51
|
Cai X, Hong L, Liu Y, Huang X, Lai H, Shao L. Salmonella pathogenicity island 1 knockdown confers protection against myocardial fibrosis and inflammation in uremic cardiomyopathy via down-regulation of S100 Calcium Binding Protein A8/A9 transcription. Ren Fail 2022; 44:1819-1832. [PMID: 36299239 PMCID: PMC9621201 DOI: 10.1080/0886022x.2022.2137421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background/Aim Uremic cardiomyopathy (UCM) is a characteristic cardiac pathology that is commonly found in patients with chronic kidney disease. This study dissected the mechanism of SPI1 in myocardial fibrosis and inflammation induced by UCM through S100A8/A9. Methods An UCM rat model was established, followed by qRT-PCR and western blot analyses of SPI1 and S100A8/A9 expression in myocardial tissues. After alterations of SPI1 and S100A8/A9 expression in UCM rats, the blood specimens were harvested from the cardiac apex of rats. The levels of creatine phosphokinase-MB (CK-MB), blood creatinine, blood urea nitrogen (BUN), and inflammatory cytokines (interleukin [IL]-6, IL-1β, and tumor necrosis factor-α [TNF-α]) were examined in the collected blood. Collagen fibrosis was assessed by Masson staining. The expression of fibrosis markers [transforming growth factor (TGF)-β1, α-smooth muscle actin (SMA), Collagen 4a1, and Fibronectin], IL-6, IL-1β, and TNF-α was measured in myocardial tissues. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were conducted to test the binding relationship between SPI1 and S100A8/A9. Results S100A8/A9 and SPI1 were highly expressed in the myocardial tissues of UCM rats. Mechanistically, SPI1 bound to the promoter of S100A8/A9 to facilitate S100A8/A9 transcription. S100A8/A9 or SPI1 knockdown reduced myocardial fibrosis and inflammation and the levels of CK-MB, blood creatinine, and BUN, as well as the expression of TGF-β1, α-SMA, Collagen 4a1, Fibronectin, IL-6, TNF-α, and IL-1β in UCM rats. Conclusion SPI1 knockdown diminished S100A8/A9 transcription, thus suppressing myocardial fibrosis and inflammation caused by UCM.
Collapse
Affiliation(s)
- Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Lang Hong
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Hengli Lai
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, P.R. China
| |
Collapse
|
52
|
Moggio A, Schunkert H, Kessler T, Sager HB. Quo Vadis? Immunodynamics of Myeloid Cells after Myocardial Infarction. Int J Mol Sci 2022; 23:15814. [PMID: 36555456 PMCID: PMC9779515 DOI: 10.3390/ijms232415814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI), a major contributor to worldwide morbidity and mortality, is caused by a lack of blood flow to the heart. Affected heart tissue becomes ischemic due to deficiency of blood perfusion and oxygen delivery. In case sufficient blood flow cannot be timely restored, cardiac injury with necrosis occurs. The ischemic/necrotic area induces a systemic inflammatory response and hundreds of thousands of leukocytes are recruited from the blood to the injured heart. The blood pool of leukocytes is rapidly depleted and urgent re-supply of these cells is needed. Myeloid cells are generated in the bone marrow (BM) and spleen, released into the blood, travel to sites of need, extravasate and accumulate inside tissues to accomplish various functions. In this review we focus on the "leukocyte supply chain" and will separately evaluate different myeloid cell compartments (BM, spleen, blood, heart) in steady state and after MI. Moreover, we highlight the local and systemic kinetics of extracellular factors, chemokines and danger signals involved in the regulation of production/generation, release, transportation, uptake, and activation of myeloid cells during the inflammatory phase of MI.
Collapse
Affiliation(s)
- Aldo Moggio
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
| | - Heribert Schunkert
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Thorsten Kessler
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Center Munich, Technical University Munich, 80636 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
53
|
Wienecke LM, Lemke LH, Fraccarollo D, Galuppo P, Kockelmann F, Thol J, Bauersachs J, Westhoff-Bleck M. Altered compositions of monocyte, T lymphocyte and NK cell subsets in heart failure of adult congenital heart disease. INTERNATIONAL JOURNAL OF CARDIOLOGY CONGENITAL HEART DISEASE 2022; 10:100418. [PMID: 39713590 PMCID: PMC11657347 DOI: 10.1016/j.ijcchd.2022.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 11/23/2022] Open
Abstract
Background Adults with congenital heart disease (ACHD) display changes in adaptive immunity related to early open-heart surgery and subsequent incidental thymectomy. In acquired heart failure (HF) systemic inflammation, innate and adaptive immune cells play an important role. However, cellular immune alterations of monocyte, T lymphocyte and natural killer (NK) cell subsets have not been related to HF in ACHD. Methods and results This cross-sectional study included 209 ACHD outpatients (mean age: 35.3 ± 11.0 years; NYHA class I/II/III-IV 64.1%/21.5%/14.4%; 59.8% male) and 21 healthy controls (29.8 ± 12.6 years; 47.6% male). Patients with clinical signs of infection, inflammatory diseases or malignancies were excluded. Flow cytometry of fresh whole blood revealed significantly elevated levels of CD14++CD16+ (Mon2) and CD14+CD16++ (Mon3) monocytes that increased in advanced NYHA class. Immature CD14+HLA-DRneg/low monocytes were significantly higher in ACHD, but did not relate to NT-proBNP or NYHA class. Frequencies of Mon2, CD14+HLA-DRneg/low and neutrophils related to plasma S100A8/A9 levels. Furthermore, ACHD had decreased T helper and cytotoxic T cell counts, however NKT and CD3bright T cells remained unchanged compared to control. The cytokine-producing CD56bright NK subset related to NT-proBNP and expanded in advanced HF stages. Patients with elevated Mon2 and CD14+HLA-DRneg/low monocytes exhibited a worse outcome regarding all-cause mortality/cardiac decompensations after a mean follow-up of 5.5 years. High Mon2, low total lymphocyte and low T helper cell counts were independent prognostic markers for the onset of adverse cardiac events. Conclusions Altered immune cell compositions related to heart failure and exhibited prognostic relevance. This suggests an important link between immunity, inflammation and HF in ACHD bearing potential for refined clinical risk stratification.
Collapse
Affiliation(s)
- Laura M. Wienecke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
- Department of Cardiology, Angiology and Respiratory Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Lars H. Lemke
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Daniela Fraccarollo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Paolo Galuppo
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Fabian Kockelmann
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Jens Thol
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
54
|
Wang N, Wang W, Wang X, Mang G, Chen J, Yan X, Tong Z, Yang Q, Wang M, Chen L, Sun P, Yang Y, Cui J, Yang M, Zhang Y, Wang D, Wu J, Zhang M, Yu B. Histone Lactylation Boosts Reparative Gene Activation Post-Myocardial Infarction. Circ Res 2022; 131:893-908. [PMID: 36268709 DOI: 10.1161/circresaha.122.320488] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
BACKGROUND Inflammation resolution and cardiac repair initiation after myocardial infarction (MI) require timely activation of reparative signals. Histone lactylation confers macrophage homeostatic gene expression signatures via transcriptional regulation. However, the role of histone lactylation in the repair response post-MI remains unclear. We aimed to investigate whether histone lactylation induces reparative gene expression in monocytes early and remotely post-MI. METHODS Single-cell transcriptome data indicated that reparative genes were activated early and remotely in bone marrow and circulating monocytes before cardiac recruitment. Western blotting and immunofluorescence staining revealed increases in histone lactylation levels, including the previously identified histone H3K18 lactylation in monocyte-macrophages early post-MI. Through joint CUT&Tag and RNA-sequencing analyses, we identified Lrg1, Vegf-a, and IL-10 as histone H3K18 lactylation target genes. The increased modification and expression levels of these target genes post-MI were verified by chromatin immunoprecipitation-qPCR and reverse transcription-qPCR. RESULTS We demonstrated that histone lactylation regulates the anti-inflammatory and pro-angiogenic dual activities of monocyte-macrophages by facilitating reparative gene transcription and confirmed that histone lactylation favors a reparative environment and improves cardiac function post-MI. Furthermore, we explored the potential positive role of monocyte histone lactylation in reperfused MI. Mechanistically, we provided new evidence that monocytes undergo metabolic reprogramming in the early stage of MI and demonstrated that dysregulated glycolysis and MCT1 (monocarboxylate transporter 1)-mediated lactate transport promote histone lactylation. Finally, we revealed the catalytic effect of IL (interleukin)-1β-dependent GCN5 (general control non-depressible 5) recruitment on histone H3K18 lactylation and elucidated its potential role as an upstream regulatory element in the regulation of monocyte histone lactylation and downstream reparative gene expression post-MI. CONCLUSIONS Histone lactylation promotes early remote activation of the reparative transcriptional response in monocytes, which is essential for the establishment of immune homeostasis and timely activation of the cardiac repair process post-MI.
Collapse
Affiliation(s)
- Naixin Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Weiwei Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Xiaoqi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ge Mang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jianfeng Chen
- Experimental Animal Centre (J. Chen), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xiangyu Yan
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Zhonghua Tong
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Qiannan Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mengdi Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Liangqi Chen
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Ping Sun
- Department of Ultrasound (P.S.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yupeng Yang
- Guoke Biotechnology Co., Ltd., Changping District, Beijing, China (Y.Y.)
| | - Jingxuan Cui
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Mian Yang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Yafei Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Dongni Wang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Jian Wu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Maomao Zhang
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| | - Bo Yu
- Department of Cardiology (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.), the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.,The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China (N.W., W.W., X.W., G.M., X.Y., Z.T., Q.Y., M.W., L.C., P.S., J. Cui, M.Y., Y.Z., D.W., J.W., M.Z., B.Y.)
| |
Collapse
|
55
|
Suica VI, Uyy E, Ivan L, Boteanu RM, Cerveanu-Hogas A, Hansen R, Antohe F. Cardiac Alarmins as Residual Risk Markers of Atherosclerosis under Hypolipidemic Therapy. Int J Mol Sci 2022; 23:ijms231911174. [PMID: 36232476 PMCID: PMC9569654 DOI: 10.3390/ijms231911174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 12/01/2022] Open
Abstract
Increased levels of low-density lipoproteins are the main risk factor in the initiation and progression of atherosclerosis. Although statin treatment can effectively lower these levels, there is still a residual risk of cardiovascular events. We hypothesize that a specific panel of stress-sensing molecules (alarmins) could indicate the persistence of silent atherosclerosis residual risk. New Zealand White rabbits were divided into: control group (C), a group that received a high-fat diet for twelve weeks (Au), and a treated hyperlipidemic group with a lipid diet for eight weeks followed by a standard diet and hypolipidemic treatment (atorvastatin and PCSK9 siRNA-inhibitor) for four weeks (Asi). Mass spectrometry experiments of left ventricle lysates were complemented by immunologic and genomic studies to corroborate the data. The hyperlipidemic diet determined a general alarmin up-regulation tendency over the C group. A significant spectral abundance increase was measured for specific heat shock proteins, S100 family members, HMGB1, and Annexin A1. The hypolipidemic treatment demonstrated a reversed regulation trend with non-significant spectral alteration over the C group for some of the identified alarmins. Our study highlights the discriminating potential of alarmins in hyperlipidemia or following hypolipidemic treatment. Data are available via ProteomeXchange with identifier PXD035692.
