51
|
Inhibition of mitochondrial remodeling by cyclosporine A preserves myocardial performance in a neonatal rabbit model of cardioplegic arrest. J Thorac Cardiovasc Surg 2008; 135:585-93. [PMID: 18329475 DOI: 10.1016/j.jtcvs.2007.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 09/12/2007] [Accepted: 09/24/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Mitochondrial permeability transition pore opening is associated with apoptotic signaling and alterations in mitochondrial structure and function. We tested whether inhibition of mitochondrial permeability transition pore opening with cyclosporine A preserved mitochondrial structure and function after cardioplegic arrest and whether this preservation is associated with improved myocardial performance. METHODS Langendorff-perfused neonatal rabbit hearts were perfused for 30 minutes with Krebs-Henseleit buffer (CCP; n = 6) or Krebs-Henseleit buffer containing 2 mumol/L of cyclosporine A (CCP+CsA; n = 6) followed by 60 minutes of normothermic crystalloid cardioplegia (CCP) and 60 minutes of reperfusion. Control hearts (non-CCP; n = 6) were constantly perfused for 150 minutes without cardioplegic arrest. RESULTS In comparison with non-CCP, CCP was associated with Bax translocation to the mitochondria, cytochrome c release, and greater frequency of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive myocytes These changes were also associated with deficits in isolated mitochondrial oxygen consumption at complex I. CsA pretreatment minimized or prevented all these findings. Myocardial performance (systolic pressure, maximum positive and negative dP/dt, and elevated left ventricular end-diastolic pressure) at 5, 15, 30, and 60 minutes after reperfusion was diminished in CCP hearts when compared with non-CPB, and these deficits could be minimized with cyclosporine A pretreatment. (P < .05 all comparisons) CONCLUSIONS Cyclosporine A prevents apoptosis-related mitochondrial permeabilization and dysfunction after cardioplegic arrest. This protection is associated with improved myocardial performance. Prevention of mitochondrial permeability transition pore opening is a valuable target for mitochondrial (and myocardial) preservation after neonatal cardioplegic arrest.
Collapse
|
52
|
Oka N, Wang L, Mi W, Zhu W, Honjo O, Caldarone CA. Cyclosporine A prevents apoptosis-related mitochondrial dysfunction after neonatal cardioplegic arrest. J Thorac Cardiovasc Surg 2008; 135:123-30, 130.e1-2. [PMID: 18179928 DOI: 10.1016/j.jtcvs.2007.05.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Mitochondrial permeability transition pore opening plays a critical role in mediating the mitochondrial response to ischemia/reperfusion injury and initiation of apoptosis. We tested whether inhibition of mitochondrial permeability transition pore opening with cyclosporine A prevented apoptosis-related alterations in mitochondrial structure and function after cardioplegic arrest. METHODS Newborn piglets (age approximately 14 days) underwent cardiopulmonary bypass, cardioplegic arrest (60 minutes), weaning from bypass, and 6-hour reperfusion. Comparison was made among cold crystalloid cardioplegia (n = 5), cold crystalloid cardioplegia with cyclosporine A pretreatment (n = 5), and noncardiopulmonary bypass (n = 5) groups. RESULTS Early apoptosis signaling events (Bax translocation to the mitochondria) were prominent in cold crystalloid cardioplegia and prevented in cold crystalloid cardioplegia + cyclosporine A myocardium. Mitochondrial release of cytochrome c, determined by Western blot of cytosolic fractions and confocal quantitative colocalization analysis, was also prominent in cold crystalloid cardioplegia but prevented in cold crystalloid cardioplegia + cyclosporine A myocardium. Electron microscopy of isolated mitochondria demonstrated subjective alterations in mitochondrial architecture in cold crystalloid cardioplegia mitochondria, which were prevented by cyclosporine A. Deficiency of isolated mitochondrial oxygen consumption at Complex I was present in cold crystalloid cardioplegia mitochondria and prevented by cyclosporine A (P < .01). The frequency of deoxyuride-5'-triphosphate biotin nick end labeling-positive myocytes was diminished in cold crystalloid cardioplegia + cyclosporine A myocardium (P < .05). Mitochondrial resistance to calcium-mediated mitochondrial permeability transition pore opening was not different in cold crystalloid cardioplegia and noncardiopulmonary bypass mitochondria, suggesting that calcium overload is not solely responsible for the observed deficits in mitochondrial function. CONCLUSIONS Cyclosporine A pretreatment prevents postcardioplegia alterations in mitochondrial structure and function in a clinically relevant model of neonatal cardiac surgery. Prevention of mitochondrial permeability transition pore opening and apoptosis signaling events (Bax translocation and mitochondrial permeabilization) are associated with superior mitochondrial preservation.
Collapse
Affiliation(s)
- Norihiko Oka
- Division of Cardiovascular Surgery, the Hospital for Sick Children, University of Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
53
|
Piel DA, Gruber PJ, Weinheimer CJ, Courtois MR, Robertson CM, Coopersmith CM, Deutschman CS, Levy RJ. Mitochondrial resuscitation with exogenous cytochrome c in the septic heart. Crit Care Med 2007; 35:2120-7. [PMID: 17855825 DOI: 10.1097/01.ccm.0000278914.85340.fe] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Mitochondrial dysfunction may play a role in the pathogenesis of sepsis-induced organ dysfunction. Respiratory-chain deficiencies that occur in sepsis, however, have never been shown to cause organ failure or to be reversible. Cytochrome oxidase uses electrons donated by its substrate, cytochrome c, to reduce oxygen to H2O. In the septic heart, cytochrome oxidase is competitively inhibited. We hypothesized that cytochrome oxidase inhibition coupled with reduced substrate availability is a reversible cause of sepsis-associated myocardial depression. DESIGN Prospective observational study aimed to overcome myocardial cytochrome oxidase inhibition with excess cytochrome c and improve cardiac function. SETTING University hospital-based laboratory. SUBJECTS Seventy-five C57Bl6 male mice. INTERVENTIONS Mice underwent cecal ligation and double puncture, sham operation, or no operation. Exogenous cytochrome c or an equal volume of saline was intravenously injected at the 24-hr time point. All animals were evaluated 30 mins after injection. MEASUREMENTS AND MAIN RESULTS Exogenous cytochrome c readily repleted cardiac mitochondria with supranormal levels of substrate (>1.6 times baseline), restored heme c content, and increased cytochrome oxidase kinetic activity. This increased left ventricular pressure and increased pressure development during isovolumic contraction (dP/dtmax) and relaxation (dP/dtmin) by >45% compared with saline injection. CONCLUSION Impaired oxidative phosphorylation is a cause of sepsis-associated myocardial depression, and mitochondrial resuscitation with exogenous cytochrome c overcomes cytochrome oxidase inhibition and improves cardiac function.
Collapse
Affiliation(s)
- David A Piel
- Department of Anesthesiology and Critical Care Medicine, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Tamilselvan J, Sivarajan K, Anusuyadevi M, Panneerselvam C. CytochromecOxidase Rather than Cytochromecis a Major Determinant of Mitochondrial Respiratory Capacity in Skeletal Muscle of Aged Rats: Role of Carnitine and Lipoic Acid. Rejuvenation Res 2007; 10:311-26. [PMID: 17555400 DOI: 10.1089/rej.2007.0541] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The release of mitochondrial cytochrome c followed by activation of caspase cascade has been reported with aging in various tissues, whereas little is known about the caspase-independent pathway involved in mitochondrial dysfunction. To determine the functional impact of cytochrome c loss on mitochondrial respiratory capacity, we monitored NADH redox transitions and oxygen consumption in isolated skeletal muscle mitochondria of 4- and 24-month-old rats in the presence and absence of exogenous cytochrome c; and assessed the efficacy of cosupplementation of carnitine and lipoic acid on age-related alteration in mitochondrial respiration. The loss of mitochondrial cytochrome c with age was accompanied with alteration in respiratory transition, which in turn was not rescued by exogenous addition of cytochrome c to isolated mitochondria. The analysis of mitochondrial and nuclear-encoded cytochrome c oxidase subunits suggests that the decreased levels of cytochrome c oxidase may be attributed for the irresponsiveness to exogenously added cytochrome c on mitochondrial respiratory transitions, possibly through reduction of upstream electron carriers. Oral supplementation of carnitine and lipoic acid to aged rats help to maintaining the mitochondrial oxidative capacity by regulating the release of cytochrome c and improves cytochrome c oxidase transcript levels. Thus, carnitine and lipoic acid supplementation prevents the loss of cytochrome c and their associated decline in cytochrome c oxidase activity; thereby, effectively attenuating any putative decrease in cellular energy and redox status with age.
Collapse
Affiliation(s)
- Jayavelu Tamilselvan
- Department of Medical Biochemistry, Dr. A.L. Mudaliar Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India.
| | | | | | | |
Collapse
|
55
|
Choi HS, Carman GM. Respiratory deficiency mediates the regulation of CHO1-encoded phosphatidylserine synthase by mRNA stability in Saccharomyces cerevisiae. J Biol Chem 2007; 282:31217-27. [PMID: 17761681 PMCID: PMC2150996 DOI: 10.1074/jbc.m705098200] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol:l-serine O-phosphatidyltransferase, EC 2.7.8.8) is one of the most highly regulated phospholipid biosynthetic enzymes in the yeast Saccharomyces cerevisiae. CHO1 expression is regulated by nutrient availability through a regulatory circuit involving a UAS(INO) cis-acting element in the CHO1 promoter, the positive transcription factors Ino2p and Ino4p, and the transcriptional repressor Opi1p. In this work, we examined the post-transcriptional regulation of CHO1 by mRNA stability. CHO1 mRNA was stabilized in mutants defective in deadenylation (ccr4Delta), mRNA decapping (dcp1), and the 5'-3'-exonuclease (xrn1), indicating that the CHO1 transcript is primarily degraded through the general 5'-3' mRNA decay pathway. In respiratory-sufficient cells, the CHO1 transcript was moderately stable with a half-life of 12 min. However, the CHO1 transcript was stabilized to a half-life of >45 min in respiratory-deficient (rho(-) and rho(o)) cells, the cox4Delta mutant defective in the cytochrome c oxidase, and wild type cells treated with KCN (a cytochrome c oxidase inhibitor). The increased CHO1 mRNA stability in response to respiratory deficiency caused increases in CHO1 mRNA abundance, phosphatidylserine synthase protein and activity, and the synthesis of phosphatidylserine in vivo. Respiratory deficiency also caused increases in the activities of CDP-diacylglycerol synthase, phosphatidylserine decarboxylase, and the phospholipid methyltransferases. Phosphatidylinositol synthase and choline kinase activities were not affected by respiratory deficiency. This work advances our understanding of phosphatidylserine synthase regulation and underscores the importance of mitochondrial respiration to the regulation of phospholipid synthesis in S. cerevisiae.
