oliver BG, Lobenberg R, Hansbro PM, Chellappan DK, Dua K. Drug delivery advances in mitigating inflammation via matrix metalloproteinases in respiratory diseases. Nanomedicine (Lond) 2021; 16:437-439. [DOI: 10.2217/nnm-2021-0016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Meenu Mehta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Dikaia Xenaki
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Ronan Macloughlin
- Aerogen, IDA Business Park, Dangan, Galway H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin D02 PN40, Ireland
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW 2037, Australia
| | - Raimar Lobenberg
- University of Alberta, Faculty of Pharmacy & Pharmaceutical Sciences, Edmonton, AB, T6G 2N8, Canada
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
- University of Alberta, Faculty of Pharmacy & Pharmaceutical Sciences, Edmonton, AB, T6G 2N8, Canada
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI), University of Newcastle, New Lambton Heights, Newcastle, NSW 2305, Australia
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh 173229, India
| |
Collapse
|
66
|
Vega-Mendoza D, Cañas-Linares A, Flores-Alcantar A, Espinosa-Neira R, Melchy-Perez E, Vera-Estrella R, Auvynet C, Rosenstein Y. CD43 (sialophorin) is involved in the induction of extracellular matrix remodeling and angiogenesis by lung cancer cells. J Cell Physiol 2021; 236:6643-6656. [PMID: 33533043 DOI: 10.1002/jcp.30308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022]
Abstract
Aberrant expression of CD43 in malignant tumors of nonhematopoietic origin such as those from lung, cervix, colon, and breast has been shown to correlate with poor prognosis, providing tumor cells with enhanced motility, anchorage-independent growth, and in vivo tumor size, while protecting the cells of NK lysis and apoptosis. To further characterize the role of CD43 in cell transformation, we tested whether interfering its expression modified the capacity of the A549 non-small cell lung cancer cells to secrete molecules contributing to malignancy. The proteomic analysis of the secretome of serum-starved A549 cells revealed that cells expressing normal levels of CD43 released significantly high levels of molecules involved in extracellular matrix organization, angiogenesis, platelet degranulation, collagen degradation, and inflammation, as compared to CD43 RNAi cells. This data reveals a novel and unexpected role for CD43 in lung cancer development, mainly in remodeling the tumor microenvironment.
Collapse
Affiliation(s)
- Daniela Vega-Mendoza
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alicia Cañas-Linares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Angel Flores-Alcantar
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Roberto Espinosa-Neira
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.,División de Investigación Básica, Laboratorio de Epigenética del Cáncer, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| | - Erika Melchy-Perez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Constance Auvynet
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Yvonne Rosenstein
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
67
|
Gong W, Martin TA, Sanders AJ, Jiang A, Sun P, Jiang WG. Location, function and role of stromal cell‑derived factors and possible implications in cancer (Review). Int J Mol Med 2021; 47:435-443. [PMID: 33416125 PMCID: PMC7797432 DOI: 10.3892/ijmm.2020.4811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Despite improvements in therapy and management, cancer represents and remains a major cause of mortality and morbidity worldwide. Although genetics serve an important role in tumorigenesis and tumour progression, the tumour microenvironment (TME) in solid tumours is also important and has been indicated to contribute to these processes. Stromal cell‑derived factors (SDFs) represent an important family within the TME. The family includes SDF‑1, SDF‑2, SDF2‑like 1 (SDF2L1), SDF‑3, SDF‑4 and SDF‑5. SDF‑1 has been demonstrated to act as a positive regulator in a number of types of tumour, such as oesophago‑gastric, pancreatic, lung, breast, colorectal and ovarian cancer, while the biology and functions of other members of the SDF family, including SDF‑2, SDF2L1, SDF‑4 and SDF‑5, in cancer are different, complex and controversial, and remain mainly unknown. Full identification and understanding of the SDFs across multiple types of cancer is required to elucidate their function and establish potential key targets in cancer.
Collapse
Affiliation(s)
- Wenjing Gong
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China,Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracey A. Martin
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Andrew J. Sanders
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Aihua Jiang
- Department of Anaesthesiology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Ping Sun
- Department of Oncology, Yantai Yuhuangding Hospital, Medical College, Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK,Correspondence to: Professor Wen G. Jiang, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Henry Wellcome Building, Cardiff CF14 4XN, UK, E-mail:
| |
Collapse
|
68
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
69
|
Sanchez DJ, Missiaen R, Skuli N, Steger DJ, Simon MC. Cell-Intrinsic Tumorigenic Functions of PPARγ in Bladder Urothelial Carcinoma. Mol Cancer Res 2021; 19:598-611. [PMID: 33431608 DOI: 10.1158/1541-7786.mcr-20-0189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 11/16/2022]
Abstract
The role of PPAR gamma (PPARγ) has been well characterized in the developmental process of adipogenesis, yet its aberrant expression patterns and functions in cancer subtypes are less understood. Although PPARγ has been recently demonstrated to play non-cell-autonomous roles in promoting bladder urothelial carcinoma (UC) progression, underlying mechanisms of the cell-intrinsic oncogenic activity remain unknown. Here, we report robust expression and nuclear accumulation of PPARγ in 47% of samples of patients with UC, exceeding mRNA expression patterns published by The Cancer Genome Atlas. In vitro assays revealed for the first time that treatment of UC cells with PPARγ inverse agonist or PPARG knockout by CRISPR-Cas9 reduces proliferation, migration, and invasion of multiple established UC cell lines, most strongly in those characterized by PPARG genomic amplification or activating mutations of RXRA, the obligate heterodimer of PPARγ. Through genome-wide approaches including chromatin immunoprecipitation sequencing and RNA sequencing, we define a novel set of PPARγ-regulated genes in UC, including Sonic Hedgehog (SHH). Similar to PPARγ, genetic inhibition of SHH reduces proliferation and motility. Finally, we demonstrate the PPARγ dependency of UC tumors in vivo by genetic and pharmacologic PPARγ inhibition in subcutaneous xenografts. Collectively, our data indicate that PPARγ promotes UC progression in a subset of patients, at least in part, through cell-autonomous mechanisms linked to SHH signaling. IMPLICATIONS: Genome-wide analysis of DNA-binding sites for oncogenic factor PPARγ revealed SHH as a novel downstream target involved in UC progression, providing important insight into the tumorigenic nature and molecular mechanism of PPARγ signaling in UC.
Collapse
Affiliation(s)
- Danielle J Sanchez
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rindert Missiaen
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David J Steger
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
70
|
Shi Y, Cai Y, Cao Y, Hong Z, Chai Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
71
|
Tao Z, Suo H, Zhang L, Jin Z, Wang Z, Wang D, Wu M, Peng N, Zhao Y, Chen B. MRPL13 is a Prognostic Cancer Biomarker and Correlates with Immune Infiltrates in Breast Cancer. Onco Targets Ther 2020; 13:12255-12268. [PMID: 33273831 PMCID: PMC7708783 DOI: 10.2147/ott.s263998] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/13/2020] [Indexed: 01/19/2023] Open
Abstract
Objective To study the expression of MRPL13 in breast cancer tissues using TCGA database, analyze the correlation between the expression and clinicopathological characteristics of patients, and explore the role of MRPL13 in the development of breast cancer (BC). Methods The BC mRNA data and clinical information were downloaded from TCGA database. The correlation between MRPL13 expression and clinicopathological parameters was analyzed. Cox regression multivariate analysis was used to explore the factors affecting the prognosis of BC patients. The UALCAN database was used to analyze the expression level of MRPL13 in BC and its relationship with clinical pathological factors. The GSEA method was used to predict the possible regulatory pathways of MRPL13. Immune responses of MRPL13 expression were analyzed using TISIDB and CIBERSORT. Additionally, GEPIA, K-M survival analysis and data from the HPA were used to validate the outcomes. Results The expression of MRPL13 in BC tissues was significantly higher than normal counterparts, patients with low MRPL13 expression had a better survival prognosis, also indicated an independent prognostic factor. GSEA analysis showed that the regulation of cell migration, positive regulation of endothelial cell migration, and Notch signaling pathway were enriched in tissues with low expression of MRPL13. Additionally, depleting MRPL13 expression inhibited invasion in MCF-10A and MCF-7 cells. Furthermore, PCR showed that MRPL13 affected VEGFA and MMP gene expression. CIBERSORT analysis revealed that the amount of NK cells decreased when MRPL13 expression was high. Conclusion The expression of MRPL13 mRNA is upregulated in BC tissues, and the expression level of MRPL13 is significantly related to the clinicopathological factors of patients. High MRPL13 expression is a poor prognostic factor for BC, and it can be used as a molecular marker for prognosis judgment and as a potential therapeutic target.