Collapse
Affiliation(s)
- Viorel I. Suica
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Elena Uyy
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Luminita Ivan
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Raluca M. Boteanu
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Aurel Cerveanu-Hogas
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
| | - Rune Hansen
- SINTEF Digital, 7465 Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Felicia Antohe
- Institute of Cellular Biology and Pathology “Nicolae Simionescu”, 050568 Bucharest, Romania
- Correspondence: ; Tel.: +40-213194518
| |
Collapse
|
56
|
Sun Y, Wang Z, Hou J, Shi J, Tang Z, Wang C, Zhao H. Shuangxinfang Prevents S100A9-Induced Macrophage/Microglial Inflammation to Improve Cardiac Function and Depression-Like Behavior in Rats After Acute Myocardial Infarction. Front Pharmacol 2022; 13:832590. [PMID: 35814253 PMCID: PMC9263923 DOI: 10.3389/fphar.2022.832590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/06/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Depression is a common complication of cardiovascular disease, which deteriorates cardiac function. Shuangxinfang (psycho-cardiology formula, PCF) was reported to alleviate myocardial ischemia injury and improve depression-like behavior. Interestingly, our previous proteomics study predicted that the protein S100A9 appeared as an important target, and macrophage/microglial inflammation might be involved in the process of PCF improving depression induced by acute myocardial infarction (AMI). This study aims to validate the proteomics results. Methods: AMI rat models were established in vivo, followed by the administration of PCF or ABR-215757 (also named paquinimod, inhibiting S100A9 binding to TLR4) for 5 days. Forced swimming test (FST) and open field test (OFT) were applied to record depression-like behavior, and echocardiography was employed to evaluate cardiac function. Morphological changes of cardiomyocytes were assessed by HE staining and TUNEL staining on day 7 after cardiac surgery, as well as Masson trichrome staining on day 21. Hippocampal neurogenesis was determined by Nissl staining, while 5-hydroxytryptamine (5-HT), tryptophan/kynurenine ratio, and brain-derived neurotrophic factor (BDNF) in the hippocampus were analyzed as biochemical indicators of depression. We employed RT-qPCR, western blotting, and immunofluorescence to detect the expression of pathway-related genes and proteins. Myocardial and hippocampal expression of inflammatory factors were performed by ELISA. The activation of macrophage and microglia was assessed via immunoreaction using CD68 and Iba1, respectively. For in vitro confirmation, BV2 cells were primed with recombinant protein S100A9 and then treated with PCF serum or ferulic acid to determine alterations in microglial inflammation. Results: Rats in the AMI group showed heart function deterioration and depression-like behavior. Coronary ligation not only brought about myocardial inflammation, cell apoptosis, and fibrosis but also reduced the neurogenesis, elevated the tryptophan/kynurenine ratio, and decreased the content of 5-HT. PCF could ameliorate the pathological and phenotypic changes in the heart and brain and inhibit the expression of the S100A9 protein, the activation of the microglial cell, and the secretion of IL-1β and TNF-α raised by AMI. ABR-215757 showed therapeutic effect and molecular biological mechanisms similar to PCF. Treatment with PCF serum or ferulic acid in vitro was proved to efficiently block the hyperactivation of BV2 cells and increment of cytokine contents induced by recombinant protein S100A9. Conclusion: We identify S100A9 as a novel and potent regulator of inflammation in both the heart and brain. Macrophage/microglia inflammation mediated by S100A9 is considered a pivotal pathogenic in depression after AMI and a major pathway for the treatment of PCF, suggesting that PCF is a promising therapeutic candidate for psycho-cardiology disease.
Collapse
Affiliation(s)
- Yize Sun
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheyi Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiqiu Hou
- Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinyu Shi
- Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhuoran Tang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chao Wang
- Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chao Wang, ; Haibin Zhao,
| | - Haibin Zhao
- Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chao Wang, ; Haibin Zhao,
| |
Collapse
|
57
|
Lin ZL, Liu YC, Gao YL, Chen XS, Wang CL, Shou ST, Chai YF. S100A9 and SOCS3 as diagnostic biomarkers of acute myocardial infarction and their association with immune infiltration. Gene 2022; 97:67-79. [PMID: 35675985 DOI: 10.1266/ggs.21-00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death globally, with a mortality rate of over 20%. However, the diagnostic biomarkers frequently used in current clinical practice have limitations in both sensitivity and specificity, likely resulting in delayed diagnosis. This study aimed to identify potential diagnostic biomarkers for AMI and explored the possible mechanisms involved. Datasets were retrieved from the Gene Expression Omnibus. First, we identified differentially expressed genes (DEGs) and preserved modules, from which we identified candidate genes by LASSO (least absolute shrinkage and selection operator) regression and the SVM-RFE (support vector machine-recursive feature elimination) algorithm. Subsequently, we used ROC (receiver operating characteristic) analysis to evaluate the diagnostic accuracy of the candidate genes. Thereafter, functional enrichment analysis and an analysis of immune infiltration were implemented. Finally, we assessed the association between biomarkers and biological processes, infiltrated cells, clinical traits, tissues and time points. We identified nine preserved modules containing 1,016 DEGs and managed to construct a diagnostic model with high accuracy (GSE48060: AUC = 0.923; GSE66360: AUC = 0.973) incorporating two genes named S100A9 and SOCS3. Functional analysis revealed the pivotal role of inflammation; immune infiltration analysis indicated that eight cell types (monocytes, epithelial cells, neutrophils, CD8+ T cells, Th2 cells, NK cells, NKT cells and platelets) were likely involved in AMI. Furthermore, we observed that S100A9 and SOCS3 were correlated with inflammation, variably infiltrated cells, clinical traits of patients, sampling tissues and sampling time points. In conclusion, we suggested S100A9 and SOCS3 as diagnostic biomarkers of AMI and discovered their association with inflammation, infiltrated immune cells and other factors.
Collapse
Affiliation(s)
- Ze-Liang Lin
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yu-Lei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Xin-Sen Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Chao-Lan Wang
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Song-Tao Shou
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| | - Yan-Fen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital
| |
Collapse
|
58
|
Zhu X, Yin T, Zhang T, Zhu Q, Lu X, Wang L, Liao S, Yao W, Zhou Y, Zhang H, Li X. Identification of Immune-Related Genes in Patients with Acute Myocardial Infarction Using Machine Learning Methods. J Inflamm Res 2022; 15:3305-3321. [PMID: 35692951 PMCID: PMC9174022 DOI: 10.2147/jir.s360498] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/27/2022] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xu Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Ting Yin
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Ting Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Qingqing Zhu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Xinyi Lu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Luyang Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Shengen Liao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Wenming Yao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Yanli Zhou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
| | - Haifeng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, People’s Republic of China
| | - Xinli Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China
- Correspondence: Xinli Li, Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, People’s Republic of China, Email
| |
Collapse
|
59
|
Nagareddy PR, Sreejit G. Response by Nagareddy and Sreejit to Letter Regarding Article, "Retention of the NLRP3 Inflammasome-Primed Neutrophils in the Bone Marrow Is Essential for Myocardial Infarction-Induced Granulopoiesis". Circulation 2022; 145:e1035-e1036. [PMID: 35533219 PMCID: PMC9191749 DOI: 10.1161/circulationaha.122.059691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, Ohio State University Wexner Medical Center, Columbus
| | | |
Collapse
|
60
|
Boteanu RM, Suica VI, Uyy E, Ivan L, Cerveanu-Hogas A, Mares RG, Simionescu M, Schiopu A, Antohe F. Short-Term Blockade of Pro-Inflammatory Alarmin S100A9 Favorably Modulates Left Ventricle Proteome and Related Signaling Pathways Involved in Post-Myocardial Infarction Recovery. Int J Mol Sci 2022; 23:ijms23095289. [PMID: 35563680 PMCID: PMC9103348 DOI: 10.3390/ijms23095289] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/05/2022] [Accepted: 05/08/2022] [Indexed: 02/01/2023] Open
Abstract
Prognosis after myocardial infarction (MI) varies greatly depending on the extent of damaged area and the management of biological processes during recovery. Reportedly, the inhibition of the pro-inflammatory S100A9 reduces myocardial damage after MI. We hypothesize that a S100A9 blockade induces changes of major signaling pathways implicated in post-MI healing. Mass spectrometry-based proteomics and gene analyses of infarcted mice left ventricle were performed. The S100A9 blocker (ABR-23890) was given for 3 days after coronary ligation. At 3 and 7 days post-MI, ventricle samples were analyzed versus control and Sham-operated mice. Blockade of S100A9 modulated the expressed proteins involved in five biological processes: leukocyte cell–cell adhesion, regulation of the muscle cell apoptotic process, regulation of the intrinsic apoptotic signaling pathway, sarcomere organization and cardiac muscle hypertrophy. The blocker induced regulation of 36 proteins interacting with or targeted by the cellular tumor antigen p53, prevented myocardial compensatory hypertrophy, and reduced cardiac markers of post-ischemic stress. The blockade effect was prominent at day 7 post-MI when the quantitative features of the ventricle proteome were closer to controls. Blockade of S100A9 restores key biological processes altered post-MI. These processes could be valuable new pharmacological targets for the treatment of ischemic heart. Mass spectrometry data are available via ProteomeXchange with identifier PXD033683.
Collapse
Affiliation(s)
- Raluca Maria Boteanu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Viorel-Iulian Suica
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Elena Uyy
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Luminita Ivan
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Aurel Cerveanu-Hogas
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Razvan Gheorghita Mares
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
| | - Maya Simionescu
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
| | - Alexandru Schiopu
- Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540142 Targu Mures, Romania; (R.G.M.); (A.S.)
- Department of Clinical Sciences Malmö, Lund University, 21428 Malmö, Sweden
| | - Felicia Antohe
- Department of Proteomics, Institute of Cellular Biology and Pathology “N. Simionescu” of the Romanian Academy, 050568 Bucharest, Romania; (R.M.B.); (V.-I.S.); (E.U.); (L.I.); (A.C.-H.); (M.S.)
- Correspondence: ; Tel.: +40-213-192-737
| |
Collapse
|
61
|
Johnson J, Jaggers RM, Gopalkrishna S, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Oxidative Stress in Neutrophils: Implications for Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:652-666. [PMID: 34148367 PMCID: PMC9057880 DOI: 10.1089/ars.2021.0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significance: Neutrophil behavior and function are altered by hyperglycemia associated with diabetes. Aberrant activation by hyperglycemia causes neutrophils to respond with increased production of reactive oxidative species (ROS). Excess ROS, a signature of primed neutrophils, can intracellularly induce neutrophils to undergo NETosis, flooding surrounding tissues with ROS and damage-associated molecular patterns such as S100 calcium binding proteins (S100A8/A9). The cargo associated with NETosis also attracts more immune cells to the site and signals for increased immune cell production. This inflammatory response to diabetes can accelerate other associated conditions such as atherosclerosis and thrombosis, increasing the risk of cardiovascular disease. Recent Advances: As the prevalence of diabetes continues to grow, more attention has been focused on developing effective treatment options. Currently, glucose-lowering medications and insulin injections are the most widely utilized treatments. As the disease progresses, medications are usually stacked to maintain glucose at desired target levels, but this approach often fails and does not effectively reduce cardiovascular risk, even with the latest drugs. Critical Issues: Despite advances in treatment options, diabetes remains a progressive disease as glucose lowering alone has failed to abolish the associated cardiovascular complications. Future Directions: Significant interest is being generated in developing treatments that do not solely focus on glucose control but rather mitigate glucotoxicity. Several therapies have been proposed that target cellular dysfunction downstream of hyperglycemia, such as using antioxidants to scavenge ROS, inhibiting ROS production from NOX, and suppressing neutrophil release of S100A8/A9 proteins. Antioxid. Redox Signal. 36, 652-666.
Collapse
Affiliation(s)
- Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Sreejit Gopalkrishna
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Internal and Vascular Medicine, Amsterdam UMC, Amsterdam, Netherlands
| | - Prabhakara R Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
62
|
Hu Z, Li H, Zhu Y, Zhang J, Yang X, Huang R, Li Y, Ran H, Shang T. Plasma Calprotectin Is Predictive for Short-Term Functional Outcomes of Acute Ischemic Stroke. Front Neurol 2022; 13:811062. [PMID: 35386415 PMCID: PMC8978320 DOI: 10.3389/fneur.2022.811062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Blood-based prognostic biomarkers of acute ischemic stroke (AIS) are limiting. Calprotectin is suggested to be involved in directing post-stroke inflammatory conditions. However, the pathological alteration of circulating calprotectin in AIS is yet to be thoroughly elucidated. Therefore, this study aimed to investigate the levels and clinical relevance of calprotectin in AIS. Methods This study recruited 271 patients with AIS within 24 h since symptom onset and 145 non-stroke healthy controls (HC) from February 1, 2018, to Dec 31, 2020. Patients were followed up for 2 weeks for observation of functional outcomes, as determined by the National Institutes of Health Stroke Scale (NIHSS) and modified Rankin Scale (mRS). Plasma calprotectin concentrations were determined by ELISA. Results Plasma calprotectin concentrations were significantly higher in patients with AIS compared with controls [patients vs. control: median (IQR) 54.2 (39.01–99.04) vs. 50.04 (35.42–61.22), p < 0.001]. Besides, patients with poor prognosis, as defined by mRS ≥ 3, had significantly higher calprotectin levels than patients with good prognosis [poor prognosis patients vs. good prognosis patients: median (IQR) 61.99 (47.52–108) vs. 43.36 (33.39–60.2), p < 0.001]. Plasma calprotectin levels were positively associated with the disease severity of AIS, as reflected by infarction volume and NIHSS score at baseline. Furthermore, baseline calprotectin was found to be independently associated with poor prognosis [odds ratio (OR): 1.02, 95% CI: 1.01–1.03] and disease progression (OR: 1.03, 95% CI: 1.02–1.04) of AIS during a 2-week follow-up, with adjustment of possible confounding factors. Conclusion Plasma calprotectin is associated with short-term functional outcomes of AIS.