Collapse
Affiliation(s)
| | - George M. Carman
- To whom correspondence should be addressed. Dept of Food Science, Rutgers University, 65 Dudley Rd., New Brunswick, NJ 08901. Tel: 732-932-9611 (ext. 217); E-mail:
| |
Collapse
|
56
|
Wattiaux R, Wattiaux-de Coninck S, Thirion J, Gasingirwa MC, Jadot M. Lysosomes and Fas-mediated liver cell death. Biochem J 2007; 403:89-95. [PMID: 17129211 PMCID: PMC1828900 DOI: 10.1042/bj20061738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A number of studies, mostly performed ex vivo, suggest that lysosomes are involved in apoptosis as a result of a release of their cathepsins into the cytosol. These enzymes could then contribute to the permeabilization of the outer mitochondrial membrane; they could also activate effector caspases. The present study aims at testing whether the membrane of liver lysosomes is disrupted during Fas-mediated cell death of hepatocytes in vivo, a process implicated in several liver pathologies. Apoptosis was induced by injecting mice with aFas (anti-Fas antibody). The state of lysosomes was assessed by determining the proportion of lysosomal enzymes (beta-galactosidase, beta-glucuronidase, cathepsin C and cathepsin B) present in homogenate supernatants, devoid of intact lysosomes, and by analysing the behaviour in differential and isopycnic centrifugation of beta-galactosidase. Apoptosis was monitored by measuring caspase 3 activity (DEVDase) and the release of sulfite cytochrome c reductase, an enzyme located in the mitochondrial intermembrane space. Results show that an injection of 10 microg of aFas causes a rapid and large increase in DEVDase activity and in unsedimentable sulfite cytochrome c reductase. This modifies neither the proportion of unsedimentable lysosomal enzyme in the homogenates nor the behaviour of lysosomes in centrifugation. Experiments performed with a lower dose of aFas (5 microg) indicate that unsedimentable lysosomal hydrolase activity increases in the homogenate after injection but with a marked delay with respect to the increase in DEVDase activity and in unsedimentable sulfite cytochrome c reductase. Comparative experiments ex vivo performed with Jurkat cells show an increase in unsedimentable lysosomal hydrolases, but much later than caspase 3 activation, and a release of dipeptidyl peptidase III and DEVDase into culture medium. It is proposed that the weakening of lysosomes observed after aFas treatment in vivo and ex vivo results from a necrotic process that takes place late after initiation of apoptosis.
Collapse
Affiliation(s)
- Robert Wattiaux
- Laboratoire de Chimie Physiologique, URPhiM, FUNDP (Facultés Universitaires Notre-Dame de la Paix), 61 rue de Bruxelles, 5000 Namur, Belgium.
| | | | | | | | | |
Collapse
|
57
|
Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH. Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 2007; 282:20340-50. [PMID: 17483091 DOI: 10.1074/jbc.m702210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of c-Jun N-terminal kinase 1/2 (JNK) can delay oxidant-induced cell death, but the mechanism is unknown. We found that oxidant stress of cardiac myocytes activated both JNK and mitochondria-dependent apoptosis and that expression of JNK inhibitory mutants accelerated multiple steps in this pathway, including the cleavage and activation of caspases-3 and -9 and DNA internucleosomal cleavage, without affecting the rate of cytochrome c release; JNK inhibition also increased caspase-3 and -9 cleavage in a cell-free system. On activation by GSNO or H(2)O(2), JNK formed a stable association with oligomeric Apaf-1 in a approximately 1.4-2.0 mDa pre-apoptosome complex. Formation of this complex could be triggered by addition of cytochrome c and ATP to the cell-free cytosol. JNK inhibition abrogated JNK-Apaf-1 association and accelerated the association of procaspase-9 and Apaf-1 in both intact cells and cell-free extracts. We conclude that oxidant-activated JNK associates with Apaf-1 and cytochrome c in a catalytically inactive complex. We propose that this interaction delays formation of the active apoptosome, promoting cell survival during short bursts of oxidative stress.
Collapse
Affiliation(s)
- Thanh H Tran
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
58
|
Gorgoglione V, Laraspata D, La Piana G, Marzulli D, Lofrumento NE. Protective effect of magnesium and potassium ions on the permeability of the external mitochondrial membrane. Arch Biochem Biophys 2007; 461:13-23. [PMID: 17320039 DOI: 10.1016/j.abb.2007.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Revised: 01/08/2007] [Accepted: 01/09/2007] [Indexed: 11/17/2022]
Abstract
The data reported are fully consistent with the well-known observation that exogenous cytochrome c (cyto-c) molecules do not permeate through the outer membrane of mitochondria (MOM) incubated in isotonic medium (250 mM sucrose). Cyto-c is unable to accept electrons from the sulfite/cyto-c oxido-reductase (Sox) present in the intermembrane space, unless mitochondria are solubilized. Mitochondria incubated in a very high hypotonic medium (25 mM sucrose), in contrast to any expectation, continue to be not permeable to added cyto-c even if Sox and adenylate kinase are released into the medium. The succinate/exogenous cyto-c reductase activity, very low in isotonic medium, is greatly increased decreasing the osmolarity of the medium but in both cases remains insensitive to proteolysis by added trypsin. In hypotonic medium, magnesium and potassium ions have a protective effect on the release of enzymes and on the reactivity of cyto-c as electron acceptor from both sulfite and succinate; results which are consistent with the view that MOM preserves its identity and remains not permeable to exogenous cyto-c. This report strengthens the proposal, supported by previously published data that in isotonic medium the exogenous NADH/cyto-c electron transport system is catalyzed by intact mitochondria, not permeable to added cyto-c.
Collapse
Affiliation(s)
- Vincenza Gorgoglione
- Department of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70126 Bari, Italy
| | | | | | | | | |
Collapse
|
59
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
60
|
Childs EW, Tharakan B, Hunter FA, Tinsley JH, Cao X. Apoptotic signaling induces hyperpermeability following hemorrhagic shock. Am J Physiol Heart Circ Physiol 2007; 292:H3179-89. [PMID: 17307990 DOI: 10.1152/ajpheart.01337.2006] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemorrhagic shock (HS) disrupts the endothelial cell barrier, resulting in microvascular hyperpermeability. Recent studies have also demonstrated that activation of the apoptotic signaling cascade is involved in endothelial dysfunction, which may result in hyperpermeability. Here we report involvement of the mitochondrial "intrinsic" pathway in microvascular hyperpermeability following HS in rats. HS resulted in the activation of the mitochondrial intrinsic pathway, as is evident from an increase in the proapoptotic Bcl-2 family member BAK, release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. This, along with the in vivo transfection of the proapoptotic peptide BAK (BH3), resulted in hyperpermeability (as visualized by intravital microscopy), release of mitochondrial cytochrome c into the cytoplasm, and activation of caspase-3. Conversely, transfection of the BAK (BH3) mutant had no effect on hyperpermeability. Together, these results demonstrate involvement of the mitochondrial intrinsic apoptotic pathway in HS-induced hyperpermeability and that the attenuation of this pathway may provide an alternative strategy in preserving vascular barrier integrity.
Collapse
MESH Headings
- Animals
- Apoptosis
- Capillary Permeability
- Caspase 3/metabolism
- Caspase Inhibitors
- Cysteine Proteinase Inhibitors/pharmacology
- Cytochromes c/metabolism
- Disease Models, Animal
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Enzyme Activation
- Male
- Membrane Potential, Mitochondrial
- Mesentery/blood supply
- Microcirculation/metabolism
- Microcirculation/pathology
- Microcirculation/physiopathology
- Microscopy, Video
- Mitochondria/metabolism
- Mitochondria/pathology
- Oligopeptides/pharmacology
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Rats
- Rats, Sprague-Dawley
- Shock, Hemorrhagic/metabolism
- Shock, Hemorrhagic/pathology
- Shock, Hemorrhagic/physiopathology
- Signal Transduction
- Transfection
- bcl-2 Homologous Antagonist-Killer Protein/genetics
- bcl-2 Homologous Antagonist-Killer Protein/metabolism
- von Willebrand Factor/metabolism
Collapse
Affiliation(s)
- Ed W Childs
- Department of Surgery, The Texas A & M University, HSC College of Medicine, Scott & White Memorial Hospital, 2401 South 31st St., Temple, TX 76508, USA.
