51
|
Lees DC. The genome sequence of Blair's Shoulder-knot, Lithophane leautieri (Boisduval, 1829). Wellcome Open Res 2024; 9:369. [PMID: 39381070 PMCID: PMC11459115 DOI: 10.12688/wellcomeopenres.22610.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2024] [Indexed: 10/10/2024] Open
Abstract
We present a genome assembly from an individual male Lithophane leautieri (Blair's Shoulder-knot; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 521.7 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.4 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,254 protein coding genes.
Collapse
|
52
|
Lees DC. The genome sequence of the Barred Chestnut moth, Diarsia dahlii (Hübner, 1813). Wellcome Open Res 2024; 9:357. [PMID: 39290367 PMCID: PMC11406134 DOI: 10.12688/wellcomeopenres.22587.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
We present a genome assembly from an individual female Diarsia dahlii (the Barred Chestnut; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 683.0 megabases in span. Most of the assembly is scaffolded into 32 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.36 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,177 protein coding genes.
Collapse
|
53
|
Ing NH, Konganti K, Ghaffar N, Johnson CD, Forrest DW, Love CC, Varner DD. Specific microRNAs in stallion spermatozoa are potential biomarkers of high functionality. Reprod Domest Anim 2024; 59:e14674. [PMID: 39005151 DOI: 10.1111/rda.14674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Males of some species, from horses to humans, require medical help for subfertility problems. There is an urgent need for novel molecular assays that reflect spermatozoal function. In the last 25 years, studies examined RNAs in spermatozoa as a window into gene expression during their development and, more recently, for their functions in early embryo development. In clinics, more dense spermatozoa are isolated by density gradient centrifugation before use in artificial insemination to increase pregnancy rates. The objectives of the current study were to discover and quantify the microRNAs in stallion spermatozoa and identify those with differential expression levels in more dense versus less dense spermatozoa. First, spermatozoa from seven stallions were separated into more dense and less dense populations by density gradient centrifugation. Next, small RNAs were sequenced from each of the 14 RNA samples. We identified 287 different mature microRNAs within the 11,824,720 total mature miRNA reads from stallion spermatozoa. The most prevalent was miR-10a/b-5p. The less dense spermatozoa had fewer mature microRNAs and more microRNA precursor sequences than more dense spermatozoa, perhaps indicating that less dense spermatozoa are less mature. Two of the most prevalent microRNAs in more dense stallion spermatozoa were predicted to target mRNAs that encode proteins that accelerate mRNA decay. Nine microRNAs were more highly expressed in more dense spermatozoa. Three of those microRNAs were predicted to target mRNAs that encode proteins involved in protein decay. Both mRNA and protein decay are very active in late spermiogenesis but not in mature spermatozoa. The identified microRNAs may be part of the mechanism to shut down those processes. The microRNAs with greater expression in more dense spermatozoa may be useful biomarkers for spermatozoa with greater functional capabilities.
Collapse
Affiliation(s)
- Nancy H Ing
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Kranti Konganti
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Noushin Ghaffar
- Texas A&M Institute for Genome Sciences and Society, Texas A&M University, College Station, Texas, USA
| | - Charles D Johnson
- AgriLife Genomics and Bioinformatics, Texas A&M University, College Station, Texas, USA
| | - David W Forrest
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Charles C Love
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| | - Dickson D Varner
- Large Animal Clinical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
54
|
Crowley LM, Broad GR, Fletcher C, Januszczak I, Barnes I, Whiffin AL. The genome sequence of the Banded Burying beetle, Nicrophorus investigator Zetterstedt, 1824. Wellcome Open Res 2024; 9:343. [PMID: 39267991 PMCID: PMC11391189 DOI: 10.12688/wellcomeopenres.21496.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2024] [Indexed: 09/15/2024] Open
Abstract
We present a genome assembly from a female Nicrophorus investigator (Banded Burying beetle; Arthropoda; Insecta; Coleoptera; Silphidae). The genome sequence is 202.3 megabases in span. Most of the assembly is scaffolded into 7 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 23.3 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,046 protein coding genes.
Collapse
Affiliation(s)
- Liam M Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | | | | | | | - Ian Barnes
- Natural History Museum, London, England, UK
| | - Ashleigh L Whiffin
- Invertebrate Biology, Natural Sciences, National Museums Scotland, Edinburgh, Scotland, UK
| |
Collapse
|
55
|
Page ML, Aguzzoli Heberle B, Brandon JA, Wadsworth ME, Gordon LA, Nations KA, Ebbert MTW. Surveying the landscape of RNA isoform diversity and expression across 9 GTEx tissues using long-read sequencing data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.579945. [PMID: 38405825 PMCID: PMC10888753 DOI: 10.1101/2024.02.13.579945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Even though alternative RNA splicing was discovered nearly 50 years ago (1977), we still understand very little about most isoforms arising from a single gene, including in which tissues they are expressed and if their functions differ. Human gene annotations suggest remarkable transcriptional complexity, with approximately 252,798 distinct RNA isoform annotations from 62,710 gene bodies (Ensembl v109; 2023), emphasizing the need to understand their biological effects. For example, 256 gene bodies have ≥50 annotated isoforms and 30 have ≥100, where one protein-coding gene (MAPK10) even has 192 distinct RNA isoform annotations. Whether such isoform diversity results from biological redundancy or spurious alternative splicing (i.e., noise), or whether individual isoforms have specialized functions (even if subtle) remains a mystery for most genes. Recent studies by Aguzzoli-Heberle et al., Leung et al., and Glinos et al. demonstrated long-read RNAseq enables improved RNA isoform quantification for essentially any tissue, cell type, or biological condition (e.g., disease, development, aging, etc.), making it possible to better assess individual isoform expression and function. While each study provided important discoveries related to RNA isoform diversity, deeper exploration is needed. We sought to quantify and characterize real isoform usage across tissues (compared to annotations). We used long-read RNAseq data from 58 GTEx samples across nine tissues (three brain, two heart, muscle, lung, liver, and cultured fibroblasts) generated by Glinos et al. and found considerable isoform diversity within and across tissues. Cerebellar hemisphere was the most transcriptionally complex tissue (22,522 distinct isoforms; 3,726 unique); liver was least diverse (12,435 distinct isoforms; 1,039 unique). We highlight gene clusters exhibiting high tissue-specific isoform diversity per tissue (e.g., TPM1 expresses 19 in heart's atrial appendage). We also validated 447 of the 700 new isoforms discovered by Aguzzoli-Heberle et al. and found that 88 were expressed in all nine tissues, while 58 were specific to a single tissue. This study represents a broad survey of the RNA isoform landscape, demonstrating isoform diversity across nine tissues and emphasizes the need to better understand how individual isoforms from a single gene body contribute to human health and disease.
Collapse
Affiliation(s)
- Madeline L. Page
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Bernardo Aguzzoli Heberle
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - J. Anthony Brandon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark E. Wadsworth
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Lacey A. Gordon
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Kayla A. Nations
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| | - Mark T. W. Ebbert
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY
- Division of Biomedical Informatics, Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY
| |
Collapse
|
56
|
Saha S, Haynes WJ, Del Rio NM, Young EE, Zhang J, Seo J, Huang L, Holm AM, Blashka W, Murphy L, Scholz MJ, Henrichs A, Suresh Babu J, Steill J, Stewart R, Kamp TJ, Brown ME. Diminished Immune Cell Adhesion in Hypoimmune ICAM-1 Knockout Pluripotent Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597791. [PMID: 38895244 PMCID: PMC11185752 DOI: 10.1101/2024.06.07.597791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Hypoimmune gene edited human pluripotent stem cells (hPSCs) are a promising platform for developing reparative cellular therapies that evade immune rejection. Existing first-generation hypoimmune strategies have used CRISPR/Cas9 editing to modulate genes associated with adaptive (e.g., T cell) immune responses, but have largely not addressed the innate immune cells (e.g., monocytes, neutrophils) that mediate inflammation and rejection processes occurring early after graft transplantation. We identified the adhesion molecule ICAM-1 as a novel hypoimmune target that plays multiple critical roles in both adaptive and innate immune responses post-transplantation. In a series of studies, we found that ICAM-1 blocking or knock-out (KO) in hPSC-derived cardiovascular therapies imparted significantly diminished binding of multiple immune cell types. ICAM-1 KO resulted in diminished T cell proliferation responses in vitro and in longer in vivo retention/protection of KO grafts following immune cell encounter in NeoThy humanized mice. The ICAM-1 KO edit was also introduced into existing first-generation hypoimmune hPSCs and prevented immune cell binding, thereby enhancing the overall hypoimmune capacity of the cells. This novel hypoimmune editing strategy has the potential to improve the long-term efficacy and safety profiles of regenerative therapies for cardiovascular pathologies and a number of other diseases.
