51
|
What, If Anything, Is Rodent Prefrontal Cortex? eNeuro 2018; 5:eN-REV-0315-18. [PMID: 30406193 PMCID: PMC6220587 DOI: 10.1523/eneuro.0315-18.2018] [Citation(s) in RCA: 298] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 01/18/2023] Open
Abstract
Prefrontal cortex (PFC) means different things to different people. In recent years, there has been a major increase in publications on the PFC, especially using mice. However, inconsistencies in the nomenclature and anatomical boundaries of PFC areas has made it difficult for researchers to compare data and interpret findings across species. We conducted a meta-analysis of publications on the PFC of humans and rodents and found dramatic differences in the focus of research on these species. In addition, we compared anatomical terms and criteria across several common rodent brain atlases and found inconsistencies among, and even within, leading atlases. To assess the impact of these issues on the research community, we conducted a survey of established PFC researchers on their use of anatomical terms and found little consensus. We report on the results of the survey and propose an alternative scheme for interpreting data from rodent studies, based on structural analysis of the corpus callosum and nomenclature used in research on the anterior cingulate cortex (ACC) of primates.
Collapse
|
52
|
Yan R, Zhou Q. Coding of "Home Cage" by PFC Neurons. Neuroscience 2018; 393:33-41. [PMID: 30300701 DOI: 10.1016/j.neuroscience.2018.09.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Contexts play critical roles in many important aspects of an animal's routine functions, such as the interpretation of incoming signals and retrieved memories. The roles played by prefrontal cortex (PFC) neurons in the coding of contexts have been largely studied in relation to aversive stimuli (such as foot shock in conditioned fear). Whether PFC neurons may code contexts that mice encounter in everyday life, such as their home cage, is poorly understood. Here, we report the identification of a subpopulation of ventral medial PFC (vmPFC) neurons which change their spike rates when mice enter or leave their home cages. Both increase (ON units) and decrease (OFF units) in spike rate were observed, with about 2/3 of neurons showing decrease and 1/3 showing increase. These changes were evident whenever transitions occur from home cage to a different environment regardless of the novelty of the environments. In addition, changes in firing rate were not affected when mice entering a context where fear conditioning had taken place after contextual or auditory/cued fear conditioning. Furthermore, we found that the differential spike rates of ON and OFF units appear to allow mice to recognize that they are inside their home cages. Together, vmPFC neural spiking appears to enable the encoding of "home cage".
Collapse
Affiliation(s)
- Rongzhen Yan
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Zhou
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
53
|
Xu X, Tian X, Wang G. Sevoflurane reduced functional connectivity of excitatory neurons in prefrontal cortex during working memory performance of aged rats. Biomed Pharmacother 2018; 106:1258-1266. [DOI: 10.1016/j.biopha.2018.07.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/24/2018] [Accepted: 07/07/2018] [Indexed: 01/21/2023] Open
|
54
|
Sherrill LK, Gulley JM. Effects of amphetamine exposure during adolescence on behavior and prelimbic cortex neuron activity in adulthood. Brain Res 2018; 1694:111-120. [PMID: 29792867 PMCID: PMC6026035 DOI: 10.1016/j.brainres.2018.05.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/14/2018] [Accepted: 05/19/2018] [Indexed: 02/03/2023]
Abstract
Repeated exposure to psychostimulants during adolescence produces long-lasting changes in behavior that may be mediated by disrupted development of the mesocorticolimbic dopamine system. Here, we tested this hypothesis by assessing the effects of amphetamine (AMPH) and dopamine receptor-selective drugs on behavior and neuron activity in the prelimbic region of the medial prefrontal cortex (PFC). Adolescent male, Sprague-Dawley rats were given saline or 3 mg/kg AMPH between postnatal day (P) 27 and P45. In Experiment 1, locomotor behavior was assessed during adulthood following challenges with a dopamine D1 (SKF 82958) or D2 (quinpirole) receptor-selective agonist. In Experiment 2, pre-exposed rats were challenged during adulthood with AMPH and a D1 (SKF 83566) or D2 (eticlopride) receptor-selective antagonist. In Experiment 3, the activity of putative pyramidal cells in the prelimbic cortex was recorded as rats behaved in an open-field arena before and after challenge injections with AMPH and one of the antagonists. We found that compared to controls, adolescent pre-exposed rats were more sensitive to the stimulant effects of AMPH and the dopamine receptor agonists, as well as to the ability of the antagonists to reverse AMPH-induced stereotypy. Prelimbic neurons from AMPH pre-exposed rats were also more likely to respond to an AMPH challenge in adulthood, primarily by reducing their activity, and the antagonists reversed these effects. Our results suggest that exposure to AMPH during adolescence leads to enduring adaptations in the mesocorticolimbic dopamine system that likely mediate heightened response to the drug during adulthood.
Collapse
Affiliation(s)
- Luke K Sherrill
- Department of Psychology, University of Illinois, Urbana-Champaign, United States
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign, United States; Neuroscience Program, University of Illinois, Urbana-Champaign, United States; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, United States.
| |
Collapse
|
55
|
Negrón-Oyarzo I, Espinosa N, Aguilar-Rivera M, Fuenzalida M, Aboitiz F, Fuentealba P. Coordinated prefrontal-hippocampal activity and navigation strategy-related prefrontal firing during spatial memory formation. Proc Natl Acad Sci U S A 2018; 115:7123-7128. [PMID: 29915053 PMCID: PMC6142212 DOI: 10.1073/pnas.1720117115] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Learning the location of relevant places in the environment is crucial for survival. Such capacity is supported by a distributed network comprising the prefrontal cortex and hippocampus, yet it is not fully understood how these structures cooperate during spatial reference memory formation. Hence, we examined neural activity in the prefrontal-hippocampal circuit in mice during acquisition of spatial reference memory. We found that interregional oscillatory coupling increased with learning, specifically in the slow-gamma frequency (20 to 40 Hz) band during spatial navigation. In addition, mice used both spatial and nonspatial strategies to navigate and solve the task, yet prefrontal neuronal spiking and oscillatory phase coupling were selectively enhanced in the spatial navigation strategy. Lastly, a representation of the behavioral goal emerged in prefrontal spiking patterns exclusively in the spatial navigation strategy. These results suggest that reference memory formation is supported by enhanced cortical connectivity and evolving prefrontal spiking representations of behavioral goals.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Instituto de Fisiología, and Centro de Neurobiología y Fisiopatología Integrativa, Facultad de Ciencias, Universidad de Valparaíso, 2340000 Valparaíso, Chile
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Nelson Espinosa
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Marcelo Aguilar-Rivera
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Marco Fuenzalida
- Instituto de Fisiología, and Centro de Neurobiología y Fisiopatología Integrativa, Facultad de Ciencias, Universidad de Valparaíso, 2340000 Valparaíso, Chile
| | - Francisco Aboitiz
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile
| | - Pablo Fuentealba
- Centro Integrativo de Neurociencias y Departamento de Psiquiatría, Pontificia Universidad Católica de Chile, 8330024 Santiago, Chile;
- Centro de Investigación en Nanotecnología y Materiales Avanzados, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
| |
Collapse
|
56
|
Myroshnychenko M, Seamans JK, Phillips AG, Lapish CC. Temporal Dynamics of Hippocampal and Medial Prefrontal Cortex Interactions During the Delay Period of a Working Memory-Guided Foraging Task. Cereb Cortex 2018; 27:5331-5342. [PMID: 28927240 PMCID: PMC6057518 DOI: 10.1093/cercor/bhx184] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Indexed: 12/25/2022] Open
Abstract
Connections between the hippocampus (HC) and medial prefrontal cortex (mPFC) are critical for working memory; however, the precise contribution of this pathway is a matter of debate. One suggestion is that it may stabilize retrospective memories of recently encountered task-relevant information. Alternatively, it may be involved in encoding prospective memories, or the internal representation of future goals. To explore these possibilities, simultaneous extracellular recordings were made from mPFC and HC of rats performing the delayed spatial win-shift on a radial maze. Each trial consisted of a training-phase (when 4 randomly chosen arms were open) and test phase (all 8 arms were open but only previously blocked arms contained food) separated by a 60-s delay. Theta power was highest during the delay, and mPFC units were more likely to become entrained to hippocampal theta as the delay progressed. Training and test phase performance were accurately predicted by a linear classifier, and there was a transition in classification for training-phase to test-phase activity patterns throughout the delay on trials where the rats performed well. These data suggest that the HC and mPFC become more strongly synchronized as mPFC circuits preferentially shift from encoding retrospective to prospective information.
Collapse
Affiliation(s)
- Maxym Myroshnychenko
- Program in Neural Science, Indiana University, Multidisciplinary Science Building II, 702 North Walnut Grove Avenue, Bloomington, IN 47405, USA
| | - Jeremy K Seamans
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Anthony G Phillips
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z3, Canada
| | - Christopher C Lapish
- Department of Psychology, Stark Neuroscience Institute, Institute for Mathematical Modeling and Computational Sciences, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA
| |
Collapse
|
57
|
Maggi S, Peyrache A, Humphries MD. An ensemble code in medial prefrontal cortex links prior events to outcomes during learning. Nat Commun 2018; 9:2204. [PMID: 29880806 PMCID: PMC5992197 DOI: 10.1038/s41467-018-04638-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/10/2018] [Indexed: 01/21/2023] Open
Abstract
The prefrontal cortex is implicated in learning the rules of an environment through trial and error. But it is unclear how such learning is related to the prefrontal cortex’s role in short-term memory. Here we ask if the encoding of short-term memory in prefrontal cortex is used by rats learning decision rules in a Y-maze task. We find that a similar pattern of neural ensemble activity is selectively recalled after reinforcement for a correct decision. This reinforcement-selective recall only reliably occurs immediately before the abrupt behavioural transitions indicating successful learning of the current rule, and fades quickly thereafter. We could simultaneously decode multiple, retrospective task events from the ensemble activity, suggesting the recalled ensemble activity has multiplexed encoding of prior events. Our results suggest that successful trial-and-error learning is dependent on reinforcement tagging the relevant features of the environment to maintain in prefrontal cortex short-term memory. Prefrontal cortex is involved in flexibly learning the correct behavioural strategies but the neural correlates of this process are not well understood. Here the authors show that reinforcement for a correct decision at behavioural transitions evokes ensemble firing patterns related to prior events.