Collapse
Affiliation(s)
- Zicheng Hu
- Department of Neurology, People's Hospital of Chongqing Hechuan (PHHC), Chongqing, China
| | - Haihua Li
- Department of Neurology, People's Hospital of Chongqing Hechuan (PHHC), Chongqing, China
| | - Yongping Zhu
- Department of Neurology, People's Hospital of Chongqing Hechuan (PHHC), Chongqing, China
| | - Jun Zhang
- Department of Neurology, People's Hospital of Chongqing Hechuan (PHHC), Chongqing, China
| | - Xiao Yang
- Neuroscience Center, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Rongzhong Huang
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yongyong Li
- Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Haitao Ran
| | - Tingting Shang
- Department of Ultrasound, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Tingting Shang
| |
Collapse
|
63
|
Bonora BM, Palano MT, Testa G, Fadini GP, Sangalli E, Madotto F, Persico G, Casciaro F, Vono R, Colpani O, Scavello F, Cappellari R, Abete P, Orlando P, Carnelli F, Berardi AG, De Servi S, Raucci A, Giorgio M, Madeddu P, Spinetti G. Hematopoietic progenitor cell liabilities and alarmins S100A8/A9-related inflammaging associate with frailty and predict poor cardiovascular outcomes in older adults. Aging Cell 2022; 21:e13545. [PMID: 35166014 PMCID: PMC8920446 DOI: 10.1111/acel.13545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022] Open
Abstract
Frailty affects the physical, cognitive, and social domains exposing older adults to an increased risk of cardiovascular disease and death. The mechanisms linking frailty and cardiovascular outcomes are mostly unknown. Here, we studied the association of abundance (flow cytometry) and gene expression profile (RNAseq) of stem/progenitor cells (HSPCs) and molecular markers of inflammaging (ELISA) with the cardiorespiratory phenotype and prospective adverse events of individuals classified according to levels of frailty. Two cohorts of older adults were enrolled in the study. In a cohort of pre-frail 35 individuals (average age: 75 years), a physical frailty score above the median identified subjects with initial alterations in cardiorespiratory function. RNA sequencing revealed S100A8/A9 upregulation in HSPCs from the bone marrow (>10-fold) and peripheral blood (>200-fold) of individuals with greater physical frailty. Moreover higher frailty was associated with increased alarmins S100A8/A9 and inflammatory cytokines in peripheral blood. We then studied a cohort of 104 more frail individuals (average age: 81 years) with multidomain health deficits. Reduced levels of circulating HSPCs and increased S100A8/A9 concentrations were independently associated with the frailty index. Remarkably, low HSPCs and high S100A8/A9 simultaneously predicted major adverse cardiovascular events at 1-year follow-up after adjustment for age and frailty index. In conclusion, inflammaging characterized by alarmin and pro-inflammatory cytokines in pre-frail individuals is mirrored by the pauperization of HSPCs in frail older people with comorbidities. S100A8/A9 is upregulated within HSPCs, identifying a phenotype that associates with poor cardiovascular outcomes.
Collapse
Affiliation(s)
| | | | - Gianluca Testa
- Department of Medicine and Health Sciences “Vincenzo Tiberio” University of Molise Campobasso Italy
| | | | | | | | | | | | | | | | - Francesco Scavello
- Unit of Experimental Cardio‐Oncology and Cardiovascular Aging Centro Cardiologico Monzino‐IRCCS Milan Italy
| | | | - Pasquale Abete
- Department of Translational Medical Sciences University of Naples Federico II Naples Italy
| | | | | | | | | | - Angela Raucci
- Unit of Experimental Cardio‐Oncology and Cardiovascular Aging Centro Cardiologico Monzino‐IRCCS Milan Italy
| | - Marco Giorgio
- European Institute of Oncology (IEO) Milan Italy
- Department of Biomedical Sciences University of Padova Padua Italy
| | - Paolo Madeddu
- Experimental Cardiovascular Medicine Bristol Medical School: Translational Health Sciences University of Bristol Bristol UK
| | | |
Collapse
|
64
|
Sun F, Zhang H, Huang T, Shi J, Wei T, Wang Y. S100A9 blockade improves the functional recovery after spinal cord injury via mediating neutrophil infiltration. Exp Ther Med 2022; 23:291. [PMID: 35317450 PMCID: PMC8908460 DOI: 10.3892/etm.2022.11220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Spinal cord injury (SCI) refers to damage to the spinal cord resulting from trauma, disease or degeneration. Controlling the inflammatory process and restoring neural homeostasis is hypothesized to prevent injury aggravation. S100 calcium-binding protein A9 (S100A9) is a pro-inflammatory alarm protein, which is expressed in and released by activated neutrophils. However, whether S100A9 could serve as an effective target for the treatment of SCI has not been reported to date. In the present study, a T10 spinal cord contusion injury model was established in Sprague-Dawley rats. S100A9 expression level was determined in the serum and injured spinal cord tissue via ELISA, reverse transcription-quantitative PCR (RT-qPCR) and western blotting. The S100A9-specific blocker, ABR-238901 (ABR), was administered during the inflammatory phase of SCI, as a form of treatment. Subsequently, the morphological structure, neuronal viability and inflammatory levels of injured spinal cord were observed by histopathology, immunohistochemistry and RT-qPCR. In the obtained results, S100A9 was found to be highly expressed in the injured spinal cord and serum in the first 3 days after SCI. However, at 28 days after surgery, ABR treatment significantly improved motor function, reduced the cavity formation and neutrophil infiltration in the lesion, which was verified via H&E staining and immunohistochemistry for myeloperoxidase. Furthermore, ABR treatment was found to effectively improve the survival and viability of neurons, as shown via Nissl staining and immunofluorescence of the synaptic plasticity markers, microtubule associated protein 2 and neurofilament 200. Moreover, S100A9 blockade effectively upregulated the mRNA expression level of the anti-inflammatory genes, IL-4 and IL-10 and downregulated the mRNA expression level of the pro-inflammatory factors, IL-1β, IL-6 and TNF-α. In addition, S100A9 blockade notably alleviated the apoptosis level of the injured nerve cells. Therefore, the findings of the present study revealed that S100A9 may be a useful target for the treatment of SCI.
Collapse
Affiliation(s)
- Feng Sun
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Haiwei Zhang
- Imaging, General Hospital of Heilongjiang General Administration of Agriculture and Reclamation, Harbin, Heilongjiang 150000, P.R. China
| | - Tianwen Huang
- Department of Orthopedics, General Hospital of Heilongjiang General Administration of Agriculture and Reclamation, Harbin, Heilongjiang 150000, P.R. China
| | - Jianhui Shi
- Department of Orthopaedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Tianli Wei
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yansong Wang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
65
|
Chalise U, Becirovic-Agic M, Daseke MJ, Konfrst SR, Rodriguez-Paar JR, Feng D, Salomon JD, Anderson DR, Cook LM, Lindsey ML. S100A9 is a functional effector of infarct wall thinning after myocardial infarction. Am J Physiol Heart Circ Physiol 2022; 322:H145-H155. [PMID: 34890276 PMCID: PMC8742737 DOI: 10.1152/ajpheart.00475.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 11/22/2022]
Abstract
Neutrophils infiltrate into the left ventricle (LV) early after myocardial infarction (MI) and launch a proinflammatory response. Along with neutrophil infiltration, LV wall thinning due to cardiomyocyte necrosis also peaks at day 1 in the mouse model of MI. To understand the correlation, we examined a previously published data set that included day 0 (n = 10) and MI day (D) 1 (n = 10) neutrophil proteome and echocardiography assessments. Out of 123 proteins, 4 proteins positively correlated with the infarct wall thinning index (1/wall thickness): histone 1.2 (r = 0.62, P = 0.004), S100A9 (r = 0.60, P = 0.005), histone 3.1 (r = 0.55, P = 0.01), and fibrinogen (r = 0.47, P = 0.04). As S100A9 was the highest ranked secreted protein, we hypothesized that S100A9 is a functional effector of infarct wall thinning. We exogenously administered S100A8/A9 at the time of MI to mice [C57BL/6J, male, 3-6 mo of age, n = 7 M (D1), and n = 5 M (D3)] and compared with saline vehicle control-treated mice [n = 6 M (D1) and n = 6 M (D3)] at MI days 1 and 3. At MI day 3, the S100A8/A9 group showed a 22% increase in the wall thinning index compared with saline (P = 0.02), along with higher dilation and lower ejection fraction. The decline in cardiac physiology occurred subsequent to increased neutrophil and macrophage infiltration at MI day 1 and increased macrophage infiltration at D3. Our results reveal that S100A9 is a functional effector of infarct wall thinning.NEW & NOTEWORTHY S100A9 is a functional marker of infarct wall thinning.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shelby R Konfrst
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| | - Jocelyn R Rodriguez-Paar
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
| | - Dan Feng
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jeffrey D Salomon
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Pediatric Critical Care, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Daniel R Anderson
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, Nebraska
- Research Service, Nebraska-Western Iowa Health Care System, Omaha, Nebraska
| |
Collapse
|
66
|
Sreejit G, Nooti SK, Jaggers RM, Athmanathan B, Park KH, Al-Sharea A, Johnson J, Dahdah A, Lee MKS, Ma J, Murphy AJ, Nagareddy PR. Retention of the NLRP3 Inflammasome-Primed Neutrophils in the Bone Marrow Is Essential for Myocardial Infarction-Induced Granulopoiesis. Circulation 2022; 145:31-44. [PMID: 34788059 PMCID: PMC8716427 DOI: 10.1161/circulationaha.121.056019] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Acute myocardial infarction (MI) results in overzealous production and infiltration of neutrophils to the ischemic heart. This is mediated in part by granulopoiesis induced by the S100A8/A9-NLRP3-IL-1β signaling axis in injury-exposed neutrophils. Despite the transcriptional upregulation of the NLRP3 (Nod Like Receptor Family Pyrin Domain-Containing 3) inflammasome and associated signaling components in neutrophils, the serum levels of IL-1β (interleukin-1β), the effector molecule in granulopoiesis, were not affected by MI, suggesting that IL-1β is not released systemically. We hypothesize that IL-1β is released locally within the bone marrow (BM) by inflammasome-primed and reverse-migrating neutrophils. METHODS Using a combination of time-dependent parabiosis and flow cytometry techniques, we first characterized the migration patterns of different blood cell types across the parabiotic barrier. We next induced MI in parabiotic mice by permanent ligation of the left anterior descending artery and examined the ability of injury-exposed neutrophils to permeate the parabiotic barrier and induce granulopoiesis in noninfarcted parabionts. Last, using multiple neutrophil adoptive and BM transplant studies, we studied the molecular mechanisms that govern reverse migration and retention of the primed neutrophils, IL-1β secretion, and granulopoiesis. Cardiac function was assessed by echocardiography. RESULTS MI promoted greater accumulation of the inflammasome-primed neutrophils in the BM. Introducing a time-dependent parabiotic barrier to the free movement of neutrophils inhibited their ability to stimulate granulopoiesis in the noninfarcted parabionts. Previous priming of the NLRP3 inflammasome is not a prerequisite, but the presence of a functional CXCR4 (C-X-C-motif chemokine receptor 4) on the primed-neutrophils and elevated serum S100A8/A9 levels are necessary for homing and retention of the reverse-migrating neutrophils. In the BM, the primed-neutrophils secrete IL-1β through formation of gasdermin D pores and promote granulopoiesis. Pharmacological and genetic strategies aimed at the inhibition of neutrophil homing or release of IL-1β in the BM markedly suppressed MI-induced granulopoiesis and improved cardiac function. CONCLUSIONS Our data reveal a new paradigm of how circulatory cells establish a direct communication between organs by delivering signaling molecules (eg, IL-1β) directly at the sites of action rather through systemic release. We suggest that this pathway may exist to limit the off-target effects of systemic IL-1β release.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Sunil K Nooti
- Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Baskaran Athmanathan
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Pathology, University of Alabama at Birmingham, AL, USA
| | - Ki Ho Park
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Annas Al-Sharea
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Man KS Lee
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Jianjie Ma
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Andrew J. Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, Australia,Department of Immunology, Monash University, Melbourne, Australia
| | - Prabhakara R. Nagareddy
- Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA,Department of Pathology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
67
|
Salyers ZR, Mariani V, Balestrieri N, Kumar RA, Vugman NA, Thome T, Villani KR, Berceli SA, Scali ST, Vasilakos G, Ryan TE. S100A8 and S100A9 are elevated in chronically threatened ischemic limb muscle and induce ischemic mitochondrial pathology in mice. JVS Vasc Sci 2022; 3:232-245. [PMID: 35647565 PMCID: PMC9133641 DOI: 10.1016/j.jvssci.2022.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Objective The objective of the present study was to determine whether elevated levels of S100A8 and S100A9 (S100A8/A9) alarmins contribute to ischemic limb pathology. Methods Gastrocnemius muscle was collected from control patients without peripheral arterial disease (PAD; n = 14) and patients with chronic limb threatening limb ischemia (CLTI; n = 14). Mitochondrial function was assessed in permeabilized muscle fibers, and RNA and protein analyses were used to quantify the S100A8/A9 levels. Additionally, a mouse model of hindlimb ischemia with and without exogenous delivery of S100A8/A9 was used. Results Compared with the non-PAD control muscles, CLTI muscles displayed significant increases in the abundance of S100A8 and S100A9 at both mRNA and protein levels (P < .01). The CLTI muscles also displayed significant impairment in mitochondrial oxidative phosphorylation and increased mitochondrial hydrogen peroxide production compared with the non-PAD controls. The S100A8/A9 levels correlated significantly with the degree of muscle mitochondrial dysfunction (P < .05 for all). C57BL6J mice treated with recombinant S100A8/A9 displayed impaired perfusion recovery and muscle mitochondrial impairment compared with the placebo-treated mice after hindlimb ischemia surgery. These mitochondrial deficits observed after S100A8/A9 treatment were confirmed in the muscle cell culture system under normoxic conditions. Conclusions The S100A8/A9 levels were increased in CLTI limb muscle specimens compared with the non-PAD control muscle specimens, and the level of accumulation was associated with muscle mitochondrial impairment. Elevated S100A8/A9 levels in mice subjected to hindlimb ischemia impaired perfusion recovery and mitochondrial function. Together, these findings suggest that the inflammatory mediators S100A8/A9 might be directly involved in ischemic limb pathology. Despite improvements in the surgical management of chronic limb threatening limb ischemia (CLTI), the rates of major adverse limb events have remained high. Skeletal muscle has emerged as a strong predictor of outcomes in peripheral arterial disease (PAD)/CLTI; however, a complete understanding of muscle pathology in CLTI is lacking. This study identified elevated S100A8 and S100A9 alarmin proteins as a characteristic of CLTI muscle specimens and that the S100A8/A9 levels are associated with the degree of mitochondrial impairment in patient limb muscle specimens. Using a mouse model of PAD, treatment with S100A8/A9 exacerbated ischemic limb pathology, including impaired limb perfusion recovery and muscle mitochondrial impairment. Taken together, these findings connect the inflammatory milieu in the CLTI limb to exacerbated limb muscle outcomes via mitochondrial alterations.