Collapse
Affiliation(s)
- Sayandeep Saha
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - W. John Haynes
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Natalia M. Del Rio
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Elizabeth E. Young
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Jue Zhang
- Morgridge Institute for Research, Madison, WI
| | - Jiwon Seo
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Liupei Huang
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Alexis M. Holm
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Wesley Blashka
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Lydia Murphy
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Merrick J. Scholz
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | - Abigale Henrichs
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| | | | - John Steill
- Morgridge Institute for Research, Madison, WI
| | - Ron Stewart
- Morgridge Institute for Research, Madison, WI
| | - Timothy J. Kamp
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Medicine, Madison, WI
| | - Matthew E. Brown
- University of Wisconsin-Madison, School of Medicine and Public Health, Department of Surgery, Madison, WI
| |
Collapse
|
57
|
Chenna S, Ivanov M, Nielsen TK, Chalenko K, Olsen E, Jørgensen K, Sandelin A, Marquardt S. A data-driven genome annotation approach for cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38831668 DOI: 10.1111/tpj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Genome annotation files play a critical role in dictating the quality of downstream analyses by providing essential predictions for gene positions and structures. These files are pivotal in decoding the complex information encoded within DNA sequences. Here, we generated experimental data resolving RNA 5'- and 3'-ends as well as full-length RNAs for cassava TME12 sticklings in ambient temperature and cold. We used these data to generate genome annotation files using the TranscriptomeReconstructoR (TR) tool. A careful comparison to high-quality genome annotations suggests that our new TR genome annotations identified additional genes, resolved the transcript boundaries more accurately and identified additional RNA isoforms. We enhanced existing cassava genome annotation files with the information from TR that maintained the different transcript models as RNA isoforms. The resultant merged annotation was subsequently utilized for comprehensive analysis. To examine the effects of genome annotation files on gene expression studies, we compared the detection of differentially expressed genes during cold using the same RNA-seq data but alternative genome annotation files. We found that our merged genome annotation that included cold-specific TR gene models identified about twice as many cold-induced genes. These data indicate that environmentally induced genes may be missing in off-the-shelf genome annotation files. In conclusion, TR offers the opportunity to enhance crop genome annotations with implications for the discovery of differentially expressed candidate genes during plant-environment interactions.
Collapse
Affiliation(s)
- Swetha Chenna
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Karina Chalenko
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Evy Olsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| |
Collapse
|
58
|
Schätzl T, Todorow V, Kaiser L, Weinschrott H, Schoser B, Deigner HP, Meinke P, Kohl M. Meta-analysis towards FSHD reveals misregulation of neuromuscular junction, nuclear envelope, and spliceosome. Commun Biol 2024; 7:640. [PMID: 38796645 PMCID: PMC11127974 DOI: 10.1038/s42003-024-06325-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 05/28/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common autosomal dominant muscle disorders, yet no cure or amelioration exists. The clinical presentation is diverse, making it difficult to identify the actual driving pathomechanism among many downstream events. To unravel this complexity, we performed a meta-analysis of 13 original omics datasets (in total 171 FSHD and 129 control samples). Our approach confirmed previous findings about the disease pathology and specified them further. We confirmed increased expression of former proposed DUX4 biomarkers, and furthermore impairment of the respiratory chain. Notably, the meta-analysis provides insights about so far not reported pathways, including misregulation of neuromuscular junction protein encoding genes, downregulation of the spliceosome, and extensive alterations of nuclear envelope protein expression. Finally, we developed a publicly available shiny app to provide a platform for researchers who want to search our analysis for genes of interest in the future.
Collapse
Affiliation(s)
- Teresa Schätzl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Vanessa Todorow
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Lars Kaiser
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Helga Weinschrott
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany
- Faculty of Science, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Rostock, Germany
| | - Peter Meinke
- Friedrich-Baur-Institute at the Department of Neurology, LMU University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Matthias Kohl
- Institute of Precision Medicine, Furtwangen University, Furtwangen, Germany.
| |
Collapse
|
59
|
Lohse K, Vila R, Hayward A. The genome sequence of the Lulworth Skipper, Thymelicus acteon (Rottemburg, 1775). Wellcome Open Res 2024; 9:266. [PMID: 39257624 PMCID: PMC11384194 DOI: 10.12688/wellcomeopenres.21627.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2024] [Indexed: 09/12/2024] Open
Abstract
We present a genome assembly from an individual male Thymelicus acteon (the Lulworth Skipper; Arthropoda; Insecta; Lepidoptera; Hesperiidae). The genome sequence is 537.0 megabases in span. Most of the assembly is scaffolded into 28 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 17.08 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,813 protein-coding genes.
Collapse
Affiliation(s)
- Konrad Lohse
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, Scotland, UK
| | - Roger Vila
- Institut de Biologia Evolutiva, CSIC - Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Alex Hayward
- Department of Biosciences, University of Exeter, Penryn, England, UK
| |
Collapse
|
60
|
Lee H, Ozbulak U, Park H, Depuydt S, De Neve W, Vankerschaver J. Assessing the reliability of point mutation as data augmentation for deep learning with genomic data. BMC Bioinformatics 2024; 25:170. [PMID: 38689247 PMCID: PMC11059627 DOI: 10.1186/s12859-024-05787-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Deep neural networks (DNNs) have the potential to revolutionize our understanding and treatment of genetic diseases. An inherent limitation of deep neural networks, however, is their high demand for data during training. To overcome this challenge, other fields, such as computer vision, use various data augmentation techniques to artificially increase the available training data for DNNs. Unfortunately, most data augmentation techniques used in other domains do not transfer well to genomic data. RESULTS Most genomic data possesses peculiar properties and data augmentations may significantly alter the intrinsic properties of the data. In this work, we propose a novel data augmentation technique for genomic data inspired by biology: point mutations. By employing point mutations as substitutes for codons, we demonstrate that our newly proposed data augmentation technique enhances the performance of DNNs across various genomic tasks that involve coding regions, such as translation initiation and splice site detection. CONCLUSION Silent and missense mutations are found to positively influence effectiveness, while nonsense mutations and random mutations in non-coding regions generally lead to degradation. Overall, point mutation-based augmentations in genomic datasets present valuable opportunities for improving the accuracy and reliability of predictive models for DNA sequences.
Collapse
Affiliation(s)
| | - Utku Ozbulak
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
| | - Homin Park
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Brussels University of Applied Sciences and Arts, Brussels, Belgium
| | - Wesley De Neve
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea
- IDLab, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, Incheon, South Korea.
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium.
| |
Collapse
|
61
|
Bista I, Collins M. The genome sequence of the marbled rockcod, Notothenia rossii Richardson, 1844. Wellcome Open Res 2024; 9:227. [PMID: 39221438 PMCID: PMC11362733 DOI: 10.12688/wellcomeopenres.21270.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 09/04/2024] Open
Abstract
We present a genome assembly from an individual Notothenia rossii (the marbled rockcod; Chordata; Actinopterygii; Perciformes; Nototheniidae). The genome sequence is 1,042.9 megabases in span. Most of the assembly is scaffolded into 12 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 21.68 kilobases in length. Gene annotation of this assembly on Ensembl identified 24,432 protein coding genes.
Collapse
Affiliation(s)
- Iliana Bista
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Naturalis Biodiversity Center, Leiden, South Holland, The Netherlands
| | | | | | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Naturalis Biodiversity Center, Leiden, South Holland, The Netherlands
- British Antarctic Survey, NERC, Cambridge, England, UK
| | - Wellcome Sanger Institute Tree of Life Core Informatics team
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Naturalis Biodiversity Center, Leiden, South Holland, The Netherlands
- British Antarctic Survey, NERC, Cambridge, England, UK
| | - Tree of Life Core Informatics collective
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt, Germany
- Senckenberg Research Institute, Frankfurt, Germany
- Naturalis Biodiversity Center, Leiden, South Holland, The Netherlands
- British Antarctic Survey, NERC, Cambridge, England, UK
| |
Collapse
|
62
|
Boyes D, Crowley LM, McCulloch J, Boyes C. The genome sequence of the Elm Groundling moth, Carpatolechia fugitivella (Zeller, 1839). Wellcome Open Res 2024; 9:211. [PMID: 39139614 PMCID: PMC11320048 DOI: 10.12688/wellcomeopenres.21267.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 08/15/2024] Open
Abstract
We present a genome assembly from an individual male Carpatolechia fugitivella (the Elm Groundling; Arthropoda; Insecta; Lepidoptera; Gelechiidae). The genome sequence is 493.1 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.26 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,721 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | | - Clare Boyes
- Independent researcher, Welshpool, Wales, UK
| | | | | | - Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory team
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
- University of Oxford, Oxford, England, UK
- Independent researcher, Welshpool, Wales, UK
| | | | | | | | | |
Collapse
|
63
|
Jentoft S, Tørresen OK, Tooming-Klunderud A, Skage M, Kollias S, Jakobsen KS. The genome sequence of the Atlantic cod, Gadus morhua (Linnaeus, 1758). Wellcome Open Res 2024; 9:189. [PMID: 39224768 PMCID: PMC11367075 DOI: 10.12688/wellcomeopenres.21122.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 09/04/2024] Open
Abstract
We present a genome assembly from an individual male Gadus morhua (the Atlantic cod; Chordata; Actinopteri; Gadiformes; Gadidae). The genome sequence is 669.9 megabases in span. Most of the assembly is scaffolded into 23 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl identified 23,515 protein coding genes.