| | | | | | | | | |
Collapse
|
61
|
Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G. Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 2007; 12:803-13. [PMID: 17294081 DOI: 10.1007/s10495-007-0720-1] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondrial membrane permeabilization (MMP) is considered as the "point-of-no-return" in numerous models of programmed cell death. Indeed, mitochondria determine the intrinsic pathway of apoptosis, and play a major role in the extrinsic route as well. MMP affects the inner and outer mitochondrial membranes (IM and OM, respectively) to a variable degree. OM permeabilization culminates in the release of proteins that normally are confined in the mitochondrial intermembrane space (IMS), including caspase activators (e.g. cytochrome c) and caspase-independent death effectors (e.g. apoptosis-inducing factor). Partial IM permeabilization disrupts mitochondrial ion and volume homeostasis and dissipates the mitochondrial transmembrane potential (DeltaPsi(m)). The assessment of early mitochondrial alterations allows for the identification of cells that are committed to die but have not displayed yet the apoptotic phenotype. Several techniques to measure MMP by cytofluorometry and fluorescence microscopy have been developed. Here, we summarize the currently available methods for the detection of MMP, and provide a comparative analysis of these techniques.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- INSERM U848, Institut Gustave Roussy PR 1, 30 rue Camille Desmoulins, F-94805 Villejuif, France
| | | | | | | | | | | |
Collapse
|
62
|
Acehan D, Xu Y, Stokes DL, Schlame M. Comparison of lymphoblast mitochondria from normal subjects and patients with Barth syndrome using electron microscopic tomography. J Transl Med 2007; 87:40-8. [PMID: 17043667 PMCID: PMC2215767 DOI: 10.1038/labinvest.3700480] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Barth syndrome (BTHS) is a mitochondrial disorder that is caused by mutations in the tafazzin gene, which affects phospholipid composition. To determine whether this defect leads to alterations in the internal three-dimensional organization of mitochondrial membranes, we applied electron microscopic tomography to lymphoblast mitochondria from BTHS patients and controls. Tomograms were formed from 50 and 150 nm sections of chemically fixed lymphoblasts and the data were used to manually segment volumes of relevant structural details. Normal lymphoblast mitochondria contained well-aligned, lamellar cristae with slot-like junctions to the inner boundary membrane. In BTHS, mitochondrial size was more variable and the total mitochondrial volume per cell increased mainly due to clusters of fragmented mitochondria inside nuclear invaginations. However, mitochondria showed reduced cristae density, less cristae alignment, and inhomogeneous cristae distribution. Three-dimensional reconstruction of BTHS mitochondria revealed zones of adhesion of the opposing inner membranes, causing obliteration of the intracrista space. We found small isolated patches of adhesion as well as extended adhesion zones, resulting in sheets of collapsed cristae packaged in multiple concentric layers. We also found large tubular structures (diameter 30-150 nm) that appeared to be derivatives of the adhesion zones. The data suggest that mitochondrial abnormalities of BTHS involve adhesions of inner mitochondrial membranes with subsequent collapse of the intracristae space.
Collapse
MESH Headings
- Acyltransferases
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cell Line, Transformed/ultrastructure
- Child
- Child, Preschool
- Genetic Diseases, X-Linked/pathology
- Genetic Diseases, X-Linked/ultrastructure
- Humans
- Image Processing, Computer-Assisted
- Imaging, Three-Dimensional
- Infant
- Lymphocyte Activation
- Lymphocytes/ultrastructure
- Male
- Microscopy, Electron
- Mitochondria/pathology
- Mitochondria/ultrastructure
- Mitochondrial Diseases/genetics
- Proteins/genetics
- Syndrome
- Tomography, Optical
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Devrim Acehan
- Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Yang Xu
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA
| | - David L. Stokes
- Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- New York Structural Biology Center, New York, NY, USA
| | - Michael Schlame
- Skirball Institute and Department of Cell Biology, New York University School of Medicine, New York, NY, USA
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
63
|
Chamberlin ME. Changes in mitochondrial electron transport chain activity during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1016-22. [PMID: 17008455 DOI: 10.1152/ajpregu.00553.2006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The midgut of the tobacco hornworm (Manduca sexta) is a highly aerobic tissue that is destroyed by programmed cell death during larval-pupal metamorphosis. The death of the epithelium begins after commitment to pupation, and the oxygen consumption of isolated midgut mitochondria decreases soon after commitment. To assess the role of the electron transport chain in this decline in mitochondrial function, the maximal activities of complexes I-IV of the respiratory chain were measured in isolated midgut mitochondria. Whereas there were no developmental changes in the activity of complex I or III, activities of complexes II and IV [cytochrome c oxidase (COX)] were higher in mitochondria from precommitment than postcommitment larvae. This finding is consistent with a higher rate of succinate oxidation in mitochondria isolated from precommitment larvae and reveals that the metamorphic decline in mitochondrial respiration is due to the targeted destruction or inactivation of specific sites within the mitochondria, rather than the indiscriminate destruction of the organelles. The COX turnover number (e- x s(-1) x cytochrome aa3(-1)) was greater for the enzyme from precommitment than postcommitment larvae, indicating a change in the enzyme structure and/or its lipid environment during the early stages of metamorphosis. The turnover number of COX in the intact mitochondria (in organello COX) was also lower in postcommitment larvae. In addition to changes in the protein or membrane phospholipids, the metamorphic decline in this rate constant may be a result of the observed loss of endogenous cytochrome c.
Collapse
Affiliation(s)
- M E Chamberlin
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
64
|
Wang L, Kinnear C, Hammel JM, Zhu W, Hua Z, Mi W, Caldarone CA. Preservation of mitochondrial structure and function after cardioplegic arrest in the neonate using a selective mitochondrial KATP channel opener. Ann Thorac Surg 2006; 81:1817-23. [PMID: 16631678 DOI: 10.1016/j.athoracsur.2005.11.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2005] [Revised: 11/02/2005] [Accepted: 11/04/2005] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mitochondrial dysfunction may contribute to early postoperative neonatal heart dysfunction. Diazoxide, a mitochondrial-selective adenosine triphosphate-sensitive potassium-channel opener, is associated with mitochondrial preservation after cardioplegic arrest. We evaluated the mitochondrial-protective effect of diazoxide in terms of mitochondrial structure and function after neonatal cardioplegic arrest. METHODS Newborn piglets (age, approximately 14 days) underwent cardiopulmonary bypass and 60 minutes of cardioplegic arrest using cold crystalloid cardioplegic solution (CCP, n = 5) or cold crystalloid cardioplegic solution with diazoxide (CCP+D, n = 5). After 6 hours of recovery, myocardium was harvested. Control myocardium from piglets that did not undergo cardiopulmonary bypass (non-CPB, n = 5) was obtained. RESULTS Cardioplegic arrest was associated with translocation of Bax to the mitochondria, which was not prevented by diazoxide. Nevertheless, by electron microscopy, CCP-associated remodeling of mitochondrial structure was subjectively diminished in CCP+D hearts. In addition, CCP-associated mitochondrial permeabilization and cytochrome c release into the cytosol were prevented with CCP+D (p < 0.05). In vitro oxygen consumption of isolated mitochondria demonstrated deficient function of mitochondrial complex I in CCP, but it was preserved in the CCP+D myocardial mitochondria (p < 0.05). Complex II and IV activity was not different among groups. In parallel with impaired complex I function, the cardiac adenosine triphosphate content was diminished in CCP hearts, but well maintained in CCP+D hearts (p < 0.05). CONCLUSIONS Although early apoptotic signaling events (Bax translocation) are not prevented by diazoxide, addition of the mitochondrial-selective adenosine triphosphate-sensitive potassium-channel opener to the cardioplegic solution is associated with protection of mitochondrial structural and functional integrity in a clinically relevant model of neonatal cardiac surgery. The mitochondrial-protective effects of diazoxide may contribute to improved postoperative myocardial function in the neonate.
Collapse
Affiliation(s)
- Lixing Wang
- Division of Cardiovascular Surgery, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
65
|
Cepero E, King AM, Coffey LM, Perez RG, Boise LH. Caspase-9 and effector caspases have sequential and distinct effects on mitochondria. Oncogene 2005; 24:6354-66. [PMID: 16007191 DOI: 10.1038/sj.onc.1208793] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Proapoptotic Bcl-2 family members alter mitochondrial permeability resulting in the release of apoptogenic factors that initiate a caspase cascade. These changes are well described; however, the effects of caspases on mitochondrial function are less well characterized. Here we describe the consequence of caspase-9 and effector caspase inhibition on mitochondrial physiology during intrinsic cell death. Caspase inhibition prevents the complete loss of mitochondrial membrane potential without affecting cytochrome c release. When effector caspases are inhibited, mitochondria become uncoupled and produce reactive oxygen species. Interestingly, the effector caspase-mediated depolarization of the mitochondria occurs independent of the activity of complexes I-IV of the electron transport chain. In contrast, caspase-9 inhibition prevents mitochondrial uncoupling and ROS production and allows for continued electron transport despite the release of cytochrome c. Taken together, these data suggest that activated caspase-9 prevents the accessibility of cytochrome c to complex III, resulting in the production of reactive oxygen species, and that effector caspases may depolarize mitochondria to terminate ROS production and preserve an apoptotic phenotype.
Collapse
Affiliation(s)
- Enrique Cepero
- Department of Microbiology and Immunology, University of Miami School of Medicine, PO Box 016960 (R-138), Miami, FL 33101, USA
| | | | | | | | | |
Collapse
|
66
|
Giordano A, Calvani M, Petillo O, Grippo P, Tuccillo F, Melone MAB, Bonelli P, Calarco A, Peluso G. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell Death Differ 2005; 12:603-13. [PMID: 15846373 DOI: 10.1038/sj.cdd.4401636] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent studies suggest a close relationship between cell metabolism and apoptosis. We have evaluated changes in lipid metabolism on permeabilized hepatocytes treated with truncated Bid (tBid) in the presence of caspase inhibitors and exogenous cytochrome c. The measurement of beta-oxidation flux by labeled palmitate demonstrates that tBid inhibits beta-oxidation, thereby resulting in the accumulation of palmitoyl-coenzyme A (CoA) and depletion of acetyl-carnitine and acylcarnitines, which is pathognomonic for inhibition of carnitine palmitoyltransferase-1 (CPT-1). We also show that tBid decreases CPT-1 activity by a mechanism independent of both malonyl-CoA, the key inhibitory molecule of CPT-1, and Bak and/or Bax, but dependent on cardiolipin decrease. Overexpression of Bcl-2, which is able to interact with CPT-1, counteracts the effects exerted by tBid on beta-oxidation. The unexpected role of tBid in the regulation of lipid beta-oxidation suggests a model in which tBid-induced metabolic decline leads to the accumulation of toxic lipid metabolites such as palmitoyl-CoA, which might become participants in the apoptotic pathway.