Collapse
Affiliation(s)
- Zachary R. Salyers
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Vinicius Mariani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas Balestrieri
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Ravi A. Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Nicholas A. Vugman
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Trace Thome
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Katelyn R. Villani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Scott A. Berceli
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Salvatore T. Scali
- Department of Surgery, University of Florida, Gainesville, FL
- Malcom Randall Veterans Affairs Medical Center, Gainesville, FL
| | - Georgios Vasilakos
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
| | - Terence E. Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL
- Center for Exercise Science, University of Florida, Gainesville, FL
- Myology Institute, University of Florida, Gainesville, FL
- Correspondence: Terence E. Ryan, PhD, Department of Applied Physiology and Kinesiology, University of Florida, 1864 Stadium Rd, Gainesville, FL 32611
| |
Collapse
|
68
|
Chalise U, Becirovic-Agic M, Lindsey ML. Neutrophil crosstalk during cardiac wound healing after myocardial infarction. CURRENT OPINION IN PHYSIOLOGY 2021; 24:100485. [PMID: 35664861 PMCID: PMC9159545 DOI: 10.1016/j.cophys.2022.100485] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Myocardial infarction (MI) initiates an intense inflammatory response that induces neutrophil infiltration into the infarct region. Neutrophils commence the pro-inflammatory response that includes upregulation of cytokines and chemokines (e.g., interleukin-1 beta) and degranulation of pre-formed proteases (e.g., matrix metalloproteinases -8 and -9) that degrade existing extracellular matrix to clear necrotic tissue. An increase or complete depletion of neutrophils both paradoxically impair MI resolution, indicating a complex role of neutrophils in cardiac wound healing. Following pro-inflammation, the neutrophil shifts to a reparative phenotype that promotes inflammation resolution and aids in scar formation. Across the shifts in phenotype, the neutrophil communicates with other cells to coordinate repair and scar formation. This review summarizes our current understanding of neutrophil crosstalk with cardiomyocytes and macrophages during MI wound healing.
Collapse
Affiliation(s)
- Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| | - Merry L. Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198; and Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68105
| |
Collapse
|
69
|
Yang J, Xiang Z, Zhang J, Yang J, Zhai Y, Fan Z, Wang H, Wu J, Huang Y, Xiong M, Ma C. miR-24 Alleviates MI/RI by Blocking the S100A8/TLR4/MyD88/NF-kB Pathway. J Cardiovasc Pharmacol 2021; 78:847-857. [PMID: 34581696 DOI: 10.1097/fjc.0000000000001139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Although inflammation plays an important role in myocardial ischemia/reperfusion injury (MI/RI), an anti-inflammatory treatment with a single target has little clinical efficacy because of the multifactorial disorders involved in MI/RI. MicroRNAs (miR-24) can achieve multitarget regulation in several diseases, suggesting that this factor may have ideal effects on alleviation of MI/RI. In the present study, bioinformatics method was used to screen potential therapeutic targets of miR-24 associated with MI/RI. Three days before ischemia/reperfusion surgery, rats in the ischemia/reperfusion, miR-24, and adenovirus-negative control groups were injected with saline, miR-24, and adenovirus-negative control (0.1 mL of 5 × 109 PFU/mL), respectively. Myocardial enzymes, myocardial infarct size, cardiac function, and the possible molecular mechanism were subsequently analyzed. In contrast to the level of S100A8, the level of miR-24 in myocardial tissue was significantly reduced after 30 minutes of ischemia followed by reperfusion for 2 hours. Overexpression of miR-24 reduced the myocardial infarction area and improved the heart function of rats 3 days after MI/RI. Moreover, miR-24 inhibited infiltration of inflammatory cells in the peri-infarction area and decreased creatine kinase myocardial band and lactate dehydrogenase release. Interestingly, miR-24 upregulation reduced S100A8 expression, followed by inhibition of toll-like receptor 4/MyD-88/nuclear factor-k-gene binding signaling activation. In conclusion, miR-24 can alleviate MI/RI via inactivation of the S100A8/toll-like receptor 4/MyD-88/nuclear factor-k-gene binding signaling pathway.
Collapse
Affiliation(s)
- Jian Yang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China; and
| | - Zujin Xiang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
| | - Jing Zhang
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China; and
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Jun Yang
- Institute of Cardiovascular Disease, China Three Gorges University, Yichang, China
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China; and
| | - Yuhong Zhai
- HuBei Clinical Research Center for Ischemic Cardiovascular Disease, Yichang, China; and
| | - Zhixing Fan
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Huibo Wang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Jingyi Wu
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Yifan Huang
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Key Laboratory of Ischemic Cardiovascular and Cerebrovascular Disease Translational Medicine, Yichang, China
| | - Mengting Xiong
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| | - Cong Ma
- Department of Cardiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
| |
Collapse
|
70
|
Sun Y, Wang Z, Wang C, Tang Z, Zhao H. Psycho-cardiology therapeutic effects of Shuangxinfang in rats with depression-behavior post acute myocardial infarction: Focus on protein S100A9 from proteomics. Biomed Pharmacother 2021; 144:112303. [PMID: 34673424 DOI: 10.1016/j.biopha.2021.112303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Depressive disorders induced by acute myocardial infarction (AMI) play a pivotal role in the deterioration of cardiac function, and Shuangxinfang (Psycho-cardiology Formula, PCF) was reported to alleviate heart function damage and improve depression-like behavior, but the complex mechanism in such process has not been clarified. METHODS AMI models were established and PCF was administered in rats. Subjects were then assessed in open field test (OFT) and forced swimming test (FST) recapitulating symptoms of depressive disorder. Afterward, pharmacoproteomic profiling of the hippocampus and peri-infarct border zone (BZ) was performed using a label-free liquid chromatography-tandem mass spectrometry (LC-MS/MS) technique, to identify contributing proteins and pathways responsible for myocardial ischemia and behavioral allostasis. Bioinformatics analysis was processed for further investigation, while western blotting was employed for testing dominating proteins to validate proteomic results. RESULTS Rats in the AMI group showed depression-like behavior in OFT and FST, which was improved by PCF. There were 131 differentially expressed proteins (DEPs) in BZ and 64 proteins in the hippocampus being detected and quantified shared by the sham group, the AMI group, and the PCF group. Subsequently, pertinent pathways and molecular functions were further identified. Altered molecules were discovered to be enriched in the apoptotic process, innate immune response, and NF-κB transcription factor activity in BZ, as well as chemical synaptic transmission, axon, collagen binding, cell adhesion, response to carbohydrate, laminin binding, and cellular response to nitric oxide in the hippocampus. Groups of signal transducers were also able to select multiple pathways, including innate immunity and arginine biosynthesis in the heart, also integrin signaling in the brain. DEPs were intersected from the myocardium and hippocampus to screen out the protein S100A9, which was up-regulated in the AMI group compared with the sham, and showed a down-regulation trend after treatment with PCF. CONCLUSION Taken together, we present a comprehensive proteomics analysis of rat models with depression post-AMI. Reviewing the literatures concerned, it's hypothesized that macrophage/microglia inflammation mediated by S100A9 might be the pivotal pathogenic process of psycho-cardiology disease, as well as potential mechanisms for the treatment of PCF.
Collapse
Affiliation(s)
- Yize Sun
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zheyi Wang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Chunguo Wang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhuoran Tang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haibin Zhao
- The DongFang Hospital of Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
71
|
Ding Z, Du F, Averitt V RG, Jakobsson G, Rönnow CF, Rahman M, Schiopu A, Thorlacius H. Targeting S100A9 Reduces Neutrophil Recruitment, Inflammation and Lung Damage in Abdominal Sepsis. Int J Mol Sci 2021; 22:12923. [PMID: 34884728 PMCID: PMC8658007 DOI: 10.3390/ijms222312923] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 02/07/2023] Open
Abstract
S100A9, a pro-inflammatory alarmin, is up-regulated in inflamed tissues. However, the role of S100A9 in regulating neutrophil activation, inflammation and lung damage in sepsis is not known. Herein, we hypothesized that blocking S100A9 function may attenuate neutrophil recruitment in septic lung injury. Male C57BL/6 mice were pretreated with the S100A9 inhibitor ABR-238901 (10 mg/kg), prior to cercal ligation and puncture (CLP). Bronchoalveolar lavage fluid (BALF) and lung tissue were harvested for analysis of neutrophil infiltration as well as edema and CXC chemokine production. Blood was collected for analysis of membrane-activated complex-1 (Mac-1) expression on neutrophils as well as CXC chemokines and IL-6 in plasma. Induction of CLP markedly increased plasma levels of S100A9. ABR-238901 decreased CLP-induced neutrophil infiltration and edema formation in the lung. In addition, inhibition of S100A9 decreased the CLP-induced up-regulation of Mac-1 on neutrophils. Administration of ABR-238901 also inhibited the CLP-induced increase of CXCL-1, CXCL-2 and IL-6 in plasma and lungs. Our results suggest that S100A9 promotes neutrophil activation and pulmonary accumulation in sepsis. Targeting S100A9 function decreased formation of CXC chemokines in circulation and lungs and attenuated sepsis-induced lung damage. These novel findings suggest that S100A9 plays an important pro-inflammatory role in sepsis and could be a useful target to protect against the excessive inflammation and lung damage associated with the disease.
Collapse
Affiliation(s)
- Zhiyi Ding
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| | - Feifei Du
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| | - Richard Garland Averitt V
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| | - Gabriel Jakobsson
- Department of Clinical Sciences, Malmö, Lund University, 21428 Malmö, Sweden; (G.J.); (A.S.)
| | - Carl-Fredrik Rönnow
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| | - Milladur Rahman
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| | - Alexandru Schiopu
- Department of Clinical Sciences, Malmö, Lund University, 21428 Malmö, Sweden; (G.J.); (A.S.)