Collapse
Affiliation(s)
- Zuo Tao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Huandan Suo
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Lei Zhang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zining Jin
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Zhen Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Danyu Wang
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Ming Wu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Nanxi Peng
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Yujie Zhao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| | - Bo Chen
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning Province 110001, People's Republic of China
| |
Collapse
|
72
|
Li X, Jin L, Tan Y. Different roles of matrix metalloproteinase 2 in osteolysis of skeletal dysplasia and bone metastasis (Review). Mol Med Rep 2020; 23:70. [PMID: 33236155 PMCID: PMC7716421 DOI: 10.3892/mmr.2020.11708] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/02/2020] [Indexed: 01/18/2023] Open
Abstract
Matrix metalloproteinase 2 (MMP2) is a well-characterized protein that is indispensable for extracellular matrix remodeling and other pathological processes, such as tumor progression and skeletal dysplasia. Excessive activation of MMP2 promotes osteolytic metastasis and bone destruction in late-stage cancers, while its loss-of-function mutations result in the decreased bone mineralization and generalized osteolysis occurring progressively in skeletal developmental disorders, particularly in multicentric osteolysis, nodulosis and arthropathy (MONA). Either upregulation or downregulation of MMP2 activity can result in the same osteolytic effects. Thus, different functions of MMP2 have been recently identified that could explain this observation. While MMP2 can degrade bone matrix, facilitate osteoclastogenesis and amplify various signaling pathways that enhance osteolysis in bone metastasis, its role in maintaining the number of bone cells, supporting osteocytic canalicular network formation and suppressing leptin-mediated inhibition of bone formation has been implicated in osteolytic disorders caused by MMP2 deficiency. Furthermore, the proangiogenic activity of MMP2 is one of the potential mechanisms that are associated with both pathological situations. In the present article, the latest research on MMP2 in bone homeostasis is reviewed and the mechanisms underlying the role of this protein in skeletal metastasis and developmental osteolysis are discussed.
Collapse
Affiliation(s)
- Xiumao Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Libin Jin
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yanbin Tan
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
73
|
Ahn YH, Ko YH. Diagnostic and Therapeutic Implications of microRNAs in Non-Small Cell Lung Cancer. Int J Mol Sci 2020; 21:E8782. [PMID: 33233641 PMCID: PMC7699705 DOI: 10.3390/ijms21228782] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
microRNAs (miRNAs), endogenous suppressors of target mRNAs, are deeply involved in every step of non-small cell lung cancer (NSCLC) development, from tumor initiation to progression and metastasis. They play roles in cell proliferation, apoptosis, angiogenesis, epithelial-to-mesenchymal transition, migration, invasion, and metastatic colonization, as well as immunosuppression. Due to their versatility, numerous attempts have been made to use miRNAs for clinical applications. miRNAs can be used as cancer subtype classifiers, diagnostic markers, drug-response predictors, prognostic markers, and therapeutic targets in NSCLC. Many challenges remain ahead of their actual clinical application; however, when achieved, the use of miRNAs in the clinic is expected to enable great progress in the diagnosis and treatment of patients with NSCLC.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Biomarkers, Pharmacological/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/immunology
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/immunology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Epithelial-Mesenchymal Transition/immunology
- Gene Expression Regulation, Neoplastic
- Humans
- Lung Neoplasms/diagnosis
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/immunology
- Lymphatic Metastasis
- MicroRNAs/agonists
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/immunology
- Neovascularization, Pathologic/diagnosis
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Prognosis
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Escape/genetics
Collapse
Affiliation(s)
- Young-Ho Ahn
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Yoon Ho Ko
- Division of Oncology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
| |
Collapse
|
74
|
Balla MMS, Patwardhan S, Melwani PK, Purwar P, Kumar A, Pramesh CS, Laskar S, Pandey BN. Prognosis of metastasis based on age and serum analytes after follow-up of non-metastatic lung cancer patients. Transl Oncol 2020; 14:100933. [PMID: 33188981 PMCID: PMC7670208 DOI: 10.1016/j.tranon.2020.100933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/24/2022] Open
Abstract
Lower age of non-metastatic patients developed metastasis during follow-up. Higher levels of IL-8 and MMP-9 were observed in these patients. IL-8 and age together improved metastasis prognostic ability.
At the diagnostic stage, metastasis detection is around 75% in the lung cancer patients. Major clinical challenge faced by medical oncologists is the unpredictable metastasis development in non-metastatic patients. The literature regarding the biomarkers/factors prognosticating metastasis in non-metastatic patients during follow-up is very limited. In this pilot study, the levels of serum biomarkers (IL-8, VEGF, MMP-2, MMP-9) were measured at diagnosis stage of non-metastatic lung cancer patients and these observations were evaluated for metastasis development after follow-up of median 29.2 months. After follow-up, ∼40% of these patients developed metastasis. The average age of non-metastatic patients which later developed metastasis, was found to be lower than the patients continued to be non-metastatic. These patients also showed higher levels of IL-8 and MMP-9 than the patients which did not develop metastasis. Analysis of Receiver Operating Characteristic Curves, Youden's Index and positive likelihood ratio values showed better diagnostic ability for IL-8 and MMP-9, which improved when both markers used together. Moreover, patients with age ≤60 years showed higher prognostic ability of metastasis development, which was significantly enhanced when patient age was analysed with IL-8. These results suggest potential of serum analytes (IL-8, MMP-9) and/or patient age in prognosticating the metastasis development in non-metastatic patients.
Collapse
Affiliation(s)
- Murali Mohan Sagar Balla
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sejal Patwardhan
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Pooja Kamal Melwani
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Pallavi Purwar
- Tata Memorial Centre, Dr E. Borges Road, Parel, Mumbai 400012, India
| | - Amit Kumar
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - C S Pramesh
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Tata Memorial Centre, Dr E. Borges Road, Parel, Mumbai 400012, India
| | - Siddharth Laskar
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India; Tata Memorial Centre, Dr E. Borges Road, Parel, Mumbai 400012, India
| | - Badri Narain Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
75
|
Zhu T, Bao X, Chen M, Lin R, Zhuyan J, Zhen T, Xing K, Zhou W, Zhu S. Mechanisms and Future of Non-Small Cell Lung Cancer Metastasis. Front Oncol 2020; 10:585284. [PMID: 33262947 PMCID: PMC7686569 DOI: 10.3389/fonc.2020.585284] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Lung cancer, renowned for its fast progression and metastatic potency, is rising to become a leading cause of death globally. It has been long observed that lung cancer is particularly ept in spawning distant metastasis at its early stages, and it can readily colonize virtually any human organ. In recent years, cancer research has shed light on why lung cancer is endowed with its exceptional ability to metastasize. In this review, we will take a comprehensive look at the current research on lung cancer metastasis, including molecular pathways, anatomical features and genetic traits that make lung cancer intrinsically metastatic, as we go from lung cancer’s general metastatic potential to the particular metastasis mechanisms in multiple organs. We highly concerned about the advanced discovery and development of lung cancer metastasis, indicating the importance of lung cancer specific gene mutations, heterogeneity or biomarker discovery, and discussing potential opportunities and challenges. We will also introduce some current treatments that targets certain metastatic strategies of non-small cell lung cancer (NSCLC). Advances made in these regards could be critical to our current knowledge base of lung cancer metastasis.