Collapse
Affiliation(s)
- Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ole K. Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Ave Tooming-Klunderud
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Morten Skage
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Spyridon Kollias
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S. Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | | | - Tree of Life Core Informatics collective
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Darwin Tree of Life Consortium
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Sequencing Centre, Department of Biosciences, University of Oslo, Oslo, Norway
| |
Collapse
|
64
|
de Jong TV, Pan Y, Rastas P, Munro D, Tutaj M, Akil H, Benner C, Chen D, Chitre AS, Chow W, Colonna V, Dalgard CL, Demos WM, Doris PA, Garrison E, Geurts AM, Gunturkun HM, Guryev V, Hourlier T, Howe K, Huang J, Kalbfleisch T, Kim P, Li L, Mahaffey S, Martin FJ, Mohammadi P, Ozel AB, Polesskaya O, Pravenec M, Prins P, Sebat J, Smith JR, Solberg Woods LC, Tabakoff B, Tracey A, Uliano-Silva M, Villani F, Wang H, Sharp BM, Telese F, Jiang Z, Saba L, Wang X, Murphy TD, Palmer AA, Kwitek AE, Dwinell MR, Williams RW, Li JZ, Chen H. A revamped rat reference genome improves the discovery of genetic diversity in laboratory rats. CELL GENOMICS 2024; 4:100527. [PMID: 38537634 PMCID: PMC11019364 DOI: 10.1016/j.xgen.2024.100527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/26/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
The seventh iteration of the reference genome assembly for Rattus norvegicus-mRatBN7.2-corrects numerous misplaced segments and reduces base-level errors by approximately 9-fold and increases contiguity by 290-fold compared with its predecessor. Gene annotations are now more complete, improving the mapping precision of genomic, transcriptomic, and proteomics datasets. We jointly analyzed 163 short-read whole-genome sequencing datasets representing 120 laboratory rat strains and substrains using mRatBN7.2. We defined ∼20.0 million sequence variations, of which 18,700 are predicted to potentially impact the function of 6,677 genes. We also generated a new rat genetic map from 1,893 heterogeneous stock rats and annotated transcription start sites and alternative polyadenylation sites. The mRatBN7.2 assembly, along with the extensive analysis of genomic variations among rat strains, enhances our understanding of the rat genome, providing researchers with an expanded resource for studies involving rats.
Collapse
Affiliation(s)
- Tristan V de Jong
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanchao Pan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Pasi Rastas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Daniel Munro
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Department of Integrative Structural and Computational Biology, Scripps Research, San Diego, CA, USA
| | - Monika Tutaj
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Huda Akil
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Chris Benner
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Denghui Chen
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Apurva S Chitre
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - William Chow
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics, National Research Council, Naples, Italy; Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Wendy M Demos
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peter A Doris
- The Brown Foundation Institute of Molecular Medicine, Center for Human Genetics, University of Texas Health Science Center, Houston, TX, USA
| | - Erik Garrison
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aron M Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hakan M Gunturkun
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Victor Guryev
- Genome Structure and Ageing, University of Groningen, UMC, Groningen, the Netherlands
| | - Thibaut Hourlier
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | - Jun Huang
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ted Kalbfleisch
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Louisville, KY, USA
| | - Panjun Kim
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ling Li
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Mahaffey
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus in Hinxton, Cambridgeshire, UK
| | - Pejman Mohammadi
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Michal Pravenec
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Pjotr Prins
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jonathan Sebat
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Jennifer R Smith
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Leah C Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, UK
| | | | - Flavia Villani
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Hongyang Wang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Burt M Sharp
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Laura Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Xusheng Wang
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA; Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Terence D Murphy
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anne E Kwitek
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melinda R Dwinell
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
65
|
Hammond J. The genome sequence of the Spruce-seed moth, Cydia strobilella (Linnaeus, 1758). Wellcome Open Res 2024; 9:177. [PMID: 39323608 PMCID: PMC11422755 DOI: 10.12688/wellcomeopenres.21214.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 09/27/2024] Open
Abstract
We present a genome assembly from an individual male Cydia strobilella (the spruce-seed moth; Arthropoda; Insecta; Lepidoptera; Tortricidae). The genome sequence is 542.6 megabases in span. Most of the assembly is scaffolded into 28 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.78 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,058 protein coding genes.
Collapse
|
66
|
Falk S, Broad GR. The genome sequence of Tenthredo notha Klug, 1814, a sawfly. Wellcome Open Res 2024; 7:120. [PMID: 38586560 PMCID: PMC10997988 DOI: 10.12688/wellcomeopenres.17811.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
We present a genome assembly from an individual female Tenthredo notha (Arthropoda; Insecta; Hymenoptera; Tenthredinidae). The genome sequence is 253 megabases in span. Most of the assembly (99.91%) is scaffolded into 20 chromosomal pseudomolecules. The mitochondrial genome was also assembled and is 19.8 kilobases in length. Gene annotation of this assembly on Ensembl has identified 10,235 protein coding genes.
Collapse
Affiliation(s)
- Steven Falk
- Independent Researcher, Kenilworth, Warwickshire, UK
| | | | | | | | | | | | - Gavin R. Broad
- Department of Life Sciences, Natural History Museum, London, UK
| | | |
Collapse
|
67
|
Falk S, Monks J. The genome sequence of the common green furrow bee, Lasioglossum morio (Fabricius, 1793). Wellcome Open Res 2024; 8:28. [PMID: 38699201 PMCID: PMC11063680 DOI: 10.12688/wellcomeopenres.18715.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
We present a genome assembly from an individual male Lasioglossum morio (the common green furrow bee; Arthropoda; Insecta; Hymenoptera; Halictidae). The genome sequence is 547 megabases in span. Over half of the assembly (55.79%) is scaffolded into 12 chromosomal pseudomolecules. The mitochondrial genome was also assembled, and is 16.8 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,460 protein coding genes.
Collapse
Affiliation(s)
- Steven Falk
- Independent Researcher, Kenilworth, Warwickshire, UK
| | | | | | | | | | | | - Joseph Monks
- Department of Life Sciences- Hymenoptera section, Natural History Museum, London, UK
| | | |
Collapse
|
68
|
Boyes D, Holland PW. The genome sequence of the Orange-tailed Clearwing, Synanthedon andrenaeformis (Laspeyres, 1801). Wellcome Open Res 2024; 9:160. [PMID: 39092001 PMCID: PMC11292182 DOI: 10.12688/wellcomeopenres.21110.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 08/04/2024] Open
Abstract
We present a genome assembly from an individual male Synanthedon andrenaeformis (the Orange-tailed Clearwing; Arthropoda; Insecta; Lepidoptera; Sesiidae). The genome sequence is 348.4 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.65 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,867 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Demšar Luzar A, Korošec P, Košnik M, Zidarn M, Rijavec M. Blood Transcriptomics Identifies Multiple Gene Expression Pathways Associated with the Clinical Efficacy of Hymenoptera Venom Immunotherapy. Int J Mol Sci 2024; 25:3499. [PMID: 38542470 PMCID: PMC10971012 DOI: 10.3390/ijms25063499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 11/11/2024] Open
Abstract
Allergen-specific venom immunotherapy (VIT) is a well-established therapy for Hymenoptera venom allergy (HVA). However, the precise mechanism underlying its clinical effect remains uncertain. Our study aimed to identify the molecular mechanisms associated with VIT efficiency. We prospectively included 19 patients with HVA undergoing VIT (sampled before the beginning of VIT, after reaching the maintenance dose, one year after finishing VIT, and after a sting challenge) and 9 healthy controls. RNA sequencing of whole blood was performed on an Illumina sequencing platform. Longitudinal transcriptomic profiling revealed the importance of the inhibition of the NFκB pathway and the downregulation of DUX4 transcripts for the early protection and induction of tolerance after finishing VIT. Furthermore, successful treatment was associated with inhibiting Th2, Th17, and macrophage alternative signalling pathways in synergy with the inhibition of the PPAR pathway and further silencing of the Th2 response. The immune system became activated when reaching the maintenance dose and was suppressed after finishing VIT. Finally, successful VIT restores the immune system's balance to a state similar to that of healthy individuals. Our results underline the important role of the inhibition of four pathways in the clinical effect of VIT: Th2, Th17, NFκB, and macrophage signalling. Two biomarkers specific for successful VIT, regardless of the time of sampling, were C4BPA and RPS10-NUDT3 and should be further tested as potential biomarkers.
Collapse
Affiliation(s)
- Ajda Demšar Luzar
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Peter Korošec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Mitja Košnik
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Mihaela Zidarn
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Rijavec
- Laboratory for Clinical Immunology and Molecular Genetics, University Clinic of Respiratory and Allergic Diseases Golnik, 4204 Golnik, Slovenia; (A.D.L.); (P.K.); (M.K.); (M.Z.)