Collapse
Affiliation(s)
- Silvia Maggi
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK.,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Adrien Peyrache
- Montreal Neurological Institute, McGill University, Montreal, H3A 2B4, Canada
| | - Mark D Humphries
- School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK. .,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
58
|
Yu JY, Liu DF, Loback A, Grossrubatscher I, Frank LM. Specific hippocampal representations are linked to generalized cortical representations in memory. Nat Commun 2018; 9:2209. [PMID: 29880860 PMCID: PMC5992161 DOI: 10.1038/s41467-018-04498-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/27/2018] [Indexed: 01/22/2023] Open
Abstract
Memories link information about specific experiences to more general knowledge that is abstracted from and contextualizes those experiences. Hippocampal-cortical activity patterns representing features of past experience are reinstated during awake memory reactivation events, but whether representations of both specific and general features of experience are simultaneously reinstated remains unknown. We examined hippocampal and prefrontal cortical firing patterns during memory reactivation in rats performing a well-learned foraging task with multiple spatial paths. We found that specific hippocampal place representations are preferentially reactivated with the subset of prefrontal cortical task representations that generalize across different paths. Our results suggest that hippocampal-cortical networks maintain links between stored representations for specific and general features of experience, which could support abstraction and task guidance in mammals.
Collapse
Affiliation(s)
- Jai Y Yu
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Daniel F Liu
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA
- University of California Berkeley, Berkeley, CA, 94720, USA
| | | | | | - Loren M Frank
- UCSF Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, 94143, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, 94143, USA.
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA, 94143, USA.
| |
Collapse
|
59
|
Diehl MM, Bravo-Rivera C, Rodriguez-Romaguera J, Pagan-Rivera PA, Burgos-Robles A, Roman-Ortiz C, Quirk GJ. Active avoidance requires inhibitory signaling in the rodent prelimbic prefrontal cortex. eLife 2018; 7:34657. [PMID: 29851381 PMCID: PMC5980229 DOI: 10.7554/elife.34657] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/06/2018] [Indexed: 12/27/2022] Open
Abstract
Much is known about the neural circuits of conditioned fear and its relevance to understanding anxiety disorders, but less is known about other anxiety-related behaviors such as active avoidance. Using a tone-signaled, platform-mediated avoidance task, we observed that pharmacological inactivation of the prelimbic prefrontal cortex (PL) delayed avoidance. Surprisingly, optogenetic silencing of PL glutamatergic neurons did not delay avoidance. Consistent with this, inhibitory but not excitatory responses of rostral PL neurons were associated with avoidance training. To test the importance of these inhibitory responses, we optogenetically stimulated PL neurons to counteract the tone-elicited reduction in firing rate. Photoactivation of rostral (but not caudal) PL neurons at 4 Hz impaired avoidance. These findings suggest that inhibitory responses of rostral PL neurons signal the avoidability of a potential threat and underscore the importance of designing behavioral optogenetic studies based on neuronal firing responses.
Collapse
Affiliation(s)
- Maria M Diehl
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Christian Bravo-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Jose Rodriguez-Romaguera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Pablo A Pagan-Rivera
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Anthony Burgos-Robles
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, United States
| | - Ciorana Roman-Ortiz
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| | - Gregory J Quirk
- Department of Psychiatry, University of Puerto Rico School of Medicine, San Juan, Puerto Rico.,Department of Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico
| |
Collapse
|
60
|
Francoeur MJ, Mair RG. Representation of actions and outcomes in medial prefrontal cortex during delayed conditional decision-making: Population analyses of single neuron activity. Brain Neurosci Adv 2018; 2:2398212818773865. [PMID: 32166140 PMCID: PMC7058214 DOI: 10.1177/2398212818773865] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background To respond adaptively in a dynamic environment, it is important for organisms to utilise information about recent events to decide between response options. Methods To examine the role of medial prefrontal cortex in adaptive decision-making, we recorded single neuron activity in rats performing a dynamic delayed non-matching to position task. Results We recorded activity from 1335 isolated neurons, 458 (34%) with criterion event-related activity, of which 431 (94%) exhibited 1 of 10 distinct excitatory response types: five at different times relative to delivery (or lack) of reinforcement following sample and choice responses and five correlated with movements or lever press actions that occurred multiple times in each trial. Normalised population averages revealed a precisely timed cascade of population responses representing the temporal organisation behavioural events that constitute delayed non-matching to position trials. Firing field analyses identified a subset of neurons with restricted spatial fields: responding to the conjunction of a behavioural event with a specific location. Anatomical analyses showed considerable overlap in the distribution of different response types in medial prefrontal cortex with a significant trend for dorsal areas to contain more neurons with action-related activity and ventral areas more responses related to action outcomes. Conclusion These results indicate that medial prefrontal cortex contains discrete populations of neurons that represent the temporal organisation of actions and outcomes during delayed non-matching to position trials. They support the hypothesis that medial prefrontal cortex promotes flexible control of complex behaviours by action-outcome contingencies.
Collapse
Affiliation(s)
| | - Robert G Mair
- Department of Psychology, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
61
|
Ferguson BR, Gao WJ. PV Interneurons: Critical Regulators of E/I Balance for Prefrontal Cortex-Dependent Behavior and Psychiatric Disorders. Front Neural Circuits 2018; 12:37. [PMID: 29867371 PMCID: PMC5964203 DOI: 10.3389/fncir.2018.00037] [Citation(s) in RCA: 396] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/17/2018] [Indexed: 01/20/2023] Open
Abstract
Elucidating the prefrontal cortical microcircuit has been challenging, given its role in multiple complex behaviors, including working memory, cognitive flexibility, attention, social interaction and emotional regulation. Additionally, previous methodological limitations made it difficult to parse out the contribution of certain neuronal subpopulations in refining cortical representations. However, growing evidence supports a fundamental role of fast-spiking parvalbumin (PV) GABAergic interneurons in regulating pyramidal neuron activity to drive appropriate behavioral responses. Further, their function is heavily diminished in the prefrontal cortex (PFC) in numerous psychiatric diseases, including schizophrenia and autism. Previous research has demonstrated the importance of the optimal balance of excitation and inhibition (E/I) in cortical circuits in maintaining the efficiency of cortical information processing. Although we are still unraveling the mechanisms of information representation in the PFC, the E/I balance seems to be crucial, as pharmacological, chemogenetic and optogenetic approaches for disrupting E/I balance induce impairments in a range of PFC-dependent behaviors. In this review, we will explore two key hypotheses. First, PV interneurons are powerful regulators of E/I balance in the PFC, and help optimize the representation and processing of supramodal information in PFC. Second, diminishing the function of PV interneurons is sufficient to generate an elaborate symptom sequelae corresponding to those observed in a range of psychiatric diseases. Then, using this framework, we will speculate on whether this circuitry could represent a platform for the development of therapeutic interventions in disorders of PFC function.
Collapse
Affiliation(s)
- Brielle R Ferguson
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States.,Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
62
|
How Much Does Movement and Location Encoding Impact Prefrontal Cortex Activity? An Algorithmic Decoding Approach in Freely Moving Rats. eNeuro 2018; 5:eN-NWR-0023-18. [PMID: 30338291 PMCID: PMC6192657 DOI: 10.1523/eneuro.0023-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 11/21/2022] Open
Abstract
Specialized brain structures encode spatial locations and movements, yet there is growing evidence that this information is also represented in the rodent medial prefrontal cortex (mPFC). Disambiguating such information from the encoding of other types of task-relevant information has proven challenging. To determine the extent to which movement and location information is relevant to mPFC neurons, tetrodes were used to record neuronal activity while limb positions, poses (i.e., recurring constellations of limb positions), velocity, and spatial locations were simultaneously recorded with two cameras every 200 ms as rats freely roamed in an experimental enclosure. Regression analyses using generalized linear models revealed that more than half of the individual mPFC neurons were significantly responsive to at least one of the factors, and many were responsive to more than one. On the other hand, each factor accounted for only a very small portion of the total spike count variance of any given neuron (<20% and typically <1%). Machine learning methods were used to analyze ensemble activity and revealed that ensembles were usually superior to the sum of the best neurons in encoding movements and spatial locations. Because movement and location encoding by individual neurons was so weak, it may not be such a concern for single-neuron analyses. Yet because these weak signals were so widely distributed across the population, this information was strongly represented at the ensemble level and should be considered in population analyses.
Collapse
|
63
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
64
|
Mashhoori A, Hashemnia S, McNaughton BL, Euston DR, Gruber AJ. Rat anterior cingulate cortex recalls features of remote reward locations after disfavoured reinforcements. eLife 2018; 7:29793. [PMID: 29664400 PMCID: PMC5931797 DOI: 10.7554/elife.29793] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The anterior cingulate cortex (ACC) encodes information supporting mnemonic and cognitive processes. We show here that a rat’s position can be decoded with high spatiotemporal resolution from ACC activity. ACC neurons encoded the current state of the animal and task, except for brief excursions that sometimes occurred at target feeders. During excursions, the decoded position became more similar to a remote target feeder than the rat’s physical position. Excursions recruited activation of neurons encoding choice and reward, and the likelihood of excursions at a feeder was inversely correlated with feeder preference. These data suggest that the excursion phenomenon was related to evaluating real or fictive choice outcomes, particularly after disfavoured reinforcements. We propose that the multiplexing of position with choice-related information forms a mental model isomorphic with the task space, which can be mentally navigated via excursions to recall multimodal information about the utility of remote locations.
