51
|
Limosilactobacillus fermentum CECT5716: Mechanisms and Therapeutic Insights. Nutrients 2021; 13:nu13031016. [PMID: 33801082 PMCID: PMC8003974 DOI: 10.3390/nu13031016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics microorganisms exert their health-associated activities through some of the following general actions: competitive exclusion, enhancement of intestinal barrier function, production of bacteriocins, improvement of altered microbiota, and modulation of the immune response. Among them, Limosilactobacillus fermentum CECT5716 has become one of the most promising probiotics and it has been described to possess potential beneficial effects on inflammatory processes and immunological alterations. Different studies, preclinical and clinical trials, have evidenced its anti-inflammatory and immunomodulatory properties and elucidated the precise mechanisms of action involved in its beneficial effects. Therefore, the aim of this review is to provide an updated overview of the effect on host health, mechanisms, and future therapeutic approaches.
Collapse
|
52
|
Jonaitis P, Kiudelis V, Streleckiene G, Gedgaudas R, Skieceviciene J, Kupcinskas J. Novel Biomarkers in the Diagnosis of Benign and Malignant Gastrointestinal Diseases. Dig Dis 2021; 40:1-13. [PMID: 33647906 DOI: 10.1159/000515522] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/26/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Various noninvasive biomarkers have been used in the diagnosis, prognosis, and treatment of different gastrointestinal (GI) diseases for years. Novel technological developments and profound perception of molecular processes related to GI diseases over the last decade have allowed researchers to evaluate genetic, epigenetic, and many other potential molecular biomarkers in different diseases and clinical settings. Here, we present a review of recent and most relevant articles in order to summarize major findings on novel biomarkers in the diagnosis of benign and malignant GI diseases. SUMMARY Genetic variations, noncoding RNAs (ncRNAs), cell-free DNA (cfDNA), and microbiome-based biomarkers have been extensively analyzed as potential biomarkers in benign and malignant GI diseases. Multiple single-nucleotide polymorphisms have been linked with a number of GI diseases, and these observations are further being used to build up disease-specific genetic risk scores. Micro-RNAs and long ncRNAs have a large potential as noninvasive biomarkers in the management of inflammatory bowel diseases and GI tumors. Altered microbiome profiles were observed in multiple GI diseases, but most of the findings still lack translational clinical application. As of today, cfDNA appears to be the most potent biomarker for early detection and screening of GI cancers. Key Messages: Novel noninvasive molecular biomarkers show huge potential as useful tools in the diagnostics and management of different GI diseases. However, the use of these biomarkers in real-life clinical practice still remains limited, and further large studies are needed to elucidate the ultimate role of these potential noninvasive clinical tools.
Collapse
Affiliation(s)
- Paulius Jonaitis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytautas Kiudelis
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Greta Streleckiene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rolandas Gedgaudas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Jurgita Skieceviciene
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
53
|
Abstract
Inflammatory bowel disease (IBD) as a chronic inflammation in colon and small intestine has two subtypes: ulcerative colitis (UC) and Crohn's disease (CD). Genome studies have shown that UC and CD are related to microRNAs (miRNAs) expression in addition to environmental factors. This article reviews important researches that have recently been done on miRNAs roles in CD and UC disease. First, miRNA is introduced and its biogenesis and function are discussed. Afterward, roles of miRNAs in inflammatory processes involved in IBD are showed. Finally, this review proposes some circulating and tissue-specific miRNAs, which are useful for CD and UC fast diagnosis and grade prediction. As a conclusion, miRNAs are efficient diagnostic molecules especially in IBD subtypes discrimination and can be used by microarray and real time PCR methods for disease detection and classification.
Collapse
|
54
|
The Potential Importance of MicroRNAs as Novel Indicators How to Manage Patients with Juvenile Idiopathic Arthritis More Effectively. J Immunol Res 2021; 2021:9473508. [PMID: 33575364 PMCID: PMC7864733 DOI: 10.1155/2021/9473508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/20/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Small, noncoding sequences of ribonucleic acid called microRNAs (miRNAs, miR) are functioning as posttranscriptional regulators of gene expression. As they draw increasing attention of rheumatologists, there is a growing body of evidence concerning specific molecules that may affect the long-term care of patients with inflammatory arthritides. Findings involving children with juvenile idiopathic arthritis (JIA) are still limited though. The aim of the study was to browse the available data on microRNAs which may be utilized as potential biomarkers helpful in diagnosing and monitoring JIA patients. The review contains a brief summary on the most studied sequences: miR-16, miR-125a-5p, miR-146a, miR-155, and miR-223. It is complemented with other miRNAs possibly relevant for JIA (miR-145, miR-23b, miR-27a, and miR-204) and discussion on challenges for using miRNAs in pediatric rheumatology (particularly, issues regarding specificity of biomarkers and measurements involving synovial fluid).