- Department of Internal Medicine, Skåne University Hospital, 22185 Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Malmö, Section for Surgery, Lund University, 21428 Malmö, Sweden; (Z.D.); (F.D.); (R.G.A.V.); (C.-F.R.); (M.R.)
| |
Collapse
|
72
|
Zelko IN, Dassanayaka S, Malovichko MV, Howard CM, Garrett LF, Uchida S, Brittian KR, Conklin DJ, Jones SP, Srivastava S. Chronic Benzene Exposure Aggravates Pressure Overload-Induced Cardiac Dysfunction. Toxicol Sci 2021; 185:64-76. [PMID: 34718823 DOI: 10.1093/toxsci/kfab125] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, 6 weeks) or HEPA-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5-2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.
Collapse
Affiliation(s)
- Igor N Zelko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sujith Dassanayaka
- Diabetes and Obesity Center.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Marina V Malovichko
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Caitlin M Howard
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Lauren F Garrett
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, Copenhagen SV, Denmark
| | - Kenneth R Brittian
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Daniel J Conklin
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Steven P Jones
- Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| | - Sanjay Srivastava
- University of Louisville Superfund Research Center.,Diabetes and Obesity Center.,Envirome Institute.,Department of Medicine, Division of Environmental Medicine, University of Louisville, Louisville, KY 40202
| |
Collapse
|
73
|
Jukic A, Bakiri L, Wagner EF, Tilg H, Adolph TE. Calprotectin: from biomarker to biological function. Gut 2021; 70:1978-1988. [PMID: 34145045 PMCID: PMC8458070 DOI: 10.1136/gutjnl-2021-324855] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022]
Abstract
The incidence of inflammatory bowel diseases (IBD) emerged with Westernisation of dietary habits worldwide. Crohn's disease and ulcerative colitis are chronic debilitating conditions that afflict individuals with substantial morbidity and challenge healthcare systems across the globe. Since identification and characterisation of calprotectin (CP) in the 1980s, faecal CP emerged as significantly validated, non-invasive biomarker that allows evaluation of gut inflammation. Faecal CP discriminates between inflammatory and non-inflammatory diseases of the gut and portraits the disease course of human IBD. Recent studies revealed insights into biological functions of the CP subunits S100A8 and S100A9 during orchestration of an inflammatory response at mucosal surfaces across organ systems. In this review, we summarise longitudinal evidence for the evolution of CP from biomarker to rheostat of mucosal inflammation and suggest an algorithm for the interpretation of faecal CP in daily clinical practice. We propose that mechanistic insights into the biological function of CP in the gut and beyond may facilitate interpretation of current assays and guide patient-tailored medical therapy in IBD, a concept warranting controlled clinical trials.
Collapse
Affiliation(s)
- Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Latifa Bakiri
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
74
|
Murphy AJ, Febbraio MA. Immune-based therapies in cardiovascular and metabolic diseases: past, present and future. Nat Rev Immunol 2021; 21:669-679. [PMID: 34285393 DOI: 10.1038/s41577-021-00580-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 02/02/2023]
Abstract
Cardiometabolic disorders were originally thought to be driven primarily by changes in lipid metabolism that cause the accumulation of lipids in organs, thereby impairing their function. Thus, in the setting of cardiovascular disease, statins - a class of lipid-lowering drugs - have remained the frontline therapy. In the past 20 years, seminal discoveries have revealed a central role of both the innate and adaptive immune system in driving cardiometabolic disorders. As such, it is now appreciated that immune-based interventions may have an important role in reducing death and disability from cardiometabolic disorders. However, to date, there have been a limited number of clinical trials exploring this interventional strategy. Nonetheless, elegant preclinical research suggests that immune-targeted therapies can have a major impact in treating cardiometabolic disease. Here, we discuss the history and recent advancements in the use of immunotherapies to treat cardiometabolic disorders.
Collapse
Affiliation(s)
- Andrew J Murphy
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia.
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia.
| |
Collapse
|
75
|
Sreejit G, Johnson J, Jaggers RM, Dahdah A, Murphy AJ, Hanssen NMJ, Nagareddy PR. Neutrophils in cardiovascular disease: warmongers, peacemakers, or both? Cardiovasc Res 2021; 118:2596-2609. [PMID: 34534269 PMCID: PMC9890471 DOI: 10.1093/cvr/cvab302] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Neutrophils, the most abundant of all leucocytes and the first cells to arrive at the sites of sterile inflammation/injury act as a double-edged sword. On one hand, they inflict a significant collateral damage to the tissues and on the other hand, they help facilitate wound healing by a number of mechanisms. Recent studies have drastically changed the perception of neutrophils from being simple one-dimensional cells with an unrestrained mode of action to a cell type that display maturity and complex behaviour. It is now recognized that neutrophils are transcriptionally active and respond to plethora of signals by deploying a wide variety of cargo to influence the activity of other cells in the vicinity. Neutrophils can regulate macrophage behaviour, display innate immune memory, and play a major role in the resolution of inflammation in a context-dependent manner. In this review, we provide an update on the factors that regulate neutrophil production and the emerging dichotomous role of neutrophils in the context of cardiovascular diseases, particularly in atherosclerosis and the ensuing complications, myocardial infarction, and heart failure. Deciphering the complex behaviour of neutrophils during inflammation and resolution may provide novel insights and in turn facilitate the development of potential therapeutic strategies to manage cardiovascular disease.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Jillian Johnson
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Robert M Jaggers
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Albert Dahdah
- Department of Surgery, The Ohio State University Wexner Medical Center, 473 W, 12th Ave, DHLRI 611A, Columbus, OH 43210, USA
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Nordin M J Hanssen
- Amsterdam Diabetes Centrum, Amsterdam University Medical Centre, Location Academic Medical Centre Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
76
|
Identification of Potential Biomarkers Associated with Acute Myocardial Infarction by Weighted Gene Coexpression Network Analysis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5553811. [PMID: 34490057 PMCID: PMC8418549 DOI: 10.1155/2021/5553811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 07/22/2021] [Accepted: 08/13/2021] [Indexed: 01/17/2023]
Abstract
Background In the general population, acute myocardial infarction (AMI) represents a significant cause of mortality. This study is aimed at identifying novel diagnostic biomarkers to aid in treating and diagnosing AMI. Methods The Gene Expression Omnibus (GEO) database was explored to extract two microarray datasets, GSE66360 and GSE48060, which were subsequently merged into a single cohort. Both AMI and control samples were analyzed for differentially expressed genes (DEGs), which were subsequently subjected to weighed gene coexpression network analysis (WGCNA) to identify the most significant module. Gene Ontology (GO) and pathway analyses subsequently carried out the most significant gene modules along with construction of a protein-protein interaction network (PPI). Cytoscape plugin cytoHubba allowed for the prediction of the top 4 key genes according to the network maximal clique centrality (MCC) algorithm. The expression levels and diagnostic value of the four key genes were additionally verified in the GSE62646 dataset. Results A WCGNA analysis revealed 878 DEGs which were clustered into 6 modules. The module with the most significance in AMI was colored blue. Subsequent GO and KEGG pathway enrichment analysis on blue module genes revealed that they were primarily enriched in the inflammation-related pathways. These findings, in combination with PPI and coexpression networks, resulted in the identification of the top four genes by cytoHubba, which included leukocyte immunoglobulin-like receptor B2 (LILRB2), toll-like receptor 2 (TLR2), neutrophil cytosolic factor 2 (NCF2), and S100A9. Among them, LILRB2, NCF2, and S100A9 were validated in the GSE62646 dataset. Conclusions The results suggested that LILRB2, NCF2, and S100A9 could be potential gene biomarkers for AMI.
Collapse
|
77
|
Mihaila AC, Ciortan L, Macarie RD, Vadana M, Cecoltan S, Preda MB, Hudita A, Gan AM, Jakobsson G, Tucureanu MM, Barbu E, Balanescu S, Simionescu M, Schiopu A, Butoi E. Transcriptional Profiling and Functional Analysis of N1/N2 Neutrophils Reveal an Immunomodulatory Effect of S100A9-Blockade on the Pro-Inflammatory N1 Subpopulation. Front Immunol 2021; 12:708770. [PMID: 34447377 PMCID: PMC8384118 DOI: 10.3389/fimmu.2021.708770] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophils have been classically viewed as a homogenous population. Recently, neutrophils were phenotypically classified into pro-inflammatory N1 and anti-inflammatory N2 sub-populations, but the functional differences between the two subtypes are not completely understood. We aimed to investigate the phenotypic and functional differences between N1 and N2 neutrophils, and to identify the potential contribution of the S100A9 alarmin in neutrophil polarization. We describe distinct transcriptomic profiles and functional differences between N1 and N2 neutrophils. Compared to N2, the N1 neutrophils exhibited: i) higher levels of ROS and oxidative burst, ii) increased activity of MPO and MMP-9, and iii) enhanced chemotactic response. N1 neutrophils were also characterized by elevated expression of NADPH oxidase subunits, as well as activation of the signaling molecules ERK and the p65 subunit of NF-kB. Moreover, we found that the S100A9 alarmin promotes the chemotactic and enzymatic activity of N1 neutrophils. S100A9 inhibition with a specific small-molecule blocker, reduced CCL2, CCL3 and CCL5 chemokine expression and decreased MPO and MMP-9 activity, by interfering with the NF-kB signaling pathway. Together, these findings reveal that N1 neutrophils are pro-inflammatory effectors of the innate immune response. Pharmacological blockade of S100A9 dampens the function of the pro-inflammatory N1 phenotype, promoting the alarmin as a novel target for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Andreea C Mihaila
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Letitia Ciortan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Razvan D Macarie
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihaela Vadana
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Sergiu Cecoltan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Mihai Bogdan Preda
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ariana Hudita
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Ana-Maria Gan
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Gabriel Jakobsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Monica M Tucureanu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Elena Barbu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Serban Balanescu
- Departament of Cardiology, Elias Emergency Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maya Simionescu
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| | - Alexandru Schiopu
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden.,Department of Pathophysiology, University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Targu-Mures, Romania
| | - Elena Butoi
- Biopathology and Therapy of Inflammation, Institute of Cellular Biology and Pathology "Nicolae Simionescu", Bucharest, Romania
| |
Collapse
|
78
|
Role of Neutrophils in Cardiac Injury and Repair Following Myocardial Infarction. Cells 2021; 10:cells10071676. [PMID: 34359844 PMCID: PMC8305164 DOI: 10.3390/cells10071676] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022] Open
Abstract
Neutrophils are first-line responders of the innate immune system. Following myocardial infarction (MI), neutrophils are quickly recruited to the ischemic region, where they initiate the inflammatory response, aiming at cleaning up dead cell debris. However, excessive accumulation and/or delayed removal of neutrophils are deleterious. Neutrophils can promote myocardial injury by releasing reactive oxygen species, granular components, and pro-inflammatory mediators. More recent studies have revealed that neutrophils are able to form extracellular traps (NETs) and produce extracellular vesicles (EVs) to aggravate inflammation and cardiac injury. On the contrary, there is growing evidence showing that neutrophils also exert anti-inflammatory, pro-angiogenic, and pro-reparative effects, thus facilitating inflammation resolution and cardiac repair. In this review, we summarize the current knowledge on neutrophils’ detrimental roles, highlighting the role of recently recognized NETs and EVs, followed by a discussion of their beneficial effects and molecular mechanisms in post-MI cardiac remodeling. In addition, emerging concepts about neutrophil diversity and their modulation of adaptive immunity are discussed.
Collapse
|
79
|
Hasenauer A, Bédat B, Parapanov R, Lugrin J, Debonneville A, Abdelnour-Berchtold E, Gonzalez M, Perentes JY, Piquilloud L, Szabo C, Krueger T, Liaudet L. Effects of cold or warm ischemia and ex-vivo lung perfusion on the release of damage associated molecular patterns and inflammatory cytokines in experimental lung transplantation. J Heart Lung Transplant 2021; 40:905-916. [PMID: 34193360 DOI: 10.1016/j.healun.2021.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Lung transplantation (LTx) is associated with sterile inflammation, possibly related to the release of damage associated molecular patterns (DAMPs) by injured allograft cells. We have measured cellular damage and the release of DAMPs and cytokines in an experimental model of LTx after cold or warm ischemia and examined the effect of pretreatment with ex-vivo lung perfusion (EVLP). METHODS Rat lungs were exposed to cold ischemia alone (CI group) or with 3h EVLP (CI-E group), warm ischemia alone (WI group) or with 3 hour EVLP (WI-E group), followed by LTx (2 hour). Bronchoalveolar lavage (BAL) was performed before (right lung) or after (left lung) LTx to measure LDH (marker of cellular injury), the DAMPs HMGB1, IL-33, HSP-70 and S100A8, and the cytokines IL-1β, IL-6, TNFα, and CXCL-1. Graft oxygenation capacity and static compliance after LTx were also determined. RESULTS Compared to CI, WI displayed cellular damage and inflammation without any increase of DAMPs after ischemia alone, but with a significant increase of HMGB1 and functional impairment after LTx. EVLP promoted significant inflammation in both cold (CI-E) and warm (WI-E) groups, which was not associated with cell death or DAMP release at the end of EVLP, but with the release of S100A8 after LTx. EVLP reduced graft damage and dysfunction in warm ischemic, but not cold ischemic, lungs. CONCLUSIONS The pathomechanisms of sterile lung inflammation during LTx are significantly dependent on the conditions. The release of HMGB1 (in the absence of EVLP) and S100A8 (following EVLP) may be important factors in the pathogenesis of LTx.