Collapse
Affiliation(s)
- Ali Mashhoori
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Saeedeh Hashemnia
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - David R Euston
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Alberta, Canada
| |
Collapse
|
65
|
Ketamine Alters Lateral Prefrontal Oscillations in a Rule-Based Working Memory Task. J Neurosci 2018; 38:2482-2494. [PMID: 29437929 DOI: 10.1523/jneurosci.2659-17.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/09/2018] [Accepted: 01/13/2018] [Indexed: 11/21/2022] Open
Abstract
Acute administration of N-methyl-D-aspartate receptor (NMDAR) antagonists in healthy humans and animals produces working memory deficits similar to those observed in schizophrenia. However, it is unclear whether they also lead to altered low-frequency (≤60 Hz) neural oscillatory activities similar to those associated with schizophrenia during working memory processes. Here, we recorded local field potentials (LFPs) and single-unit activity from the lateral prefrontal cortex (LPFC) of three male rhesus macaque monkeys while they performed a rule-based prosaccade and antisaccade working memory task both before and after systemic injections of a subanesthetic dose (≤0.7 mg/kg) of ketamine. Accompanying working-memory impairment, ketamine enhanced the low-gamma-band (30-60 Hz) and dampened the beta-band (13-30 Hz) oscillatory activities in the LPFC during both delay periods and intertrial intervals. It also increased task-related alpha-band activities, likely reflecting compromised attention. Beta-band oscillations may be especially relevant to working memory processes because stronger beta power weakly but significantly predicted shorter saccadic reaction time. Also in beta band, ketamine reduced the performance-related oscillation as well as the rule information encoded in the spectral power. Ketamine also reduced rule information in the spike field phase consistency in almost all frequencies up to 60 Hz. Our findings support NMDAR antagonists in nonhuman primates as a meaningful model for altered neural oscillations and synchrony, which reflect a disorganized network underlying the working memory deficits in schizophrenia.SIGNIFICANCE STATEMENT Low doses of ketamine, an NMDAR blocker, produce working memory deficits similar to those observed in schizophrenia. In the lateral prefrontal cortex, a key brain region for working memory, we found that ketamine altered neural oscillatory activities in similar ways that differentiate schizophrenic patients and healthy subjects during both task and nontask periods. Ketamine induced stronger gamma (30-60 Hz) and weaker beta (13-30 Hz) oscillations, reflecting local hyperactivity and reduced long-range communications. Furthermore, ketamine reduced performance-related oscillatory activities, as well as the rule information encoded in the oscillations and in the synchrony between single-cell activities and oscillations. The ketamine model helps link the molecular and cellular basis of neural oscillatory changes to the working memory deficit in schizophrenia.
Collapse
|
66
|
Yang Y, Mailman RB. Strategic neuronal encoding in medial prefrontal cortex of spatial working memory in the T-maze. Behav Brain Res 2018; 343:50-60. [PMID: 29378292 DOI: 10.1016/j.bbr.2018.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Strategic neuronal encoding in the medial prefrontal cortex (mPFC) of the rat was correlated with spatial working memory (sWM) assessed by behavior in the T-maze. Neurons increased their firing rate around choice, with the increase largely occurring before choice as a prospective encode of behavior. This could be classified as sensitive-to-spatial information or sensitive-to-choice outcome. The sensitivity-to-spatial choice was defined by distinct firing rate changes before left- or right-choice. The percentage of left-choice sensitive neurons was not different from the percentage of right-choice sensitive neurons. There was also location-related neuronal activity in which neurons fired at distinct rates when rats were in a left- or right-location. More neurons were sensitive to left-location, as most of them were recorded from rats preferring to enter the right-location. The sensitivity to outcome was defined by a distinct firing rate around correct or error choice. Significantly more neurons were sensitive to error outcome, and, among these, more preferred to encode prospectively, increasing firing in advance of an error outcome. Similar to single neuron activity, the mPFC enhanced its neuronal network as measured by the oscillation of local field potential. The maximum power of oscillation was around choice, and occurred slightly earlier before error versus before correct outcome. Thus, sWM modulation in the mPFC includes not only spatial, but also outcome-related inputs, and neuronal ensembles monitor behavioral outcome to make strategic adjustments ensuring successful task performance.
Collapse
Affiliation(s)
- Yang Yang
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033 United States.
| | - Richard B Mailman
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033 United States; Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033 United States.
| |
Collapse
|
67
|
Tang H, Sun X, Li BM, Luo F. Neural representation of cost-benefit selections in medial prefrontal cortex of rats. Neurosci Lett 2017; 660:115-121. [PMID: 28923479 DOI: 10.1016/j.neulet.2017.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/17/2017] [Accepted: 09/13/2017] [Indexed: 11/27/2022]
Abstract
Decision making refers to the process that subjects use to choose between competing courses of action based on the expected costs and benefits of their consequences. However, few studies have addressed the neuronal mechanisms behind the processes of how costs and benefits influence decision making. Here we investigated the neuronal representation of costs and benefits towards a goal-directed action under a differential reward schedule by training rats to perform a "Do more, get more" (DM-GM) task utilizing a nosepoke operandum, where longer nosepoke durations resulted in correspondingly larger rewards. Our results showed that the cost a rat pays can be expected from the activity of neurons located in the medial prefrontal cortex (mPFC). These findings indicate that mPFC activity is predictive of the subjects' costs and benefits, providing mechanistic insights on this mental calculation.
Collapse
Affiliation(s)
- Hua Tang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Xuan Sun
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Bao-Ming Li
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China
| | - Fei Luo
- Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
68
|
Lisman J, Buzsáki G, Eichenbaum H, Nadel L, Ranganath C, Redish AD. Viewpoints: how the hippocampus contributes to memory, navigation and cognition. Nat Neurosci 2017; 20:1434-1447. [PMID: 29073641 PMCID: PMC5943637 DOI: 10.1038/nn.4661] [Citation(s) in RCA: 508] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The hippocampus serves a critical function in memory, navigation, and cognition. Nature Neuroscience asked John Lisman to lead a group of researchers in a dialog on shared and distinct viewpoints on the hippocampus. There has been a long history of studying the hippocampus, but recent work has made it possible to study the cellular and network basis of defined operations—operations that include cognitive processes that have been otherwise difficult to study (see Box 1 for useful terminology). These operations deal with the context-dependent representation of complex memories, the role of mental exploration based on imagined rather than real movements, and the use of recalled information for navigation and decision-making. The progress that has been made in understanding the hippocampus has motivated the study of other brain regions that provide hippocampal input or receive hippocampal output; the hippocampus is thus serving as a nucleating point for the larger goal of understanding the neural codes that allow inter-regional communication and more generally, understanding how memory-guided behavior is achieved by large scale integration of brain regions. In generating a discussion among experts in the study of the cognitive processes of the hippocampus, the editors and I have posed questions that probe important principles of hippocampal function. We hope that the resulting discussion will make clear to readers the progress that has been made, while also identifying issues where consensus has not yet been achieved and that should be pursued in future research. – John Lisman
Collapse
Affiliation(s)
- John Lisman
- Department of Biology at Brandeis University, Waltham, Massachusetts, USA
| | - György Buzsáki
- NYU Neuroscience Institute at New York University, New York, New York, USA
| | - Howard Eichenbaum
- Center for Memory and Brain at Boston University, Boston, Massachusetts, USA
| | - Lynn Nadel
- Department of Psychology and Cognitive Science Program at University of Arizona, Tucson, Arizona, USA
| | - Charan Ranganath
- Center for Neuroscience and Department of Psychology at the University of California, Davis, California, USA
| | - A David Redish
- Department of Neuroscience at the University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
69
|
Mediodorsal Thalamic Neurons Mirror the Activity of Medial Prefrontal Neurons Responding to Movement and Reinforcement during a Dynamic DNMTP Task. eNeuro 2017; 4:eN-NWR-0196-17. [PMID: 29034318 PMCID: PMC5639418 DOI: 10.1523/eneuro.0196-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/19/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
The mediodorsal nucleus (MD) interacts with medial prefrontal cortex (mPFC) to support learning and adaptive decision-making. MD receives driver (layer 5) and modulatory (layer 6) projections from PFC and is the main source of driver thalamic projections to middle cortical layers of PFC. Little is known about the activity of MD neurons and their influence on PFC during decision-making. We recorded MD neurons in rats performing a dynamic delayed nonmatching to position (dDNMTP) task and compared results to a previous study of mPFC with the same task (Onos et al., 2016). Criterion event-related responses were observed for 22% (254/1179) of neurons recorded in MD, 237 (93%) of which exhibited activity consistent with mPFC response types. More MD than mPFC neurons exhibited responses related to movement (45% vs. 29%) and reinforcement (51% vs. 27%). MD had few responses related to lever presses, and none related to preparation or memory delay, which constituted 43% of event-related activity in mPFC. Comparison of averaged normalized population activity and population response times confirmed the broad similarity of common response types in MD and mPFC and revealed differences in the onset and offset of some response types. Our results show that MD represents information about actions and outcomes essential for decision-making during dDNMTP, consistent with evidence from lesion studies that MD supports reward-based learning and action-selection. These findings support the hypothesis that MD reinforces task-relevant neural activity in PFC that gives rise to adaptive behavior.