Collapse
|
55
|
Zhao Y, Zeng Y, Zeng D, Wang H, Zhou M, Sun N, Xin J, Khalique A, Rajput DS, Pan K, Shu G, Jing B, Ni X. Probiotics and MicroRNA: Their Roles in the Host-Microbe Interactions. Front Microbiol 2021; 11:604462. [PMID: 33603718 PMCID: PMC7885260 DOI: 10.3389/fmicb.2020.604462] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Probiotics are widely accepted to be beneficial for the maintenance of the gut homeostasis - the dynamic and healthy interactions between host and gut microorganisms. In addition, emerging as a key molecule of inter-domain communication, microRNAs (miRNAs) can also mediate the host-microbe interactions. However, a comprehensive description and summary of the association between miRNAs and probiotics have not been reported yet. In this review, we have discussed the roles of probiotics and miRNAs in host-microbe interactions and proposed the association of probiotics with altered miRNAs in various intestinal diseases and potential molecular mechanisms underlying the action of probiotics. Furthermore, we provided a perspective of probiotics-miRNA-host/gut microbiota axis applied in search of disease management highly associated with the gut microbiome, which will potentially prove to be beneficial for future studies.
Collapse
Affiliation(s)
- Ying Zhao
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Yan Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Dong Zeng
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Hesong Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengjia Zhou
- Sichuan Academy of Animal Sciences, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu, China
| | - Ning Sun
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Jinge Xin
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Abdul Khalique
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Danish Sharafat Rajput
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Kangcheng Pan
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Bo Jing
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| | - Xueqin Ni
- Animal Microecology Institute, College of Veterinary, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
56
|
Malmuthuge N, Guan LL. Noncoding RNAs: Regulatory Molecules of Host-Microbiome Crosstalk. Trends Microbiol 2021; 29:713-724. [PMID: 33419590 DOI: 10.1016/j.tim.2020.12.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022]
Abstract
Recent emerging evidence has revealed that regulatory noncoding RNAs (microRNAs, circular RNAs) modulate host-microbe interactions and they have been proposed as potential biomarkers of the host's response to microbiome-linked pathologies such as cancers, obesity, and neurodegenerative diseases. Interactions between microRNAs and circular RNAs, however, increase the complexity of the mechanisms that modulate host-microbe interactions. Current knowledge on these noncoding RNAs (ncRNAs) is mainly generated from well controlled germ-free or knockout (small) animal models. Application of such knowledge to effective modulation outcomes in humans (and livestock) is challenging due to the complex nature of microbiome-linked pathologies in larger outbred animals that constantly interact with the changing environment. This review critically discusses the findings of regulatory noncoding RNAs and their roles in microbiome-linked pathologies in small and large animals and provides insights on their roles as potential therapeutic agents to improve human (and livestock) health.
Collapse
Affiliation(s)
- Nilusha Malmuthuge
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1 Ave S, Lethbridge, Alberta, Canada T1J 4B1
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6G 2P5.
| |
Collapse
|
57
|
Battistini C, Ballan R, Herkenhoff ME, Saad SMI, Sun J. Vitamin D Modulates Intestinal Microbiota in Inflammatory Bowel Diseases. Int J Mol Sci 2020; 22:E362. [PMID: 33396382 PMCID: PMC7795229 DOI: 10.3390/ijms22010362] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammation of the gastrointestinal tract (GIT), including Crohn's disease (CD) and ulcerative colitis (UC), which differ in the location and lesion extensions. Both diseases are associated with microbiota dysbiosis, with a reduced population of butyrate-producing species, abnormal inflammatory response, and micronutrient deficiency (e.g., vitamin D hypovitaminosis). Vitamin D (VitD) is involved in immune cell differentiation, gut microbiota modulation, gene transcription, and barrier integrity. Vitamin D receptor (VDR) regulates the biological actions of the active VitD (1α,25-dihydroxyvitamin D3), and is involved in the genetic, environmental, immune, and microbial aspects of IBD. VitD deficiency is correlated with disease activity and its administration targeting a concentration of 30 ng/mL may have the potential to reduce disease activity. Moreover, VDR regulates functions of T cells and Paneth cells and modulates release of antimicrobial peptides in gut microbiota-host interactions. Meanwhile, beneficial microbial metabolites, e.g., butyrate, upregulate the VDR signaling. In this review, we summarize the clinical progress and mechanism studies on VitD/VDR related to gut microbiota modulation in IBD. We also discuss epigenetics in IBD and the probiotic regulation of VDR. Furthermore, we discuss the existing challenges and future directions. There is a lack of well-designed clinical trials exploring the appropriate dose and the influence of gender, age, ethnicity, genetics, microbiome, and metabolic disorders in IBD subtypes. To move forward, we need well-designed therapeutic studies to examine whether enhanced vitamin D will restore functions of VDR and microbiome in inhibiting chronic inflammation.
Collapse
Affiliation(s)
- Carolina Battistini
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Rafael Ballan
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Marcos Edgar Herkenhoff
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Susana Marta Isay Saad
- Department of Pharmaceutical and Biochemical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; (C.B.); (R.B.); (M.E.H.)