Collapse
Affiliation(s)
- Tianhao Zhu
- School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Starriver Bilingual School, Shanghai, China
| | | | - Mingyu Chen
- Department of Neurosurgery, Huashan Hospital, Shanghai, China
| | - Rui Lin
- Department of General Surgery, Tongji Hospital, School of Medicine, Tongji University Medical School, Shanghai, China
| | - Jianan Zhuyan
- Shanghai Starriver Bilingual School, Shanghai, China
| | | | | | - Wei Zhou
- Department of Emergency, Souths Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Sibo Zhu
- School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
76
|
Jeon S, Kim HK, Kwon JY, Baek SH, Ri HS, Choi HJ, Cho HR, Lee YS, Kim JY, Kim J, Bae J, Lee HJ. Role of Sevoflurane on Natural Killer Group 2, Member D-Mediated Immune Response in Non-Small-Cell Lung Cancer: An In Vitro Study. Med Sci Monit 2020; 26:e926395. [PMID: 33139690 PMCID: PMC7648410 DOI: 10.12659/msm.926395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background The purpose of this study was to investigate the effects of sevoflurane on cancer immunosurveillance and metastasis in non-small-cell lung cancer (NSCLC). Material/Methods NCI-H23 cells, a human NSCLC cell line, were incubated with or without sevoflurane at the concentrations of 0, 12.5, 25, 50, 100, and 200 μM for 6 h. Cell viability, the expression of natural killer group 2, member D ligands (NKG2D ligands: UL16-binding proteins 1–3 [ULBP1–3] and major histocompatibility complex class I chain-related molecules A/B [MICA/B]), the expression of matrix metalloproteinases (MMPs), NK cell-mediated cytotoxicity, and cancer cell migration were measured. Results At 12.5, 25, 50, and 100 μM, sevoflurane increased the expression of NKG2D ligands (ULBP2–3 and MICA, ULBP1–3, ULBP1–3, and ULBP1, respectively). Sevoflurane decreased the expression of NKG2D ligands at 200 μM (MICA/B). NK cell-mediated lysis of NCI-H23 cells at 200 μM sevoflurane was significantly reduced compared with the control (P=0.025; target cell: effect cell=1: 10). Sevoflurane increased the expression of MMP-1, -2, and -9 and increased cell migration in NCI-H23 cells at 50, 100, and 200 μM (P=0.001, 0.035, and 0.039, respectively, compared with the control after 18 h of wound formation). Conclusions Sevoflurane could suppress NKG2D-mediated NK cell cytotoxicity and increased expression of MMPs and migration in NCI-H23 cells. Further research is needed to determine the effects of sevoflurane on cancer immunosurveillance and metastasis in NSCLC.
Collapse
Affiliation(s)
- Soeun Jeon
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Pusan National University, School of Medicine, Busan, South Korea
| | - Hae-Kyu Kim
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Jae-Young Kwon
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Seung-Hoon Baek
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Hyun-Su Ri
- Department of Anesthesia and Pain Medicine, Pusan National University Yangsan Hospital, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Ho Jung Choi
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Hae-Ryung Cho
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Young Shin Lee
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Joo-Young Kim
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Jinsil Kim
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University, School of Medicine, Yangsan, South Korea.,PNU BK21 Plus Biomedical Science Education Center, Pusan National University, School of Medicine, Yangsan, South Korea
| | - Hyeon-Jeong Lee
- Department of Anesthesia and Pain Medicine, Pusan National University, School of Medicine, Busan, South Korea.,Biomedical Research Institute, Pusan National University Hospital, Pusan National University, School of Medicine, Busan, South Korea
| |
Collapse
|
77
|
Zhang Q, Chen Y, Hu SQ, Pu YM, Zhang K, Wang YX. A HPV16-related prognostic indicator for head and neck squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1492. [PMID: 33313237 PMCID: PMC7729314 DOI: 10.21037/atm-20-6338] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background The human papillomavirus (HPV) is emerging as an important risk factor in head and neck squamous cell carcinoma (HNSCC) patients. This has been observed particularly in the case of HPV16. The HPV16+ HNSCC subtype has distinct pathological, clinical, molecular, and prognostic characteristics. This study aimed to identify potential microRNAs (miRNAs) and their roles in HPV16+ HNSCC progression. Method miRNA, mRNA and the clinical data of 519 HNSCC and 44 HNSCC-negative samples were obtained from The Cancer Genome Atlas (TCGA) database. Differentially expressed miRNAs (DEMs) in HPV16-related HNSCC tissues with prognostic value were selected. DEM levels were assessed based on clinicopathological parameters and overall survival (OS). Target genes were also predicted and functional analysis based on Gene Set Enrichment Analysis (GSEA) were then performed. Results In HPV16+ HNSCC tissues, miR-99a-3p and miR-4746-5p were significantly upregulated. In contrast, miR-411-5p was shown to be downregulated. miR-99a-3phighmiR-411-5plowmiR-4746-5phigh expression could estimate improved OS and low frequent perineural invasion (PNI). Predicted target genes were enriched in cell growth, neuroepithelial cell differentiation, MAPK and FoxO signaling pathways. Epithelial mesenchymal transition (EMT) gene set and invasion related genes were downregulated in miR-99a-3phighmiR-411-5plowmiR-4746-5phigh HNSCC patients. Conclusion miR-99a-3p, miR-411-5p and miR-4746-5p might participate in HPV16+ HNSCC progression through EMT related pathways and affect prognosis.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yongfeng Chen
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shi-Qi Hu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu-Mei Pu
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Kai Zhang
- Department of Stomatology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yu-Xin Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
78
|
Teng J, Zhao Y, Jiang Y, Wang Q, Zhang Y. [Correlation between Gut Microbiota and Lung Cancer]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2020; 23:909-915. [PMID: 32798442 PMCID: PMC7583874 DOI: 10.3779/j.issn.1009-3419.2020.101.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene-environment interactions underlie cancer susceptibility and progression. The human body is exposed to and affected by the microenvironment seiscasts of various microorganisms and their metabolites, such as the microenvironment of gut microbiota. The relative abundance of some intestinal microbes in lung cancer patients was significantly different from that in the control group. These studies suggest that gut microbiota may be associated with lung cancer through some ways. At the same time, gut microbiota is relatively manageable environmental variables compared to the external environment we are exposed to, as they are highly quantifiable and relatively stable in the individual. Just as some measures of diagnosis, intervention and treatment of lung cancer targeting gut microbiota have achieved some results in clinical practice. In this review, we mainly discuss the role of gut microbiota and its metabolites in the progression and treatment of lung cancer through certain ways, such as regulation of metabolism, inflammation, and immune response. Finally, based on current research progress, it is inferred that research on gut microbiota may be an effective approach to the precise and personalized medical treatment of lung cancer.
.
Collapse
Affiliation(s)
- Jun Teng
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanfen Zhao
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunning Jiang
- Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qi Wang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| | - Yongsheng Zhang
- Department of Respiratory, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
| |
Collapse
|
79
|
Akbaribazm M, Khazaei MR, Khazaei F, Khazaei M. Doxorubicin and Trifolium pratense L. (Red clover) extract synergistically inhibits brain and lung metastases in 4T1 tumor-bearing BALB/c mice. Food Sci Nutr 2020; 8:5557-5570. [PMID: 33133558 PMCID: PMC7590334 DOI: 10.1002/fsn3.1820] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Trifolium pratense L. (Red clover-T. pratense) commonly consumed as a healthy beverage has been demonstrated to have various biological activities including antioxidant and anticancer effects. The aim of this study was to investigate the antimetastasis effects of doxorubicin (DOX) and T. pratense extract in 4T1 tumor-bearing BALB/c mice. In this study, 56 female BALB/c mice were randomly divided into seven groups (n = 8/group) to receive DOX and T. pratense extract in three different doses (100, 200, and 400 mg/kg/day) for 35 days. On day 36 after starting treatments, serum cytokines (IL-8 and IL-6) were measured. Immunohistochemical (IHC) staining was performed for GATA-3 in the brain and lung, and for CK5/6 in tumor tissues. Metastasis-related gene (matrix metalloproteinase-2 [MMP-2] and sirtuin-1 [SIRT-1]) expressions were also measured by real-time PCR. Our results showed that cotreatment with DOX and T. pratense extract improved stereological parameters (i.e., reduction in the volume of metastatic tumors) in the lung and brain and decreased the serum levels of inflammatory cytokines (IL-8 and IL-6). DOX and T. pratense extract synergistically down-regulated MMP-2 and up-regulated SIRT-1 genes, decreased the number of CK5/6-positive cells in tumor tissues, and inhibited metastasis of GATA-3-positive cells into the lung and brain. The combination of T. pratense extract and DOX synergistically inhibited the metastasis of 4T1 xenograft cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Mohsen Akbaribazm
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mohammad Rasoul Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| | - Fatemeh Khazaei
- Student Research CommitteeKermanshah University of Medical SciencesKermanshahIran
| | - Mozafar Khazaei
- Fertility and Infertility Research CenterHealth Technology InstituteKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
80
|
Lim WC, Choi JW, Song NE, Cho CW, Rhee YK, Hong HD. Polysaccharide isolated from persimmon leaves (Diospyros kaki Thunb.) suppresses TGF-β1-induced epithelial-to-mesenchymal transition in A549 cells. Int J Biol Macromol 2020; 164:3835-3845. [PMID: 32835798 DOI: 10.1016/j.ijbiomac.2020.08.155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/07/2023]
Abstract
In the present study, to verify the effect of polysaccharides derived from persimmon leaves (PLE) at epithelial-to-mesenchymal transition (EMT), A549 cells were treated with TGF-β1 alone or co-treated with TGF-β1 and PLE (50 and 75 μg/mL). PLE-treated cells showed higher expression of E-cadherin and lower expression of N-cadherin and vimentin compared to TGF-β1-treated cells by inhibiting the levels of transcription factors, including Snail, Slug, and ZEB1, all associated with EMT. PLE also significantly decreased migration, invasion, and anoikis resistance through TGF-β1 mediated EMT suppression, whereby PLE inhibited the levels of MMP-2 and MMP-9 while cleaving PARP. These inhibitory effects of PLE against EMT, migration, invasion, and anoikis resistance were determined by activating the canonical SMAD2/3 and non-canonical ERK/p38 signaling pathways. Therefore, these results suggest that PLE could be used as a potential chemical therapeutic agent for early metastasis of lung cancer in vitro.