Collapse
|
70
|
Wilber AA, Skelin I, Wu W, McNaughton BL. Laminar Organization of Encoding and Memory Reactivation in the Parietal Cortex. Neuron 2017; 95:1406-1419.e5. [PMID: 28910623 PMCID: PMC5679317 DOI: 10.1016/j.neuron.2017.08.033] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 06/23/2017] [Accepted: 08/18/2017] [Indexed: 10/18/2022]
Abstract
Egocentric neural coding has been observed in parietal cortex (PC), but its topographical and laminar organization is not well characterized. We used multi-site recording to look for evidence of local clustering and laminar consistency of linear and angular velocity encoding in multi-neuronal spiking activity (MUA) and in the high-frequency (300-900 Hz) component of the local field potential (HF-LFP), believed to reflect local spiking activity. Rats were trained to run many trials on a large circular platform, either to LED-cued goal locations or as a spatial sequence from memory. Tuning to specific self-motion states was observed and exhibited distinct cortical depth-invariant coding properties. These patterns of collective local and laminar activation during behavior were reactivated in compressed form during post-experience sleep and temporally coupled to cortical delta waves and hippocampal sharp-wave ripples. Thus, PC neuron motion encoding is consistent across cortical laminae, and this consistency is maintained during memory reactivation.
Collapse
Affiliation(s)
- Aaron A Wilber
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA.
| | - Ivan Skelin
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | - Wei Wu
- Department of Statistics, Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Bruce L McNaughton
- Canadian Centre for Behavioural Neuroscience, The University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
71
|
Optogenetic Stimulation of Prefrontal Glutamatergic Neurons Enhances Recognition Memory. J Neurosci 2017; 36:4930-9. [PMID: 27147648 PMCID: PMC4854963 DOI: 10.1523/jneurosci.2933-15.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 03/04/2016] [Indexed: 01/22/2023] Open
Abstract
Finding effective cognitive enhancers is a major health challenge; however, modulating glutamatergic neurotransmission has the potential to enhance performance in recognition memory tasks. Previous studies using glutamate receptor antagonists have revealed that the medial prefrontal cortex (mPFC) plays a central role in associative recognition memory. The present study investigates short-term recognition memory using optogenetics to target glutamatergic neurons within the rodent mPFC specifically. Selective stimulation of glutamatergic neurons during the online maintenance of information enhanced associative recognition memory in normal animals. This cognitive enhancing effect was replicated by local infusions of the AMPAkine CX516, but not CX546, which differ in their effects on EPSPs. This suggests that enhancing the amplitude, but not the duration, of excitatory synaptic currents improves memory performance. Increasing glutamate release through infusions of the mGluR7 presynaptic receptor antagonist MMPIP had no effect on performance. SIGNIFICANCE STATEMENT These results provide new mechanistic information that could guide the targeting of future cognitive enhancers. Our work suggests that improved associative-recognition memory can be achieved by enhancing endogenous glutamatergic neuronal activity selectively using an optogenetic approach. We build on these observations to recapitulate this effect using drug treatments that enhance the amplitude of EPSPs; however, drugs that alter the duration of the EPSP or increase glutamate release lack efficacy. This suggests that both neural and temporal specificity are needed to achieve cognitive enhancement.
Collapse
|
72
|
Yu JY, Kay K, Liu DF, Grossrubatscher I, Loback A, Sosa M, Chung JE, Karlsson MP, Larkin MC, Frank LM. Distinct hippocampal-cortical memory representations for experiences associated with movement versus immobility. eLife 2017; 6:27621. [PMID: 28826483 PMCID: PMC5576488 DOI: 10.7554/elife.27621] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/31/2017] [Indexed: 11/13/2022] Open
Abstract
While ongoing experience proceeds continuously, memories of past experience are often recalled as episodes with defined beginnings and ends. The neural mechanisms that lead to the formation of discrete episodes from the stream of neural activity patterns representing ongoing experience are unknown. To investigate these mechanisms, we recorded neural activity in the rat hippocampus and prefrontal cortex, structures critical for memory processes. We show that during spatial navigation, hippocampal CA1 place cells maintain a continuous spatial representation across different states of motion (movement and immobility). In contrast, during sharp-wave ripples (SWRs), when representations of experience are transiently reactivated from memory, movement- and immobility-associated activity patterns are most often reactivated separately. Concurrently, distinct hippocampal reactivations of movement- or immobility-associated representations are accompanied by distinct modulation patterns in prefrontal cortex. These findings demonstrate a continuous representation of ongoing experience can be separated into independently reactivated memory representations.
Collapse
Affiliation(s)
- Jai Y Yu
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Kenneth Kay
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Daniel F Liu
- University of California, Berkeley, Berkeley, United States
| | | | | | - Marielena Sosa
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Jason E Chung
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Mattias P Karlsson
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Margaret C Larkin
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States
| | - Loren M Frank
- Department of Physiology, UCSF Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States.,Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
73
|
A Quantitative Analysis of Context-Dependent Remapping of Medial Frontal Cortex Neurons and Ensembles. J Neurosci 2017; 36:8258-72. [PMID: 27488644 DOI: 10.1523/jneurosci.3176-15.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 06/20/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED The frontal cortex has been implicated in a number of cognitive and motivational processes, but understanding how individual neurons contribute to these processes is particularly challenging as they respond to a broad array of events (multiplexing) in a manner that can be dynamically modulated by the task context, i.e., adaptive coding (Duncan, 2001). Fundamental questions remain, such as how the flexibility gained through these mechanisms is balanced by the need for consistency and how the ensembles of neurons are coherently shaped by task demands. In the present study, ensembles of medial frontal cortex neurons were recorded from rats trained to perform three different operant actions either in two different sequences or two different physical environments. Single neurons exhibited diverse mixtures of responsivity to each of the three actions and these mixtures were abruptly altered by context/sequence switches. Remarkably, the overall responsivity of the population remained highly consistent both within and between context/sequences because the gains versus losses were tightly balanced across neurons and across the three actions. These data are consistent with a reallocation mixture model in which individual neurons express unique mixtures of selectivity for different actions that become reallocated as task conditions change. However, because the allocations and reallocations are so well balanced across neurons, the population maintains a low but highly consistent response to all actions. The frontal cortex may therefore balance consistency with flexibility by having ensembles respond in a fixed way to task-relevant actions while abruptly reconfiguring single neurons to encode "actions in context." SIGNIFICANCE STATEMENT Flexible modes of behavior involve performance of similar actions in contextually relevant ways. The present study quantified the changes in how rat medial frontal cortex neurons respond to the same actions when performed in different task contexts (sequences or environments). Most neurons altered the mixture of actions they were responsive to in different contexts or sequences. Nevertheless, the responsivity profile of the ensemble remained fixed as did the ability of the ensemble to differentiate between the three actions. These mechanisms may help to contextualize the manner in which common events are represented across different situations.
Collapse
|
74
|
Fronto-parietal Cortical Circuits Encode Accumulated Evidence with a Diversity of Timescales. Neuron 2017; 95:385-398.e5. [PMID: 28669543 DOI: 10.1016/j.neuron.2017.06.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 04/04/2017] [Accepted: 06/06/2017] [Indexed: 01/04/2023]
Abstract
Decision-making in dynamic environments often involves accumulation of evidence, in which new information is used to update beliefs and select future actions. Using in vivo cellular resolution imaging in voluntarily head-restrained rats, we examined the responses of neurons in frontal and parietal cortices during a pulse-based accumulation of evidence task. Neurons exhibited activity that predicted the animal's upcoming choice, previous choice, and graded responses that reflected the strength of the accumulated evidence. The pulsatile nature of the stimuli enabled characterization of the responses of neurons to a single quantum (pulse) of evidence. Across the population, individual neurons displayed extensive heterogeneity in the dynamics of responses to pulses. The diversity of responses was sufficiently rich to form a temporal basis for accumulated evidence estimated from a latent variable model. These results suggest that heterogeneous, often transient sensory responses distributed across the fronto-parietal cortex may support working memory on behavioral timescales. VIDEO ABSTRACT.
Collapse
|
75
|
Bolkan SS, Stujenske JM, Parnaudeau S, Spellman TJ, Rauffenbart C, Abbas AI, Harris AZ, Gordon JA, Kellendonk C. Thalamic projections sustain prefrontal activity during working memory maintenance. Nat Neurosci 2017; 20:987-996. [PMID: 28481349 PMCID: PMC5501395 DOI: 10.1038/nn.4568] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 04/21/2017] [Indexed: 02/04/2023]
Abstract
The mediodorsal thalamus (MD) shares reciprocal connectivity with the prefrontal cortex (PFC), and decreased MD-PFC connectivity is observed in schizophrenia patients. Patients also display cognitive deficits including impairments in working memory, but a mechanistic link between thalamo-prefrontal circuit function and working memory is missing. Using pathway-specific inhibition, we found directional interactions between mouse MD and medial PFC (mPFC), with MD-to-mPFC supporting working memory maintenance and mPFC-to-MD supporting subsequent choice. We further identify mPFC neurons that display elevated spiking during the delay, a feature that was absent on error trials and required MD inputs for sustained maintenance. Strikingly, delay-tuned neurons had minimal overlap with spatially tuned neurons, and each mPFC population exhibited mutually exclusive dependence on MD and hippocampal inputs. These findings indicate a role for MD in sustaining prefrontal activity during working memory maintenance. Consistent with this idea, we found that enhancing MD excitability was sufficient to enhance task performance.