- Food Research Center, University of São Paulo, Rua do Lago, 250, São Paulo, SP 05508-080, Brazil
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, UIC Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
58
|
Zhang J, Wang C, Guo Z, Da B, Zhu W, Li Q. miR-223 improves intestinal inflammation through inhibiting the IL-6/STAT3 signaling pathway in dextran sodium sulfate-induced experimental colitis. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:319-327. [PMID: 33332758 PMCID: PMC7860526 DOI: 10.1002/iid3.395] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
Introduction The pathogenesis of inflammatory bowel disease (IBD) has not yet been clarified and is closely related to several pro‐inflammatory factors. MicroRNA‐233 (miR‐223) might be involved in the development of IBD; however, the mechanism underlying its pathogenesis is unclear. In this study, we attempted to determine the role of miR‐223 in dextran sodium sulfate (DSS)‐induced colitis and explore the involvement of the IL‐6/STAT3 pathway in the development of intestinal mucosal inflammation. Materials and Methods Except control (WT) group, male C57BL/6 mice were provided DSS, then treated for with miR‐223 agomir or antagomir including DSS group, DSS + miR‐223 agomir (DSS + A) group, and DSS + miR‐223 antagomir (DSS + AN) group. The colitis symptoms were observed, the disease activity index (DAI) score were recorded daily, and colonic inflammation was evaluated by histopathological scoring. The expression of myeloperoxidase (MPO), cytokines and IL‐6/STAT3 pathway‐related proteins were measured. Results miR‐223 expression in the terminal ileum and colon was increased in the DSS group compared with the WT group. Colitis symptoms were significantly alleviated in the DSS + A group and exacerbated in the DSS + AN group after administration of the miR‐223 agomir and antagomir, respectively. MPO, tumor necrosis factor‐α, IL‐6, and IL‐17 were decreased and IL‐10 was increased in the DSS + A group, but these changes were reversed in the DSS + AN group. Gp130, p‐STAT3, Bcl‐2, and Bcl‐xl in the colon declined in the DSS + A group, but these levels increased in the DSS + AN group. Conclusions The upregulation of miR‐223 by agomir administration alleviated colonic inflammation in a DSS‐induced colitis model, which was likely mediated by inhibiting the production of pro‐inflammatory cytokines via the IL‐6/STAT3 signaling pathway. These findings provide evidence that miR‐223 might have potential therapeutic implications in IBD.
Collapse
Affiliation(s)
- Juanjuan Zhang
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenyang Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, China
| | - Zhen Guo
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, China
| | - Binlin Da
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, China
| | - Weiming Zhu
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiurong Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
59
|
Franck M, Thon C, Schütte K, Malfertheiner P, Link A. Circulating miR-21-5p level has limited prognostic value in patients with hepatocellular carcinoma and is influenced by renal function. World J Hepatol 2020; 12:1031-1045. [PMID: 33312427 PMCID: PMC7701966 DOI: 10.4254/wjh.v12.i11.1031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/15/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) have been suggested as biomarkers for malignant diseases including hepatocellular carcinoma (HCC). Specifically, hsa-miR-21-5p (miR-21) is among the most frequently deregulated miRNA in cancer. The diagnostic and prognostic value of miR-21 has been demonstrated in HCC tissue, mostly in the Asian population. Although the impact of various factors has been recently reported for circulating hsa-miR-122-5p (miR-122), at present only limited knowledge is available for miR-21.
AIM To evaluate the value of miR-21 for the assessment of prognosis in HCC patients and to delineate the influence of clinical and preanalytical factors on miR-21 level in sera.
METHODS Patients with confirmed HCC from our European cohort with predominantly alcohol-associated liver damage were included in the study. All subjects were characterized according to their clinical and laboratory work-up and overall survival data were obtained. Quantitative real-time polymerase chain reaction was performed for miR-21 and spiked-in cel-miR-39-3p. The results were compared to previously reported miR-122 data.
RESULTS Survival of HCC patients was comparable between patients with low and high serum miR-21 concentration. No association was observed between miR-21 level in sera and Child-Pugh score, Barcelona Clinic Liver Cancer staging system, or etiology of HCC/liver disease. Age, gender, or pretreatment had no association with miR-21 level. A positive correlation was observed between miR-21 and aspartate aminotransferase (r = 0.2854, P = 0.0061), serum miR-122 (r = 0.2624, P = 0.0120), and the International Normalized Ratio (r = 0.2065, P = 0.0496). Negative correlation of miR-21 with serum creatinine (r = -0.2215, P = 0.0348) suggests renal function as a potential influencing factor in miR-21 biogenesis in blood.
CONCLUSION The results from this work do not support clinically relevant prognostic value of circulating miR-21 in HCC patients in real-life settings. Following systematic evaluation, we identified renal function and aspartate aminotransferase as potential factors that may affect miR-21 concentration in blood. This knowledge should be considered in future miRNA-based biomarker studies not only for HCC but also for other diseases.
Collapse
Affiliation(s)
- Martin Franck
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück 49074, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
60
|
MicroRNA Biomarkers in IBD-Differential Diagnosis and Prediction of Colitis-Associated Cancer. Int J Mol Sci 2020; 21:ijms21217893. [PMID: 33114313 PMCID: PMC7660644 DOI: 10.3390/ijms21217893] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.