Collapse
Affiliation(s)
- A Giordano
- Institute of Protein Biochemistry--IBP, CNR, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang Y, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW. Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome C and Apaf-1 in apoptosis. Cell 2005; 121:579-591. [PMID: 15907471 DOI: 10.1016/j.cell.2005.03.016] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Revised: 01/12/2005] [Accepted: 03/14/2005] [Indexed: 11/25/2022]
Abstract
As components of the apoptosome, a caspase-activating complex, cytochrome c (Cyt c) and Apaf-1 are thought to play critical roles during apoptosis. Due to the obligate function of Cyt c in electron transport, its requirement for apoptosis in animals has been difficult to establish. We generated "knockin" mice expressing a mutant Cyt c (KA allele), which retains normal electron transfer function but fails to activate Apaf-1. Most KA/KA mice displayed embryonic or perinatal lethality caused by defects in the central nervous system, and surviving mice exhibited impaired lymphocyte homeostasis. Although fibroblasts from the KA/KA mice were resistant to apoptosis, their thymocytes were markedly more sensitive to death stimuli than Apaf-1(-/-) thymocytes. Upon treatment with gamma irradiation, procaspases were efficiently activated in apoptotic KA/KA thymocytes, but Apaf-1 oligomerization was not observed. These studies indicate the existence of a Cyt c- and apoptosome-independent but Apaf-1-dependent mechanism(s) for caspase activation.
Collapse
Affiliation(s)
- Zhenyue Hao
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada.
| | - Gordon S Duncan
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Chia-Che Chang
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Andrew Elia
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Min Fang
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Hitoshi Okada
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Thomas Calzascia
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - YingJu Jang
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Annick You-Ten
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Wen-Chen Yeh
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Pamela Ohashi
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada
| | - Xiaodong Wang
- Howard Hughes Medical Institute and Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Ontario Cancer Institute, University Health Network, University of Toronto, Toronto, Ontario M5G 2C1, Canada; Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2C1, Canada.
| |
Collapse
|
68
|
Carvalho ACP, Sharpe J, Rosenstock TR, Teles AFV, Youle RJ, Smaili SS. Bax affects intracellular Ca2+ stores and induces Ca2+ wave propagation. Cell Death Differ 2005; 11:1265-76. [PMID: 15499375 DOI: 10.1038/sj.cdd.4401508] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In the present study, we evaluated proapoptotic protein Bax on mitochondria and Ca2+ homeostasis in primary cultured astrocytes. We found that recombinant Bax (rBax, 10 and 100 ng/ml) induces a loss in mitochondrial membrane potential (Delta Psi m). This effect might be related to the inhibition of respiratory rates and a partial release of cytochrome c, which may change mitochondrial morphology. The loss of Delta Psi m and a selective permeabilization of mitochondrial membranes contribute to the release of Ca2+ from the mitochondria. This was inhibited by cyclosporin A (5 microM) and Ruthenium Red (1 microg/ml), indicating the involvement of mitochondrial Ca2+ transport mechanisms. Bax-induced mitochondrial Ca2+ release evokes Ca2+ waves and wave propagation between cells. Our results show that Bax induces mitochondrial alteration that affects Ca2+ homeostasis and signaling. These changes show that Ca2+ signals might be correlated with the proapoptotic activities of Bax.
Collapse
Affiliation(s)
- A C P Carvalho
- Departament of Pharmacology, Universidade Federal de São Paulo, (UNIFESP), São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
69
|
Carranza-Rosales P, Said-Fernández S, Sepúlveda-Saavedra J, Cruz-Vega DE, Gandolfi AJ. Morphologic and functional alterations induced by low doses of mercuric chloride in the kidney OK cell line: ultrastructural evidence for an apoptotic mechanism of damage. Toxicology 2005; 210:111-21. [PMID: 15840425 DOI: 10.1016/j.tox.2005.01.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 01/06/2005] [Accepted: 01/19/2005] [Indexed: 11/17/2022]
Abstract
Mercury produces acute renal failure in experimental animal models, but the mechanism of tubular injury has not completely been clarified. There is an increased interest in the role of apoptosis in the pathogenesis of renal diseases that result primarily from injury to renal tubular epithelial cells. However, detailed studies of morpho-functional alterations induced by mercuric chloride in kidney cell lines are scarce. This work characterizes these alterations in OK cell cultures. Morphological alterations were profiled using light microscopy, transmission electron microscopy, and confocal microscopy, as well as mitochondrial functional assays in the cells exposed to low concentrations of HgCl2. At concentrations of 1 and 10 microM of HgCl2 there were no morphological or ultrastructural alterations, but the mitochondrial function (MTT assay) and intracellular ATP content was increased, especially at longer incubation times (6 and 9 h). At 15 microM HgCl2, both the mitochondrial activity and the endogenous ATP decreased significantly. At this concentration the OK cells rounded up, had increased number of cytoplasmic vacuoles, and detached from the cell monolayer. At 15 microM HgCl2 ultrastructural changes were characterized by dispersion of the ribosomes, dilatation of the cisterns of the rough endoplasmic reticulum, increase of number of cytoplasmic vacuoles, chromatin condensation, invaginations of the nuclear envelope, presence of cytoplasmic inclusion bodies, and alterations in the size and morphology of mitochondria. At 15 microM HgCl2 apoptotic signs included membrane blebbing, chromatin condensation, mitochondrial alterations, apoptotic bodies, and nuclear envelope rupture. Using confocal microscopy and the mitochondrial specific dye MitoTracker Red, it was possible to establish qualitative changes induced by mercury on the mitochondrial membrane potential after incubation of the cells for 6 and 9h with 15 microM HgCl2. This effect was not observed at short times (1 and 3h) with this same concentration, neither with 1 and 10 microM HgCl2 in all the studied times. Taken together, these findings indicate that low concentrations of HgCl2 induce apoptosis by inhibiting mitochondrial function, and the OK cell line may be considered a useful tool for the study of programmed cell death involving mercurial species and other heavy metals.
Collapse
Affiliation(s)
- Pilar Carranza-Rosales
- División de Biología Celular y Molecular, Centro de Investigación Biomédica del Noreste, IMSS, Administración de Correos No. 4, Apartado Postal 020, Colonia Independencia, Monterrey, Nuevo León C.P. 64720, México.
| | | | | | | | | |
Collapse
|
70
|
Scorrano L. Proteins That Fuse and Fragment Mitochondria in Apoptosis: Con-Fissing a Deadly Con-Fusion? J Bioenerg Biomembr 2005; 37:165-70. [PMID: 16167173 DOI: 10.1007/s10863-005-6572-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of "mitochondria-shaping" proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.
Collapse
Affiliation(s)
- Luca Scorrano
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, I-35129 Padua, Italy.
| |
Collapse
|
71
|
Stefanis L. Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 2005; 11:50-62. [PMID: 15632278 DOI: 10.1177/1073858404271087] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Caspases are cysteine proteases that mediate apoptotic death in a variety of cellular systems, including neurons. Caspases are activated through extrinsic or intrinsic pathways. The latter is used by most neurons in most situations. In this pathway, release of mitochondrial cytochrome c into the cytoplasm induces formation of the apoptosome, which leads to the activation of caspase 9 and subsequently other caspases. Recent data demonstrate that when caspase activation is inhibited at or downstream of the apoptosome, neurons undergo a delayed, caspase-independent death. Furthermore, there are instances, most notably following excitotoxic injury and calcium overload, in which the direct cell death pathway elicited differs from classical apoptosis. The molecular and biochemical features of such caspase-independent, nonapoptotic forms of neuronal death are just beginning to be elucidated, but alterations at the level of the mitochondria and noncaspase proteases play significant roles. Mitochondrial alterations in caspase-independent death may include energy depletion, generation of free radicals, opening of the permeability transition pore, and release of cytotoxic proteins, such as apoptosis-inducing factor. The particular mechanisms employed can be context dependent. In disease states, in which a combination of apoptotic and nonapoptotic death occurs, therapeutic strategies need to take into account both caspase-dependent and -independent pathways.
Collapse
Affiliation(s)
- L Stefanis
- Department of Neurology and Pathology, Columbia University, USA.
| |
Collapse
|
72
|
Ritov VB, Menshikova EV, Kelley DE. High-performance liquid chromatography-based methods of enzymatic analysis: electron transport chain activity in mitochondria from human skeletal muscle. Anal Biochem 2005; 333:27-38. [PMID: 15351277 DOI: 10.1016/j.ab.2004.05.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2004] [Indexed: 11/18/2022]
Abstract
This study addresses an application of pyridine nucleotide enzymatic analyses to evaluate the activity of the mitochondrial electron transport chain (reduced nicotinamide adenine dinucleotide (NADH) oxidase) and Complexes I and II in samples of human muscle as small as approximately 10 mg wet weight. Key aspects in this adaptation are the use of high-performance liquid chromatography with fluorescence detection of NADH and use of alamethicin, a channel-forming antibiotic that enables an unrestricted access of substrates into the mitochondrial matrix. The procedure includes disintegration of tissue by Polytron homogenizer, extraction of myosin from myofibrillar fragments by KCl/pyrophosphate to facilitate release of mitochondria, and preparation of fractions of subsarcolemmal and intermyofibrillar mitochondria. Oxidation of NADH or succinate is assayed in the presence of 40 microg/ml alamethicin and the reaction is terminated by H(2)SO(4), which also destroys the remaining NADH. Nicotinamide adenine dinucleotide (NAD) or fumarate concentrations are measured using alcohol dehydrogenase or fumarase plus malic dehydrogenase reactions, respectively. Generation of NADH, assessed in auxiliary reactions in the presence of hydrazine, is strictly proportional to NAD or fumarate content across a concentration range of 1-20 microM. NADH is quantitatively analyzed with a detection limit of 3-5 pmol by HPLC using a reverse-phase Hypersil ODS column connected to a fluorescence detector.