Collapse
Affiliation(s)
- Scott S Bolkan
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Joseph M Stujenske
- Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | - Sebastien Parnaudeau
- Institut de Biologie Paris Seine, UM119, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Paris, France
| | - Timothy J Spellman
- Research Institute, Weill Cornell Medical College, New York, New York, USA
| | - Caroline Rauffenbart
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Atheir I Abbas
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, New York, USA.,National Institute of Mental Health, Office of the Director, Bethesda, Maryland, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Department of Pharmacology, Columbia University, College of Physicians and Surgeons, New York, New York, USA.,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
76
|
Devilbiss DM, Spencer RC, Berridge CW. Stress Degrades Prefrontal Cortex Neuronal Coding of Goal-Directed Behavior. Cereb Cortex 2017; 27:2970-2983. [PMID: 27226444 PMCID: PMC6059199 DOI: 10.1093/cercor/bhw140] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stress, pervasive in modern society, impairs prefrontal cortex (PFC)-dependent cognitive processes, an action implicated in multiple psychopathologies and estimated to contribute to nearly half of all work place accidents. However, the neurophysiological bases for stress-related impairment of PFC-dependent function remain poorly understood. The current studies examined the effects of stress on PFC neural coding during a working memory task in rats. Stress suppressed responses of medial PFC (mPFC) neurons strongly tuned to a diversity of task events, including delay and outcome (reward, error). Stress-related impairment of task-related neuronal activity included multidimensional coding by PFC neurons, an action that significantly predicted cognitive impairment. Importantly, the effects of stress on PFC neuronal signaling were highly conditional on tuning strength: stress increased task-related activity in the larger population of PFC neurons weakly tuned to task events. Combined, stress elicits a profound collapse of task representations across the broader population of PFC neurons.
Collapse
Affiliation(s)
- David M. Devilbiss
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Robert C. Spencer
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| | - Craig W. Berridge
- Department of Psychology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
77
|
Guida F, Boccella S, Iannotta M, De Gregorio D, Giordano C, Belardo C, Romano R, Palazzo E, Scafuro MA, Serra N, de Novellis V, Rossi F, Maione S, Luongo L. Palmitoylethanolamide Reduces Neuropsychiatric Behaviors by Restoring Cortical Electrophysiological Activity in a Mouse Model of Mild Traumatic Brain Injury. Front Pharmacol 2017; 8:95. [PMID: 28321191 PMCID: PMC5337754 DOI: 10.3389/fphar.2017.00095] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Traumatic brain injury (TBI) represents a major public health problem, which is associated with neurological dysfunction. In severe or moderate cases of TBI, in addition to its high mortality rate, subjects may encounter diverse behavioral dysfunctions. Previous reports suggest that an association between TBI and chronic pain syndromes tends to be more common in patients with mild forms of brain injury. Despite causing minimal brain damage, mild TBI (mTBI) often leads to persistent psychologically debilitating symptoms, which can include anxiety, various forms of memory and learning deficits, and depression. At present, no effective treatment options are available for these symptoms, and little is known about the complex cellular activity affecting neuronal activity that occurs in response to TBI during its late phase. Here, we used a mouse model to investigate the effect of Palmitoylethanolamide (PEA) on both the sensorial and neuropsychiatric dysfunctions associated with mTBI through behavioral, electrophysiological, and biomolecular approaches. Fourteen-day mTBI mice developed anxious, aggressive, and reckless behavior, whilst depressive-like behavior and impaired social interactions were observed from the 60th day onward. Altered behavior was associated with changes in interleukin 1 beta (IL-1β) expression levels and neuronal firing activity in the medial prefrontal cortex. Compared with vehicle, PEA restored the behavioral phenotype and partially normalized the biochemical and functional changes occurring at the supraspinal level. In conclusion, our findings reveal some of the supraspinal modifications responsible for the behavioral alterations associated with mTBI and suggest PEA as a pharmacological tool to ameliorate neurological dysfunction induced by the trauma.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Danilo De Gregorio
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Catia Giordano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Maria A Scafuro
- Department of Anesthesiology, Surgery and Emergency, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Nicola Serra
- Department of Radiology, Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN) Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Section of Pharmacology "L. Donatelli", Università degli Studi della Campania "Luigi Vanvitelli" (Ex SUN)Naples, Italy; Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle RicerchePozzuoli, Italy; Young Against Pain (YAP) Italian Group, NaplesItaly
| |
Collapse
|
78
|
Radzicki D, Pollema-Mays SL, Sanz-Clemente A, Martina M. Loss of M1 Receptor Dependent Cholinergic Excitation Contributes to mPFC Deactivation in Neuropathic Pain. J Neurosci 2017; 37:2292-2304. [PMID: 28137966 PMCID: PMC5354343 DOI: 10.1523/jneurosci.1553-16.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 12/01/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022] Open
Abstract
In chronic pain, the medial prefrontal cortex (mPFC) is deactivated and mPFC-dependent tasks such as attention and working memory are impaired. We investigated the mechanisms of mPFC deactivation in the rat spared nerve injury (SNI) model of neuropathic pain. Patch-clamp recordings in acute slices showed that, 1 week after the nerve injury, cholinergic modulation of layer 5 (L5) pyramidal neurons was severely impaired. In cells from sham-operated animals, focal application of acetylcholine induced a left shift of the input/output curve and persistent firing. Both of these effects were almost completely abolished in cells from SNI-operated rats. The cause of this impairment was an ∼60% reduction of an M1-coupled, pirenzepine-sensitive depolarizing current, which appeared to be, at least in part, the consequence of M1 receptor internalization. Although no changes were detected in total M1 protein or transcript, both the fraction of the M1 receptor in the synaptic plasma membrane and the biotinylated M1 protein associated with the total plasma membrane were decreased in L5 mPFC of SNI rats. The loss of excitatory cholinergic modulation may play a critical role in mPFC deactivation in neuropathic pain and underlie the mPFC-specific cognitive deficits that are comorbid with neuropathic pain.SIGNIFICANCE STATEMENT The medial prefrontal cortex (mPFC) undergoes major reorganization in chronic pain. Deactivation of mPFC output is causally correlated with both the cognitive and the sensory component of neuropathic pain. Here, we show that cholinergic excitation of commissural layer 5 mPFC pyramidal neurons is abolished in neuropathic pain rats due to a severe reduction of a muscarinic depolarizing current and M1 receptor internalization. Therefore, in neuropathic pain rats, the acetylcholine (ACh)-dependent increase in neuronal excitability is reduced dramatically and the ACh-induced persisting firing, which is critical for working memory, is abolished. We propose that the blunted cholinergic excitability contributes to the functional mPFC deactivation that is causal for the pain phenotype and represents a cellular mechanism for the attention and memory impairments comorbid with chronic pain.
Collapse
Affiliation(s)
| | | | - Antonio Sanz-Clemente
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | | |
Collapse
|
79
|
Grieves RM, Jeffery KJ. The representation of space in the brain. Behav Processes 2017; 135:113-131. [DOI: 10.1016/j.beproc.2016.12.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/09/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022]
|
80
|
Blaeser AS, Connors BW, Nurmikko AV. Spontaneous dynamics of neural networks in deep layers of prefrontal cortex. J Neurophysiol 2017; 117:1581-1594. [PMID: 28123005 DOI: 10.1152/jn.00295.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 01/15/2023] Open
Abstract
Cortical systems maintain and process information through the sustained activation of recurrent local networks of neurons. Layer 5 is known to have a major role in generating the recurrent activation associated with these functions, but relatively little is known about its intrinsic dynamics at the mesoscopic level of large numbers of neighboring neurons. Using calcium imaging, we measured the spontaneous activity of networks of deep-layer medial prefrontal cortical neurons in an acute slice model. Inferring the simultaneous activity of tens of neighboring neurons, we found that while the majority showed only sporadic activity, a subset of neurons engaged in sustained delta frequency rhythmic activity. Spontaneous activity under baseline conditions was weakly correlated between pairs of neurons, and rhythmic neurons showed little coherence in their oscillations. However, we consistently observed brief bouts of highly synchronous activity that must be attributed to network activity. NMDA-mediated stimulation enhanced rhythmicity, synchrony, and correlation within these local networks. These results characterize spontaneous prefrontal activity at a previously unexplored spatiotemporal scale and suggest that medial prefrontal cortex can act as an intrinsic generator of delta oscillations.NEW & NOTEWORTHY Using calcium imaging and a novel analytic framework, we characterized the spontaneous and NMDA-evoked activity of layer 5 prefrontal cortex at a largely unexplored spatiotemporal scale. Our results suggest that the mPFC microcircuitry is capable of intrinsically generating delta oscillations and sustaining synchronized network activity that is potentially relevant for understanding its contribution to cognitive processes.
Collapse
Affiliation(s)
- Andrew S Blaeser
- Department of Physics, Brown University, Providence, Rhode Island;
| | - Barry W Connors
- Department of Neuroscience, Brown University, Providence, Rhode Island; and
| | - Arto V Nurmikko
- Department of Physics, Brown University, Providence, Rhode Island.,Department of Neuroscience, Brown University, Providence, Rhode Island; and.,School of Engineering, Brown University, Providence, Rhode Island
| |
Collapse
|
81
|
Tsutsui KI, Oyama K, Nakamura S, Iijima T. Comparative Overview of Visuospatial Working Memory in Monkeys and Rats. Front Syst Neurosci 2016; 10:99. [PMID: 28018186 PMCID: PMC5159432 DOI: 10.3389/fnsys.2016.00099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/14/2016] [Indexed: 11/13/2022] Open
Abstract
Neural mechanisms of working memory, particularly its visuospatial aspect, have long been studied in non-human primates. On the other hand, rodents are becoming more important in systems neuroscience, as many of the innovative research methods have become available for them. There has been a question on whether primates and rodents have similar neural backgrounds for working memory. In this article, we carried out a comparative overview of the neural mechanisms of visuospatial working memory in monkeys and rats. In monkeys, a number of lesion studies indicate that the brain region most responsible for visuospatial working memory is the ventral dorsolateral prefrontal cortex (vDLPFC), as the performance in the standard tests for visuospatial working memory, such as delayed response and delayed alternation tasks, are impaired by lesions in this region. Single-unit studies revealed a characteristic firing pattern in neurons in this area, a sustained delay activity. Further studies indicated that the information maintained in the working memory, such as cue location and response direction in a delayed response, is coded in the sustained delay activity. In rats, an area comparable to the monkey vDLPFC was found to be the dorsal part of the medial prefrontal cortex (mPFC), as the delayed alternation in a T-maze is impaired by its lesion. Recently, the sustained delay activity similar to that found in monkeys has been found in the dorsal mPFC of rats performing the delayed response task. Furthermore, anatomical studies indicate that the vDLPFC in monkeys and the dorsal mPFC in rats have much in common, such as that they are both the major targets of parieto-frontal projections. Thus lines of evidence indicate that in both monkeys and rodents, the PFC plays a critical role in working memory.