Collapse
Affiliation(s)
- Won-Chul Lim
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Jae Woong Choi
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Nho-Eul Song
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang-Won Cho
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Young Kyoung Rhee
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee-Do Hong
- Research Group of Traditional Food, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea.
| |
Collapse
|
81
|
Jin X, Zhang J, Jin X, Liu L, Tian X. Folate Receptor Targeting and Cathepsin B-Sensitive Drug Delivery System for Selective Cancer Cell Death and Imaging. ACS Med Chem Lett 2020; 11:1514-1520. [PMID: 32832017 DOI: 10.1021/acsmedchemlett.0c00031] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022] Open
Abstract
In this work, a folate receptor (FR)-mediated dual-targeting drug delivery system was synthesized to improve the tumor-killing efficiency and inhibit the side effects of anticancer drugs. We designed and synthesized an FR-mediated fluorescence probe (FA-Rho) and FR-mediated cathepsin B-sensitive drug delivery system (FA-GFLG-SN38). FA-GFLG-SN38 is composed of the FR ligand (folic acid, FA), the tetrapeptide substrate for cathepsin B (GFLG), and an anticancer drug (SN38). The rhodamine B (Rho)-labeled probe FA-Rho is suitable for specific fluorescence imaging of SK-Hep-1 cells overexpressing FR and inactive in FR-negative A549 and 16-HBE cells. FA-GFLG-SN38 exhibited strong cytotoxicity against FR-overexpressing SK-Hep-1, HeLa, and Siha cells, with IC50 values of 2-3 μM, but had no effect on FR-negative A549 and 16-HBE cells. The experimental results show that the FA-CFLG-SN38 drug delivery system proposed by us can effectively inhibit tumor proliferation in vitro, and it can be adopted for the diagnostics of tumor tissues and provide a basis for effective tumor therapy.
Collapse
Affiliation(s)
- Xiangmei Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Jun Zhang
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xiaoyan Jin
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| | - Lan Liu
- Department of Pathology, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China
| | - Xizhe Tian
- Department of Chemistry, Yanbian University, Yanji 133000, Jilin, China
| |
Collapse
|
82
|
Morinda citrifolia (Noni) Juice Suppresses A549 Human Lung Cancer Cells via Inhibiting AKT/Nuclear Factor-κ B Signaling Pathway. Chin J Integr Med 2020; 27:688-695. [PMID: 32648127 DOI: 10.1007/s11655-020-3421-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To study the mechanism of the anti-tumor effect of Morinda citrifolia (noni). METHODS The influences of noni juice on cell proliferation, apoptosis, invasion, migration and the activity of AKT/nuclear factor- κ B (NF- κ B) signaling pathway in A549 human lung cancer cells were detected by MTT, cell counting kit-8, colony formation, Annexin V/PI double labeling, transwell, scratch test and immunoblotting assay, respectively. A549 cells were inoculated into the right axilla of nude mice, followed by noni juice treatment. The body weight of the nude mice was weighed, and the tumor volume and weight were measured. Cell proliferation and expression of apoptosis-related proteins were measured by immunohistochemistry, and the activity of NF- κ B signaling pathway was measured by immunoblotting. RESULTS The in vitro studies showed that noni juice inhibited the A549 cells proliferation, migration and invasion. Noni juice also promoted cells apoptosis in A549 cells. Immunoblotting assay showed that the phosphorylation level of AKT, p50, and STAT3 proteins was inhibited to different extents after noni juice treatment. The in vivo studies showed that noni juice effectively suppressed tumor formation of A549 cells in nude mice. Noni juice treatment inhibited the expression of Ki67, PCNA, and Bcl-2 protein in the tumor; while promoted the expression of caspase-3 protein. Additionally, we also found that noni juice treatment could restrain the activity of AKT/NF- κ B signaling pathway in the tumor tissue. CONCLUSION Noni juice inhibited the proliferation of A549 lung cancer cells, induced apoptosis, and inhibited cell invasion and migration via regulating AKT/NF- κ B signaling pathway.
Collapse
|
83
|
He M, Yu W, Chang C, Miyamoto H, Liu X, Jiang K, Yeh S. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways. Mol Oncol 2020; 14:1779-1799. [PMID: 32356397 PMCID: PMC7400793 DOI: 10.1002/1878-0261.12701] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/14/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Data analysis of clinical samples suggests that higher estrogen receptor α (ERα) expression could be associated with worse overall survival in some patients with non‐small‐cell lung cancer (NSCLC). Immunofluorescence results further showed that higher ERα expression was linked to larger numbers of infiltrated macrophages in NSCLC tissues. However, the detailed mechanisms underlying this phenomenon remain unclear. Results from in vitro studies with multiple cell lines revealed that, in NSCLC cells, ERα can activate the CCL2/CCR2 axis to promote macrophage infiltration, M2 polarization, and MMP9 production, which can then increase NSCLC cell invasion. Mechanistic studies using chromatin immunoprecipitation and promoter luciferase assays demonstrated that ERα could bind to estrogen response elements (EREs) on the CCL2 promoter to increase CCL2 expression. Furthermore, ERα‐increased macrophage infiltration can induce a positive feedback mechanism to increase lung cancer cell ERα expression via the up‐regulation of the CXCL12/CXCR4 pathway. Targeting these newly identified pathways, NSCLC ERα‐increased macrophage infiltration or the macrophage‐to‐NSCLC CXCL12/CXCR4/ERα signal, with anti‐estrogens or CCR2/CXCR4 antagonists, may help in the development of new alternative therapies to better treat NSCLC.
Collapse
Affiliation(s)
- Miao He
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China.,George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Weiwei Yu
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hiroshi Miyamoto
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaohong Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Urology and Pathology and the Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
84
|
Lin Y, Zhao WR, Shi WT, Zhang J, Zhang KY, Ding Q, Chen XL, Tang JY, Zhou ZY. Pharmacological Activity, Pharmacokinetics, and Toxicity of Timosaponin AIII, a Natural Product Isolated From Anemarrhena asphodeloides Bunge: A Review. Front Pharmacol 2020; 11:764. [PMID: 32581782 PMCID: PMC7283383 DOI: 10.3389/fphar.2020.00764] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Anemarrhena asphodeloides Bunge is a famous Chinese Materia Medica and has been used in traditional Chinese medicine for more than two thousand years. Steroidal saponins are important active components isolated from A. asphodeloides Bunge. Among which, the accumulation of numerous experimental studies involved in Timosaponin AIII (Timo AIII) draws our attention in the recent decades. In this review, we searched all the scientific literatures using the key word "timosaponin AIII" in the PubMed database update to March 2020. We comprehensively summarized the pharmacological activity, pharmacokinetics, and toxicity of Timo AIII. We found that Timo AIII presents multiple-pharmacological activities, such as anti-cancer, anti-neuronal disorders, anti-inflammation, anti-coagulant, and so on. And the anti-cancer effect of Timo AIII in various cancers, especially hepatocellular cancer and breast cancer, is supposed as its most potential activity. The anti-inflammatory activity of Timo AIII is also beneficial to many diseases. Moreover, VEGFR, X-linked inhibitor of apoptosis protein (XIAP), B-cell-specific Moloney murine leukemia virus integration site 1 (BMI1), thromboxane (Tx) A2 receptor, mTOR, NF-κB, COX-2, MMPs, acetylcholinesterase (AChE), and so on are identified as the crucial pharmacological targets of Timo AIII. Furthermore, the hepatotoxicity of Timo AIII was most concerned, and the pharmacokinetics and toxicity of Timo AIII need further studies in diverse animal models. In conclusion, Timo AIII is potent as a compound or leading compound for further drug development while still needs in-depth studies.