Collapse
|
61
|
A novel fluorescent enhancing platform based on DNA-scaffolded silver nanoclusters for potential inflammatory bowel disease-associated microRNA detection. Talanta 2020; 218:121122. [DOI: 10.1016/j.talanta.2020.121122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 12/20/2022]
|
62
|
In search for interplay between stool microRNAs, microbiota and short chain fatty acids in Crohn's disease - a preliminary study. BMC Gastroenterol 2020; 20:307. [PMID: 32958038 PMCID: PMC7507689 DOI: 10.1186/s12876-020-01444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/09/2020] [Indexed: 12/19/2022] Open
Abstract
Background Inflammatory bowel diseases are classic polygenic disorders, with genetic loads that reflect immunopathological processes in response to the intestinal microbiota. Herein we performed the multiomics analysis by combining the large scale surveys of gut bacterial community, stool microRNA (miRNA) and short chain fatty acid (SCFA) signatures to correlate their association with the activity of Crohn’s disease (CD). Methods DNA, miRNA, and metabolites were extracted from stool samples of 15 CD patients, eight with active disease and seven in remission, and nine healthy individuals. Microbial, miRNA and SCFA profiles were assessed using datasets from 16S rRNA sequencing, Nanostring miRNA and GC-MS targeted analysis, respectively. Results Pairwise comparisons showed that 9 and 23 taxa differed between controls and CD patients with active and inactive disease, respectively. Six taxa were common to both comparisons, whereas four taxa differed in CD patients. α-Diversity was lower in both CD groups than in controls. The levels of 13 miRNAs differed (p-value < 0.05; FC > 1.5) in CD patients and controls before FDR correction and 4 after. Of six SCFAs, the levels of two differed significantly (p-value < 0.05, FC > 1.5) in CD patients and controls, and the levels of four differed in patients with active and inactive CD. PLS-DA revealed models with smallest error rate for controls in bacterial component and inactive disease in metabolites. Conclusion A complex interrelationship may exist between gut dysbiosis, miRNA profiling and SCFA level in response to intestinal inflammation.
Collapse
|
63
|
Abstract
Pancreatic cancer (PC) is one of the major causes of cancer mortality in developed countries. Therefore, there is an urgent need to derive biomarkers for early diagnosis of PC patients at high risk.This study was designed to identify a panel of miRNAs that might serve as biomarkers for the early diagnosis of PC.The data containing both PC and control samples were extracted from the Gene Expression Omnibus (GEO) database. EdgeR was applied to identify the differentially expressed miRNAs and genes between PC patients and healthy controls. Then a miRNA-mRNA network was constructed based on the differentially expressed miRNAs and genes. The miRNAs-based biomarker for PC was finally constructed by random forest. Finally, AUC was used to evaluate the performance of miRNAs to classify PC and control samples.A total of 33 differentially expressed miRNAs, 753 differentially expressed genes, and 8 miRNAs (hsa-mir-139, hsa-mir-31, hsa-mir-196b, hsa-mir-221, hsa-mir-203b, hsa-mir-215, hsa-mir-144, and hsa-mir-4433b) that play important roles in PC were identified. The target genes of these miRNAs were found to be mainly enriched in negative regulation of acute inflammatory response cell-substrate responses, and o-glycan processing pathways. The constructed biomarkers based on these 8 miRNAs could distinguish samples coming from PC and healthy controls.We identified a panel of eight-miRNAs that would serve as early diagnostic biomarkers for PC patients.
Collapse
Affiliation(s)
- Benyuan Deng
- Department of General Surgery, West China Health care Hospital of Sichuan University
| | - Ming Wang
- Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China
| | - Zhongwu Liu
- Department of General Surgery, West China Health care Hospital of Sichuan University
| |
Collapse
|
64
|
Dragoni G, Innocenti T, Galli A. Biomarkers of Inflammation in Inflammatory Bowel Disease: How Long before Abandoning Single-Marker Approaches? Dig Dis 2020; 39:190-203. [PMID: 32942275 DOI: 10.1159/000511641] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/16/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is a chronically relapsing disease with a continuous need for proactive monitoring to decide appropriate treatments and follow-up strategies. To date, gastrointestinal endoscopy with histologic examination of biopsies and contrast-enhanced imaging are mandatory techniques for the diagnosis and the activity assessment of IBD. SUMMARY In recent decades, many research efforts in the IBD field have been placed on finding non-invasive and reliable biomarkers of disease burden that can be easily tested in body fluids without impacting the quality of life of patients. Unfortunately, the ideal biomarker is yet to be discovered and recent studies have investigated the possibility to increase the accuracy of such measurements by combining different markers. In this review, we provide an update about the current knowledge on biomarkers of intestinal inflammation in IBD, focussing on disease diagnosis, correlation with endoscopic findings, and prediction of relapse. We also summarize composite scores of clinical and laboratory markers that have been recently proposed in various scenarios of disease activity. Key Messages: To date, only C-reactive protein and faecal calprotectin can be considered reliable markers of disease activity with demonstrated utility in IBD management. The combination of different parameters has recently shown higher accuracy and might substitute single-marker approaches in the future of research and clinical practice.