Collapse
Affiliation(s)
- Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Kei Oyama
- Division of Systems Neuroscience, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Shinya Nakamura
- Division of Systems Neuroscience, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Graduate School of Life Sciences, Tohoku UniversitySendai, Japan
| |
Collapse
|
82
|
Yamaguchi Y, Lee YA, Kato A, Goto Y. The Roles of Dopamine D1 Receptor on the Social Hierarchy of Rodents and Nonhuman Primates. Int J Neuropsychopharmacol 2016; 20:324-335. [PMID: 27927739 PMCID: PMC5409125 DOI: 10.1093/ijnp/pyw106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/18/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although dopamine has been suggested to play a role in mediating social behaviors of individual animals, it is not clear whether such dopamine signaling contributes to attributes of social groups such as social hierarchy. METHODS In this study, the effects of the pharmacological manipulation of dopamine D1 receptor function on the social hierarchy and behavior of group-housed mice and macaques were investigated using a battery of behavioral tests. RESULTS D1 receptor blockade facilitated social dominance in mice at the middle, but not high or low, social rank in the groups without altering social preference among mates. In contrast, the administration of a D1 receptor antagonist in a macaque did not affect social dominance of the drug-treated animal; however, relative social dominance relationships between the drug-treated and nontreated subjects were altered indirectly through alterations of social affiliative relationships within the social group. CONCLUSIONS These results suggest that dopamine D1 receptor signaling may be involved in social hierarchy and social relationships within a group, which may differ between rodents and primates.
Collapse
Affiliation(s)
- Yoshie Yamaguchi
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Young-A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan, Gyeounbuk, South Korea
| | - Akemi Kato
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| | - Yukiori Goto
- Primate Research Institute, Kyoto University, Inuyama, Aichi, Japan
| |
Collapse
|
83
|
Wang S, Shi Y, Li BM. Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making. Neurobiol Learn Mem 2016; 139:1-10. [PMID: 27919831 DOI: 10.1016/j.nlm.2016.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 10/20/2022]
Abstract
The anterior cingulate cortex (ACC) is crucial for decision making which involves the processing of cost-benefit information. Our previous study has shown that ACC is essential for self-paced decision making. However, it is unclear how ACC neurons represent cost-benefit selections during the decision-making process. In the present study, we trained rats on the same "Do More Get More" (DMGM) task as in our previous work. In each trial, the animals stand upright and perform a sustained nosepoke of their own will to earn a water reward, with the amount of reward positively correlated to the duration of the nosepoke (i.e., longer nosepokes earn larger rewards). We then recorded ACC neuronal activity on well-trained rats while they were performing the DMGM task. Our results show that (1) approximately 3/5 ACC neurons (296/496, 59.7%) exhibited changes in firing frequency that were temporally locked with the main events of the DMGM task; (2) about 1/5 ACC neurons (101/496, 20.4%) or 1/3 of the event-modulated neurons (101/296, 34.1%) showed differential firing rate changes for different cost-benefit selections; and (3) many ACC neurons exhibited linear encoding of the cost-benefit selections in the DMGM task events. These results suggest that ACC neurons are engaged in encoding cost-benefit information, thus represent the selections in self-paced decision making.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Yi Shi
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Bao-Ming Li
- Institute of Neurobiology & State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai 200032, China; Center for Neuropsychiatric Diseases, Institute of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
84
|
Powell NJ, Redish AD. Representational changes of latent strategies in rat medial prefrontal cortex precede changes in behaviour. Nat Commun 2016; 7:12830. [PMID: 27653278 PMCID: PMC5036147 DOI: 10.1038/ncomms12830] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to change behavioural strategies in the face of a changing world has been linked to the integrity of medial prefrontal cortex (mPFC) function in several species. While recording studies have found that mPFC representations reflect the strategy being used, lesion studies suggest that mPFC is necessary for changing strategy. Here we examine the relationship between representational changes in mPFC and behavioural strategy changes in the rat. We found that on tasks with a forced change in reward criterion, strategy-related representational transitions in mPFC occurred after animals learned that the reward contingency had changed, but before their behaviour changed. On tasks in which animals made their own strategic decisions, representational transitions in mPFC preceded changes in behaviour. These results suggest that mPFC does not merely reflect the action–selection policy of the animal, but rather that mPFC processes information related to a need for a change in strategy. The medial prefrontal cortex (mPFC) is involved in changing behavioural strategies. Recording neural ensembles in rats, Powell and Redish find that the requirement for those changes is represented in mPFC before they manifest behaviourally, both in tasks that externally force a change and in tasks with self-determined change.
Collapse
Affiliation(s)
- Nathaniel James Powell
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
85
|
Akhlaghpour H, Wiskerke J, Choi JY, Taliaferro JP, Au J, Witten IB. Dissociated sequential activity and stimulus encoding in the dorsomedial striatum during spatial working memory. eLife 2016; 5. [PMID: 27636864 PMCID: PMC5053805 DOI: 10.7554/elife.19507] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 12/02/2022] Open
Abstract
Several lines of evidence suggest that the striatum has an important role in spatial working memory. The neural dynamics in the striatum have been described in tasks with short delay periods (1–4 s), but remain largely uncharacterized for tasks with longer delay periods. We collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a spatial working memory task with delays up to 10 s. We found that neurons were activated sequentially, with the sequences spanning the entire delay period. Surprisingly, this sequential activity was dissociated from stimulus encoding activity, which was present in the same neurons, but preferentially appeared towards the onset of the delay period. These observations contrast with descriptions of sequential dynamics during similar tasks in other brains areas, and clarify the contribution of the striatum to spatial working memory. DOI:http://dx.doi.org/10.7554/eLife.19507.001
Collapse
Affiliation(s)
| | - Joost Wiskerke
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States
| | - Jung Yoon Choi
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States
| | - Joshua P Taliaferro
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Jennifer Au
- Princeton Neuroscience Institute, Princeton University, Princeton, United States
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, United States.,Department of Psychology, Princeton University, Princeton, United States
| |
Collapse
|
86
|
Abstract
When rats come to a decision point, they sometimes pause and look back and forth as if deliberating over the choice; at other times, they proceed as if they have already made their decision. In the 1930s, this pause-and-look behaviour was termed 'vicarious trial and error' (VTE), with the implication that the rat was 'thinking about the future'. The discovery in 2007 that the firing of hippocampal place cells gives rise to alternating representations of each of the potential path options in a serial manner during VTE suggested a possible neural mechanism that could underlie the representations of future outcomes. More-recent experiments examining VTE in rats suggest that there are direct parallels to human processes of deliberative decision making, working memory and mental time travel.
Collapse
Affiliation(s)
- A David Redish
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
87
|
Jadhav SP, Rothschild G, Roumis DK, Frank LM. Coordinated Excitation and Inhibition of Prefrontal Ensembles during Awake Hippocampal Sharp-Wave Ripple Events. Neuron 2016; 90:113-27. [PMID: 26971950 DOI: 10.1016/j.neuron.2016.02.010] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/10/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
Interactions between the hippocampus and prefrontal cortex (PFC) are critical for learning and memory. Hippocampal activity during awake sharp-wave ripple (SWR) events is important for spatial learning, and hippocampal SWR activity often represents past or potential future experiences. Whether or how this reactivation engages the PFC, and how reactivation might interact with ongoing patterns of PFC activity, remains unclear. We recorded hippocampal CA1 and PFC activity in animals learning spatial tasks and found that many PFC cells showed spiking modulation during SWRs. Unlike in CA1, SWR-related activity in PFC comprised both excitation and inhibition of distinct populations. Within individual SWRs, excitation activated PFC cells with representations related to the concurrently reactivated hippocampal representation, while inhibition suppressed PFC cells with unrelated representations. Thus, awake SWRs mark times of strong coordination between hippocampus and PFC that reflects structured reactivation of representations related to ongoing experience.
Collapse
Affiliation(s)
- Shantanu P Jadhav
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94117, USA.
| | - Gideon Rothschild
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Demetris K Roumis
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94117, USA
| | - Loren M Frank
- Department of Physiology and Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA 94117, USA; Howard Hughes Medical Institute.
| |
Collapse
|
88
|
Tamura M, Mukai J, Gordon JA, Gogos JA. Developmental Inhibition of Gsk3 Rescues Behavioral and Neurophysiological Deficits in a Mouse Model of Schizophrenia Predisposition. Neuron 2016; 89:1100-9. [PMID: 26898776 DOI: 10.1016/j.neuron.2016.01.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/07/2015] [Accepted: 01/08/2016] [Indexed: 11/24/2022]
Abstract
While the genetic basis of schizophrenia is increasingly well characterized, novel treatments will require establishing mechanistic relationships between specific risk genes and core phenotypes. Rare, highly penetrant risk genes such as the 22q11.2 microdeletion are promising in this regard. Df(16)A(+/-) mice, which carry a homologous microdeletion, have deficits in hippocampal-prefrontal connectivity that correlate with deficits in spatial working memory. These mice also have deficits in axonal development that are accompanied by dysregulated Gsk3β signaling and can be rescued by Gsk3 antagonists. Here we show that developmental inhibition of Gsk3 rescues deficits in hippocampal-prefrontal connectivity, task-related neural activity, and spatial working memory behavior in Df(16)A(+/-) mice. Taken together, these results provide mechanistic insight into how the microdeletion results in cognitive deficits, and they suggest possible targets for novel therapies.