- Biotechnical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
70
|
Li R, Li J, Lopez JV, Oatley G, Clayton-Lucey IA, Sinclair E, Aunin E, Gettle N, Santos C, Paulini M, Niu H, McKenna V, O’Brien R. The genome sequence of the giant clam, Tridacna gigas (Linnaeus, 1758). Wellcome Open Res 2024; 9:145. [PMID: 38800516 PMCID: PMC11116938 DOI: 10.12688/wellcomeopenres.21136.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 05/29/2024] Open
Abstract
We present a chromosomal-level genome assembly from an individual Tridacna gigas (the giant clam; Mollusca; Bivalvia; Veneroida; Cardiidae). The genome sequence is 1,175.9 megabases in span. Most of the assembly is scaffolded into 17 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 25.34 kilobases in length. Gene annotation of this assembly on Ensembl identified 18,177 protein coding genes.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jingchun Li
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jose Victor Lopez
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Graeme Oatley
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | | | - Eerik Aunin
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Noah Gettle
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Camilla Santos
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Michael Paulini
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Haoyu Niu
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | - Rebecca O’Brien
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Tree of Life Core Informatics Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - EBI Aquatic Symbiosis Genomics Data Portal Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | |
Collapse
|
71
|
Boyes D, Crowley LM, Skojec C, Plotkin D, Kawahara AY. The genome sequence of the 6-spot burnet, Zygaena filipendulae (Linnaeus, 1758). Wellcome Open Res 2024; 7:197. [PMID: 39323974 PMCID: PMC11422757 DOI: 10.12688/wellcomeopenres.17924.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 09/27/2024] Open
Abstract
We present a genome assembly from an individual female Zygaena filipendulae (6-spot burnet; Arthropoda; Insecta; Lepidoptera; Zygaenidae). The genome sequence is 365.9 megabases in span. The majority of the assembly (99.99%) is scaffolded into 31 chromosomal pseudomolecules, with the W and Z sex chromosomes assembled. The complete mitochondrial genome was also assembled and is 15.6 kilobases in length. Gene annotation of this assembly on Ensembl has identified 12,493 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
| | | | - University of Oxford and Wytham Woods Genome Acquisition Lab
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Kawahara Lab, University of Florida, Gainesville, USA
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | - Darwin Tree of Life Barcoding collective
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Kawahara Lab, University of Florida, Gainesville, USA
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | - Wellcome Sanger Institute Tree of Life programme
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Kawahara Lab, University of Florida, Gainesville, USA
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | - Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Kawahara Lab, University of Florida, Gainesville, USA
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | - Tree of Life Core Informatics collective
- UK Centre for Ecology and Hydrology, Wallingford, Oxfordshire, UK
- Department of Zoology, University of Oxford, Oxford, UK
- Kawahara Lab, University of Florida, Gainesville, USA
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | | | - David Plotkin
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | - Akito Y. Kawahara
- McGuire center for Lepidoptera and Biodiversity, Florida Museum of Natural History, Gainsville, USA
| | | |
Collapse
|
72
|
Murali M, Saquing J, Lu S, Gao Z, Jordan B, Wakefield ZP, Fiszbein A, Cooper DR, Castaldi PJ, Korkin D, Sheynkman G. Biosurfer for systematic tracking of regulatory mechanisms leading to protein isoform diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585320. [PMID: 38559226 PMCID: PMC10980011 DOI: 10.1101/2024.03.15.585320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Long-read RNA sequencing has shed light on transcriptomic complexity, but questions remain about the functionality of downstream protein products. We introduce Biosurfer, a computational approach for comparing protein isoforms, while systematically tracking the transcriptional, splicing, and translational variations that underlie differences in the sequences of the protein products. Using Biosurfer, we analyzed the differences in 32,799 pairs of GENCODE annotated protein isoforms, finding a majority (70%) of variable N-termini are due to the alternative transcription start sites, while only 9% arise from 5' UTR alternative splicing. Biosurfer's detailed tracking of nucleotide-to-residue relationships helped reveal an uncommonly tracked source of single amino acid residue changes arising from the codon splits at junctions. For 17% of internal sequence changes, such split codon patterns lead to single residue differences, termed "ragged codons". Of variable C-termini, 72% involve splice- or intron retention-induced reading frameshifts. We found an unusual pattern of reading frame changes, in which the first frameshift is closely followed by a distinct second frameshift that restores the original frame, which we term a "snapback" frameshift. We analyzed long read RNA-seq-predicted proteome of a human cell line and found similar trends as compared to our GENCODE analysis, with the exception of a higher proportion of isoforms predicted to undergo nonsense-mediated decay. Biosurfer's comprehensive characterization of long-read RNA-seq datasets should accelerate insights of the functional role of protein isoforms, providing mechanistic explanation of the origins of the proteomic diversity driven by the alternative splicing. Biosurfer is available as a Python package at https://github.com/sheynkman-lab/biosurfer.
Collapse
Affiliation(s)
- Mayank Murali
- Broad Institute of MIT and Harvard University, Cambridge, MA, USA
| | - Jamie Saquing
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Senbao Lu
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ziyang Gao
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Ben Jordan
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Zachary Peters Wakefield
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - Ana Fiszbein
- Bioinformatics Program, Boston University, Boston, MA, USA
- Department of Biology, Boston University, Boston, MA, USA
| | - David R. Cooper
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Peter J. Castaldi
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of General Medicine and Primary Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Dmitry Korkin
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
- Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Gloria Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
73
|
Gabryś J, Gurgul A, Szmatoła T, Kij-Mitka B, Andronowska A, Karnas E, Kucharski M, Wojciechowska-Puchałka J, Kochan J, Bugno-Poniewierska M. Follicular Fluid-Derived Extracellular Vesicles Influence on In Vitro Maturation of Equine Oocyte: Impact on Cumulus Cell Viability, Expansion and Transcriptome. Int J Mol Sci 2024; 25:3262. [PMID: 38542236 PMCID: PMC10970002 DOI: 10.3390/ijms25063262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 07/14/2024] Open
Abstract
Cumulus cell (CC) expansion is pivotal for oocyte maturation, during which CCs release factors that initiate paracrine signaling within the follicular fluid (FF). The FF is abundant in extracellular vesicles (EVs) that facilitate intercellular communication. Although bovine and murine EVs can control cumulus expansion, these effects have not been observed in equines. This study aimed to assess the impact of FF-derived EVs (ffEVs) on equine CC expansion, viability, and transcriptome. Cumulus-oocyte complexes (COCs) that underwent in vitro maturation (IVM) in the presence (200 µg protein/mL) or absence (control) of ffEVs were assessed for cumulus expansion and viability. CCs were isolated after 12 h of IVM, followed by RNA extraction, cDNA library generation, and subsequent transcriptome analysis using next-generation sequencing. Confocal microscopy images illustrated the internalization of labeled ffEVs by CCs. Supplementation with ffEVs significantly enhanced cumulus expansion in both compacted (Cp, p < 0.0001) and expanded (Ex, p < 0.05) COCs, while viability increased in Cp groups (p < 0.01), but decreased in Ex groups (p < 0.05), compared to the controls. Although transcriptome analysis revealed a subtle effect on CC RNA profiles, differentially expressed genes encompassed processes (e.g., MAPK and Wnt signaling) potentially crucial for cumulus properties and, consequently, oocyte maturation.
Collapse
Affiliation(s)
- Julia Gabryś
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Artur Gurgul
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Tomasz Szmatoła
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1c, 30-248 Krakow, Poland;
| | - Barbara Kij-Mitka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland;
| | - Mirosław Kucharski
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Joanna Wojciechowska-Puchałka
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Joanna Kochan
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| | - Monika Bugno-Poniewierska
- Department of Animal Reproduction, Anatomy and Genomics, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland; (J.G.); (B.K.-M.); (J.W.-P.); (J.K.); (M.B.-P.)
| |
Collapse
|
74
|
Li R, Li J, Lemer S, Lopez JV, Oatley G, Clayton-Lucey IA, Sinclair E, Aunin E, Gettle N, Santos C, Paulini M, Niu H, McKenna V, O’Brien R. The genome sequence of a heart cockle, Fragum fragum (Linnaeus, 1758). Wellcome Open Res 2024; 9:129. [PMID: 38989474 PMCID: PMC11234083 DOI: 10.12688/wellcomeopenres.21134.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 07/12/2024] Open
Abstract
We present a genome assembly from an individual specimen of Fragum fragum (a heart cockle; Mollusca; Bivalvia; Veneroida; Cardiidae). The genome sequence is 1,153.1 megabases in span. Most of the assembly is scaffolded into 19 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 22.36 kilobases in length. Gene annotation of this assembly on Ensembl identified 17,262 protein coding genes.
Collapse
Affiliation(s)
- Ruiqi Li
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Jingchun Li
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
| | - Sarah Lemer
- University of Guam Marine Lab, Mangilao, Guam
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
| | - Jose Victor Lopez
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
| | - Graeme Oatley
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | | | - Eerik Aunin
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Noah Gettle
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Camilla Santos
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Michael Paulini
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Haoyu Niu
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | | - Rebecca O’Brien
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Tree of Life Management, Samples and Laboratory Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- University of Guam Marine Lab, Mangilao, Guam
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Scientific Operations: Sequencing Operations
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- University of Guam Marine Lab, Mangilao, Guam
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - Wellcome Sanger Institute Tree of Life Core Informatics Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- University of Guam Marine Lab, Mangilao, Guam
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | - EBI Aquatic Symbiosis Genomics Data Portal Team
- Ecology & Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
- Museum of Natural History, University of Colorado Boulder, Boulder, Colorado, USA
- University of Guam Marine Lab, Mangilao, Guam
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg, Germany
- Department of Biological Sciences, Nova Southeastern University, Dania Beach, Florida, USA
- Tree of Life, Wellcome Sanger Institute, Hinxton, England, UK
| | | |
Collapse
|
75
|
Yu D, Ren Y, Uesaka M, Beavan AJS, Muffato M, Shen J, Li Y, Sato I, Wan W, Clark JW, Keating JN, Carlisle EM, Dearden RP, Giles S, Randle E, Sansom RS, Feuda R, Fleming JF, Sugahara F, Cummins C, Patricio M, Akanni W, D'Aniello S, Bertolucci C, Irie N, Alev C, Sheng G, de Mendoza A, Maeso I, Irimia M, Fromm B, Peterson KJ, Das S, Hirano M, Rast JP, Cooper MD, Paps J, Pisani D, Kuratani S, Martin FJ, Wang W, Donoghue PCJ, Zhang YE, Pascual-Anaya J. Hagfish genome elucidates vertebrate whole-genome duplication events and their evolutionary consequences. Nat Ecol Evol 2024; 8:519-535. [PMID: 38216617 DOI: 10.1038/s41559-023-02299-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.