Collapse
Affiliation(s)
- Arpad Hasenauer
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Benoît Bédat
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Roumen Parapanov
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland; Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Jérôme Lugrin
- Service of Thoracic Surgery and Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne Debonneville
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Michel Gonzalez
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Jean Y Perentes
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Piquilloud
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Thorsten Krueger
- Service of Thoracic Surgery, Lausanne University Hospital, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
80
|
Banning AP, Crea F, Lüscher TF. The year in cardiology: acute coronary syndromes. Eur Heart J 2021; 41:821-832. [PMID: 31901933 DOI: 10.1093/eurheartj/ehz942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/25/2019] [Accepted: 12/18/2019] [Indexed: 11/12/2022] Open
Abstract
Abstract
Collapse
Affiliation(s)
- Adrian P Banning
- Department of Cardiology, John Radcliffe Hospital and University of Oxford, Oxford, UK
| | - Filippo Crea
- Fondazione Policlinico Univeristario A. Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Thomas F Lüscher
- Royal Brompton & Harefield Hospital, Imperial College, London, UK
| |
Collapse
|
81
|
Assessment of medullary and extramedullary myelopoiesis in cardiovascular diseases. Pharmacol Res 2021; 169:105663. [PMID: 33979688 DOI: 10.1016/j.phrs.2021.105663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/15/2021] [Accepted: 05/04/2021] [Indexed: 11/23/2022]
Abstract
Recruitment of innate immune cells and their accumulation in the arterial wall and infarcted myocardium has been recognized as a central feature of atherosclerosis and cardiac ischemic injury, respectively. In both, steady state and under pathological conditions, majority of these cells have a finite life span and are continuously replenished from haematopoietic stem/progenitor cell pool residing in the bone marrow and extramedullary sites. While having a crucial role in the cardiovascular disease development, proliferation and differentiation of innate immune cells within haematopoietic compartments is greatly affected by the ongoing cardiovascular pathology. In the current review, we summarize key cells, processes and tissue compartments that are involved in myelopoiesis under the steady state, during atherosclerosis development and in myocardial infarction.
Collapse
|
82
|
Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front Cardiovasc Med 2021; 8:647785. [PMID: 33996944 PMCID: PMC8113407 DOI: 10.3389/fcvm.2021.647785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following acute occlusion of a coronary artery causing myocardial ischemia and implementing first-line treatment involving rapid reperfusion, a dynamic and balanced inflammatory response is initiated to repair and remove damaged cells. Paradoxically, restoration of myocardial blood flow exacerbates cell damage as a result of myocardial ischemia-reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In the end, the infarct size still corresponds to the subsequent risk of developing heart failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and its contribution to cell damage and cell death, are of the utmost importance in the search for successful therapeutic interventions to finally prevent the onset of heart failure. This review focuses on the role of innate immunity, chemokines, cytokines, and inflammatory cells in all three overlapping phases following experimental, mainly murine, MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a complete state-of-the-art overview including most current research of all post-ischemic processes and phases and additionally summarizes the use of immunomodulatory therapies translated into clinical practice.
Collapse
Affiliation(s)
- Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
83
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
84
|
Zhao B, Lu R, Chen J, Xie M, Zhao X, Kong L. S100A9 blockade prevents lipopolysaccharide-induced lung injury via suppressing the NLRP3 pathway. Respir Res 2021; 22:45. [PMID: 33549095 PMCID: PMC7866705 DOI: 10.1186/s12931-021-01641-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/27/2021] [Indexed: 02/08/2023] Open
Abstract
Background S100 calcium binding protein A9 (S100A9) is a pro-inflammatory alarmin associated with several inflammation-related diseases. However, the role of S100A9 in lung injury in sepsis has not been fully investigated. Therefore, the present study aimed to determine the role of S100A9 in a lipopolysaccharide (LPS)-induced lung injury murine model and its underlying molecular mechanisms. Methods LPS was utilized to induce sepsis and lung injury in C57BL/6 or NOD-like receptor family pyrin domain containing 3 (NLRP3)−/− mice. To investigate the effects of S100A9 blockade, mice were treated with a specific inhibitor of S100A9. Subsequently, lung injury and inflammation were evaluated by histology and enzyme‑linked immunosorbent assay (ELISA), respectively. Furthermore, western blot analysis and RT-qPCR were carried out to investigate the molecular mechanisms underlying the effects of S100A9. Results S100A9 was upregulated in the lung tissues of LPS-treated mice. However, inhibition of S100A9 alleviated LPS-induced lung injury. Additionally, S100A9 blockade also attenuated the inflammatory responses and apoptosis in the lungs of LPS-challenged mice. Furthermore, the increased expression of NLRP3 was also suppressed by S100A9 blockade, while S100A9 blockade had no effect on NLRP3−/− mice. In vitro, S100A9 downregulation mitigated LPS-induced inflammation. Interestingly, these effects were blunted by NLRP3 overexpression. Conclusion The results of the current study suggested that inhibition of S100A9 could protect against LPS-induced lung injury via inhibiting the NLRP3 pathway. Therefore, S100A9 blockade could be considered as a novel therapeutic strategy for lung injury in sepsis.
Collapse
Affiliation(s)
- Boying Zhao
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China.,Vascular Surgery Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Renfu Lu
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China
| | - Jianjun Chen
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China
| | - Ming Xie
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China
| | - Xingji Zhao
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China.
| | - Lingwen Kong
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, No. 1 Jiangkang Road, Yuzhong, Chongqing, 400010, China.
| |
Collapse
|
85
|
Daseke MJ, Chalise U, Becirovic-Agic M, Salomon JD, Cook LM, Case AJ, Lindsey ML. Neutrophil signaling during myocardial infarction wound repair. Cell Signal 2021; 77:109816. [PMID: 33122000 PMCID: PMC7718402 DOI: 10.1016/j.cellsig.2020.109816] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022]
Abstract
Neutrophils are key effector cells of the innate immune system, serving as a first line of defense in the response to injury and playing essential roles in the wound healing process. Following myocardial infarction (MI), neutrophils infiltrate into the infarct region to propagate inflammation and begin the initial phase of cardiac wound repair. Pro-inflammatory neutrophils release proteases to degrade extracellular matrix (ECM), a necessary step for the removal of necrotic myocytes as a prelude for scar formation. Neutrophils transition their phenotype over time to regulate MI inflammation resolution and stabilize scar formation. Neutrophils contribute to the evolution from inflammation to resolution and scar formation by serving anti-inflammatory and repair functions. As anti-inflammatory cells, neutrophils contribute ECM proteins during scar formation, in particular fibronectin, galectin-3, and vimentin. The diverse and polarizing functions that contribute to MI wound repair make this innate immune cell a viable target to improve MI outcomes. Thus, understanding the signaling involved in neutrophil physiology in the context of MI may help to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Michael J Daseke
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Upendra Chalise
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA
| | - Mediha Becirovic-Agic
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jeffrey D Salomon
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Departments of Pediatrics, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Leah M Cook
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Division of Pediatric Critical Care, Center for Heart and Vascular Research, Omaha, NE 68198, USA
| | - Adam J Case
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Merry L Lindsey
- Department of Cellular and Integrative Physiology, Center for Heart and Vascular Research, University of Nebraska Medical Center, Omaha, NE 68198, USA; Research Service, Nebraska-Western Iowa Health Care System, Omaha, NE 68198, USA.
| |
Collapse
|
86
|
Divalent cations influence the dimerization mode of murine S100A9 protein by modulating its disulfide bond pattern. J Struct Biol 2020; 213:107689. [PMID: 33359632 DOI: 10.1016/j.jsb.2020.107689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022]
Abstract
S100A9, with its congener S100A8, belongs to the S100 family of calcium-binding proteins found exclusively in vertebrates. These two proteins are major constituents of neutrophils. In response to a pathological condition, they can be released extracellularly and become alarmins that induce both pro- and anti-inflammatory signals, through specific cell surface receptors. They also act as antimicrobial agents, mainly as a S100A8/A9 heterocomplex, through metal sequestration. The mechanisms whereby divalent cations modulate the extracellular functions of S100A8 and S100A9 are still unclear. Importantly, it has been proposed that these ions may affect both the ternary and quaternary structure of these proteins, thereby influencing their physiological properties. In the present study, we report the crystal structures of WT and C80A murine S100A9 (mS100A9), determined at 1.45 and 2.35 Å resolution, respectively, in the presence of calcium and zinc. These structures reveal a canonical homodimeric form for the protein. They also unravel an intramolecular disulfide bridge that stabilizes the C-terminal tail in a rigid conformation, thus shaping a second Zn-binding site per S100A9 protomer. In solution, mS100A9 apparently binds only two zinc ions per homodimer, with an affinity in the micromolar range, and aggregates in the presence of excess zinc. Using mass spectrometry, we demonstrate that mS100A9 can form both non-covalent and covalent homodimers with distinct disulfide bond patterns. Interestingly, calcium and zinc seem to affect differentially the relative proportion of these forms. We discuss how the metal-dependent interconversion between mS100A9 homodimers may explain the versatility of physiological functions attributed to the protein.
Collapse
|
87
|
Cai Z, Xie Q, Hu T, Yao Q, Zhao J, Wu Q, Tang Q. S100A8/A9 in Myocardial Infarction: A Promising Biomarker and Therapeutic Target. Front Cell Dev Biol 2020; 8:603902. [PMID: 33282877 PMCID: PMC7688918 DOI: 10.3389/fcell.2020.603902] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI), the main cause of cardiovascular-related deaths worldwide, has long been a hot topic because of its threat to public health. S100A8/A9 has recently attracted an increasing amount of interest as a crucial alarmin that regulates the pathogenesis of cardiovascular disease after its release from myeloid cells. However, the role of S100A8/A9 in the etiology of MI is not well understood. Here, we elaborate on the critical roles and potential mechanisms of S100A8/A9 driving the pathogenesis of MI. First, cellular source of S100A8/A9 in infarcted heart is discussed. Then we highlight the effect of S100A8/A9 heterodimer in the early inflammatory period and the late reparative period of MI as well as myocardial ischemia/reperfusion (I/R) injury. Moreover, the predictive value of S100A8/A9 for the risk of recurrence of cardiovascular events is elucidated. Therefore, this review focuses on the molecular mechanisms of S100A8/A9 in MI pathogenesis to provide a promising biomarker and therapeutic target for MI.
Collapse
Affiliation(s)
- ZhuLan Cai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingwen Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Tongtong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qi Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinhua Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qingqing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| |
Collapse
|
88
|
Lv X, Li Q, Mao S, Qin L, Dong P. The protective effects of memantine against inflammation and impairment of endothelial tube formation induced by oxygen-glucose deprivation/reperfusion. Aging (Albany NY) 2020; 12:21469-21480. [PMID: 33174867 PMCID: PMC7695423 DOI: 10.18632/aging.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022]
Abstract
Acute myocardial infarction (AMI) is one of the leading causes of death and disability. The dysregulation of cardiac endothelial cells plays a significant role in the pathogenesis of AMI. In the present study, we investigated the potential of memantine, a noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist used in the treatment of Alzheimer's disease, to mitigate the effects of ischemia-reperfusion injury in the peripheral vasculature using human umbilical cord endothelial cells (HUVECs). Previous studies have identified anti-inflammatory and antioxidant effects of memantine, but the effects of memantine on angiogenesis and microtubule formation have not been fully elucidated. Our findings indicate that pretreatment with memantine significantly reduced the expression of interleukin (IL)-6 and IL-8, which are both serum markers if AMI severity. We also demonstrate that memantine could prevent mitochondrial dysfunction and oxidative stress by rescuing mitochondrial membrane potential and reducing the production of reactive oxygen species (ROS) by NADPH oxidase-4 (NOX-4). Importantly, memantine also promoted the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) antioxidant signaling pathway. Importantly, memantine pretreatment improved cell viability and prevented the decrease in microtubule formation induced by OGD/R. Through a phosphoinositide-3-kinase (PI3K) inhibition experiment, we determined that the PI3K/protein kinase B (Akt) pathway is essential for the effects of memantine on angiogenesis. Together, our findings suggest a potential role for memantine in the prevention and treatment of AMI.