Collapse
Affiliation(s)
- Yan Lin
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Oncology, The Fourth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Wai-Rong Zhao
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Ting Shi
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai-Yu Zhang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Ding
- College of Basic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xin-Lin Chen
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing-Yi Tang
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-Yan Zhou
- Department of Cardiovascular Research Laboratory, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Macao, Macau
| |
Collapse
|
85
|
Paneerselvam C, Ganapasam S. β-Escin alleviates cobalt chloride-induced hypoxia-mediated apoptotic resistance and invasion via ROS-dependent HIF-1α/TGF-β/MMPs in A549 cells. Toxicol Res (Camb) 2020; 9:191-201. [PMID: 32670550 PMCID: PMC7329168 DOI: 10.1093/toxres/tfaa019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/17/2020] [Accepted: 03/20/2020] [Indexed: 11/12/2022] Open
Abstract
Hypoxia is contributed in various pathophysiological conditions including obesity, cardiovascular diseases, and cancer. In cancer, hypoxia is a salient phenomenon and has been correlated with tumor progression, metastasis, and provoke resistance to therapies in cancer patients, which exert with stabilization of main effector, hypoxia inducible factor-1 alpha (HIF-1α). Therefore, therapeutic targeting of hypoxic responses in cancer is the potential approach to improve the better treatment efficacy. In the present study, we evaluated the effect of β-Escin (β-Es) on hypoxia-induced resistance to apoptosis and metastasis in human non-small-cell lung cancer cells. The MTT assay revealed that β-Es treatment decreased the A549 cells viability under cobalt chloride-induced hypoxia. Apoptotic proteins were analyzed by western blot that showed cancer cells treated with β-Es induced cell death in hypoxia condition as proteins compared with normoxia. Moreover, we observed that cobalt chloride induced hypoxia through the generation of intracellular reactive oxygen species and stabilized the transcriptional factor HIF-1α, which leads to cancer metastasis. This notion was supported by the migration, invasion, and adhesion assays. Furthermore, hypoxia increased the expression of transforming growth factor-β, and the activation of matrix metalloproteinases were suppressed by the treatment of β-Es as well as pretreatment with N-acetylcysteine (NAC). Therefore, we demonstrate that a concurrent activation of HIF-1α, transforming growth factor-β, and matrix metalloproteinases participate in hypoxia-induced metastasis and that β-Es prevent A549 cells metastasis by inhibition of reactive oxygen species.
Collapse
Affiliation(s)
- Chermakani Paneerselvam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| | - Sudhandiran Ganapasam
- Cell Biology Laboratory, Department of Biochemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India
| |
Collapse
|
86
|
Lin X, Tan S, Fu L, Dong Q. BCAT1 Overexpression Promotes Proliferation, Invasion, and Wnt Signaling in Non-Small Cell Lung Cancers. Onco Targets Ther 2020; 13:3583-3594. [PMID: 32425554 PMCID: PMC7196801 DOI: 10.2147/ott.s237306] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/19/2020] [Indexed: 01/10/2023] Open
Abstract
Introduction Dysregulation of BCAT1 has been implicated in carcinogenesis. However, its clinical significance and biological roles in human non-small cell lung cancer (NSCLC) are not clear. Methods Immunohistochemistry was used to examine the protein expression of BCAT1 in 107 cases of lung cancer tissues. Biological roles and potential mechanisms of BCAT1 were examined using MTT, colony formation assay, Matrigel invasion assay, Western blot, RNA-sequencing, and luciferase reporter assay. Results We found BCAT1 was upregulated in 60 of 107 lung cancer tissues and correlated with nodal metastasis, advanced stages and short overall survival. The Cancer Genome Atlas (TCGA) and ONCOMINE data analyses also indicated that BCAT1 was elevated in human NSCLC tissues. BCAT1 protein was higher in lung cancer cell lines than in normal bronchial epithelial cell line. BCAT1 overexpression increased the cell growth rate, colony numbers and invasion abilities in both BEAS-2B and H1299 cell lines, while BCAT1 siRNA decreased the cell proliferation rate, colony numbers, and inhibited invasion. RNA-sequencing (RNA-seq) and Gene Set Enrichment Analysis (GSEA) analyses indicated that BCAT1 overexpression activated Wnt/Myc signaling. Western blot revealed that BCAT1 increased protein expression of MMP7, cyclin D1, c-Myc, and decreased E-cadherin and p27 in the BEAS-2B and H1299 cell lines. Further experiments showed that BCAT1 overexpression elevated Wnt reporter luciferase activity and increased activate β-catenin protein while downregulating p-β-catenin protein expression. BCAT1 knockdown showed the opposite effects. TCGA data analysis suggested positive correlations between BCAT1 and c-Myc, cyclin D1, and MMP7 mRNA. Blockage of Wnt signaling using an inhibitor (ICG-001) downregulated c-Myc, cyclin D1, MMP7 expressions and abolished the upregulating effects of BCAT1 on these proteins. Conclusion In summary, our data showed that BCAT1 was overexpressed in human NSCLCs. BCAT1 facilitated cell proliferation and invasion possibly through regulation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Xiumin Lin
- Department of Pathology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Lin Fu
- Department of Pathology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qianze Dong
- Department of Pathology, College of Basic Medical Science, China Medical University, Shenyang, People's Republic of China.,Department of Pathology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
87
|
Su Z, Yang B, Zeng Z, Zhu S, Wang C, Lei S, Jiang Y, Lin L. Metastasis-associated gene MAPK15 promotes the migration and invasion of osteosarcoma cells via the c-Jun/MMPs pathway. Oncol Lett 2020; 20:99-112. [PMID: 32565938 PMCID: PMC7285714 DOI: 10.3892/ol.2020.11544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS) is the most common and destructive primary bone malignancy to affect children and adolescents. Metastases remain the primary cause of death in patients with OS. In the present study, weight gene co-expressed network analysis (WGCNA) and differentially-expressed gene analysis were used to identify key genes associated with the metastasis of OS. Reverse transcription-quantitative PCR and immunohistochemical staining were then used to detect the expression levels of these key genes in OS tissues, and to determine the hub genes of interest. Wound-healing and transwell assays, in addition to a lung metastasis model, were used to detect the effects of the hub genes on OS cell proliferation and metastasis in vitro and in vivo. Using WGCNA and differential expression analysis, deleted in lung and esophageal cancer protein 1 (DLEC1), Forkhead box J1 (FOXJ1) and mitogen-activated protein kinase 15 (MAPK15) were predicted to be key metastasis-associated genes, and highly expressed in metastatic OS tissues; among them, the protein and mRNA expression levels of MAPK15 were most significantly increased in our OS tissues from patients who exhibited metastases at diagnosis, and thus MAPK15 was determined to be a metastasis-associated hub gene to further study. Furthermore, inhibiting MAPK15 expression significantly decreased OS cell metastasis in vitro and in vivo, as well as suppressing c-Jun/matrix metalloproteinase (MMP)-associated pathways. Overexpression of MAPK15 activated the c-Jun/MMPs pathway and promoted OS cell metastasis, while inhibition of c-Jun blocked this effect. Taken together, MAPK15 was indicated to be an OS metastasis-associated gene, and was confirmed to promote the migration and invasion of OS cells via the c-Jun/MMP pathway. MAPK15 may therefore be an effective target for the treatment of OS.
Collapse
Affiliation(s)
- Zexin Su
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Bingsheng Yang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shuang Zhu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| | - Chenyang Wang
- Department of Neurosurgery, Zhujiang Hospital, Neurosurgery Institute of Guangdong Province, Key Laboratory on Brain Function Repair and Rehabilitation, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shan Lei
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yongfa Jiang
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Lijun Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Haizhu, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
88
|
Mao Y, Liu X. Bioresponsive Nanomedicine: The Next Step of Deadliest Cancers' Theranostics. Front Chem 2020; 8:257. [PMID: 32328480 PMCID: PMC7161533 DOI: 10.3389/fchem.2020.00257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
Among all cancers, lung, breast, and prostate carcinoma are the three most fatal cancers. Although general therapeutic strategies and existent nanomedicine have been applied in relating cancer treatments, the side effects and potential damage induced by the off-target effect greatly lower the therapeutic efficiency. Recently, an increasing number of bioresponsive nanomaterials is recruited in fighting these deadliest cancers. Therefore, these latest bioresponsive nanomedicine are summarized in the current review. More specifically, the various novel nano-agents that could selectively respond to specific bio-conditions in malignant areas (e.g., pH, temperature, enzyme, Redox, elevated copper ion, etc.) are discussed in detail for their applications in cancer imaging (e.g., fluorescence, NIR, and MRI, etc.) and therapy (e.g., antiangiogenesis, chemotherapy, photothermal, and chemodynamic therapy, etc.). The development of next-generation of bioresponsive nanomedicine and challenges involved are further discussed for future design.