Collapse
Affiliation(s)
- Gabriele Dragoni
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy, .,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy, .,Department of Medical Biotechnologies, University of Siena, Siena, Italy,
| | - Tommaso Innocenti
- IBD Referral Center, Gastroenterology Department, Careggi University Hospital, Florence, Italy.,Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Andrea Galli
- Gastroenterology Research Unit, Department of Experimental and Clinical Biochemical Sciences "Mario Serio", University of Florence, Florence, Italy
| |
Collapse
|
65
|
Ghafouri-Fard S, Eghtedarian R, Taheri M. The crucial role of non-coding RNAs in the pathophysiology of inflammatory bowel disease. Biomed Pharmacother 2020; 129:110507. [DOI: 10.1016/j.biopha.2020.110507] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
|
66
|
Alkarkoushi RR, Hui Y, Tavakoli AS, Singh U, Nagarkatti P, Nagarkatti M, Chatzistamou I, Bam M, Testerman TL. Immune and microRNA responses to Helicobacter muridarum infection and indole-3-carbinol during colitis. World J Gastroenterol 2020; 26:4763-4785. [PMID: 32921956 PMCID: PMC7459201 DOI: 10.3748/wjg.v26.i32.4763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/16/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Indole-3-carbinol (I3C) and other aryl hydrocarbon receptor agonists are known to modulate the immune system and ameliorate various inflammatory and autoimmune diseases in animal models, including colitis induced by dextran sulfate sodium (DSS). MicroRNAs (miRNAs) are also gaining traction as potential therapeutic agents or diagnostic elements. Enterohepatic Helicobacter (EHH) species are associated with an increased risk of inflammatory bowel disease, but little is known about how these species affect the immune system or response to treatment.
AIM To determine whether infection with an EHH species alters the response to I3C and how the immune and miRNA responses of an EHH species compare with responses to DSS and inflammatory bowel disease.
METHODS We infected C57BL/6 mice with Helicobacter muridarum (H. muridarum), with and without DSS and I3C treatment. Pathological responses were evaluated by histological examination, symptom scores, and cytokine responses. MiRNAs analysis was performed on mesenteric lymph nodes to further evaluate the regional immune response.
RESULTS H. muridarum infection alone caused colonic inflammation and upregulated proinflammatory, macrophage-associated cytokines in the colon similar to changes seen in DSS-treated mice. Further upregulation occurred upon treatment with DSS. H. muridarum infection caused broad changes in mesenteric lymph node miRNA expression, but colitis-associated miRNAs were regulated similarly in H. muridarum-infected and uninfected, DSS-treated mice. In spite of causing colitis exacerbation, H. muridarum infection did not prevent disease amelioration by I3C. I3C normalized both macrophage- and T cell-associated cytokines.
CONCLUSION Thus, I3C may be useful for inflammatory bowel disease patients regardless of EHH infection. The miRNA changes associated with I3C treatment are likely the result of, rather than the cause of immune response changes.
Collapse
Affiliation(s)
- Rasha Raheem Alkarkoushi
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Abbas S Tavakoli
- College of Nursing, University of South Carolina, University of South Carolina, Columbia, SC 29208, United States
| | - Udai Singh
- Department of Medicine, Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Marpe Bam
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| | - Traci L Testerman
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, United States
| |
Collapse
|
67
|
Rashid H, Hossain B, Siddiqua T, Kabir M, Noor Z, Ahmed M, Haque R. Fecal MicroRNAs as Potential Biomarkers for Screening and Diagnosis of Intestinal Diseases. Front Mol Biosci 2020; 7:181. [PMID: 32850969 PMCID: PMC7426649 DOI: 10.3389/fmolb.2020.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of conserved endogenous, small non-coding RNA molecules with a length of 18–25 nucleotides that regulate gene expression by RNA interference processes, including mRNA chopping, mRNA deadenylation, and translation inhibition. miRNAs maintain the physiological functions of the intestine and are instrumental in gut pathogenesis. miRNAs play an important role in intercellular communication and are present in all body fluids, including stools with different composition and concentrations. However, under diseased conditions, miRNAs are aberrantly expressed and act as negative regulators of gene expression. The stable and differentially expressed miRNAs in stool enables miRNAs to be used as potential biomarkers for screening of various intestinal diseases. In this review, we summarize the expressed miRNA profile in stool and highlight miRNAs as biomarkers with potential clinical and diagnostic applications, and we aim to address the prospects for recent advanced techniques for screening miRNA in diagnosis and prognosis of intestinal disorders.