Collapse
Affiliation(s)
- Xiaoxin Lv
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Qiang Li
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Shuai Mao
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Limin Qin
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| | - Peikang Dong
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang 261031, Shandong, China
| |
Collapse
|
89
|
Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal 2020; 77:109828. [PMID: 33166625 DOI: 10.1016/j.cellsig.2020.109828] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Udoka Ibeh
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Tatiana Peña Tamayo
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
90
|
Sreejit G, Abdel Latif A, Murphy AJ, Nagareddy PR. Emerging roles of neutrophil-borne S100A8/A9 in cardiovascular inflammation. Pharmacol Res 2020; 161:105212. [PMID: 32991974 DOI: 10.1016/j.phrs.2020.105212] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Elevated neutrophil count is associated with higher risk of major adverse cardiac events including myocardial infarction and early development of heart failure. Neutrophils contribute to cardiac damage through a number of mechanisms, including attraction of other immune cells and release of inflammatory mediators. Recently, a number of independent studies have reported a causal role for neutrophil-derived alarmins (i.e. S100A8/A9) in inducing inflammation and cardiac injury following myocardial infarction (MI). Furthermore, a positive correlation between serum S100A8/A9 levels and major adverse cardiac events (MACE) in MI patients was also observed implying that targeting neutrophils or their inflammatory cargo could be beneficial in reducing heart failure. However, contradictory to this idea, neutrophils and neutrophil-derived S100A8/A9 also seem to play a vital role in the resolution of inflammation. Thus, a better understanding of how neutrophils balance these seemingly contrasting functions would allow us to develop effective therapies that preserve the inflammation-resolving function while restricting the damage caused by inflammation. In this review, we specifically discuss the mechanisms behind neutrophil-derived S100A8/A9 in promoting inflammation and resolution in the context of MI. We also provide a perspective on how neutrophils could be potentially targeted to ameliorate cardiac inflammation and the ensuing damage.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ahmed Abdel Latif
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky, Lexington, KY, USA
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia
| | - Prabhakara R Nagareddy
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
91
|
Li Y, Lin M, Wang K, Zhan Y, Gu W, Gao G, Huang Y, Chen Y, Huang T, Wang J. A module of multifactor-mediated dysfunction guides the molecular typing of coronary heart disease. Mol Genet Genomic Med 2020; 8:e1415. [PMID: 32743916 PMCID: PMC7549572 DOI: 10.1002/mgg3.1415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Coronary atherosclerotic heart disease (CHD) is the most common cardiovascular disease and has become a leading cause of death globally. Various molecular typing methods are available for the diagnosis and treatment of tumors. However, molecular typing results are not routinely used for CHD. Methods and Results Aiming to uncover the underlying molecular features of different types of CHD, we screened the differentially expressed genes (DEGs) associated with CHD based on the Gene Expression Omnibus (GEO) data and expanded those with the NCBI‐gene and OMIM databases to finally obtain 2021 DEGs. The weighted gene co‐expression analysis (WGCNA) was performed on the candidate genes, and six distinctive WGCNA modules were identified, two of which were associated with CHD. Moreover, DEGs were mined as key genes for co‐expression based on the module network relationship. Furthermore, the differentially expressed miRNAs in CHD and interactions in the database were mined in the GEO data set to build a multifactor regulatory network of key genes for co‐expression. Based on the network, the CHD samples were further classified into five clusters and we defined FTH1, HCAR3, RGS2, S100A9, and TYROBP as the top genes of the five subgroups. Finally, the mRNA levels of FTH1, S100A9, and TYROBP were found to be significantly increased, while the expression of HCAR3 was decreased in the blood of CHD patients. We did not detect measurable levels of RGS2. Conclusion The screened core clusters of genes may be a target for the diagnosis and treatment of CHD as a molecular typing module.
Collapse
Affiliation(s)
- Yuewei Li
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Maohuan Lin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Kangjie Wang
- Division of Vascular Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - YaQing Zhan
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenli Gu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Guanghao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yuna Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Yangxin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Tucheng Huang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangdong, China
| |
Collapse
|
92
|
Maréchal P, Tridetti J, Nguyen ML, Wéra O, Jiang Z, Gustin M, Donneau AF, Oury C, Lancellotti P. Neutrophil Phenotypes in Coronary Artery Disease. J Clin Med 2020; 9:jcm9051602. [PMID: 32466264 PMCID: PMC7290445 DOI: 10.3390/jcm9051602] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022] Open
Abstract
Clinical evidence indicates that innate immune cells may contribute to acute coronary syndrome (ACS). Our prospective study aimed at investigating the association of neutrophil phenotypes with ACS. 108 patients were categorized into chronic stable coronary artery disease (n = 37), unstable angina (UA) (n = 19), Non-ST-Elevation Myocardial Infarction (NSTEMI) (n = 25), and ST-Elevation Myocardial Infarction (STEMI) (n = 27). At the time of inclusion, blood neutrophil subpopulations were analysed by flow cytometry. Differential blood cell count and plasma levels of neutrophilic soluble markers were recorded at admission and, for half of patients, at six-month follow-up. STEMI and NSTEMI patients displayed higher neutrophil count and neutrophil-to-lymphocyte ratio than stable and UA patients (p < 0.0001), which normalized at six-month post-MI. Atypical low-density neutrophils were detected in the blood of the four patient groups. STEMI patients were characterized by elevated percentages of band cells compared to the other patients (p = 0.019). Multivariable logistic regression analysis revealed that plasma levels of total myeloperoxidase was associated with STEMI compared to stable (OR: 1.434; 95% CI: 1.119–1.837; P < 0.0001), UA (1.47; 1.146–1.886; p = 0.002), and NSTEMI (1.213; 1.1–1.134; p = 0.0001) patients, while increased neutrophil side scatter (SSC) signal intensity was associated with NSTEMI compared to stable patients (3.828; 1.033–14.184; p = 0.045). Hence, changes in neutrophil phenotype are concomitant to ACS.
Collapse
Affiliation(s)
- Patrick Maréchal
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Julien Tridetti
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Mai-Linh Nguyen
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
| | - Odile Wéra
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Zheshen Jiang
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Maxime Gustin
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
| | - Anne-Françoise Donneau
- Biostatistics Unit, Department of Public Health, University of Liège, 4000 Liège, Belgium;
| | - Cécile Oury
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
- Correspondence: (C.O.); (P.L.)
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, 4000 Liège, Belgium; (P.M.); (J.T.); (M.-L.N.)
- Laboratory of Cardiology, GIGA Cardiovascular Sciences, University of Liège, 4000 Liège, Belgium; (O.W.); (Z.J.); (M.G.)
- Gruppo Villa Maria Care and Research, Anthea Hospital, 70123 Bari, Italy
- Correspondence: (C.O.); (P.L.)
| |
Collapse
|
93
|
Marinković G, Koenis DS, de Camp L, Jablonowski R, Graber N, de Waard V, de Vries CJ, Goncalves I, Nilsson J, Jovinge S, Schiopu A. S100A9 Links Inflammation and Repair in Myocardial Infarction. Circ Res 2020; 127:664-676. [PMID: 32434457 DOI: 10.1161/circresaha.120.315865] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
RATIONALE The alarmin S100A9 has been identified as a potential therapeutic target in myocardial infarction. Short-term S100A9 blockade during the inflammatory phase post-myocardial infarction inhibits systemic and cardiac inflammation and improves cardiac function long term. OBJECTIVE To evaluate the impact of S100A9 blockade on postischemic cardiac repair. METHODS AND RESULTS We assessed cardiac function, hematopoietic response, and myeloid phagocyte dynamics in WT (wild type) C57BL/6 mice with permanent coronary artery ligation, treated with the specific S100A9 blocker ABR-238901 for 7 or 21 days. In contrast to the beneficial effects of short-term therapy, extended S100A9 blockade led to progressive deterioration of cardiac function and left ventricle dilation. The treatment reduced the proliferation of Lin-Sca-1+c-Kit+ hematopoietic stem and progenitor cells in the bone marrow and the production of proreparatory CD150+CD48-CCR2+ hematopoietic stem cells. Monocyte trafficking from the spleen to the myocardium and subsequent phenotype switching to reparatory Ly6CloMerTKhi macrophages was also impaired, leading to inefficient efferocytosis, accumulation of apoptotic cardiomyocytes, and a larger myocardial scar. The transcription factor Nur77 (Nr4a1 [nuclear receptor subfamily 4 group A member 1]) mediates the transition from inflammatory Ly6Chi monocytes to reparatory Ly6Clo macrophages. S100A9 upregulated the levels and activity of Nur77 in monocytes and macrophages in vitro and in Ly6Chi/int monocytes in vivo, and S100A9 blockade antagonized these effects. Finally, the presence of reparatory macrophages in the myocardium was also impaired in S100A9-/- mice with permanent myocardial ischemia, leading to depressed cardiac function long term. CONCLUSIONS We show that S100A9 plays an important role in both the inflammatory and the reparatory immune responses to myocardial infarction. Long-term S100A9 blockade negatively impacts cardiac recovery and counterbalances the beneficial effects of short-term therapy. These results define a therapeutic window targeting the inflammatory phase for optimal effects of S100A9 blockade as potential immunomodulatory treatment in acute myocardial infarction.
Collapse
Affiliation(s)
- Goran Marinković
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.)
| | - Duco Steven Koenis
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Lisa de Camp
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.)
| | | | - Naomi Graber
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Carlie Jacoba de Vries
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, the Netherlands (D.S.K., V.d.W., C.J.d.V.)
| | - Isabel Goncalves
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.).,Department of Cardiology, Skane University Hospital, Sweden (I.G.)
| | - Jan Nilsson
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.)
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program, Van Andel Institute, Grand Rapids, MI (L.d.C., N.G., S.J.).,DeVos Cardiovascular Research Program, Fredrik Meijer Heart and Vascular Institute, Spectrum Health, Grand Rapids, MI (S.J.).,Cardiovascular Institute, Stanford University, CA (S.J.)
| | - Alexandru Schiopu
- From the Department of Clinical Sciences Malmö, Lund University, Sweden (G.M., I.G., J.N., A.S.).,University of Medicine, Pharmacy, Sciences and Technology of Targu-Mures, Romania (A.S.).,Department of Internal Medicine, Skane University Hospital, Sweden (A.S.)
| |
Collapse
|
94
|
Ruscica M, Corsini A, Ferri N, Banach M, Sirtori CR. Clinical approach to the inflammatory etiology of cardiovascular diseases. Pharmacol Res 2020; 159:104916. [PMID: 32445957 PMCID: PMC7238995 DOI: 10.1016/j.phrs.2020.104916] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023]
Abstract
Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activity of cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but frequently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-inflammatory activity is the frequent discordance between a beneficial activity on a major risk factor and associated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. In hypertension, angiotensin converting enzyme inhibitors exert an optimal anti-inflammatory activity, vs the case of sartans. The remarkable preventive activity of SLGT-2 inhibitors in heart failure is not associated with a clear anti-inflammatory mechanism. Finally, icosapent ethyl has been shown to reduce the CV risk in hypertriglyceridemia, with a 27 % reduction of hsCRP. The inflammation-based approach to arterial disease has considerably gained from an improved understanding of the clinical diagnostic strategy and from a better knowledge on the mode of action of numerous agents, including nutraceuticals.