Collapse
Affiliation(s)
- Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yandong Ren
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Masahiro Uesaka
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Alan J S Beavan
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Jieyu Shen
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongxin Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Iori Sato
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- iPS Cell Advanced Characterization and Development Team, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Wenting Wan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - James W Clark
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, University of Bath, Claverton Down, Bath, UK
| | - Joseph N Keating
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Emily M Carlisle
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Richard P Dearden
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Sam Giles
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Emma Randle
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Robert S Sansom
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Roberto Feuda
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - James F Fleming
- Keio University Institute for Advanced Biosciences, Tsuruoka, Japan
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Fumiaki Sugahara
- Division of Biology, Hyogo Medical University, Nishinomiya, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mateus Patricio
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Salvatore D'Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
| | - Cristiano Bertolucci
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, Napoli, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Naoki Irie
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Cantas Alev
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Guojun Sheng
- International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Alex de Mendoza
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Ignacio Maeso
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Bastian Fromm
- The Arctic University Museum of Norway, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sabyasachi Das
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Masayuki Hirano
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jonathan P Rast
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Max D Cooper
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Jordi Paps
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Shigeru Kuratani
- Laboratory for Evolutionary Morphology, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Juan Pascual-Anaya
- Evolutionary Morphology Laboratory, RIKEN Cluster for Pioneering Research (CPR), Kobe, Japan.
- Department of Animal Biology, Faculty of Science, University of Málaga (UMA), Málaga, Spain.
- Edificio de Bioinnovación, Universidad de Málaga, Málaga, Spain.
| |
Collapse
|
76
|
Boyes D, Holland PWH. The genome sequence of the Elephant Hawk-moth, Deilephila elpenor (Linnaeus, 1758). Wellcome Open Res 2024; 9:104. [PMID: 39239169 PMCID: PMC11375399 DOI: 10.12688/wellcomeopenres.21012.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 09/07/2024] Open
Abstract
We present a genome assembly from an individual female Deilephila elpenor (the Elephant Hawk-moth; Arthropoda; Insecta; Lepidoptera; Sphingidae). The genome sequence is 414.1 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z and W sex chromosomes. The mitochondrial genome has also been assembled and is 15.37 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,748 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | |
Collapse
|
77
|
Crowley LM, Falk S. The genome sequence of the wood-carving leafcutter bee, Megachile ligniseca (Kirby, 1802). Wellcome Open Res 2024; 9:103. [PMID: 38903870 PMCID: PMC11187525 DOI: 10.12688/wellcomeopenres.21002.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 06/22/2024] Open
Abstract
We present a genome assembly from an individual female Megachile ligniseca (the wood-carving leafcutter bee; Arthropoda; Insecta; Hymenoptera; Megachilidae). The genome sequence is 290.0 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 23.71 kilobases in length. Gene annotation of this assembly on Ensembl 11,722 protein coding genes.
Collapse
Affiliation(s)
| | - Steven Falk
- Independent researcher, Kenilworth, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Crowley LM. The genome sequence of the big-headed mining bee, Andrena bucephala (Stephens, 1846). Wellcome Open Res 2024; 9:111. [PMID: 39144162 PMCID: PMC11322697 DOI: 10.12688/wellcomeopenres.21003.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 08/16/2024] Open
Abstract
We present a genome assembly from an individual female Andrena bucephala (the Big-headed Mining Bee; Arthropoda; Insecta; Hymenoptera; Andrenidae). The genome sequence is 379.8 megabases in span. Most of the assembly is scaffolded into 5 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 19.57 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,022 protein coding genes.
Collapse
|
79
|
Boyes D, Januszczak I, Lees DC. The genome sequence of the White-pinion Spotted, Lomographa bimaculata (Fabricius, 1775). Wellcome Open Res 2024; 9:96. [PMID: 39257623 PMCID: PMC11384207 DOI: 10.12688/wellcomeopenres.20841.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 09/12/2024] Open
Abstract
We present a genome assembly from an individual male Lomographa bimaculata (the White-pinion Spotted; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 554.7 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.66 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,749 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | |
Collapse
|
80
|
Rivera M, Zhang H, Pham J, Isquith J, Zhou QJ, Balaian L, Sasik R, Enlund S, Mark A, Ma W, Holm F, Fisch KM, Kuo DJ, Jamieson C, Jiang Q. Malignant A-to-I RNA editing by ADAR1 drives T cell acute lymphoblastic leukemia relapse via attenuating dsRNA sensing. Cell Rep 2024; 43:113704. [PMID: 38265938 PMCID: PMC10962356 DOI: 10.1016/j.celrep.2024.113704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
Leukemia-initiating cells (LICs) are regarded as the origin of leukemia relapse and therapeutic resistance. Identifying direct stemness determinants that fuel LIC self-renewal is critical for developing targeted approaches. Here, we show that the RNA-editing enzyme ADAR1 is a crucial stemness factor that promotes LIC self-renewal by attenuating aberrant double-stranded RNA (dsRNA) sensing. Elevated adenosine-to-inosine editing is a common attribute of relapsed T cell acute lymphoblastic leukemia (T-ALL) regardless of molecular subtype. Consequently, knockdown of ADAR1 severely inhibits LIC self-renewal capacity and prolongs survival in T-ALL patient-derived xenograft models. Mechanistically, ADAR1 directs hyper-editing of immunogenic dsRNA to avoid detection by the innate immune sensor melanoma differentiation-associated protein 5 (MDA5). Moreover, we uncover that the cell-intrinsic level of MDA5 dictates the dependency on the ADAR1-MDA5 axis in T-ALL. Collectively, our results show that ADAR1 functions as a self-renewal factor that limits the sensing of endogenous dsRNA. Thus, targeting ADAR1 presents an effective therapeutic strategy for eliminating T-ALL LICs.
Collapse
Affiliation(s)
- Maria Rivera
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Haoran Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Jessica Pham
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jane Isquith
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Qingchen Jenny Zhou
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Larisa Balaian
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Roman Sasik
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA
| | - Sabina Enlund
- Department of Women's and Children's Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, Solna, Sweden
| | - Adam Mark
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA
| | - Wenxue Ma
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Frida Holm
- Department of Women's and Children's Health, Division of Pediatric Oncology and Pediatric Surgery, Karolinska Institutet, Solna, Sweden
| | - Kathleen M Fisch
- Center for Computational Biology & Bioinformatics (CCBB), University of California, San Diego, La Jolla, CA 92093-0681, USA; Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis John Kuo
- Moores Cancer Center, La Jolla, CA 92037, USA; Division of Pediatric Hematology-Oncology, Rady Children's Hospital San Diego, University of California, San Diego, San Diego, CA 92123, USA
| | - Catriona Jamieson
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA
| | - Qingfei Jiang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, La Jolla, CA 92037, USA.
| |
Collapse
|
81
|
Falk S, Crowley LM. The genome sequence of the Mournful Wasp, Pemphredon lugubris (Fabricius, 1793). Wellcome Open Res 2024; 9:93. [PMID: 39221445 PMCID: PMC11364974 DOI: 10.12688/wellcomeopenres.20948.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 09/04/2024] Open
Abstract
We present a genome assembly from an individual male Pemphredon lugubris (the Mournful Wasp; Arthropoda; Insecta; Hymenoptera; Crabronidae). The genome sequence is 328.1 megabases in span. Most of the assembly is scaffolded into 5 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 15.88 kilobases in length. Gene annotation of this assembly on Ensembl identified 10,335 protein coding genes.
Collapse
Affiliation(s)
- Steven Falk
- Independent researcher, Kenilworth, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Crowley LM. The genome sequence of the Lobe-spurred Furrow Bee, Lasioglossum pauxillum (Schenck, 1853). Wellcome Open Res 2024; 9:86. [PMID: 39176035 PMCID: PMC11339594 DOI: 10.12688/wellcomeopenres.20950.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 08/24/2024] Open
Abstract
We present a genome assembly from an individual female Lasioglossum pauxillum (the Lobe-spurred Furrow Bee; Arthropoda; Insecta; Hymenoptera; Halictidae). The genome sequence is 432.0 megabases in span. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 27.71 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,353 protein coding genes.
Collapse
|
83
|
Boyes D, Holland PW. The genome sequence of the Hebrew Character, Orthosia gothica (Linnaeus, 1758). Wellcome Open Res 2024; 9:90. [PMID: 39429633 PMCID: PMC11487229 DOI: 10.12688/wellcomeopenres.20904.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2024] [Indexed: 10/22/2024] Open
Abstract
We present a genome assembly from an individual female Orthosia gothica (the Hebrew character; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 1,065.1 megabases in span. Most of the assembly is scaffolded into 37 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,691 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Boyes D, Lewis OT. The genome sequence of the Mottled Pug, Eupithecia exiguata (Hübner, 1813). Wellcome Open Res 2024; 9:65. [PMID: 39015615 PMCID: PMC11249503 DOI: 10.12688/wellcomeopenres.20637.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 07/18/2024] Open
Abstract
We present a genome assembly from an individual male Eupithecia exiguata (the Mottled Pug; Arthropoda; Insecta; Lepidoptera; Geometridae). The genome sequence is 372.9 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 16.39 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,194 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hawkins SJ, Mieszkowska N, Mrowicki R. The genome sequence of the black-footed limpet, Patella depressa (Pennant, 1777). Wellcome Open Res 2024; 9:47. [PMID: 38779153 PMCID: PMC11109591 DOI: 10.12688/wellcomeopenres.20687.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 05/25/2024] Open
Abstract
We present a genome assembly from an individual Patella depressa (the black-footed limpet; Mollusca; Gastropoda; Patellogastropoda; Patellidae). The genome sequence is 683.7 megabases in span. Most of the assembly is scaffolded into 9 chromosomal pseudomolecules. Gene annotation of this assembly on Ensembl identified 20,502 protein coding genes.