Collapse
Affiliation(s)
- Vladimir B Ritov
- Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
73
|
Boustany NN, Tsai YC, Pfister B, Joiner WM, Oyler GA, Thakor NV. BCL-xL-dependent light scattering by apoptotic cells. Biophys J 2004; 87:4163-71. [PMID: 15377529 PMCID: PMC1304925 DOI: 10.1529/biophysj.104.048736] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We measured the intensity ratio of wide-to-narrow angle scatter, optical scatter image ratio (OSIR), in single cells during apoptosis and after overexpression of the mitochondria-bound antiapoptotic protein BCL-xL. OSIR is sensitive to particle size/shape for objects with wavelength-scale dimensions, and was used as a morphometric measure of cellular response. Three cell variants were treated with staurosporine (STS): nontransfected parental CSM14.1, CSM14.1 stably expressing yellow fluorescent protein (YFP) with diffuse YFP fluorescence, and apoptosis-resistant CSM14.1 stably expressing the fusion protein construct YFP-BCL-xL with YFP fluorescence localized on the mitochondria. After treatment with 1 or 2 muM STS, the measured OSIR decreased monotonically by approximately 25% in the nontransfected and YFP variants, and reached a steady-state value 40-60 min after STS treatment. The decrease in OSIR at the onset of apoptosis preceded phosphatidyl serine exposure by 5 h. In the YFP-BCL-xL cell variant, the initial OSIR was already approximately 24% lower than the initial OSIR in YFP and nontransfected cells, and only decreased by <10% after STS treatment. Alterations in light scattering by cells overexpressing BCL-xL even before apoptosis induction raise interesting questions as to the role of BCL-xL in conferring apoptosis resistance by preconditioning the cells and possibly altering mitochondrial morphology.
Collapse
Affiliation(s)
- Nada N Boustany
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | |
Collapse
|
74
|
Wilkinson JC, Cepero E, Boise LH, Duckett CS. Upstream regulatory role for XIAP in receptor-mediated apoptosis. Mol Cell Biol 2004; 24:7003-14. [PMID: 15282301 PMCID: PMC479745 DOI: 10.1128/mcb.24.16.7003-7014.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
X-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of cell death that functions by suppressing caspases 3, 7, and 9. Here we describe the establishment of Jurkat-derived cell lines stably overexpressing either full-length XIAP or a truncation mutant of XIAP that can only inhibit caspase 9. Characterization of these cell lines revealed that following CD95 activation full-length XIAP supported both short- and long-term survival as well as proliferative capacity, in contrast to the truncation mutant but similar to Bcl-x(L). Full-length XIAP was also able to inhibit CD95-mediated caspase 3 processing and activation, the mitochondrial release of cytochrome c and Smac/DIABLO, and the loss of mitochondrial membrane potential, whereas the XIAP truncation mutant failed to prevent any of these cell death events. Finally, suppression of XIAP levels by RNA interference sensitized Bcl-x(L)-overexpressing cells to death receptor-induced apoptosis. These data demonstrate for the first time that full-length XIAP inhibits caspase activation required for mitochondrial amplification of death receptor signals and that, by acting upstream of mitochondrial activation, XIAP supports the long-term proliferative capacity of cells following CD95 stimulation.
Collapse
Affiliation(s)
- John C Wilkinson
- Departments of Pathology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
75
|
Caldarone CA, Barner EW, Wang L, Karimi M, Mascio CE, Hammel JM, Segar JL, Du C, Scholz TD. Apoptosis-related mitochondrial dysfunction in the early postoperative neonatal lamb heart. Ann Thorac Surg 2004; 78:948-55. [PMID: 15337026 DOI: 10.1016/j.athoracsur.2004.04.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/05/2004] [Indexed: 11/20/2022]
Abstract
BACKGROUND In the early postoperative period, the neonatal myocardium undergoes sparse apoptotic cell loss ( approximately 1% of myocytes). Because apoptosis is preceded by events associated with mitochondrial dysfunction, the fraction of myocytes with preapoptotic mitochondrial changes has important clinical implications (eg, postoperative myocardial dysfunction). My colleagues and I therefore hypothesized that postoperative apoptotic myocytes represent a tip of the iceberg, with more myocytes upstream with apoptosis-related mitochondrial dysfunction (ARMD). METHODS Neonatal lambs underwent cardiopulmonary bypass, 60 minutes of cardioplegic arrest, and 6 hours of recovery (cardiopulmonary bypass with cardioplegic arrest [CPB+CP]; n = 5) and were compared with nonbypass controls (non-CPB; n = 5). Myocardium (left ventricle [LV] and right ventricle [RV]) was examined by using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) staining, electron microscopy, immunohistochemistry, Western blot, and isolated mitochondrial oxygen consumption measurement. RESULTS TUNEL-positive nuclei and electron microscopy-confirmed mitochondrial structural changes were more common in CPB+CP than non-CPB myocardium and were more common in the LV than RV (p = 0.0016). Bax (a proapoptotic mediator) translocated from the cytosol to the mitochondria (LV > RV; p < 0.05). Immunohistochemistry demonstrated diffuse mitochondrial loss of cytochrome c that was consistent with outer mitochondrial membrane permeabilization (LV > RV > non-CPB). Permeabilization was further demonstrated by augmentation of oxygen consumption in isolated mitochondria after administration of exogenous cytochrome c. The mitochondrial oxygen consumption boost was 57% for CPB+CP:LV; 23% for CPB+CP:RV; and 18% and 17% for non-CPB:LV and non-CPB:RV, respectively (p < 0.01, CPB+CP:LV vs other groups). CONCLUSIONS ARMD is much greater than the prevalence of TUNEL-positive myocytes in postoperative neonatal myocardium. Greater LV vulnerability may represent a relationship between increased afterload and ARMD. These changes are consistent with the early postoperative myocardial dysfunction commonly reported after neonatal cardiac operations.
Collapse
Affiliation(s)
- Christopher A Caldarone
- Division of Cardiovascular Surgery, University of Iowa College of Medicine, Iowa City, Iowa, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Mitochondria are central to many forms of cell death, usually via the release of pro-apoptotic proteins from the mitochondrial intermembrane space. Some intermembrane space proteins, including cytochrome c, Smac/DIABLO, and Omi/Htra2, can induce or enhance caspase activation, whereas others, such as AIF and endonuclease G, might act in a caspase-independent manner. Intermembrane space protein release is often regulated by Bcl-2-family proteins. Recent evidence suggests that pro-apoptotic members of this family, by themselves, can permeabilize the outer mitochondrial membrane without otherwise damaging mitochondria. Mitochondria can contribute to cell death in other ways. For example, they can respond to calcium release from the endoplasmic reticulum by undergoing the mitochondrial permeability transition, which in turn causes outer membrane rupture and the release of intermembrane space proteins. Bcl-2-family proteins can influence the levels of releasable Ca(2+) in the endoplasmic reticulum, and thus determine whether the released Ca(2+) is sufficient to overload mitochondria and induce cell death.
Collapse
Affiliation(s)
- Tomomi Kuwana
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA
| | | |
Collapse
|
77
|
Chamberlin ME. Control of oxidative phosphorylation during insect metamorphosis. Am J Physiol Regul Integr Comp Physiol 2004; 287:R314-21. [PMID: 15072964 DOI: 10.1152/ajpregu.00144.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The midgut of the tobacco hornworm ( Manduca sexta) is a highly aerobic tissue that is destroyed and replaced by a pupal epithelium at metamorphosis. To determine how oxidative phosphorylation is altered during the programmed death of the larval cells, top-down control analysis was performed on mitochondria isolated from the midguts of larvae before and after the commitment to pupation. Oxygen consumption and protonmotive force (measured as membrane potential in the presence of nigericin) were monitored to determine the kinetic responses of the substrate oxidation system, proton leak, and phosphorylation system to changes in the membrane potential. Mitochondria from precommitment larvae have higher respiration rates than those from postcommitment larvae. State 4 respiration is controlled by the proton leak and the substrate oxidation system. In state 3, the substrate oxidation system exerted 90% of the control over respiration, and this high level of control did not change with development. Elasticity analysis, however, revealed that, after commitment, the activity of the substrate oxidation system falls. This decline may be due, in part, to a loss of cytochrome c from the mitochondria. There are no differences in the kinetics of the phosphorylation system, indicating that neither the F1F0ATP synthase nor the adenine nucleotide translocase is affected in the early stages of metamorphosis. An increase in proton conductance was observed in mitochondria isolated from postcommitment larvae, indicating that membrane area, lipid composition, or proton-conducting proteins may be altered during the early stages of the programmed cell death of the larval epithelium.
Collapse
Affiliation(s)
- M E Chamberlin
- Department of Biological Sciences, Ohio University, Athens, 45701, USA.
| |
Collapse
|
78
|
De Marchi U, Campello S, Szabò I, Tombola F, Martinou JC, Zoratti M. Bax does not directly participate in the Ca(2+)-induced permeability transition of isolated mitochondria. J Biol Chem 2004; 279:37415-22. [PMID: 15229226 DOI: 10.1074/jbc.m314093200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial permeability transition pore and Bax have both been proposed to be involved in the release of pro-apoptotic factors from mitochondria in the "intrinsic" pathway of apoptosis. The permeability transition pore is widely thought to be a supramolecular complex including or interacting with Bax. Given the relevance of the permeability transition in vivo, we have verified whether Bax influences the formation and/or the properties of the Ca(2+)/P(i)-induced permeability transition by using mitochondriaisolated from isogenic human colon cancer bax(+/-) and bax(-/-) HCT116 cell lines. We used mitochondria isolated from both types of cells and from Bax(+) cells exposed to apoptotic stimuli, as well as Bax-less mitochondria into which exogenous Bax had been incorporated. All exhibited the same behavior and pharmacological profile in swelling and Ca(2+)-retention experiments. Mitochondria from a bax(-)/bak(-) cell line also underwent an analogous Ca(2+)/P(i)-inducible swelling. This similarity indicates that Bax hasno major role in regulating the Ca(2+)-induced mitochondrial permeability transition.
Collapse
Affiliation(s)
- Umberto De Marchi
- CNR Institute of Neuroscience, Biomembranes Section and Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | | | | | |
Collapse
|
79
|
Abstract
Apoptosis can be defined as the regulated death of a cell and is conducted by conserved pathways. Apoptosis of neurons after injury or disease differs from programed cell death, in the sense that neurons in an adult brain are not "meant" to die and results in a loss of function. Thus apoptosis is an honorable process by a neuron, a cell with limited potential to replace itself, choosing instead to commit suicide to save neighboring cells from release of cellular components that cause injury directly or trigger secondary injury resulting from inflammatory reactions. The excess of apoptosis of neuronal cells underlies the progressive loss of neuronal populations in neurodegenerative disorders and thus is harmful. Mitochondria are the primary source for energy in neurons but are also poised, through the "mitochondrial apoptosis pathway," to signal the demise of cells. This duplicity of mitochondria is discussed, with particular attention given to the specialized case of pathological neuronal cell death.