Collapse
Affiliation(s)
- Humaira Rashid
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Biplob Hossain
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Towfida Siddiqua
- Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Zannatun Noor
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Mamun Ahmed
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| |
Collapse
|
68
|
Al-Sadi R, Engers J, Abdulqadir R. Talk about micromanaging! Role of microRNAs in intestinal barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 319:G170-G174. [PMID: 32658620 DOI: 10.1152/ajpgi.00214.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Defective intestinal tight-junction (TJ) barrier has been implicated in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and other inflammatory conditions of the gut. The role of microRNAs (miRNA's or miR's) has also been demonstrated in the last two decades in the pathogenesis of IBD and in the regulation of intestinal TJ barrier function. MiRNAs are noncoding regulators of gene expression at the posttranscription level that have an essential role in targeting transcripts encoding proteins of intestinal TJs and their regulators. Many miRNAs have been reported to regulate or deregulate the TJ proteins responsible for the intestinal barrier integrity and intestinal permeability. Many of those miRNAs have been reported to have essential roles in the pathogenesis of IBD. In this mini-review, we summarize the results of studies in the last three years that implicate miRNAs in the defective TJ barrier in relation to IBD. The therapeutic potential of using specific miRNAs to target the intestinal TJ barrier might be of great insight for IBD therapy.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Jessica Engers
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Raz Abdulqadir
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
69
|
Yang R, Huang H, Cui S, Zhou Y, Zhang T, Zhou Y. IFN-γ promoted exosomes from mesenchymal stem cells to attenuate colitis via miR-125a and miR-125b. Cell Death Dis 2020; 11:603. [PMID: 32733020 PMCID: PMC7393506 DOI: 10.1038/s41419-020-02788-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/14/2020] [Indexed: 12/13/2022]
Abstract
Bone marrow mesenchymal stem cells (MSCs) have demonstrated therapeutic effects for colitis through immunomodulation and anti-inflammation. However, whether MSC-derived exosomes possessed the similar function remains unclear. In present study, exosomes were isolated from control and IFN-γ-primed MSCs and was verified by transmission electron microscope (TEM) and immunofluorescence staining. Administration of exosomes to mice significantly improved the disease activity index and histological score of colitis, and decreased the ratio of Th17 cells with elevated Treg cells ratio in mice colitis model. Exosomes from IFN-γ-primed MSCs showed superior therapeutic effects to colitis. Exosomes treatment inhibited Th17 differentiation in vitro, and exosomes from IFN-γ-primed MSCs showed higher inhibition efficacy. Mechanistically, exosomes treatment significantly decreased the expression of Stat3 and p-Stat3 to inhibit Th17 cells differentiation. IFN-γ pretreatment increased the level of miR-125a and miR-125b of exosomes, which directly targeted on Stat3, to repress Th17 cell differentiation. Moreover, combination of miR-125a and miR-125b agmior infusion also showed therapeutic effects for colitis, accompanied by decreased Th17 cell ratio. Collectively, this study demonstrates that IFN-γ treatment promoted exosomes from MSCs to attenuate colitis through increasing the level of miR-125a and miR-125b, which binding on 3′-UTR of Stat3 to repress Th17 cell differentiation. This study provides a new approach of exocytosis on the treatment of colitis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China. .,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China. .,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China.
| | - Huaming Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yikun Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Ting Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China.,National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology, Haidian District, Beijing, China.,Beijing Key Laboratory of Digital Stomatology, Haidian District, Beijing, China
| |
Collapse
|
70
|
Elevated miRNA Inversely Correlates with E-cadherin Gene Expression in Tissue Biopsies from Crohn Disease Patients in contrast to Ulcerative Colitis Patients. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4250329. [PMID: 32775420 PMCID: PMC7396102 DOI: 10.1155/2020/4250329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/29/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022]
Abstract
Inflammatory bowel disease (IBD) comprises ulcerative colitis (UC) and Crohn disease (CD). Similar symptoms, but different treatment procedures for both diseases require precise diagnosis. MicroRNAs (miRNAs) are major posttranscriptional players that regulate the expression of genes during the inflammation and thus could be appropriate biomarkers for differentiation between UC and CD. For this purpose, we analyzed the expression of miR-21-3p, miR-31-3p, miR-125b-1-3p, miR-146a-3p, miR-155-5p, and E-cadherin (CDH1) genes associated with IBD, in 67 tissue samples: 28 inflamed mucosa samples (n = 16 UC, n = 12 CD), 28 adjacent normal colonic mucosa (n = 16 UC, n = 12 CD), and 11 normal mucosa from healthy patients using reverse transcription real-time RT-PCR. We found all analyzed miRNAs were significantly overexpressed in UC tissue as compared to adjacent normal tissue of patients with UC, as well as to normal mucosa from healthy controls. Four miRNAs (except miR-125b-1-3p) were significantly upregulated in CD lesions as compared to adjacent normal tissue of patients with CD, and four miRNAs, except miR-146a-3p, were significantly higher in CD samples compared to normal mucosa from healthy individuals. In the CD group, we found an inverse correlation between miR-155-5p or miR-146a-3p expressions and CDH1expression in inflamed mucosa. This type of correlation was also detected for miR-213p in adjacent normal tissue and CDH1 in inflamed mucosa, as well as between miR-155-5p and CDH1 in adjacent normal tissue. Elevated miRNA expression is characteristic for IBD-mediated inflammation process and inversely correlated with CDH1 gene expression, which suggest involvement of epithelial to mesenchymal transition (EMT) in IBD development.
Collapse
|
71
|
Nardone OM, Shivaji UN, Ferruzza V, Ghosh S, Iacucci M. Soluble Blood Markers of Mucosal Healing in Inflammatory Bowel Disease: The Future of Noninvasive Monitoring. Inflamm Bowel Dis 2020; 26:961-969. [PMID: 31587036 DOI: 10.1093/ibd/izz226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 12/13/2022]
Abstract
The traditional management of inflammatory bowel disease (IBD) based on symptom control is not considered valid anymore by most specialists in this field, and a new paradigm called "treat to target" has been introduced. This is based on the assessment of disease activity using objective measures. The identification of noninvasive biomarkers is crucial to diagnosis and monitor IBD because frequent endoscopic examinations are costly and uncomfortable for the patient. In this review, we focus on blood markers that may be able to assess mucosal healing (MH) in IBD and recent advances in this area. Introduction of commercial panel to predict MH opens the way for further developments so that colonoscopy or fecal markers may be avoided in some patients. This may also permit frequent monitoring for therapeutic response and achieve MH. It is a challenging area of research to identify a panel of biomarkers that may reflect inflammation and healing to serve as a surrogate of MH.