Collapse
Affiliation(s)
| | | | - Rob Mrowicki
- The Marine Biological Association, Plymouth, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Crowley LM, Baker E, Holland PWH. The genome sequence of the Emperor moth, Saturnia pavonia (Linnaeus, 1758). Wellcome Open Res 2024; 9:48. [PMID: 38764484 PMCID: PMC11101921 DOI: 10.12688/wellcomeopenres.20652.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 05/21/2024] Open
Abstract
We present a genome assembly from an individual male Saturnia pavonia (the Emperor moth; Arthropoda; Insecta; Lepidoptera; Saturniidae). The genome sequence is 489.9 megabases in span. Most of the assembly is scaffolded into 30 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.29 kilobases in length. Gene annotation of this assembly on Ensembl identified 11,903 protein coding genes.
Collapse
|
87
|
Boyes D, Holland PWH. The genome sequence of the White-point, Mythimna albipuncta (Denis & Schiffermüller, 1775). Wellcome Open Res 2024; 9:62. [PMID: 38911902 PMCID: PMC11193084 DOI: 10.12688/wellcomeopenres.20682.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 06/25/2024] Open
Abstract
We present a genome assembly from an individual male Mythimna albipuncta (the White-point; Arthropoda; Insecta; Lepidoptera; Noctuidae). The genome sequence is 698.6 megabases in span. Most of the assembly is scaffolded into 31 chromosomal pseudomolecules, including the Z sex chromosome. The mitochondrial genome has also been assembled and is 15.38 kilobases in length. Gene annotation of this assembly on Ensembl identified 13,679 protein coding genes.
Collapse
Affiliation(s)
- Douglas Boyes
- UK Centre for Ecology & Hydrology, Wallingford, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Crowley LM, Wawman DC. The genome sequence of the spotted cranefly, Nephrotoma appendiculata (Pierre, 1919). Wellcome Open Res 2024; 9:38. [PMID: 38779147 PMCID: PMC11109560 DOI: 10.12688/wellcomeopenres.20886.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 05/25/2024] Open
Abstract
We present a genome assembly from an individual male Nephrotoma appendiculata (the spotted cranefly; Arthropoda; Insecta; Diptera; Tipulidae). The genome sequence is 1,138.0 megabases in span. Most of the assembly is scaffolded into 4 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 17.42 kilobases in length. Gene annotation of this assembly on Ensembl identified 17,753 protein coding genes.
Collapse
Affiliation(s)
- Liam M. Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | - Denise C. Wawman
- Department of Biology, University of Oxford, Oxford, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Crowley LM, Wawman DC. The genome sequence of the Stripe-backed Dasysyrphus, Dasysyrphus albostriatus (Fallén, 1817). Wellcome Open Res 2024; 9:34. [PMID: 39132671 PMCID: PMC11310654 DOI: 10.12688/wellcomeopenres.20887.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 08/13/2024] Open
Abstract
We present a genome assembly from an individual female Dasysyrphus albostriatus (the Stripe-backed Dasysyrphus; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 662.5 megabases in span. Most of the assembly is scaffolded into 5 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 17.55 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,259 protein coding genes.
Collapse
Affiliation(s)
- Liam M. Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | - Denise C. Wawman
- Department of Biology, University of Oxford, Oxford, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Pavličev M, McDonough-Goldstein CE, Zupan AM, Muglia L, Hu YC, Kong F, Monangi N, Dagdas G, Zupančič N, Maziarz J, Sinner D, Zhang G, Wagner G, Muglia L. A common allele increases endometrial Wnt4 expression, with antagonistic implications for pregnancy, reproductive cancers, and endometriosis. Nat Commun 2024; 15:1152. [PMID: 38346980 PMCID: PMC10861470 DOI: 10.1038/s41467-024-45338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/20/2024] [Indexed: 02/15/2024] Open
Abstract
The common human SNP rs3820282 is associated with multiple phenotypes including gestational length and likelihood of endometriosis and cancer, presenting a paradigmatic pleiotropic variant. Deleterious pleiotropic mutations cause the co-occurrence of disorders either within individuals, or across population. When adverse and advantageous effects are combined, pleiotropy can maintain high population frequencies of deleterious alleles. To reveal the causal molecular mechanisms of this pleiotropic SNP, we introduced this substitution into the mouse genome by CRISPR/Cas 9. Previous work showed that rs3820282 introduces a high-affinity estrogen receptor alpha-binding site at the Wnt4 locus. Here, we show that this mutation upregulates Wnt4 transcription in endometrial stroma, following the preovulatory estrogen peak. Effects on uterine transcription include downregulation of epithelial proliferation and induction of progesterone-regulated pro-implantation genes. We propose that these changes increase uterine permissiveness to embryo invasion, whereas they decrease resistance to invasion by cancer and endometriotic foci in other estrogen-responsive tissues.
Collapse
Affiliation(s)
- Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria.
- Complexity Science Hub, Vienna, Austria.
| | | | | | - Lisa Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yueh-Chiang Hu
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Fansheng Kong
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Nagendra Monangi
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Nina Zupančič
- University Medical Center Ljubljana, Department of Cardiovascular Surgery, Ljubljana, Slovenia
| | - Jamie Maziarz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Debora Sinner
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ge Zhang
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Günter Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Yale Systems Biology Institute, Yale University, West Haven, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, USA
| | - Louis Muglia
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Burroughs Wellcome Fund, Research Triangle Park, NC, Durham, USA
| |
Collapse
|
91
|
Leung YY, Naj AC, Chou YF, Valladares O, Schmidt M, Hamilton-Nelson K, Wheeler N, Lin H, Gangadharan P, Qu L, Clark K, Kuzma AB, Lee WP, Cantwell L, Nicaretta H, Haines J, Farrer L, Seshadri S, Brkanac Z, Cruchaga C, Pericak-Vance M, Mayeux RP, Bush WS, Destefano A, Martin E, Schellenberg GD, Wang LS. Human whole-exome genotype data for Alzheimer's disease. Nat Commun 2024; 15:684. [PMID: 38263370 PMCID: PMC10805795 DOI: 10.1038/s41467-024-44781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
The heterogeneity of the whole-exome sequencing (WES) data generation methods present a challenge to a joint analysis. Here we present a bioinformatics strategy for joint-calling 20,504 WES samples collected across nine studies and sequenced using ten capture kits in fourteen sequencing centers in the Alzheimer's Disease Sequencing Project. The joint-genotype called variant-called format (VCF) file contains only positions within the union of capture kits. The VCF was then processed specifically to account for the batch effects arising from the use of different capture kits from different studies. We identified 8.2 million autosomal variants. 96.82% of the variants are high-quality, and are located in 28,579 Ensembl transcripts. 41% of the variants are intronic and 1.8% of the variants are with CADD > 30, indicating they are of high predicted pathogenicity. Here we show our new strategy can generate high-quality data from processing these diversely generated WES samples. The improved ability to combine data sequenced in different batches benefits the whole genomics research community.
Collapse
Affiliation(s)
- Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Adam C Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi-Fan Chou
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael Schmidt
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kara Hamilton-Nelson
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Nicholas Wheeler
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Honghuang Lin
- Department of Medicine, UMass Chan Medical School, Boston, MA, USA
| | - Prabhakaran Gangadharan
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Liming Qu
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kaylyn Clark
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amanda B Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heather Nicaretta
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Haines
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Farrer
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sudha Seshadri
- Boston University School of Medicine, Boston, MA, USA
- The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Zoran Brkanac
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Carlos Cruchaga
- Washington University School of Medicine, St. Louis, MO, USA
| | - Margaret Pericak-Vance
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Richard P Mayeux
- Department of Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center, Columbia University and the New York Presbyterian Hospital, New York, NY, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Anita Destefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eden Martin
- Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
92
|
Santos LGC, Parreira VDSC, da Silva EMG, Santos MDM, Fernandes ADF, Neves-Ferreira AGDC, Carvalho PC, Freitas FCDP, Passetti F. SpliceProt 2.0: A Sequence Repository of Human, Mouse, and Rat Proteoforms. Int J Mol Sci 2024; 25:1183. [PMID: 38256255 PMCID: PMC10816255 DOI: 10.3390/ijms25021183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.