Collapse
|
80
|
Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 2004; 23:2861-74. [PMID: 15077149 DOI: 10.1038/sj.onc.1207523] [Citation(s) in RCA: 637] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A plethora of apoptotic stimuli converge on the mitochondria and affect their membrane integrity. As a consequence, multiple death-promoting factors residing in the mitochondrial intermembrane space are liberated in the cytosol. Pro- and antiapoptotic Bcl-2 family proteins control the release of these mitochondrial proteins by inducing or preventing permeabilization of the outer mitochondrial membrane. Once released into the cytosol, these mitochondrial proteins activate both caspase-dependent and -independent cell death pathways. Cytochrome c was the first protein shown to be released from the mitochondria into the cytosol, where it induces apoptosome formation. Other released mitochondrial proteins include apoptosis-inducing factor (AIF) and endonuclease G, both of which contribute to apoptotic nuclear DNA damage in a caspase-independent way. Other examples are Smac/DIABLO (second mitochondria-derived activator of caspase/direct IAP-binding protein with low PI) and the serine protease HtrA2/OMI (high-temperature requirement protein A2), which both promote caspase activation and instigate caspase-independent cytotoxicity. The precise mode of action and importance of cytochrome c in apoptosis in mammalian cells has become clear through biochemical, structural and genetic studies. More recently identified factors, for example HtrA2/OMI and Smac/DIABLO, are still being studied intensively in order to delineate their functions in apoptosis. A better understanding of these functions may help to develop new strategies to treat cancer.
Collapse
Affiliation(s)
- Xavier Saelens
- Department for Molecular Biomedical Research, VIB and Ghent University, Fiers-Shell-Van Montagu Building, Ghent B9052, Belgium
| | | | | | | | | | | |
Collapse
|
81
|
Piccotti L, Buratta M, Giannini S, Gresele P, Roberti R, Corazzi L. Binding and Release of Cytochrome c in Brain Mitochondria Is Influenced by Membrane Potential and Hydrophobic Interactions with Cardiolipin. J Membr Biol 2004; 198:43-53. [PMID: 15209096 DOI: 10.1007/s00232-004-0654-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Factors influencing the release and anchorage of cytochrome c to the inner membrane of brain mitochondria have been investigated. Metabolic activity of mitochondria caused a decrease in the membrane potential delta psi(m), accompanied by detachment of the protein from the inner membrane. In a model system of cytochrome c reconstituted in cardiolipin (CL) liposomes, phosphate was used to breach the hydrophilic lipid-protein interactions. About 44% cytochrome c was removable when heart CL (80% 18:2n-6) was employed, whereas the remaining protein accounted for the tightly bound conformation characterized by hydrophobic lipid-protein interactions. Cytochrome c release from brain CL liposomes was higher compared to heart CL, consistent with lower polyunsaturated fatty acid content. The release was even higher with CL extracted from metabolically stressed mitochondria, exhibiting more saturated fatty acid profile compared to control (30% vs. 17%). Therefore, weakening of the hydrophobic interactions due to saturation of CL may account for the observed cytochrome c release from mitochondria following metabolic stress. Moreover, mitochondria enriched with polyunsaturated CL exhibited higher delta psi(m), compared to less unsaturated species, suggesting that CL fatty acid composition influences delta psi(m). Mitochondria incorporated exogenous cytochrome c without protease-sensitive factors or delta psi(m). The internalized protein anchored to the inner membrane without producing swelling, as monitored by forward and side light scattering, but produced delta psi(m) consumption, suggesting recovery of respiratory activity. The delta psi(m) decrease is ascribed to a selected mitochondrial population containing the incorporated cytochrome c.
Collapse
Affiliation(s)
- L Piccotti
- Laboratory of Biochemistry, Department of Internal Medicine, University of Perugia, 06122, Perugia, Italy
| | | | | | | | | | | |
Collapse
|
82
|
Esseiva AC, Chanez AL, Bochud-Allemann N, Martinou JC, Hemphill A, Schneider A. Temporal dissection of Bax-induced events leading to fission of the single mitochondrion in Trypanosoma brucei. EMBO Rep 2004; 5:268-73. [PMID: 14968134 PMCID: PMC1299006 DOI: 10.1038/sj.embor.7400095] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 12/19/2003] [Accepted: 01/13/2003] [Indexed: 11/08/2022] Open
Abstract
The protozoan Trypanosoma brucei has a single mitochondrion and lacks an apoptotic machinery. Here we show that expression of the proapoptotic protein Bax in T. brucei causes the release of cytochrome c, the depolarization of the mitochondrial membrane potential and mitochondrial fission. However, in contrast to mammalian cells, the three events are temporally well separated. The release of cytochrome c from the intermembrane space precedes mitochondrial fission, showing that it does not depend on mitochondrial fragmentation. Furthermore, halting Bax expression allows some cells to recover even after mitochondrial fission, the last recorded event, went to completion, indicating that all three Bax-induced events are, in principle, reversible.
Collapse
Affiliation(s)
- Anne Crausaz Esseiva
- Department of Biology/Zoology, University of Fribourg, Fribourg, Switzerland
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
- These authors contributed equally to this work
| | - Anne-Laure Chanez
- Department of Biology/Zoology, University of Fribourg, Fribourg, Switzerland
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
- These authors contributed equally to this work
| | - Natacha Bochud-Allemann
- Department of Biology/Zoology, University of Fribourg, Fribourg, Switzerland
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Jean-Claude Martinou
- Departement de Biologie Cellulaire, Sciences III, Genève, Switzerland
- Departement de Biologie Cellulaire, Sciences III, Quai E. Ansermet 30, CH-1211 Genève, Switzerland
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Bern, Switzerland
- Institute of Parasitology, University of Bern, Laenggass-Strasse 122, 3012 Bern, Switzerland
| | - André Schneider
- Department of Biology/Zoology, University of Fribourg, Fribourg, Switzerland
- Department of Biology/Zoology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
- Tel: +41 26 3008877; Fax: +41 26 3009741; E-mail:
| |
Collapse
|
83
|
Festjens N, van Gurp M, van Loo G, Saelens X, Vandenabeele P. Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta Haematol 2004; 111:7-27. [PMID: 14646342 DOI: 10.1159/000074483] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In addition to their function as major energy-providing organelles of the cell, mitochondria accomplish a crucial role in apoptosis. The pro-apoptotic BH3-only members of the Bcl-2 family continuously sense the cellular integrity and well-being at various subcellular levels. If these sentinels are induced, released or activated, they converge on the release of mitochondrial intermembrane space proteins such as cytochrome c, the oxidoreductase AIF, endonuclease G, Smac/DIABLO and the serine protease Omi/HtrA2. We discuss how Bcl-2 family members integrate diverse survival and death signals and act as central regulators of apoptosis. Furthermore, we describe the current knowledge on the role of mitochondrial proteins in apoptotic cell death, discuss the molecular mechanisms of their release and the apoptotic role of mitochondria from a phylogenetic and immunological point of view.
Collapse
Affiliation(s)
- Nele Festjens
- Molecular Signaling and Cell Death Unit, Department of Molecular Biomedical Research, VIB and Ghent University, Ghent, Belgium
| | | | | | | | | |
Collapse
|
84
|
Rosenstock TR, Carvalho ACP, Jurkiewicz A, Frussa-Filho R, Smaili SS. Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J Neurochem 2004; 88:1220-8. [PMID: 15009678 DOI: 10.1046/j.1471-4159.2003.02250.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intracellular calcium homeostasis is important for cell survival. However, increase in mitochondrial calcium (Ca2+m) induces opening of permeability transition pore (PTP), mitochondrial dysfunction and apoptosis. Since alterations of intracellular Ca2+ and reactive oxygen species (ROS) generation are involved in cell death, they might be involved in neurodegenerative processes such as Huntington's disease (HD). HD is characterized by the inhibition of complex II of respiratory chain and increase in ROS production. In this report, we studied the correlation between the inhibitor of the complex II, 3-nitropropionic acid (3NP), Ca2+ metabolism, apoptosis and behavioural alterations. We showed that 3NP (1 mm) is able to release Ca2+m, as neither Thapsigargin (TAP, 2 microm) nor free-calcium medium affected its effect. PTP inhibitors and antioxidants inhibited this process, suggesting an increase in ROS generation and PTP opening. In addition, 3NP (0.1 mm) also induces apoptotic cell death. Behavioural changes in animals treated with 3NP (20 mg/kg/day for 4 days) were also attenuated by pre- and co-treatment with vitamin E (VE, 20 mg/kg/day). Taken together, our results show that complex II inhibition could involve Ca2+m release, oxidative stress and cell death that may precede motor alterations in neurodegenerative processes such as HD.
Collapse
Affiliation(s)
- T R Rosenstock
- Departamento de Farmacologia, Universidade Federal de São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | | | | | | | | |
Collapse
|
85
|
Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR, Stahl E, Bolouri MS, Ray HN, Sihag S, Kamal M, Patterson N, Lander ES, Mann M. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 2004; 115:629-40. [PMID: 14651853 DOI: 10.1016/s0092-8674(03)00926-7] [Citation(s) in RCA: 703] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Mitochondria are tailored to meet the metabolic and signaling needs of each cell. To explore its molecular composition, we performed a proteomic survey of mitochondria from mouse brain, heart, kidney, and liver and combined the results with existing gene annotations to produce a list of 591 mitochondrial proteins, including 163 proteins not previously associated with this organelle. The protein expression data were largely concordant with large-scale surveys of RNA abundance and both measures indicate tissue-specific differences in organelle composition. RNA expression profiles across tissues revealed networks of mitochondrial genes that share functional and regulatory mechanisms. We also determined a larger "neighborhood" of genes whose expression is closely correlated to the mitochondrial genes. The combined analysis identifies specific genes of biological interest, such as candidates for mtDNA repair enzymes, offers new insights into the biogenesis and ancestry of mammalian mitochondria, and provides a framework for understanding the organelle's contribution to human disease.