Collapse
Affiliation(s)
- Olga Maria Nardone
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Uday Nagesh Shivaji
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Vittoria Ferruzza
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Subrata Ghosh
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, UK.,NIHR Biomedical Research Centre, University of Birmingham and University Hospitals NHS Foundation Trust Birmingham, UK.,Department of Gastroenterology and Hepatology, University of Calgary, Alberta, Canada
| | - Marietta Iacucci
- Institute of Translational Medicine and Institute of Immunology and Immunotherapy, University of Birmingham, UK.,University Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, UK.,NIHR Biomedical Research Centre, University of Birmingham and University Hospitals NHS Foundation Trust Birmingham, UK.,Department of Gastroenterology and Hepatology, University of Calgary, Alberta, Canada
| |
Collapse
|
72
|
The immune-sleep crosstalk in inflammatory bowel disease. Sleep Med 2020; 73:38-46. [PMID: 32769031 DOI: 10.1016/j.sleep.2020.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Sleep disorders are progressively common and sometimes are associated with aberrant regulation of the adaptive and innate immune responses. Sleep interruption can increase the inflammatory burden by enhancing the pro-inflammatory cytokines particularly in patients with chronic diseases such as inflammatory bowel disease (IBD). IBD is a chronic inflammatory disease characterized by immune dysregulation, dysbiosis of gut microbiome, and poor-quality life. Therefore, this review highlights the crosstalk between sleep and immune responses during the progression of IBD.
Collapse
|
73
|
Chen Y, Shan T, Qu H, Chen Y, Wang N, Xia J. Inhibition of miR-16 Ameliorates Inflammatory Bowel Disease by Modulating Bcl-2 in Mouse Models. J Surg Res 2020; 253:185-192. [PMID: 32361613 DOI: 10.1016/j.jss.2020.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND In recent years, microRNA (miRNA) is considered as a potential therapy target. To study the regulatory mechanism and therapeutic effect of miRNAs on inflammatory bowel disease (IBD), we investigated microRNAs that regulate apoptosis-related protein B cell lymphoma-2 (Bcl-2). We examined the role of miR-16 in IBD and the effect of inhibiting the expression of miR-16 on disease progression. MATERIALS AND METHODS Dextran sulfate sodium was used to induce ulcerative colitis in mice. RNA and protein were extracted from the rectal mucosa of mice. Real-time quantitative polymerase chain reaction and Western blotting were used to detect the expression of miR-16 and Bcl-2. The effects of miR-16 on intestinal mucosal immunity were studied by real-time quantitative polymerase chain reaction, and inflammatory factors such as interleukin-1β, interleukin-6, and tumor necrosis factor-α were detected. The weight changes, disease activity index, length of the rectal colon, and pathological score of the mice were used to evaluate the effect of inhibiting miR-16 on disease progression. Through the establishment of overexpression and low expression cell lines of miR-16, the regulation of miR-16 on Bcl-2 was studied. RESULTS MiR-16 was overexpressed in the IBD model, whereas Bcl-2 had lower expression in the mucosa. Inhibiting expression of miR-16 significantly decreased the expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α. In mice, the weight change, disease activity index, and pathological score decreased in the experimental group, in which miR-16 was inhibited. High expression of miR-16 can inhibit Bcl-2 expression. CONCLUSIONS MiR-16 plays a critical role in IBD via Bcl-2 and is a promising target in IBD therapy.
Collapse
Affiliation(s)
- Ye Chen
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Ting Shan
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Huiheng Qu
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Yigang Chen
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Ning Wang
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Jiazeng Xia
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China.
| |
Collapse
|
74
|
Chen P, Zhou G, Lin J, Li L, Zeng Z, Chen M, Zhang S. Serum Biomarkers for Inflammatory Bowel Disease. Front Med (Lausanne) 2020; 7:123. [PMID: 32391365 PMCID: PMC7188783 DOI: 10.3389/fmed.2020.00123] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a chronic, inflammatory disorder of the gastrointestinal tract. As the novel therapeutic goal and biologicals are widely recognized, accurate assessment of disease and prediction of therapeutic response have become a crucial challenge in clinical practice. Also, because of the continuously rising incidence, convenient and economical methods of diagnosis and clinical assessment are urgently needed. Recently, serum biomarkers have made a great progress and become a focus in IBD study because they are non-invasive, convenient, and relatively inexpensive than are markers in biopsy tissue, stool, breath, and other body fluids. Aims: To review the available data on serological biomarkers for IBD. Methods: We searched PubMed using predefined key words on relevant literatures of serum biomarkers regarding diagnosis, evaluation of therapeutic efficacy, surveillance of disease activity, and assessment of prognosis for IBD. Results: We reviewed serological biomarkers that are well-established and widely used (e.g., C-reactive protein), newly discovered biomarkers (e.g., cytokines, antibodies, and non-coding RNAs), and also recently advancements in serological biomarkers (e.g., metabolomics and proteomics) that are used in different aspects of IBD management. Conclusions: With such a wealth of researches, to date, there are still no ideal serum biomarkers for IBD. Serum profiling and non-coding RNAs are just starting to blossom but reveal great promise for future clinical practice. Combining different biomarkers can be valuable in improving performance of disease evaluation.