Collapse
Affiliation(s)
- Makoto Tamura
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Pharmacology Research Laboratories I, Mitsubishi Tanabe Pharma Corporation, 1000 Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa 227-0033, Japan
| | - Jun Mukai
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA; Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | - Joshua A Gordon
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.
| | - Joseph A Gogos
- Department of Physiology and Cellular Biophysics, Columbia University, 1150 St. Nicholas Avenue, New York, NY 10032, USA; Department of Neuroscience, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
89
|
Onos KD, Francoeur MJ, Wormwood BA, Miller RLA, Gibson BM, Mair RG. Prefrontal Neurons Encode Actions and Outcomes in Conjunction with Spatial Location in Rats Performing a Dynamic Delayed Non-Match to Position Task. PLoS One 2016; 11:e0149019. [PMID: 26848579 PMCID: PMC4743997 DOI: 10.1371/journal.pone.0149019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/25/2016] [Indexed: 01/16/2023] Open
Abstract
To respond adaptively to change organisms must utilize information about recent events and environmental context to select actions that are likely to produce favorable outcomes. We developed a dynamic delayed nonmatching to position task to study the influence of spatial context on event-related activity of medial prefrontal cortex neurons during reinforcement-guided decision-making. We found neurons with responses related to preparation, movement, lever press responses, reinforcement, and memory delays. Combined event-related and video tracking analyses revealed variability in spatial tuning of neurons with similar event-related activity. While all correlated neurons exhibited spatial tuning broadly consistent with relevant task events, for instance reinforcement-related activity concentrated in locations where reinforcement was delivered, some had elevated activity in more specific locations, for instance reinforcement-related activity in one of several locations where reinforcement was delivered. Timing analyses revealed a limited set of distinct response types with activity time-locked to critical behavioral events that represent the temporal organization of dDNMTP trials. Our results suggest that reinforcement-guided decision-making emerges from discrete populations of medial prefrontal neurons that encode information related to planned or ongoing movements and actions and anticipated or actual action-outcomes in conjunction with information about spatial context.
Collapse
Affiliation(s)
- Kristen D. Onos
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, United States of America
| | - Miranda J. Francoeur
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Benjamin A. Wormwood
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Rikki L. A. Miller
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Brett M. Gibson
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
| | - Robert G. Mair
- Department of Psychology, University of New Hampshire, Durham, NH 03824, United States of America
- * E-mail:
| |
Collapse
|
90
|
MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 2016; 156:1060-1073. [PMID: 25760470 DOI: 10.1097/j.pain.0000000000000150] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This study investigated the effects of a single administration of 6-(4-methoxyphenyl)-5-methyl-3-pyridinyl-4-isoxazolo[4,5-c]pyridin-4(5H)-one (MMPIP), a negative allosteric modulator (NAM) of metabotropic glutamate receptor 7 (mGluR7), on pain and on affective and cognitive behavior in neuropathic mice. The activity of pyramidal neurons in the prelimbic cortex (PLC), which respond to stimulation of the basolateral amygdala (BLA) with either excitation or inhibition, was also investigated. The spared nerve injury (SNI) of the sciatic nerve induced, 14 days after surgery, thermal hyperalgesia and mechanical allodynia, reduced open-arm choice in the elevated plus-maze, increased time of immobility in the tail suspension, and increased digging and burying in the marble burying test. Cognitive performance was also significantly compromised in the SNI mice. Spared nerve injury induced phenotypic changes on pyramidal neurons of the PLC; excitatory responses increased, whereas inhibitory responses decreased after BLA stimulation. mGluR7 expression, mainly associated with vesicular glutamate transporter, increased in the hippocampus and decreased in the BLA, PLC, and dorsal raphe in SNI mice. MMPIP increased thermal and mechanical thresholds and open-arm choice. It reduced the immobility in the tail suspension test and the number of marbles buried and of digging events in the marble burying test. MMPIP also improved cognitive performance and restored the balance between excitatory and inhibitory responses of PLC neurons in SNI mice. 7-hydroxy-3-(4-iodophenoxy)-4H-chromen-4-one, XAP044, another selective mGluR7 NAM, reproduced the effects of MMPIP on thermal hyperalgesia, mechanical allodynia, tail suspension, and marble burying test. Altogether, these findings show that mGluR7 NAMs reduce pain responses and affective/cognitive impairments in neuropathic pain conditions.
Collapse
|
91
|
Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016; 2016:7539065. [PMID: 26904302 PMCID: PMC4745936 DOI: 10.1155/2016/7539065] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/25/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic stress-related psychiatric diseases, such as major depression, posttraumatic stress disorder, and schizophrenia, are characterized by a maladaptive organization of behavioral responses that strongly affect the well-being of patients. Current evidence suggests that a functional impairment of the prefrontal cortex (PFC) is implicated in the pathophysiology of these diseases. Therefore, chronic stress may impair PFC functions required for the adaptive orchestration of behavioral responses. In the present review, we integrate evidence obtained from cognitive neuroscience with neurophysiological research with animal models, to put forward a hypothesis that addresses stress-induced behavioral dysfunctions observed in stress-related neuropsychiatric disorders. We propose that chronic stress impairs mechanisms involved in neuronal functional connectivity in the PFC that are required for the formation of adaptive representations for the execution of adaptive behavioral responses. These considerations could be particularly relevant for understanding the pathophysiology of chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ignacio Negrón-Oyarzo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Francisco Aboitiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencia, Pontificia Universidad Católica de Chile, Avenida Marcoleta No. 391, 8320000 Santiago, Chile
| |
Collapse
|
92
|
Grimm O, Gass N, Weber-Fahr W, Sartorius A, Schenker E, Spedding M, Risterucci C, Schweiger JI, Böhringer A, Zang Z, Tost H, Schwarz AJ, Meyer-Lindenberg A. Acute ketamine challenge increases resting state prefrontal-hippocampal connectivity in both humans and rats. Psychopharmacology (Berl) 2015; 232:4231-41. [PMID: 26184011 DOI: 10.1007/s00213-015-4022-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/06/2015] [Indexed: 12/27/2022]
Abstract
RATIONALE Aberrant prefrontal-hippocampal (PFC-HC) connectivity is disrupted in several psychiatric and at-risk conditions. Advances in rodent functional imaging have opened the possibility that this phenotype could serve as a translational imaging marker for psychiatric research. Recent evidence from functional magnetic resonance imaging (fMRI) studies has indicated an increase in PFC-HC coupling during working-memory tasks in both schizophrenic patients and at-risk populations, in contrast to a decrease in resting-state PFC-HC connectivity. Acute ketamine challenge is widely used in both humans and rats as a pharmacological model to study the mechanisms of N-methyl-D-aspartate (NMDA) receptor hypofunction in the context of psychiatric disorders. OBJECTIVES We aimed to establish whether acute ketamine challenge has consistent effects in rats and humans by investigating resting-state fMRI PFC-HC connectivity and thus to corroborate its potential utility as a translational probe. METHODS Twenty-four healthy human subjects (12 females, mean age 25 years) received intravenous doses of either saline (placebo) or ketamine (0.5 mg/kg body weight). Eighteen Sprague-Dawley male rats received either saline or ketamine (25 mg/kg). Resting-state fMRI measurements took place after injections, and the data were analyzed for PFC-HC functional connectivity. RESULTS In both species, ketamine induced a robust increase in PFC-HC coupling, in contrast to findings in chronic schizophrenia. CONCLUSIONS This translational comparison demonstrates a cross-species consistency in pharmacological effect and elucidates ketamine-induced alterations in PFC-HC coupling, a phenotype often disrupted in pathological conditions, which may give clue to understanding of psychiatric disorders and their onset, and help in the development of new treatments.
Collapse
Affiliation(s)
- Oliver Grimm
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Natalia Gass
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
| | - Wolfgang Weber-Fahr
- Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Alexander Sartorius
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.,Department of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Esther Schenker
- Neuroscience Drug Discovery Unit, Institut de Recherches Servier, Croissy s/Seine, France
| | | | - Celine Risterucci
- CNS Biomarker, Pharmaceuticals Division, F. Hoffmann-La Roche, Basel, Switzerland
| | - Janina Isabel Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Andreas Böhringer
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| | - Adam James Schwarz
- Tailored Therapeutics, Eli Lilly and Company, Indianapolis, IN, USA.,Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.,Department of Radiology and Imaging Sciences, Indiana University, Indianapolis, IN, USA
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany
| |
Collapse
|
93
|
Layfield DM, Patel M, Hallock H, Griffin AL. Inactivation of the nucleus reuniens/rhomboid causes a delay-dependent impairment of spatial working memory. Neurobiol Learn Mem 2015; 125:163-7. [PMID: 26391450 DOI: 10.1016/j.nlm.2015.09.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 08/11/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
Abstract
Inactivation of the rodent medial prefrontal cortex (mPFC) and hippocampus or disconnection of the hippocampus from the mPFC produces deficits in spatial working memory tasks. Previous studies have shown that delay length determines the extent to which mPFC and hippocampus functionally interact, with both structures being necessary for tasks with longer delays and either structure being sufficient for tasks with shorter delays. In addition, inactivation of the nucleus reuniens (Re)/rhomboid nucleus (Rh) of the thalamus, which has bidirectional connections with the mPFC and hippocampus, also produces deficits in these tasks. However, it is unknown how delay duration relates to the function of Re/Rh. If Re/Rh are critical in modulating mPFC-hippocampus interactions, inactivation of the RE/Rh should produce a delay-dependent impairment in spatial working memory performance. To investigate this question, groups of rats were trained on one of three different spatial working memory tasks: continuous alternation (CA), delayed alternation with a five-second delay (DA5), or with a thirty-second delay (DA30). The Re/Rh were inactivated with muscimol infusions prior to testing. The results demonstrate that inactivation of RE/Rh produces a deficit only on the two DA tasks, supporting the notion that the Re/Rh is a critical orchestrator of mPFC-HC interactions.