Collapse
|
86
|
Abstract
Cultured rat embryonic cortical neurons undergo apoptosis when treated with the topoisomerase-I inhibitor camptothecin. Pharmacological or molecular caspase inhibition prevents apoptosis, but the neurons still die in a delayed nonapoptotic manner. Here we examine the mechanisms leading to such caspase-independent death, focusing on events related to mitochondrial malfunction, which accompanies this delayed death. Given that mitochondria are the major source of ATP in primary neurons, we examined the cellular energy state. Mitochondrially generated ATP was specifically reduced in neurons treated with camptothecin and Boc-aspartyl-fluoromethylketone. Augmentation of cellular ATP by manipulation of the glucose content in the cultures led to an increase in survival specifically in delayed caspase-independent but not early caspase-dependent death. As another possible consequence of mitochondrial malfunction, we found an induction of reactive oxygen species in delayed death. The free radical scavenger Tempol, but not other classes of antioxidants, reduced oxidative stress and promoted survival. Other potential events known to be a direct or indirect consequence of mitochondrial dysfunction, such as the induction of autophagy, release of apoptosis-inducing factor, or opening of the mitochondrial permeability transition pore, were not found to play a significant role in caspase-independent neuronal death. Combining the strategies of increasing intracellular ATP and reducing free radicals led to an additive increase in neuronal survival. We conclude that energy failure and free radical generation contribute to caspase-independent neuronal death. Both could represent potential targets for therapeutic interventions complementary to caspase inhibition.
Collapse
|
87
|
Lang-Rollin ICJ, Rideout HJ, Noticewala M, Stefanis L. Mechanisms of caspase-independent neuronal death: energy depletion and free radical generation. J Neurosci 2003; 23:11015-25. [PMID: 14657158 PMCID: PMC6741034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Cultured rat embryonic cortical neurons undergo apoptosis when treated with the topoisomerase-I inhibitor camptothecin. Pharmacological or molecular caspase inhibition prevents apoptosis, but the neurons still die in a delayed nonapoptotic manner. Here we examine the mechanisms leading to such caspase-independent death, focusing on events related to mitochondrial malfunction, which accompanies this delayed death. Given that mitochondria are the major source of ATP in primary neurons, we examined the cellular energy state. Mitochondrially generated ATP was specifically reduced in neurons treated with camptothecin and Boc-aspartyl-fluoromethylketone. Augmentation of cellular ATP by manipulation of the glucose content in the cultures led to an increase in survival specifically in delayed caspase-independent but not early caspase-dependent death. As another possible consequence of mitochondrial malfunction, we found an induction of reactive oxygen species in delayed death. The free radical scavenger Tempol, but not other classes of antioxidants, reduced oxidative stress and promoted survival. Other potential events known to be a direct or indirect consequence of mitochondrial dysfunction, such as the induction of autophagy, release of apoptosis-inducing factor, or opening of the mitochondrial permeability transition pore, were not found to play a significant role in caspase-independent neuronal death. Combining the strategies of increasing intracellular ATP and reducing free radicals led to an additive increase in neuronal survival. We conclude that energy failure and free radical generation contribute to caspase-independent neuronal death. Both could represent potential targets for therapeutic interventions complementary to caspase inhibition.
Collapse
|
88
|
Abstract
Caspases are a family of cysteine proteases that play important roles in regulating apoptosis. A decade of research has generated a wealth of information on the signal transduction pathways mediated by caspases, the distinct functions of individual caspases and the mechanisms by which caspases mediate apoptosis and a variety of physiological and pathological processes.
Collapse
Affiliation(s)
- Alexei Degterev
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | | | | |
Collapse
|
89
|
Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1642:115-23. [PMID: 12972300 DOI: 10.1016/s0167-4889(03)00105-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mitochondrial damage with release of cytochrome c is implicated in cell death signalling pathways. To examine mitochondrial function in apoptotic cells, we applied high-resolution respirometry to human leukemia cells arrested in the G1- and S-phase by exposure to the glucocorticoid dexamethasone and nucleotide analogue gemcitabine. At 30% apoptosis, opposite effects were observed on respiratory capacity (71% and 131% of controls, respectively). These changes correlated with alterations in cell size, cytosolic, and mitochondrial marker enzymes. Mitochondrial ATP production and membrane potential were maintained in all treatments, as deduced from high respiratory uncoupling control ratios (UCR). Bcl-2 over-expression did not prevent apoptosis after gemcitabine-treatment, but protected dexamethasone-treated cells from apoptosis, without fully preventing the decline of respiration and cell size. These results, therefore, provide conclusive evidence that alterations in respiratory capacity and enzyme activities per cell are mainly caused by opposite changes in cell size, occurring upon cell cycle arrest triggered by dexamethasone and gemcitabine in the early phase of apoptosis.
Collapse
Affiliation(s)
- Kathrin Renner
- Tyrolean Cancer Research Institute, Innrain 66, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
90
|
Abstract
We examined the temporal and causal relationship between Smac/DIABLO release, cytochrome c (cyt-c) release, and caspase activation at the single cell level during apoptosis. Cells treated with the broad-spectrum caspase inhibitor z-VAD-fmk, caspase-3 (Casp-3)-deficient MCF-7 cells, as well as Bax-deficient DU-145 cells released Smac/DIABLO and cyt-c in response to proapoptotic agents. Real-time confocal imaging of MCF-7 cells stably expressing Smac/DIABLO-yellow fluorescent protein (YFP) revealed that the average duration of Smac/DIABLO-YFP release was greater than that of cyt-c-green fluorescent protein (GFP). However, there was no significant difference in the time to the onset of release, and both cyt-c-GFP and Smac/DIABLO-YFP release coincided with mitochondrial membrane potential depolarization. We also observed no significant differences in the Smac/DIABLO-YFP release kinetics when z-VAD-fmk-sensitive caspases were inhibited or Casp-3 was reintroduced. Simultaneous measurement of DEVDase activation and Smac/DIABLO-YFP release demonstrated that DEVDase activation occurred within 10 min of release, even in the absence of Casp-3.
Collapse
Affiliation(s)
- Markus Rehm
- Interdisciplinary Center for Clinical Research, University Münster Clinics, Münster, Germany
| | | | | |
Collapse
|
91
|
Chang LK, Schmidt RE, Johnson EM. Alternating metabolic pathways in NGF-deprived sympathetic neurons affect caspase-independent death. J Cell Biol 2003; 162:245-56. [PMID: 12876275 PMCID: PMC2172806 DOI: 10.1083/jcb.200302109] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial release of cytochrome c in apoptotic cells activates caspases, which execute apoptotic cell death. However, the events themselves that culminate in caspase activation can have deleterious effects because caspase inhibitor-saved cells ultimately die in a caspase-independent manner. To determine what events may underlie this form of cell death, we examined bioenergetic changes in sympathetic neurons deprived of NGF in the presence of a broad-spectrum caspase inhibitor, boc-aspartyl-(OMe)-fluoromethylketone. Here, we report that NGF-deprived, boc-aspartyl-(OMe)-fluoromethylketone-saved neurons rely heavily on glycolysis for ATP generation and for survival. Second, the activity of F0F1 contributes to caspase-independent death, but has only a minor role in the maintenance of mitochondrial membrane potential, which is maintained primarily by electron transport. Third, permeability transition pore inhibition by cyclosporin A attenuates NGF deprivation-induced loss of mitochondrial proteins, suggesting that permeability transition pore opening may have a function in regulating the degradation of mitochondria after cytochrome c release. Identification of changes in caspase inhibitor-saved cells may provide the basis for rational strategies to augment the effectiveness of the therapeutic use of postmitochondrial interventions.
Collapse
Affiliation(s)
- Louis K Chang
- Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | | | |
Collapse
|
92
|
Iwai-Kanai E, Hasegawa K, Adachi S, Fujita M, Akao M, Kawamura T, Kita T. Effects of endothelin-1 on mitochondrial function during the protection against myocardial cell apoptosis. Biochem Biophys Res Commun 2003; 305:898-903. [PMID: 12767915 DOI: 10.1016/s0006-291x(03)00839-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Endothelin-1 is a potent survival factor against myocardial cell apoptosis. While apoptotic stimuli often perturb mitochondrial function by decreasing the membrane potential as well as oxygen consumption, it is unknown whether ET-1 can rescue such perturbation by apoptotic stimuli. Administration of endothelin-1 inhibited the H(2)O(2)-induced release of cytochrome c from mitochondria to the cytosol in cardiac myocytes, indicating the involvement of the mitochondria-dependent pathway in the anti-apoptotic effect of endothelin-1. We showed here by cytofluorimetric analysis that endothelin-1 prevented the H(2)O(2)-induced decrease of membrane potential. However, endothelin-1 was unable to reverse the H(2)O(2)-mediated decrease in oxygen consumption and electron transport in the mitochondria of cardiac myocytes. Endothelin-1 was unable to rescue cardiac myocytes from apoptosis when administered after the decrease in mitochondrial membrane potential. These data suggest that endothelin-1 does not target the mitochondrial respiratory chain, but rather stabilizes the mitochondrial membrane during the protection against apoptosis.
Collapse
Affiliation(s)
- Eri Iwai-Kanai
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
93
|
Scorrano L, Korsmeyer SJ. Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 2003; 304:437-44. [PMID: 12729577 DOI: 10.1016/s0006-291x(03)00615-6] [Citation(s) in RCA: 530] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A crucial amplificatory event in several apoptotic cascades is the nearly complete release of cytochrome c from mitochondria. Proteins of the BCL-2 family which include both anti- and proapoptotic members control this step. Here, we review the proposed mechanisms by which proapoptotic BCL-2 family members induce cytochrome c release. Data support a model in which the apoptotic pathway bifurcates following activation of a "BH3 only" family member. BH3 only molecules induce the activation of the multidomain proapoptotics BAX and BAK, resulting in the permeabilization of the outer mitochondrial membrane and the efflux of cytochrome c. This is coordinated with the activation of a distinct pathway characterized by profound changes of the inner mitochondrial membrane morphology and organization. This mitochondrial remodelling insures complete release of cytochrome c and the onset of mitochondrial dysfunction that is a typical feature of many apoptotic deaths.