Collapse
Affiliation(s)
- Yuqiang Mao
- Department of Thoracic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Xiaoying Liu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
89
|
Hu XT, Song HC, Yu H, Wu ZC, Liu XG, Chen WC. Overexpression of Progerin Results in Impaired Proliferation and Invasion of Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2020; 13:2629-2642. [PMID: 32280239 PMCID: PMC7127879 DOI: 10.2147/ott.s237016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose The accumulation of progerin (PG) in patients is responsible for the pathogenesis of Hutchinson-Gilford Progeria Syndrome (HGPS) because it triggers accelerated aging of cells. However, there are few studies on the effects of progerin on tumor cells. Lung cancer is one of the most common malignant cancers with high global morbidity and mortality rates; non-small cell lung cancer accounts for the majority of cases. The purpose of this study was to determine the effects of progerin on A549 cell proliferation, cell cycle, invasion, migration, sensitivity to DNA damaging agents, senescence and apoptosis with a goal of exploring new ideas for lung cancer treatment. Methods A549 cells overexpressing progerin (A549-PG) and a corresponding blank control (A549-GFP) were constructed by lentiviral infection. A nuclear staining assay was utilized to detect abnormal nuclear morphology. The proliferation, cell cycle, colony formation, invasion and migration abilities of A549-PG were compared with those of A549-GFP via EdU assays, flow cytometry, colony formation experiments, and Matrigel invasion and migration assays, respectively. SA‐β‐gal staining was used to measure senescence in cells. Results The expression of progerin was significantly higher in A549-PG than A549-GFP. About 20% of A549-PG possessed abnormal nuclei. Overexpression of progerin in A549 cells inhibited cell proliferation, migration and invasion, and associated proteins (CDK4, pRB, ANLN, MMP7 and MMP9) were downregulated. DNA damage repair was also impaired. Progerin did not cause cells to senesce, and there was no difference in apoptosis. Conclusion A549-PG generated some cellular changes, including the nuclear skeleton, the cell cycle, DNA damage repair, and migration and invasion abilities. Our data indicate that progerin could cause an imbalance in the steady state in A549 cells and increase their sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiao-Ting Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hao-Chang Song
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zu-Chun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Wei-Chun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
90
|
Ramadan WS, Zaher DM, Altaie AM, Talaat IM, Elmoselhi A. Potential Therapeutic Strategies for Lung and Breast Cancers through Understanding the Anti-Angiogenesis Resistance Mechanisms. Int J Mol Sci 2020; 21:ijms21020565. [PMID: 31952335 PMCID: PMC7014257 DOI: 10.3390/ijms21020565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023] Open
Abstract
Breast and lung cancers are among the top cancer types in terms of incidence and mortality burden worldwide. One of the challenges in the treatment of breast and lung cancers is their resistance to administered drugs, as observed with angiogenesis inhibitors. Based on clinical and pre-clinical findings, these two types of cancers have gained the ability to resist angiogenesis inhibitors through several mechanisms that rely on cellular and extracellular factors. This resistance is mediated through angiogenesis-independent vascularization, and it is related to cancer cells and their microenvironment. The mechanisms that cancer cells utilize include metabolic symbiosis and invasion, and they also take advantage of neighboring cells like macrophages, endothelial cells, myeloid and adipose cells. Overcoming resistance is of great interest, and researchers are investigating possible strategies to enhance sensitivity towards angiogenesis inhibitors. These strategies involved targeting multiple players in angiogenesis, epigenetics, hypoxia, cellular metabolism and the immune system. This review aims to discuss the mechanisms of resistance to angiogenesis inhibitors and to highlight recently developed approaches to overcome this resistance.
Collapse
Affiliation(s)
- Wafaa S. Ramadan
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Dana M. Zaher
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Alaa M. Altaie
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, UAE
| | - Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Pathology Department, Faculty of Medicine, Alexandria University, 21526 Alexandria, Egypt
- Correspondence: ; Tel.: +971-65057221
| | - Adel Elmoselhi
- College of Medicine, University of Sharjah, Sharjah 27272, UAE; (W.S.R.); (D.M.Z.); (A.M.A.); (A.E.)
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
91
|
Yuan S, Lin LS, Gan RH, Huang L, Wu XT, Zhao Y, Su BH, Zheng D, Lu YG. Elevated matrix metalloproteinase 7 expression promotes the proliferation, motility and metastasis of tongue squamous cell carcinoma. BMC Cancer 2020; 20:33. [PMID: 31937294 PMCID: PMC6958600 DOI: 10.1186/s12885-020-6521-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 01/07/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Matrix metalloproteinase 7 (MMP7), as the smallest member of the matrix metalloproteinase family, has been verified to be implicated in cancer progression, especially metastasis. However, its expression pattern and function in tongue cancer is not clear. METHODS The expression of MMP7 in human tongue squamous cell carcinoma (TSCC) specimens compared with their respective paired nontumour tissues by real-time PCR and immunohistochemical staining. The effect of MMP7 on the proliferation, apoptosis, migration, invasion of tongue cancer cells was tested in appropriate ways after MMP7 siRNA knockdown or overexpression. The effect of MMP7 on lymph node metastasis in vivo was analyzed using a high-metastasis orthotopic nude mouse tongue transplanted tumour model. RESULTS We found markedly elevated expression of MMP7 in human TSCC specimens compared with their respective paired nontumour tissues, and this high expression was correlated with the patients' lymph node metastasis. Furthermore, the results of molecular functional assays confirmed that MMP7 promotes cell proliferation, migration and invasion of TSCC cells. Knockdown of MMP7 inhibited lymph nodes metastasis in vivo. CONCLUSIONS MMP7 plays an oncogenic role in carcinogenesis and metastasis of tongue cancer, and may serve as a potential therapeutic target for tongue cancer.
Collapse
Affiliation(s)
- Shuo Yuan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China
| | - Li-Song Lin
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, China
| | - Rui-Huan Gan
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Li Huang
- Department of Oral and Maxillofacial Surgery, Affiliated First Hospital of Fujian Medical University, 20 Cha Zhong Road, Fuzhou, 350005, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Xiao-Ting Wu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, 1 Xue Yuan Road, University Town, Fuzhou, 350122, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Yong Zhao
- Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| | - Bo-Hua Su
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China
| | - Dali Zheng
- Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China.
| | - You-Guang Lu
- Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, 246 Yang Qiao Middle Road, Fuzhou, 350000, China.,Key laboratory of Stomatology of Fujian Province, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Rd, Fuzhou, 350004, China
| |
Collapse
|
92
|
Park EJ, Han JS, Seong E, Park EJ, Lee BS, Lee SJ, Lee K. Inhaled Kathon may induce eosinophilia-mediated disease in the lung. ENVIRONMENTAL TOXICOLOGY 2020; 35:27-36. [PMID: 31498972 DOI: 10.1002/tox.22839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
In 2011, a link between humidifier disinfectants and patients with idiopathic pulmonary fibrosis was identified in Korea, and Kathon was suggested as one of the causative agents. In this study, Kathon induced apoptotic cell death along with membrane damage at 24 h post-exposure. Additionally, on day 14 after a single instillation with Kathon, the total number of pulmonary cells and the levels of TNF-α, IL-5, IL-13, MIP-1α, and MCP-1α clearly increased in the lung of mice. The proportion of natural killer cells and eosinophils were significantly elevated in the spleen and the bloodstream, respectively, and the level of immunoglobulin (Ig) A, but not IgG, IgM, and IgE, dose-dependently increased. Therefore, we suggest that inhaled Kathon may induce eosinophilia-mediated disease in the lung by disrupting homeostasis of pulmonary surfactants. Considering that eosinophilia is closely related to cancer and fibrosis, further studies are needed to understand the relationship between them.