Collapse
Affiliation(s)
- Dylan M Layfield
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Monica Patel
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Henry Hallock
- Department of Psychological and Brain Sciences, University of Delaware, United States
| | - Amy L Griffin
- Department of Psychological and Brain Sciences, University of Delaware, United States.
| |
Collapse
|
94
|
Imperatore R, Morello G, Luongo L, Taschler U, Romano R, De Gregorio D, Belardo C, Maione S, Di Marzo V, Cristino L. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB₁R signaling and anxiety-like behavior. J Neurochem 2015. [PMID: 26223500 DOI: 10.1111/jnc.13267] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid-1-receptor (CB1 R)-expressing axon terminals. The most abundant eCB in the brain, that is 2-arachidonoylglycerol (2-AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1 R desensitization. We employed the MAGL knock-out mouse (MAGL-/-), a genetic model of congenital and sustained elevation of 2-AG levels in the brain, to provide morphological and biochemical evidence for β-arrestin2-mediated CB1 R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1 R/β-arrestin2 co-expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal-regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1 R-positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1 R-positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1 R signaling in MAGL-/- mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)-mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety-like and obsessive-compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β-arrestin2-mediated desensitization of CB1 R in MAGL-/- mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions. In this study, the authors provide evidence that congenitally enhanced endocannabinoid levels in the neuronal circuits underlying anxiety-like behavioral states (mainly medial prefrontal cortex, amygdala and hippocampus) lead to CB1R desenistization and anxiety and depression. MAGL-/- mice, a model of congenital overactivity of the eCB system, exhibited a compensatory impairment of CB1R signaling in anxiety-associated brain areas and a subsequent change in excitatory/inhibitory tone associated with altered score in the marble burying and light/dark box test, in concomitance with anxiety and depression behavior states. These findings may have potential relevance to the understanding of the neurochemical effects of chronic CB1R overstimulation in cannabis abusers.
Collapse
Affiliation(s)
- Roberta Imperatore
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Giovanna Morello
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy.,Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Livio Luongo
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Naples, Italy
| | - Ulrike Taschler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Rosaria Romano
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Naples, Italy
| | - Danilo De Gregorio
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Naples, Italy
| | - Carmela Belardo
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Naples, Italy
| | - Sabatino Maione
- Endocannabinoid Research Group, Department of Experimental Medicine, Division of Pharmacology "L. Donatelli", Second University of Naples, Naples, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| |
Collapse
|
95
|
Abstract
The prefrontal cortex (PFC) plays a key role in controlling goal-directed behavior. Although a variety of task-related signals have been observed in the PFC, whether they are differentially encoded by various cell types remains unclear. Here we performed cellular-resolution microendoscopic Ca(2+) imaging from genetically defined cell types in the dorsomedial PFC of mice performing a PFC-dependent sensory discrimination task. We found that inhibitory interneurons of the same subtype were similar to each other, but different subtypes preferentially signaled different task-related events: somatostatin-positive neurons primarily signaled motor action (licking), vasoactive intestinal peptide-positive neurons responded strongly to action outcomes, whereas parvalbumin-positive neurons were less selective, responding to sensory cues, motor action, and trial outcomes. Compared to each interneuron subtype, pyramidal neurons showed much greater functional heterogeneity, and their responses varied across cortical layers. Such cell-type and laminar differences in neuronal functional properties may be crucial for local computation within the PFC microcircuit.
Collapse
|
96
|
Monaco SA, Gulchina Y, Gao WJ. NR2B subunit in the prefrontal cortex: A double-edged sword for working memory function and psychiatric disorders. Neurosci Biobehav Rev 2015; 56:127-38. [PMID: 26143512 DOI: 10.1016/j.neubiorev.2015.06.022] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/27/2015] [Accepted: 06/29/2015] [Indexed: 12/23/2022]
Abstract
The prefrontal cortex (PFC) is a brain region featured with working memory function. The exact mechanism of how working memory operates within the PFC circuitry is unknown, but persistent neuronal firing recorded from prefrontal neurons during a working memory task is proposed to be the neural correlate of this mnemonic encoding. The PFC appears to be specialized for sustaining persistent firing, with N-methyl-D-aspartate (NMDA) receptors, especially slow-decay NR2B subunits, playing an essential role in the maintenance of sustained activity and normal working memory function. However, the NR2B subunit serves as a double-edged sword for PFC function. Because of its slow kinetics, NR2B endows the PFC with not only "neural psychic" properties, but also susceptibilities for neuroexcitotoxicity and psychiatric disorders. This review aims to clarify the interplay among working memory, the PFC, and NMDA receptors; demonstrate the importance of NR2B in the maintenance of persistent activity; understand the risks and vulnerabilities of how NR2B is related to the development of neuropsychiatric disorders; identify gaps that currently exist in our understanding of these processes; and provide insights regarding future directions that may clarify these issues. We conclude that the PFC is a specialized brain region with distinct delayed maturation, unique neuronal circuitry, and characteristic NMDA receptor function. The unique properties and development of NMDA receptors, especially enrichment of NR2B subunits, endow the PFC with not only the capability to generate sustained activity for working memory, but also serves as a major vulnerability to environmental insults and risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Sarah A Monaco
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States
| | - Yelena Gulchina
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Room 243, Philadelphia, PA 19129, United States.
| |
Collapse
|
97
|
Pinto L, Dan Y. Cell-Type-Specific Activity in Prefrontal Cortex during Goal-Directed Behavior. Neuron 2015; 87:437-50. [PMID: 26143660 DOI: 10.1016/j.neuron.2015.06.021] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 05/05/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023]
Abstract
The prefrontal cortex (PFC) plays a key role in controlling goal-directed behavior. Although a variety of task-related signals have been observed in the PFC, whether they are differentially encoded by various cell types remains unclear. Here we performed cellular-resolution microendoscopic Ca(2+) imaging from genetically defined cell types in the dorsomedial PFC of mice performing a PFC-dependent sensory discrimination task. We found that inhibitory interneurons of the same subtype were similar to each other, but different subtypes preferentially signaled different task-related events: somatostatin-positive neurons primarily signaled motor action (licking), vasoactive intestinal peptide-positive neurons responded strongly to action outcomes, whereas parvalbumin-positive neurons were less selective, responding to sensory cues, motor action, and trial outcomes. Compared to each interneuron subtype, pyramidal neurons showed much greater functional heterogeneity, and their responses varied across cortical layers. Such cell-type and laminar differences in neuronal functional properties may be crucial for local computation within the PFC microcircuit.
Collapse
Affiliation(s)
- Lucas Pinto
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
98
|
Malá H, Andersen LG, Christensen RF, Felbinger A, Hagstrøm J, Meder D, Pearce H, Mogensen J. Prefrontal cortex and hippocampus in behavioural flexibility and posttraumatic functional recovery: Reversal learning and set-shifting in rats. Brain Res Bull 2015; 116:34-44. [DOI: 10.1016/j.brainresbull.2015.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/17/2015] [Accepted: 05/18/2015] [Indexed: 11/25/2022]
|
99
|
Hippocampal-prefrontal input supports spatial encoding in working memory. Nature 2015; 522:309-14. [PMID: 26053122 PMCID: PMC4505751 DOI: 10.1038/nature14445] [Citation(s) in RCA: 468] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 03/25/2015] [Indexed: 02/07/2023]
Abstract
Spatial working memory, the caching of behaviourally relevant spatial cues on a timescale of seconds, is a fundamental constituent of cognition. Although the prefrontal cortex and hippocampus are known to contribute jointly to successful spatial working memory, the anatomical pathway and temporal window for the interaction of these structures critical to spatial working memory has not yet been established. Here we find that direct hippocampal-prefrontal afferents are critical for encoding, but not for maintenance or retrieval, of spatial cues in mice. These cues are represented by the activity of individual prefrontal units in a manner that is dependent on hippocampal input only during the cue-encoding phase of a spatial working memory task. Successful encoding of these cues appears to be mediated by gamma-frequency synchrony between the two structures. These findings indicate a critical role for the direct hippocampal-prefrontal afferent pathway in the continuous updating of task-related spatial information during spatial working memory.
Collapse
|
100
|
Werlen E, Jones MW. Modulating the map: dopaminergic tuning of hippocampal spatial coding and interactions. PROGRESS IN BRAIN RESEARCH 2015; 219:187-216. [PMID: 26072240 DOI: 10.1016/bs.pbr.2015.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Salient events activate the midbrain dopaminergic system and have important impacts on various aspects of mnemonic function, including the stability of hippocampus-dependent memories. Dopamine is also central to modulation of neocortical memory processing, particularly during prefrontal cortex-dependent working memory. Here, we review the current state of the circuitry and physiology underlying dopamine's actions, suggesting that--alongside local effects within hippocampus and prefrontal cortex--dopamine released from the midbrain ventral tegmental area is well positioned to dynamically tune interactions between limbic-cortical circuits through modulation of rhythmic network activity.
Collapse
Affiliation(s)
- Emilie Werlen
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK.
| | - Matthew W Jones
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, UK
| |
Collapse
|