Collapse
Affiliation(s)
- Massimiliano Ruscica
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Alberto Corsini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy; Multimedica IRCCS, Milano, Italy
| | - Nicola Ferri
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland.
| | - Cesare R Sirtori
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
95
|
Chen R, Liu C, Zhou P, Tan Y, Sheng Z, Li J, Zhou J, Chen Y, Song L, Zhao H, Yan H. Both Low and High Postprocedural hsCRP Associate with Increased Risk of Death in Acute Coronary Syndrome Patients Treated by Percutaneous Coronary Intervention. Mediators Inflamm 2020; 2020:9343475. [PMID: 32377168 PMCID: PMC7183527 DOI: 10.1155/2020/9343475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/29/2020] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Inflammation poses dual effects after myocardial infarction, but robust evidence shows that high-sensitivity C-reactive protein (hsCRP), as an inflammatory marker, is constantly associated with worse outcomes. This study is aimed at investigating the probable nonlinear association between postprocedural hsCRP and mortality in patients with acute coronary syndromes (ACS) treated by percutaneous coronary intervention (PCI). METHODS A total of 3940 consecutive ACS patients treated by PCI with postprocedural hsCRP measurements were retrospectively recruited. Patients were stratified into 5 groups according to quintiles of hsCRP. Cox regression with adjustments for multiple covariates was used for outcome analysis. Restricted cubic spline (RCS) analysis was used to allow possible nonlinear associations. The primary outcome was all-cause death. RESULTS During a median follow-up of 727 days, mortality occurred in 207 (5.3%) patients. Adjusted hazard ratio (HR) was higher in the lowest (<2.26 mg/L, HR: 1.90, 95% confidence interval (CI): 1.08-3.33; P = 0.025), second highest (10.16-12.56 mg/L, HR: 1.86, 95% CI: 1.09-3.16; P = 0.023), and highest quintiles (≥12.56 mg/L, HR: 2.02, 95% CI: 1.21-3.36; P = 0.007) of postprocedural hsCRP, compared to the second lowest quintile (2.26-4.85 mg/L). RCS analysis depicted a J-shaped association between postprocedural hsCRP and mortality (P for nonlinearity = 0.004). Similar association was observed between hsCRP and cardiac death (P for nonlinearity = 0.014), but not for noncardiac mortality (P for nonlinearity = 0.228). CONCLUSIONS Both low and high postprocedural hsCRP were associated with higher risk of death in ACS patients treated by PCI.
Collapse
Affiliation(s)
- Runzhen Chen
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chen Liu
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Peng Zhou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yu Tan
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhaoxue Sheng
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiannan Li
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jinying Zhou
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yi Chen
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Li Song
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hanjun Zhao
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| | - Hongbing Yan
- Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, China
| |
Collapse
|
96
|
Tomonobu N, Kinoshita R, Sakaguchi M. S100 Soil Sensor Receptors and Molecular Targeting Therapy Against Them in Cancer Metastasis. Transl Oncol 2020; 13:100753. [PMID: 32193075 PMCID: PMC7078545 DOI: 10.1016/j.tranon.2020.100753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms underlying the ‘seed and soil’ theory are unknown. S100A8/A9 (a heterodimer complex of S100A8 and S100A9 proteins that exhibits a ‘soil signal’) is a ligand for Toll-like receptor 4, causing distant melanoma cells to approach the lung as a ‘seeding’ site. Unknown soil sensors for S100A8/A9 may exist, e.g., extracellular matrix metalloproteinase inducer, neuroplastin, activated leukocyte cell adhesion molecule, and melanoma cell adhesion molecule. We call these receptor proteins ‘novel S100 soil sensor receptors (novel SSSRs).’ Here we review and summarize a crucial role of the S100A8/A9-novel SSSRs' axis in cancer metastasis. The binding of S100A8/A9 to individual SSSRs is important in cancer metastasis via upregulations of the epithelial-mesenchymal transition, cellular motility, and cancer cell invasiveness, plus the formation of an inflammatory immune suppressive environment in metastatic organ(s). These metastatic cellular events are caused by the SSSR-featured signal transductions we identified that provide cancer cells a driving force for metastasis. To deprive cancer cells of these metastatic forces, we developed novel biologics that prevent the interaction of S100A8/A9 with SSSRs, followed by the efficient suppression of S100A8/A9-mediated lung-tropic metastasis in vivo.
Collapse
Affiliation(s)
- Nahoko Tomonobu
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Rie Kinoshita
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
97
|
Iking J, Klose J, Staniszewska M, Fendler WP, Herrmann K, Rischpler C. Imaging inflammation after myocardial infarction: implications for prognosis and therapeutic guidance. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:35-50. [PMID: 32077669 DOI: 10.23736/s1824-4785.20.03232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation after myocardial infarction (MI) has been in the focus of cardiovascular research for several years as it influences the remodeling process of the ischemic heart and thereby critically determines the clinical outcome of the patient. Today, it is well appreciated that inflammation is a crucial necessity for the initiation of the natural wound healing process; however, excessive inflammation can have detrimental effects and might result in adverse ventricular remodeling which is associated with an increased risk of heart failure. Newly emerged imaging techniques facilitate the non-invasive assessment of immune cell infiltration into the ischemic myocardium and can provide greater insight into the underlying complex and dynamic repair mechanisms. Molecular imaging of inflammation in the context of MI may help with stratification of patients at high risk of adverse ventricular remodeling post-MI which may be of diagnostic, therapeutic, and prognostic value. Novel radiopharmaceuticals may additionally provide a way to combine patient monitoring and therapy. In spite of great advances in recent years in the field of imaging sciences, clinicians still need to overcome some obstacles to a wider implementation of inflammation imaging post-MI. This review focuses on inflammation as a molecular imaging target and its potential implication in prognosis and therapeutic guidance.
Collapse
Affiliation(s)
- Janette Iking
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.,Department of Cardiology I for Coronary and Peripheral Vascular Disease, and Heart Failure, University Hospital Münster, Münster, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
98
|
Ischemia/Reperfusion Injury: Pathophysiology, Current Clinical Management, and Potential Preventive Approaches. Mediators Inflamm 2020; 2020:8405370. [PMID: 32410868 PMCID: PMC7204323 DOI: 10.1155/2020/8405370] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Myocardial ischemia reperfusion syndrome is a complex entity where many inflammatory mediators play different roles, both to enhance myocardial infarction-derived damage and to heal injury. In such a setting, the establishment of an effective therapy to treat this condition has been elusive, perhaps because the experimental treatments have been conceived to block just one of the many pathogenic pathways of the disease, or because they thwart the tissue-repairing phase of the syndrome. Either way, we think that a discussion about the pathophysiology of the disease and the mechanisms of action of some drugs may shed some clarity on the topic.
Collapse
|
99
|
Sreejit G, Abdel-Latif A, Athmanathan B, Annabathula R, Dhyani A, Noothi SK, Quaife-Ryan GA, Al-Sharea A, Pernes G, Dragoljevic D, Lal H, Schroder K, Hanaoka BY, Raman C, Grant MB, Hudson JE, Smyth SS, Porrello ER, Murphy AJ, Nagareddy PR. Neutrophil-Derived S100A8/A9 Amplify Granulopoiesis After Myocardial Infarction. Circulation 2020; 141:1080-1094. [PMID: 31941367 DOI: 10.1161/circulationaha.119.043833] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial infarction (MI) triggers myelopoiesis, resulting in heightened production of neutrophils. However, the mechanisms that sustain their production and recruitment to the injured heart are unclear. METHODS Using a mouse model of the permanent ligation of the left anterior descending artery and flow cytometry, we first characterized the temporal and spatial effects of MI on different myeloid cell types. We next performed global transcriptome analysis of different cardiac cell types within the infarct to identify the drivers of the acute inflammatory response and the underlying signaling pathways. Using a combination of genetic and pharmacological strategies, we identified the sequelae of events that led to MI-induced myelopoiesis. Cardiac function was assessed by echocardiography. The association of early indexes of neutrophilia with major adverse cardiovascular events was studied in a cohort of patients with acute MI. RESULTS Induction of MI results in rapid recruitment of neutrophils to the infarct, where they release specific alarmins, S100A8 and S100A9. These alarmins bind to the Toll-like receptor 4 and prime the nod-like receptor family pyrin domain-containing 3 inflammasome in naïve neutrophils and promote interleukin-1β secretion. The released interleukin-1β interacts with its receptor (interleukin 1 receptor type 1) on hematopoietic stem and progenitor cells in the bone marrow and stimulates granulopoiesis in a cell-autonomous manner. Genetic or pharmacological strategies aimed at disruption of S100A8/A9 and their downstream signaling cascade suppress MI-induced granulopoiesis and improve cardiac function. Furthermore, in patients with acute coronary syndrome, higher neutrophil count on admission and after revascularization correlates positively with major adverse cardiovascular disease outcomes. CONCLUSIONS Our study provides novel evidence for the primary role of neutrophil-derived alarmins (S100A8/A9) in dictating the nature of the ensuing inflammatory response after myocardial injury. Therapeutic strategies aimed at disruption of S100A8/A9 signaling or their downstream mediators (eg, nod-like receptor family pyrin domain-containing 3 inflammasome, interleukin-1β) in neutrophils suppress granulopoiesis and may improve cardiac function in patients with acute coronary syndrome.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Department of Surgery (G.S., B.A., P.R.N.), Ohio State University Wexner Medical Center, Columbus.,Departments of Pathology (G.S., B.A., A.D., S.K.N., P.R.N.), University of Alabama at Birmingham
| | - Ahmed Abdel-Latif
- Department of Medicine, University of Kentucky, Lexington (A.A.-L., R.A., S.S.S.)
| | - Baskaran Athmanathan
- Department of Surgery (G.S., B.A., P.R.N.), Ohio State University Wexner Medical Center, Columbus.,Departments of Pathology (G.S., B.A., A.D., S.K.N., P.R.N.), University of Alabama at Birmingham
| | - Rahul Annabathula
- Department of Medicine, University of Kentucky, Lexington (A.A.-L., R.A., S.S.S.)
| | - Ashish Dhyani
- Departments of Pathology (G.S., B.A., A.D., S.K.N., P.R.N.), University of Alabama at Birmingham
| | - Sunil K Noothi
- Departments of Pathology (G.S., B.A., A.D., S.K.N., P.R.N.), University of Alabama at Birmingham.,Ophthalmology and Visual Sciences (S.K.N., M.B.G.), University of Alabama at Birmingham
| | - Gregory A Quaife-Ryan
- School of Biomedical Sciences (G.A.Q.-R.), University of Queensland, St. Lucia, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia (G.A.Q.-R., J.E.H.)
| | - Annas Al-Sharea
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia (A.A.-S., G.P., D.D., A.J.M.)
| | - Gerard Pernes
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia (A.A.-S., G.P., D.D., A.J.M.)
| | - Dragana Dragoljevic
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia (A.A.-S., G.P., D.D., A.J.M.)
| | - Hind Lal
- Medicine (H.L., B.Y.H., C.R.), University of Alabama at Birmingham
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB) (K.S.), University of Queensland, St. Lucia, Australia.,IMB Centre for Inflammation and Disease Research (K.S.), University of Queensland, St. Lucia, Australia
| | - Beatriz Y Hanaoka
- Department of Medicine (B.Y.H.), Ohio State University Wexner Medical Center, Columbus.,Medicine (H.L., B.Y.H., C.R.), University of Alabama at Birmingham
| | - Chander Raman
- Medicine (H.L., B.Y.H., C.R.), University of Alabama at Birmingham
| | - Maria B Grant
- Ophthalmology and Visual Sciences (S.K.N., M.B.G.), University of Alabama at Birmingham
| | - James E Hudson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia (G.A.Q.-R., J.E.H.)
| | - Susan S Smyth
- Department of Medicine, University of Kentucky, Lexington (A.A.-L., R.A., S.S.S.)
| | - Enzo R Porrello
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Australia (E.R.P.).,Department of Physiology, School of Biomedical Sciences, University of Melbourne, Australia (E.R.P.)
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, Australia (A.A.-S., G.P., D.D., A.J.M.).,Department of Immunology, Monash University, Melbourne, Australia (A.J.M.)
| | - Prabhakara R Nagareddy
- Department of Surgery (G.S., B.A., P.R.N.), Ohio State University Wexner Medical Center, Columbus.,Departments of Pathology (G.S., B.A., A.D., S.K.N., P.R.N.), University of Alabama at Birmingham
| |
Collapse
|
100
|
Sreejit G, Flynn MC, Patil M, Krishnamurthy P, Murphy AJ, Nagareddy PR. S100 family proteins in inflammation and beyond. Adv Clin Chem 2020; 98:173-231. [PMID: 32564786 DOI: 10.1016/bs.acc.2020.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The S100 family proteins possess a variety of intracellular and extracellular functions. They interact with multiple receptors and signal transducers to regulate pathways that govern inflammation, cell differentiation, proliferation, energy metabolism, apoptosis, calcium homeostasis, cell cytoskeleton and microbial resistance. S100 proteins are also emerging as novel diagnostic markers for identifying and monitoring various diseases. Strategies aimed at targeting S100-mediated signaling pathways hold a great potential in developing novel therapeutics for multiple diseases. In this chapter, we aim to summarize the current knowledge about the role of S100 family proteins in health and disease with a major focus on their role in inflammatory conditions.
Collapse
Affiliation(s)
| | - Michelle C Flynn
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mallikarjun Patil
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Prasanna Krishnamurthy
- Department of Biomedical Engineering, Schools of Medicine and Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Andrew J Murphy
- Division of Immunometabolism, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia; Department of Immunology, Monash University, Melbourne, VIC, Australia
| | | |
Collapse
|