Collapse
Affiliation(s)
- Eun-Jung Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Ji-Seok Han
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon-si, South Korea
| | - Eunsol Seong
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Eun-Jun Park
- Graduate School of East-West Medical Science, Kyung Hee University, Yongin-si, Gyeonggi-do, South Korea
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon-si, South Korea
| | - Sang Jin Lee
- Respiratory Disease Research Center, Korea Institute of Toxicology, Jeongeup, Jellobuk-do, South Korea
| | - Kyuhong Lee
- Respiratory Disease Research Center, Korea Institute of Toxicology, Jeongeup, Jellobuk-do, South Korea
| |
Collapse
|
93
|
Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers Leaf Extract Attenuates Lung Tumorigenesis via Alleviating Oxidative Stress, Inflammation and Apoptosis. Biomolecules 2019; 9:E871. [PMID: 31842482 PMCID: PMC6995620 DOI: 10.3390/biom9120871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
One of the major etiological factors that account for lung cancer is tobacco use. Benzo(a)pyrene [B(a)P], one of the main constituents of tobacco smoke, has a key role in lung carcinogenesis. The present study was conducted to investigate the cytotoxicity of an aqueous ethanolic extract of Lagerstroemia speciosa (L.) Pers leaves (LLE) on human lung adenocarcinoma cells (A549), as well as its in vivo antitumor effect on a lung tumorigenesis mice model. Our results revealed that LLE possesses cytotoxic activity against the A549 cell line. Mice orally administered B(a)P (50 mg/kg body weight) showed an increase in relative lung weight with subsequent decrease in final body weight. Serum levels of tumor marker enzymes AHH, ADA and LDH and the inflammatory mediator NF-κB increased, while total antioxidant capacity (TAC) decreased. In addition, we observed the increased activity of metalloproteinases (MMP-2 and MMP-12) and levels of the tumor angiogenesis marker VEFG and the lipid peroxidation marker MDA, as well as decreased levels of the non-enzymatic antioxidant GSH and enzymatic antioxidants CAT and GSH-Px in lung tissues. Moreover, B(a)P administration up-regulated the expression of the COX-2 gene, pro-inflammatory cytokines TNF-α and IL-6, and an anti-apoptotic gene Bcl-2, and at the same time down-regulated expression of pro-apoptotic genes BAX and caspase-3 and the p53 gene. Pre- and post-treatment with LLE (250 mg/kg body weight) attenuated all these abnormalities. Histopathological observations verified the protective effect of LLE. Overall, the present data positively confirm the potent antitumor effect of L. speciosa leaves against lung tumorigenesis.
Collapse
Affiliation(s)
- Amria M. Mousa
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nermin M. El-Sammad
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Abeer H. Abdel-Halim
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nayera Anwar
- Pathology Department, National Cancer Institute, Cairo University, Cairo 12796, Egypt
| | - Wagdy K. B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mahmoud Nawwar
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Amani N. Hashim
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Elsayed A. Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt
| | - Sherien K. Hassan
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| |
Collapse
|
94
|
Chen Y, Zhang Y, Song W, Zhang Y, Dong X, Tan M. Ginsenoside Rh2 Inhibits Migration of Lung Cancer Cells under Hypoxia via mir-491. Anticancer Agents Med Chem 2019; 19:1633-1641. [PMID: 31272362 DOI: 10.2174/1871520619666190704165205] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 01/07/2023]
Abstract
Background:
Ginsenoside Rh2 (Rh2), which is extracted from ginseng, exerts antitumor activity.
Here we would like to study the role of Rh2 on hypoxia-induced migration in lung adenocarcinoma.
Methods:
Lung adenocarcinoma A549 and H1299 cells were cultured in 1% O2 condition to mimic the hypoxic
tumor microenvironment. The migrations of cancer cells were measured by transwell assay and scratch assay.
Results:
Rh2 could inhibit hypoxia-induced A549 and H1299 cell migration via increase of mir-491 expression.
Further, mir-491 antisense oligonucleotide could repress hypoxia-induced migration and the expression of matrix
metalloproteinase (MMP)-9 expression in Rh2-treated A549 cells.
Conclusion:
These findings suggest that Rh2 exerts anti-metastasis activity in the hypoxic tumor microenvironment
in lung adenocarcinoma cells via mir-491.
Collapse
Affiliation(s)
- Yingying Chen
- Respiratory Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Yuqiang Zhang
- Respiratory Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Wei Song
- Oncology Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Ying Zhang
- Respiratory Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| | - Xiu Dong
- School of Preclinical Medicine, Liaoning University of Traditional Chinese Medicine, 79 Chong Shan Dong Lu, Huanggu District, Shenyang, Liaoning, 110847, China
| | - Mingqi Tan
- Respiratory Medicine Department, Shengjing Hospital of China Medical University, Shenyang, 110042, Liaoning Province, China
| |
Collapse
|
95
|
Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F, Zeng Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:469-480. [PMID: 31655854 DOI: 10.1007/s00210-019-01746-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
In the present study, we explored the anti-tumor and anti-angiogenesis effects of chrysophanol, and to investigate the underlying mechanism of the chrysophanol on anti-tumor and anti-angiogenesis in human lung cancer. The viability of cells was measured by CCK-8 assay, cell apoptosis was measured by Annexin-FITC/PI staining assay, and the cell migration and invasion were analyzed by wound-healing assay and transwell assay. ROS generation and mitochondrial membrane potential were analyzed by DCFH-DA probe and mitochondrial staining kit. Angiogenesis was analyzed by tube formation assay. The expression of CD31 was analyzed by immunofluorescence. The levels of proteins were measured by western blot assay. The anti-tumor effects of chrysophanol in vivo were detected by established xenograft mice model. In this study, we found that the cell proliferation, migration, invasion, tube formation, the mitochondrial membrane potential, and the expression of CD31 were inhibited by chrysophanol in a dose-dependent manner, but cell apoptotic ratios and ROS levels were increased by chrysophanol in a dose-dependent manner. Furthermore, the effects of chrysophanol on A549, H738, and HUVEC cell apoptotic rates were reversed by the ROS inhibitor NAC. Besides, the effects of chrysophanol on HUVEC cell tube formation were reversed by the HIF-1α inhibitor KC7F2 and the VEGF inhibitor axitinib in vitro. Moreover, tumor growth was reduced by chrysophanol, and the expression of CD31, CD34, and angiogenin was suppressed by chrysophanol in vivo. Our finding demonstrated that chrysophanol is a highly effective and low-toxic drug for inhibition of tumor growth especially in high vascularized lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qian Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China.,Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Qiang Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Guo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yong Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yuqing Xing
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Mengmeng Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Fujun Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qingyun Zeng
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
96
|
Inhibition of Non-Small Cell Lung Cancer Cells by Oxy210, an Oxysterol-Derivative that Antagonizes TGFβ and Hedgehog Signaling. Cells 2019; 8:cells8101297. [PMID: 31652618 PMCID: PMC6829886 DOI: 10.3390/cells8101297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 12/25/2022] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is a common malignancy and leading cause of death by cancer. Metastasis and drug resistance are serious clinical problems encountered in NSCLC therapy. Aberrant activation of the Transforming Growth Factor beta (TGFβ) and Hedgehog (Hh) signal transduction cascades often associate with poor prognosis and aggressive disease progression in NSCLC, as these signals can drive cell proliferation, angiogenesis, metastasis, immune evasion and emergence of drug resistance. Therefore, simultaneous inhibition of TGFβ and Hh signaling, by a single agent, or in combination with other drugs, could yield therapeutic benefits in NSCLC and other cancers. In the current study, we report on the biological and pharmacological evaluation of Oxy210, an oxysterol-based dual inhibitor of TGFβ and Hh signaling. In NSCLC cells, Oxy210 inhibits proliferation, epithelial-mesenchymal transition (EMT) and invasive activity. Combining Oxy210 with Carboplatin (CP) increases the anti-proliferative response to CP and inhibits TGFβ-induced resistance to CP in A549 NSCLC cells. In addition, Oxy210 displays encouraging drug-like properties, including chemical scalability, metabolic stability and oral bioavailability in mice. Unlike other known inhibitors, Oxy210 antagonizes TGFβ and Hh signaling independently of TGFβ receptor kinase inhibition and downstream of Smoothened, respectively.