Collapse
Affiliation(s)
- Letícia Graziela Costa Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Vinícius da Silva Coutinho Parreira
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Esdras Matheus Gomes da Silva
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Marlon Dias Mariano Santos
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Alexander da Franca Fernandes
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Ana Gisele da Costa Neves-Ferreira
- Laboratory of Toxinology, Oswaldo Cruz Institute, Fundação Oswaldo Cruz (FIOCRUZ), Av. Brazil 4036, Campus Maré, Rio de Janeiro 21040-361, RJ, Brazil
| | - Paulo Costa Carvalho
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| | - Flávia Cristina de Paula Freitas
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
- Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luis, Km 235, São Carlos 13565-905, SP, Brazil
| | - Fabio Passetti
- Instituto Carlos Chagas, Fundação Oswaldo Cruz (FIOCRUZ), Rua Professor Algacyr Munhoz Mader 3775, Cidade Industrial De Curitiba, Curitiba 81310-020, PR, Brazil
| |
Collapse
|
93
|
Ge F, Arif M, Yan Z, Alahmadi H, Worachartcheewan A, Shoombuatong W. Review of Computational Methods and Database Sources for Predicting the Effects of Coding Frameshift Small Insertion and Deletion Variations. ACS OMEGA 2024; 9:2032-2047. [PMID: 38250421 PMCID: PMC10795160 DOI: 10.1021/acsomega.3c07662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024]
Abstract
Genetic variations (including substitutions, insertions, and deletions) exert a profound influence on DNA sequences. These variations are systematically classified as synonymous, nonsynonymous, and nonsense, each manifesting distinct effects on proteins. The implementation of high-throughput sequencing has significantly augmented our comprehension of the intricate interplay between gene variations and protein structure and function, as well as their ramifications in the context of diseases. Frameshift variations, particularly small insertions and deletions (indels), disrupt protein coding and are instrumental in disease pathogenesis. This review presents a succinct review of computational methods, databases, current challenges, and future directions in predicting the consequences of coding frameshift small indels variations. We analyzed the predictive efficacy, reliability, and utilization of computational methods and variant account, reliability, and utilization of database. Besides, we also compared the prediction methodologies on GOF/LOF pathogenic variation data. Addressing the challenges pertaining to prediction accuracy and cross-species generalizability, nascent technologies such as AI and deep learning harbor immense potential to enhance predictive capabilities. The importance of interdisciplinary research and collaboration cannot be overstated for devising effective diagnosis, treatment, and prevention strategies concerning diseases associated with coding frameshift indels variations.
Collapse
Affiliation(s)
- Fang Ge
- State
Key Laboratory of Organic Electronics and lnformation Displays &
lnstitute of Advanced Materials (IAM), Nanjing University of Posts
& Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| | - Muhammad Arif
- College
of Science and Engineering, Hamad Bin Khalifa
University, Doha 34110, Qatar
| | - Zihao Yan
- School
of Computer Science and Engineering, Nanjing
University of Science and Technology, 200 Xiaolingwei, Nanjing 210094, China
| | - Hanin Alahmadi
- College
of Computer Science and Engineering, Taibah
University, Madinah 344, Saudi Arabia
| | - Apilak Worachartcheewan
- Department
of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Watshara Shoombuatong
- Center
for Research Innovation and Biomedical Informatics, Faculty of Medical
Technology, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
94
|
Beiki H, Murdoch BM, Park CA, Kern C, Kontechy D, Becker G, Rincon G, Jiang H, Zhou H, Thorne J, Koltes JE, Michal JJ, Davenport K, Rijnkels M, Ross PJ, Hu R, Corum S, McKay S, Smith TPL, Liu W, Ma W, Zhang X, Xu X, Han X, Jiang Z, Hu ZL, Reecy JM. Enhanced bovine genome annotation through integration of transcriptomics and epi-transcriptomics datasets facilitates genomic biology. Gigascience 2024; 13:giae019. [PMID: 38626724 PMCID: PMC11020238 DOI: 10.1093/gigascience/giae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/29/2023] [Accepted: 03/27/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND The accurate identification of the functional elements in the bovine genome is a fundamental requirement for high-quality analysis of data informing both genome biology and genomic selection. Functional annotation of the bovine genome was performed to identify a more complete catalog of transcript isoforms across bovine tissues. RESULTS A total of 160,820 unique transcripts (50% protein coding) representing 34,882 unique genes (60% protein coding) were identified across tissues. Among them, 118,563 transcripts (73% of the total) were structurally validated by independent datasets (PacBio isoform sequencing data, Oxford Nanopore Technologies sequencing data, de novo assembled transcripts from RNA sequencing data) and comparison with Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive data from different technologies such as whole transcriptome termini site sequencing, RNA Annotation and Mapping of Promoters for the Analysis of Gene Expression, chromatin immunoprecipitation sequencing, and assay for transposase-accessible chromatin using sequencing. A large proportion of identified transcripts (69%) were unannotated, of which 86% were produced by annotated genes and 14% by unannotated genes. A median of two 5' untranslated regions were expressed per gene. Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as noncoding genes in fetal tissues but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 annotated gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available quantitative trait loci data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. CONCLUSIONS These validated results show significant improvement over current bovine genome annotations.
Collapse
Affiliation(s)
- Hamid Beiki
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Brenda M Murdoch
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Carissa A Park
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Chandlar Kern
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Denise Kontechy
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Gabrielle Becker
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | | | - Honglin Jiang
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Jacob Thorne
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - James E Koltes
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - Jennifer J Michal
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Kimberly Davenport
- Department of Animal and Veterinary and Food Science, University of Idaho, ID 83844, USA
| | - Monique Rijnkels
- Department of Veterinary Integrative Biosciences, Texas A&M University, TX 77843, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Rui Hu
- Department of Animal and Poultry Sciences, Virginia Tech, VA 24060, USA
| | - Sarah Corum
- Zoetis, Parsippany-Troy Hills, NJ 07054, USA
| | | | | | - Wansheng Liu
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Wenzhi Ma
- Department of Animal Science, Pennsylvania State University, PA 16802, USA
| | - Xiaohui Zhang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Xiaoqing Xu
- Department of Animal Science, University of California, Davis, CA 95616, USA
| | - Xuelei Han
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhihua Jiang
- Department of Animal Science, Washington State University, WA 99164, USA
| | - Zhi-Liang Hu
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | - James M Reecy
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
95
|
Freitas FAO, Brito LF, Fanalli SL, Gonçales JL, da Silva BPM, Durval MC, Ciconello FN, de Oliveira CS, Nascimento LE, Gervásio IC, Gomes JD, Moreira GCM, Silva-Vignato B, Coutinho LL, de Almeida VV, Cesar ASM. Identification of eQTLs using different sets of single nucleotide polymorphisms associated with carcass and body composition traits in pigs. BMC Genomics 2024; 25:14. [PMID: 38166730 PMCID: PMC10759680 DOI: 10.1186/s12864-023-09863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Mapping expression quantitative trait loci (eQTLs) in skeletal muscle tissue in pigs is crucial for understanding the relationship between genetic variation and phenotypic expression of carcass traits in meat animals. Therefore, the primary objective of this study was to evaluate the impact of different sets of single nucleotide polymorphisms (SNP), including scenarios removing SNPs pruned for linkage disequilibrium (LD) and SNPs derived from SNP chip arrays and RNA-seq data from liver, brain, and skeletal muscle tissues, on the identification of eQTLs in the Longissimus lumborum tissue, associated with carcass and body composition traits in Large White pigs. The SNPs identified from muscle mRNA were combined with SNPs identified in the brain and liver tissue transcriptomes, as well as SNPs from the GGP Porcine 50 K SNP chip array. Cis- and trans-eQTLs were identified based on the skeletal muscle gene expression level, followed by functional genomic analyses and statistical associations with carcass and body composition traits in Large White pigs. RESULTS The number of cis- and trans-eQTLs identified across different sets of SNPs (scenarios) ranged from 261 to 2,539 and from 29 to 13,721, respectively. Furthermore, 6,180 genes were modulated by eQTLs in at least one of the scenarios evaluated. The eQTLs identified were not significantly associated with carcass and body composition traits but were significantly enriched for many traits in the "Meat and Carcass" type QTL. The scenarios with the highest number of cis- (n = 304) and trans- (n = 5,993) modulated genes were the unpruned and LD-pruned SNP set scenarios identified from the muscle transcriptome. These genes include 84 transcription factor coding genes. CONCLUSIONS After LD pruning, the set of SNPs identified based on the transcriptome of the skeletal muscle tissue of pigs resulted in the highest number of genes modulated by eQTLs. Most eQTLs are of the trans type and are associated with genes influencing complex traits in pigs, such as transcription factors and enhancers. Furthermore, the incorporation of SNPs from other genomic regions to the set of SNPs identified in the porcine skeletal muscle transcriptome contributed to the identification of eQTLs that had not been identified based on the porcine skeletal muscle transcriptome alone.
Collapse
Affiliation(s)
- Felipe André Oliveira Freitas
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635- 900, SP, Brazil
| | - Simara Larissa Fanalli
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635- 900, SP, Brazil
| | - Janaína Lustosa Gonçales
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
| | | | - Mariah Castro Durval
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635- 900, SP, Brazil
| | - Fernanda Nery Ciconello
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
| | | | | | - Izally Carvalho Gervásio
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
| | - Julia Dezen Gomes
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
| | | | - Bárbara Silva-Vignato
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635- 900, SP, Brazil
| | - Luiz Lehmann Coutinho
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil
| | - Vivian Vezzoni de Almeida
- College of Veterinary Medicine and Animal Science, Federal University of Goiás, Goiânia, 74001-970, GO, Brazil
| | - Aline Silva Mello Cesar
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, 13416-000, SP, Brazil.
- Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga, 13635- 900, SP, Brazil.
| |
Collapse
|
96
|
Crowley LM, Woodcock KJ. The genome sequence of the white-footed hoverfly, Platycheirus albimanus (Fabricius, 1781). Wellcome Open Res 2023; 8:572. [PMID: 38836070 PMCID: PMC11148528 DOI: 10.12688/wellcomeopenres.20494.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 06/06/2024] Open
Abstract
We present a genome assembly from an individual female Platycheirus albimanus (the white-footed hoverfly; Arthropoda; Insecta; Diptera; Syrphidae). The genome sequence is 677.8 megabases in span. Most of the assembly is scaffolded into 4 chromosomal pseudomolecules, including the X sex chromosome. The mitochondrial genome has also been assembled and is 18.17 kilobases in length. Gene annotation of this assembly on Ensembl identified 12,568 protein coding genes.