Collapse
Affiliation(s)
- Luca Scorrano
- Howard Hughes Medical Institute, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
94
|
Abstract
Ca(2+) is one of the key regulators of cell survival, but Ca(2+) can also induce apoptosis in response to a variety of pathological conditions. The pro-apoptotic effects of Ca(2+) are mediated by a diverse range of Ca(2+)-sensitive factors that are compartmentalized in various intracellular organelles including the ER, cytoplasm, and mitochondria. The Ca(2+) dynamics of these organelles appear to be modulated by the apoptosis-regulating Bcl-2 family proteins. In this paper, the recent progress of research on the mechanisms mediating the apoptosis-regulating effects of Ca(2+) and the interactions of Bcl-2 family proteins with the Ca(2+) storage organelles are discussed.
Collapse
Affiliation(s)
- György Hajnóczky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | | | | |
Collapse
|
95
|
Abstract
An increase in the permeability of the outer mitochondrial membrane is central to apoptotic cell death, since it leads to the release of several apoptogenic factors, such as cytochrome c and Smac/Diablo, into the cytoplasm that activate downstream death programs. During apoptosis, the mitochondria also release AIF and endonuclease G, both of which are translocated to the nucleus and are implicated in apoptotic nuclear changes that occur in a caspase-independent manner. Mitochondrial membrane permeability is directly controlled by the major apoptosis regulator, i.e., the Bcl-2 family of proteins, mainly through regulation of the formation of apoptotic protein-conducting pores in the outer mitochondrial membrane, although the precise molecular mechanisms are still not completely understood. Here, I focus on the mechanisms by which Bcl-2 family members control the permeability of mitochondrial membrane during apoptosis.
Collapse
Affiliation(s)
- Yoshihide Tsujimoto
- Osaka University Graduate School of Medicine, Department of Post-Genomics and Diseases, Laboratory of Molecular Genetics, CREST of Japanese Science and Technology, Suita, Osaka, Japan.
| |
Collapse
|
96
|
Düssmann H, Kögel D, Rehm M, Prehn JHM. Mitochondrial membrane permeabilization and superoxide production during apoptosis. A single-cell analysis. J Biol Chem 2003; 278:12645-9. [PMID: 12560329 DOI: 10.1074/jbc.m210826200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The temporal relationship between mitochondrial membrane permeabilization and reactive oxygen species production during apoptosis remains unknown. We analyzed the rate of superoxide production of human breast carcinoma cells expressing a cytochrome c-green fluorescent protein (cyt-c-GFP) fusion protein at the single-cell level during apoptosis. In cells treated with the proapoptotic agents staurosporine (3 microm) or tumor necrosis factor-alpha (100 ng/ml), the release of cyt-c-GFP was individually set for each cell, and the majority of the fusion protein was released in less than 10 min. Prior to the release of the fusion protein, cells demonstrated a constant rate of superoxide production determined with the probe hydroethidine. After the release was completed, the superoxide concentration increased rapidly to a level more than 3-fold above baseline. Treatment with the broad spectrum caspase inhibitor z-Val-Ala-Asp(O-methyl)-fluoromethylketone (z-VAD-fmk; 200 microm) did not alter the kinetics of the cyt-c-GFP release but significantly reduced superoxide concentration after the release of cyt-c-GFP. Interestingly, treatment with z-VAD-fmk also reduced the increase in superoxide concentration in response to menadione in the absence of mitochondrial cyt-c-GFP release. Mitochondrial depolarization with the protonophore carbonyl cyanide p-trifluoromethoxy-phenylhydrazone per se did not trigger cyt-c-GFP release or an increase in superoxide production. Our data suggest that mitochondria increase their superoxide production during apoptosis directly after the quantitative release of soluble intermembrane proteins and demonstrate novel antioxidative effects of the commonly used caspase inhibitor z-VAD-fmk.
Collapse
Affiliation(s)
- Heiko Düssmann
- Interdisciplinary Center for Clinical Research (IZKF), Westphalian Wilhelms-University, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
97
|
Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 2003; 160:1115-27. [PMID: 12668660 PMCID: PMC2172754 DOI: 10.1083/jcb.200212059] [Citation(s) in RCA: 421] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of cell surface death receptors activates caspase-8, which targets a limited number of substrates including BAP31, an integral membrane protein of the endoplasmic reticulum (ER). Recently, we reported that a caspase-resistant BAP31 mutant inhibited several features of Fas-induced apoptosis, including the release of cytochrome c (cyt.c) from mitochondria (Nguyen, M., D.G. Breckenridge, A. Ducret, and G.C. Shore. 2000. Mol. Cell. Biol. 20:6731-6740), implicating ER-mitochondria crosstalk in this pathway. Here, we report that the p20 caspase cleavage fragment of BAP31 can direct pro-apoptotic signals between the ER and mitochondria. Adenoviral expression of p20 caused an early release of Ca2+ from the ER, concomitant uptake of Ca2+ into mitochondria, and mitochondrial recruitment of Drp1, a dynamin-related protein that mediates scission of the outer mitochondrial membrane, resulting in dramatic fragmentation and fission of the mitochondrial network. Inhibition of Drp1 or ER-mitochondrial Ca2+ signaling prevented p20-induced fission of mitochondria. p20 strongly sensitized mitochondria to caspase-8-induced cyt.c release, whereas prolonged expression of p20 on its own ultimately induced caspase activation and apoptosis through the mitochondrial apoptosome stress pathway. Therefore, caspase-8 cleavage of BAP31 at the ER stimulates Ca2+-dependent mitochondrial fission, enhancing the release of cyt.c in response to this initiator caspase.
Collapse
|
98
|
Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell 2003; 112:481-90. [PMID: 12600312 DOI: 10.1016/s0092-8674(03)00116-8] [Citation(s) in RCA: 976] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mitochondrion has long been known both as a chemical powerplant and as a cellular compartment housing various biosynthetic pathways. However, studies on the function of mitochondria in apoptotic cell death have revealed a versatility and complexity of these organelles previously unsuspected. The mechanisms proposed for mitochondrial involvement in cell death are diverse and highly controversial. In one model, mitochondria are seen as passive containers that can be made to leak out cytotoxic proteins. In other scenarios, however, certain more or less familiar aspects of mitochondrial physiology, such as oxidative phosphorylation, generation of oxygen radicals, dynamic morphological rearrangements, calcium overload, and permeability transition, are proposed to play crucial roles. In this review, we examine a few promising mechanisms that have been gaining attention recently.
Collapse
Affiliation(s)
- Donald D Newmeyer
- La Jolla Institute for Allergy and Immunology, 10355 Science Center Drive, San Diego, CA 92121, USA.
| | | |
Collapse
|
99
|
La Piana G, Marzulli D, Consalvo MI, Lofrumento NE. Cytochrome c-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis. Arch Biochem Biophys 2003; 410:201-11. [PMID: 12573279 DOI: 10.1016/s0003-9861(02)00687-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A catalytic amount of cytochrome c (cyto-c) added to the incubation medium of isolated mitochondria promotes the transfer of reducing equivalents from extramitochondrial nicotinamide adenine dinucleotide in its reduced state (NADH) to molecular oxygen inside the mitochondria, a process coupled to the generation of a membrane potential. This mimics in many aspects the early stages of those apoptotic pathways characterized by the persistence of mitochondrial membrane potential but with cyto-c already exported into the cytosol. In cyclosporin-sensitive and calcium-induced mitochondrial permeability transition (MPT) a release of cyto-c can also be observed. However, in MPT uncoupled respiration associated with mitochondrial swelling and preceded by the complete dissipation of the membrane potential which cannot be restored with ATP addition or any other source of energy is immediately activated. The results obtained and discussed with regard to intactness of mitochondrial preparations indicate that MPT could be an apoptotic event downstream but not upstream of cyto-c release linked to the energy-requiring processes. In the early stages of apoptosis cytosolic cyto-c participates in the activation of caspases and at the same time can promote the oxidation of cytosolic NADH, making more energy available for the correct execution of the cell death program. This hypothesis is not in contrast with available data in the literature showing that cyto-c is present in the cytosol of both control and apoptosis-induced cultured cell lines.
Collapse
Affiliation(s)
- Gianluigi La Piana
- Department of Biochemistry and Molecular Biology, University of Bari, via Orabona 4, 70126 Bari, Italy.
| | | | | | | |
Collapse
|
100
|
Düssmann H, Rehm M, Kögel D, Prehn JHM. Outer mitochondrial membrane permeabilization during apoptosis triggers caspase-independent mitochondrial and caspase-dependent plasma membrane potential depolarization: a single-cell analysis. J Cell Sci 2003; 116:525-36. [PMID: 12508113 DOI: 10.1242/jcs.00236] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Little is known about the temporal relationship between mitochondrial and plasma membrane potential changes and outer mitochondrial membrane permeabilization during apoptosis. Confocal imaging of breast carcinoma and HeLa cells stably transfected with cytochrome-C-GFP demonstrated that mitochondria rapidly depolarized after the release of the fusion protein into the cytosol. Of note, mitochondria did not completely depolarize but established a new steady-state level that could be further dissipated by treatment with the protonophore carbonyl cyanide p-trifluoromethoxy-phenylhydrazone. Treatment with the F(O)F(1)-ATP-synthase inhibitor oligomycin likewise induced a collapse of this steady-state level, suggesting that F(O)F(1)-ATP-synthase reversal maintained mitochondrial potential after outer mitochondrial membrane permeabilization. Treatment with a broad spectrum caspase inhibitor failed to inhibit the partial depolarization of mitochondria during apoptosis, yet potently abolished the activation of effector caspases detected by fluorescence resonance energy transfer analysis in the same experiment. Interestingly, the onset of mitochondrial depolarization was always coupled with a depolarization of the plasma membrane potential. This was associated with the degradation of the regulatory Na(+)/K(+)-ATPase beta-subunit, and both events were blocked by caspase inhibition. Our results demonstrate that outer mitochondrial membrane permeabilization coordinates the depolarization of both membrane potentials during apoptosis.
Collapse
Affiliation(s)
- Heiko Düssmann
- Interdisciplinary Center for Clinical Research (IZKF), Westphalian Wilhelms-University, D-48149 Münster, Germany
| | | | | | | |
Collapse
|