Collapse
|
97
|
Hassan SK, Mousa AM, El-Sammad NM, Abdel-Halim AH, Khalil WK, Elsayed EA, Anwar N, Linscheid MW, Moustafa ES, Hashim AN, Nawwar M. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol Rep 2019; 6:1071-1085. [PMID: 31660294 PMCID: PMC6807375 DOI: 10.1016/j.toxrep.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 12/24/2022] Open
Abstract
Lung cancer has one of the highest mortality rates among various types of cancer and is the most frequent cancer in the world. The incidence of lung cancer is increasing rapidly, in parallel with an increased incidence of smoking. Effective chemoprevention may be an alternative strategy to control the incidence of lung cancer. Thus, the objective of current work was to ascertain the possible preventive and therapeutic efficacies of Cuphea ignea extract in a mouse model of lung tumorigenesis and its cytotoxicity toward the A549 human lung cancer cell line. Lung tumorigenesis was induced by the oral administration of benzo(a)pyrene (50 mg/kg b.w.) twice per week to Swiss albino mice for 4 weeks. Benzo(a)pyrene-treated mice were orally administered C. ignea (300 mg/kg body weight, 5 days/week) for 2 weeks before or 9 weeks after the first benzo(a)pyrene dose, for a total of 21 weeks. At the end of the administration period, various parameters were measured in the serum and lung tissues. The results revealed that the oral administration of benzo(a)pyrene resulted in increases in relative lung weight, serum levels of tumor markers (ADA, AHH, and LDH), and the inflammatory marker NF-κB, and a decreased total antioxidant capacity compared with the control. In addition, decreased levels of enzymatic and non-enzymatic antioxidants, with a concomitant increase in lipid peroxidation, metalloproteinases (MMP-2 and MMP-12), and the angiogenic marker VEGF were detected in lung tissues. Moreover, benzo(a)pyrene administration induced the upregulation of PKCα, COX-2, and Bcl-2 expression, with the downregulation of BAX and caspase-3 expression. C. ignea treatment alleviated all alterations in these parameters, which was further confirmed by the histopathological analysis of lung tissues. The findings of the current work provide the first verification of the preventive and therapeutic potentials of C. ignea extract against benzo(a)pyrene-induced lung tumorigenesis in mice.
Collapse
Affiliation(s)
- Sherien K. Hassan
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | - Amria M. Mousa
- Department of Biochemistry, National Research Centre, Dokki, Cairo, Egypt
| | | | | | - Wagdy K.B. Khalil
- Department of Cell Biology, National Research Centre, Dokki, Cairo, Egypt
| | - Elsayed A. Elsayed
- Bioproducts Research Chair, Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Chemistry of Natural and Microbial Products, National Research Centre, Dokki, Cairo, Egypt
- Corresponding author at: Bioproducts Research Chair, Zoology Department, Faculty of Science, King Saud University, 11451 Riyadh, Saudi Arabia.
| | - Nayera Anwar
- Department of Pathology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Michael W. Linscheid
- Laboratory of Applied Analytical and Environmental Chemistry, Humboldt-University, Berlin, Germany
| | - Eman S. Moustafa
- October University of Modern Sciences and Arts, 6th October City, Egypt
| | - Amani N. Hashim
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| | - Mahmoud Nawwar
- Department of Phytochemistry and Plant Systematics, National Research Centre, Cairo, Egypt
| |
Collapse
|
98
|
Extracellular Matrix Alterations in Metastatic Processes. Int J Mol Sci 2019; 20:ijms20194947. [PMID: 31591367 PMCID: PMC6802000 DOI: 10.3390/ijms20194947] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network of extracellular-secreted macromolecules, such as collagen, enzymes and glycoproteins, whose main functions deal with structural scaffolding and biochemical support of cells and tissues. ECM homeostasis is essential for organ development and functioning under physiological conditions, while its sustained modification or dysregulation can result in pathological conditions. During cancer progression, epithelial tumor cells may undergo epithelial-to-mesenchymal transition (EMT), a morphological and functional remodeling, that deeply alters tumor cell features, leading to loss of epithelial markers (i.e., E-cadherin), changes in cell polarity and intercellular junctions and increase of mesenchymal markers (i.e., N-cadherin, fibronectin and vimentin). This process enhances cancer cell detachment from the original tumor mass and invasiveness, which are necessary for metastasis onset, thus allowing cancer cells to enter the bloodstream or lymphatic flow and colonize distant sites. The mechanisms that lead to development of metastases in specific sites are still largely obscure but modifications occurring in target tissue ECM are being intensively studied. Matrix metalloproteases and several adhesion receptors, among which integrins play a key role, are involved in metastasis-linked ECM modifications. In addition, cells involved in the metastatic niche formation, like cancer associated fibroblasts (CAF) and tumor associated macrophages (TAM), have been found to play crucial roles in ECM alterations aimed at promoting cancer cells adhesion and growth. In this review we focus on molecular mechanisms of ECM modifications occurring during cancer progression and metastatic dissemination to distant sites, with special attention to lung, liver and bone. Moreover, the functional role of cells forming the tumor niche will also be reviewed in light of the most recent findings.
Collapse
|
99
|
Mahdavi Gorabi A, Banach M, Reiner Ž, Pirro M, Hajighasemi S, Johnston TP, Sahebkar A. The Role of Mesenchymal Stem Cells in Atherosclerosis: Prospects for Therapy via the Modulation of Inflammatory Milieu. J Clin Med 2019; 8:E1413. [PMID: 31500373 PMCID: PMC6780166 DOI: 10.3390/jcm8091413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Atherosclerosis is a chronic, inflammatory disease that mainly affects the arterial intima. The disease is more prevalent in middle-age and older individuals with one or more cardiovascular risk factors, including dyslipidemia, hypertension, diabetes, smoking, obesity, and others. The beginning and development of atherosclerosis has been associated with several immune components, including infiltration of inflammatory cells, monocyte/macrophage-derived foam cells, and inflammatory cytokines and chemokines. Mesenchymal stem cells (MSCs) originate from several tissue sources of the body and have self-renewal and multipotent differentiation characteristics. They also have immunomodulatory and anti-inflammatory properties. Recently, it was shown that MSCs have a regulatory role in plasma lipid levels. In addition, MSCs have shown to have promising potential in terms of treatment strategies for several diseases, including those with an inflammatory component. In this regard, transplantation of MSCs to patients with atherosclerosis has been proposed as a novel strategy in the treatment of this disease. In this review, we summarize the current advancements regarding MSCs for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Department of Basic and Clinical Research, Tehran Heart Center, Tehran University of Medical Sciences, Tehran 1411713138, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Zeromskiego 113, 90-549 Lodz, Poland
- Polish Mother's Memorial Hospital Research Institute (PMMHRI), 93-338 Lodz, Poland
| | - Željko Reiner
- Department of Internal medicine, University Hospital Center Zagreb, Kišpatićeva 12, Zagreb 1000, Croatia
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, 06123 Perugia, Italy
| | - Saeideh Hajighasemi
- Department of Medical Biotechnology, Faculty of Paramedicine, Qazvin University of Medical Sciences, Qazvin 1531534199, Iran
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 91778-99191, Iran.
| |
Collapse
|
100
|
Aiello P, Consalvi S, Poce G, Raguzzini A, Toti E, Palmery M, Biava M, Bernardi M, Kamal MA, Perry G, Peluso I. Dietary flavonoids: Nano delivery and nanoparticles for cancer therapy. Semin Cancer Biol 2019; 69:150-165. [PMID: 31454670 DOI: 10.1016/j.semcancer.2019.08.029] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
Application of nanotechnologies to cancer therapy might increase solubility and/or bioavailability of bioactive compounds of natural or synthetic origin and offers other potential benefits in cancer therapy, including selective targeting. In the present review we aim to evaluate in vivo studies on the anticancer activity of nanoparticles (NPs) obtained from food-derived flavonoids. From a systematic search a total of 60 studies were identified. Most of the studies involved the flavanol epigallocatechin-3-O-gallate and the flavonol quercetin, in both delivery and co-delivery (with anti-cancer drugs) systems. Moreover, some studies investigated the effects of other flavonoids, such as anthocyanins aglycones anthocyanidins, flavanones, flavones and isoflavonoids. NPs inhibited tumor growth in both xenograft and chemical-induced animal models of cancerogenesis. Encapsulation improved bioavailability and/or reduced toxicity of both flavonoids and/or co-delivered drugs, such as doxorubicin, docetaxel, paclitaxel, honokiol and vincristine. Moreover, flavonoids have been successfully applied in molecular targeted nanosystems. Selectivity for cancer cells involves pH- and/or reactive oxygen species-mediated mechanisms. Furthermore, flavonoids are good candidates as drug delivery for anticancer drugs in green synthesis systems. In conclusion, although human studies are needed, NPs obtained from food-derived flavonoids have promising anticancer effects in vivo.
Collapse
Affiliation(s)
- Paola Aiello
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy; Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy; Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Sara Consalvi
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Giovanna Poce
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Anna Raguzzini
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Elisabetta Toti
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy
| | - Maura Palmery
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mariangela Biava
- Department of Chemistry and Drug Technologies, University "La Sapienza", Rome, Italy
| | - Marco Bernardi
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Italy
| | - Mohammad A Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW, 2770, Australia; Novel Global Community Educational Foundation, Australia
| | - George Perry
- Department of Biology, University of Texas at San Antonio, TX, USA.
| | - Ilaria Peluso
- Research Centre for Food and Nutrition, Council for Agricultural Research and Economics (CREA-AN), Rome, Italy.
| |
Collapse
|