Collapse
Affiliation(s)
- Liam M Crowley
- Department of Biology, University of Oxford, Oxford, England, UK
| | | |
Collapse
|
97
|
Aslam I, Shah S, Jabeen S, ELAffendi M, A Abdel Latif A, Ul Haq N, Ali G. A CNN based m5c RNA methylation predictor. Sci Rep 2023; 13:21885. [PMID: 38081880 PMCID: PMC10713599 DOI: 10.1038/s41598-023-48751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Post-transcriptional modifications of RNA play a key role in performing a variety of biological processes, such as stability and immune tolerance, RNA splicing, protein translation and RNA degradation. One of these RNA modifications is m5c which participates in various cellular functions like RNA structural stability and translation efficiency, got popularity among biologists. By applying biological experiments to detect RNA m5c methylation sites would require much more efforts, time and money. Most of the researchers are using pre-processed RNA sequences of 41 nucleotides where the methylated cytosine is in the center. Therefore, it is possible that some of the information around these motif may have lost. The conventional methods are unable to process the RNA sequence directly due to high dimensionality and thus need optimized techniques for better features extraction. To handle the above challenges the goal of this study is to employ an end-to-end, 1D CNN based model to classify and interpret m5c methylated data sites. Moreover, our aim is to analyze the sequence in its full length where the methylated cytosine may not be in the center. The evaluation of the proposed architecture showed a promising results by outperforming state-of-the-art techniques in terms of sensitivity and accuracy. Our model achieve 96.70% sensitivity and 96.21% accuracy for 41 nucleotides sequences while 96.10% accuracy for full length sequences.
Collapse
Affiliation(s)
- Irum Aslam
- Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, KPK, Pakistan
| | - Sajid Shah
- EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Rafha, Riyadh, 12435, Saudi Arabia
| | - Saima Jabeen
- College of Engineering, AI Research Center, Alfaisal University, Riyadh, 50927, Saudi Arabia.
| | - Mohammed ELAffendi
- EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Rafha, Riyadh, 12435, Saudi Arabia
| | - Asmaa A Abdel Latif
- Public Health and Community Medicine Department (Industrial medicine and occupational health specialty, Faculty of Medicine, Menoufia University, Shibîn el Kôm, Egypt
| | - Nuhman Ul Haq
- Department of Computer Science, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, KPK, Pakistan
| | - Gauhar Ali
- EIAS Data Science Lab, College of Computer and Information Sciences, Prince Sultan University, Rafha, Riyadh, 12435, Saudi Arabia
| |
Collapse
|
98
|
Pan C, Liu J, Gao Y, Yang M, Hu H, Liu C, Qian M, Yuan HY, Yang S, Zheng MH, Wang L. Hepatocyte CHRNA4 mediates the MASH-promotive effects of immune cell-produced acetylcholine and smoking exposure in mice and humans. Cell Metab 2023; 35:2231-2249.e7. [PMID: 38056431 DOI: 10.1016/j.cmet.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 11/01/2023] [Indexed: 12/08/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading risk factor for liver cirrhosis and hepatocellular carcinoma. Here, we report that CHRNA4, a subunit of nicotinic acetylcholine receptors (nAChRs), is an accelerator of MASH progression. CHRNA4 also mediates the MASH-promotive effects induced by smoking. Chrna4 was expressed specifically in hepatocytes and exhibited increased levels in mice and patients with MASH. Elevated CHRNA4 levels were positively correlated with MASH severity. We further revealed that during MASH development, acetylcholine released from immune cells or nicotine derived from smoking functioned as an agonist to activate hepatocyte-intrinsic CHRNA4, inducing calcium influx and activation of inflammatory signaling. The communication between immune cells and hepatocytes via the acetylcholine-CHRNA4 axis led to the production of a variety of cytokines, eliciting inflammation in liver and promoting the pathogenesis of MASH. Genetic and pharmacological inhibition of CHRNA4 protected mice from diet-induced MASH. Targeting CHRNA4 might be a promising strategy for MASH therapeutics.
Collapse
Affiliation(s)
- Chuyue Pan
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China; School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Jun Liu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Yingsheng Gao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Maohui Yang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Chang Liu
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China
| | - Minyi Qian
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiang Su 211198, China
| | - Hai-Yang Yuan
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital, Capital Medical University, 8 Jingshun East Street, Chaoyang District, Beijing 100015, China.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| | - Lirui Wang
- Institute of Modern Biology, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
99
|
Yu X, Yuan J, Chen ZJ, Li K, Yao Y, Xing S, Xue Z, Zhang Y, Peng H, An G, Yu X, Qu J, Su J. Whole-Exome Sequencing Among School-Aged Children With High Myopia. JAMA Netw Open 2023; 6:e2345821. [PMID: 38039006 PMCID: PMC10692858 DOI: 10.1001/jamanetworkopen.2023.45821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023] Open
Abstract
Importance High myopia (HM) is one of the leading causes of visual impairment worldwide. Genetic factors are known to play an important role in the development of HM. Objective To identify risk variants in a large HM cohort and to examine the implications of genetic testing of schoolchildren with HM. Design, Setting, and Participants This cohort study retrospectively reviewed whole-exome sequencing (WES) results in 6215 schoolchildren with HM who underwent genetic testing between September 2019 and July 2020 in Wenzhou City, China. HM is defined as a spherical equivalent refraction (SER) of -6.00 diopters (D) or less. The study setting was a genetic testing laboratory and a multicenter school census. Data were analyzed from July 2021 to June 2022. Main Outcomes and Measures The frequency and distribution of positive germline variants, the percentage of individuals with HM in both eyes, and subsequent variant yield for common high myopia (CHM; -8.00 D ≤ SER ≤ -6.00 D), ultra myopia (UM; -10.00 D ≤ SER < -8.00 D), and extreme myopia (EM; SER < -10.00 D). Results Of the 6215 schoolchildren with HM, 3278 (52.74%) were male. Their mean (SD) age was 14.87 (2.02) years, including 355 students in primary school, 1970 in junior high school, and 3890 in senior high school. The mean (SD) SER was -7.51 (-1.36) D for the right eye and -7.46 (-1.34) D for the left eye. Among schoolchildren with HM, genetic testing yielded 271 potential pathogenic variants in 75 HM candidate genes in 964 diagnoses (15.52%). A total of 36 known variants were found in 490 HM participants (7.88%) and 235 protein-truncating variants (PTVs) in 506 participants (8.14%). Involved variant yield was significantly positively associated with SER (Cochran-Armitage test for trend Z = 2.5492; P = .01), which ranged from 7.66% in the CHM group, 8.70% in the UM group, to 11.90% in the EM group. We also found that primary school students with EM had the highest variant yield of PTVs (8 of 35 students [22.86%]), which was 1.77 and 4.78 times that of the UM and CHM, respectively. Conclusions and Relevance In this cohort study of WES for HM, several potential pathogenic variants were identified in a substantial number of schoolchildren with HM. The high variation frequency in younger students with EM can provide clues for genetic screening and clinical examinations of HM to promote long-term follow-up assessment.
Collapse
Affiliation(s)
- Xiangyi Yu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jian Yuan
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zhen Ji Chen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Kai Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yinghao Yao
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
| | - Shilai Xing
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Institute of PSI Genomics, Wenzhou, China
| | - Zhengbo Xue
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Yue Zhang
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hui Peng
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Gang An
- Institute of PSI Genomics, Wenzhou, China
| | | | - Jia Qu
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jianzhong Su
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Oujiang Laboratory, Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health, Wenzhou, Zhejiang, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| |
Collapse
|
100
|
Yurdakul E, Barlas Y, Ulgen KO. Circadian clock crosstalks with autism. Brain Behav 2023; 13:e3273. [PMID: 37807632 PMCID: PMC10726833 DOI: 10.1002/brb3.3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND The mechanism underlying autism spectrum disorder (ASD) remains incompletely understood, but researchers have identified over a thousand genes involved in complex interactions within the brain, nervous, and immune systems, particularly during the mechanism of brain development. Various contributory environmental effects including circadian rhythm have also been studied in ASD. Thus, capturing the global picture of the ASD-clock network in combined form is critical. METHODS We reconstructed the protein-protein interaction network of ASD and circadian rhythm to understand the connection between autism and the circadian clock. A graph theoretical study is undertaken to evaluate whether the network attributes are biologically realistic. The gene ontology enrichment analyses provide information about the most important biological processes. RESULTS This study takes a fresh look at metabolic mechanisms and the identification of potential key proteins/pathways (ribosome biogenesis, oxidative stress, insulin/IGF pathway, Wnt pathway, and mTOR pathway), as well as the effects of specific conditions (such as maternal stress or disruption of circadian rhythm) on the development of ASD due to environmental factors. CONCLUSION Understanding the relationship between circadian rhythm and ASD provides insight into the involvement of these essential pathways in the pathogenesis/etiology of ASD, as well as potential early intervention options and chronotherapeutic strategies for treating or preventing the neurodevelopmental disorder.
Collapse
Affiliation(s)
- Ekin Yurdakul
- Department of Chemical EngineeringBogazici University, Biosystems Engineering LaboratoryIstanbulTurkey
| | - Yaman Barlas
- Department of Industrial EngineeringBogazici University, Socio‐Economic System Dynamics Research Group (SESDYN)IstanbulTurkey
| | - Kutlu O. Ulgen
- Department of Chemical EngineeringBogazici University, Biosystems Engineering LaboratoryIstanbulTurkey
| |
Collapse
|