Collapse
Affiliation(s)
- Peng Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingxia Lin
- Division of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
75
|
Yan H, Zhang X, Xu Y. Aberrant expression of miR-21 in patients with inflammatory bowel disease: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e19693. [PMID: 32332611 PMCID: PMC7220677 DOI: 10.1097/md.0000000000019693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND microRNAs have drawn more attention due to their function on the inflammatory process. The association between microRNA-21 (miR-21) expression and risk of inflammatory bowel diseases (IBD) remain inconclusive. This study was aimed to acquire a more exact estimation of this relationship. METHODS Relevant studies were identified through searching PubMed, Embase, Wanfang, and China National Knowledge Infrastructure database. Pooled standardized mean difference and 95% confidence intervals were calculated using a random-effect model. Publication bias test, sensitivity analysis and subgroup analysis were carried out. RESULTS A total of 20 relevant articles comprising 540 patients with ulcerative colitis (UC), 459 patients with Crohn disease (CD) and 511 non-IBD controls were included in this analysis. The expression of miR-21 was significantly increased in colon tissue of both UC and CD patients compared with non-IBD controls. However, there were no significant differences between patients with UC and CD. Moreover, increased miR-21 expression was associated with disease activity status in UC patients, but not in CD patients. CONCLUSIONS This meta-analysis demonstrates that the higher miR-21 expression in colon tissue is positively associated with the development of UC and CD, and miR-21 might serve as a disease marker of IBD.
Collapse
Affiliation(s)
- Huimin Yan
- Clinical Research Center, Shijiazhuang Fifth Hospital
| | - Xinyu Zhang
- Graduate College of Hebei Medical University, Hebei Medical University
| | - Yi Xu
- Department of Laboratory Medicine, Shijiazhuang Fifth Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
76
|
Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12:nu12040944. [PMID: 32235316 PMCID: PMC7230231 DOI: 10.3390/nu12040944] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process that requires lifelong treatment. The underlying causes of IBD are still unclear, as this heterogeneous disorder results from a complex interplay between genetic variability, the host immune system and environmental factors. The current knowledge recognizes diet as a risk factor for the development of IBD and attributes a substantial pathogenic role to the intestinal dysbiosis inducing an aberrant mucosal immune response in genetically predisposed individuals. This review focused on the clinical evidence available that considers the impact of some nutrients on IBD onset and the role of different diets in the management of IBD and their effects on the gut microbiota composition. The effects of the Specific Carbohydrate Diet, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, gluten free diet, anti-inflammatory diet and Mediterranean diet are investigated with regard to their impact on microbiota and on the evolution of the disease. At present, no clear indications toward a specific diet are available but the assessment of dysbiosis prior to the recommendation of a specific diet should become a standard clinical approach in order to achieve a personalized therapy.
Collapse
|
77
|
Konstantinidis AΟ, Pardali D, Adamama-Moraitou KK, Gazouli M, Dovas CI, Legaki E, Brellou GD, Savvas I, Jergens AE, Rallis TS, Allenspach K. Colonic mucosal and serum expression of microRNAs in canine large intestinal inflammatory bowel disease. BMC Vet Res 2020; 16:69. [PMID: 32087719 PMCID: PMC7035774 DOI: 10.1186/s12917-020-02287-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Canine inflammatory bowel disease (IBD) is a group of chronic gastrointestinal (GI) disorders of still largely unknown etiology. Canine IBD diagnosis is time-consuming and costly as other diseases with similar signs should be initially excluded. In human IBD microRNA (miR) expression changes have been reported in GI mucosa and blood. Thus, there is a possibility that miRs may provide insight into disease pathogenesis, diagnosis and even treatment of canine IBD. The aim of this study was to determine the colonic mucosal and serum relative expression of a miRs panel in dogs with large intestinal IBD and healthy control dogs. RESULTS Compared to healthy control dogs, dogs with large intestinal IBD showed significantly increased relative expression of miR-16, miR-21, miR-122 and miR-147 in the colonic mucosa and serum, while the relative expression of miR-185, miR-192 and miR-223 was significantly decreased. Relative expression of miR-146a was significantly increased only in the serum of dogs with large intestinal IBD. Furthermore, serum miR-192 and miR-223 relative expression correlated to disease activity and endoscopic score, respectively. CONCLUSION Our data suggest the existence of dysregulated miRs expression patterns in canine IBD and support the potential future use of serum miRs as useful noninvasive biomarkers.
Collapse
Affiliation(s)
- Alexandros Ο Konstantinidis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitra Pardali
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina K Adamama-Moraitou
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Chrysostomos I Dovas
- Diagnostic Laboratory, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evangelia Legaki
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia D Brellou
- Laboratory of Pathology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Savvas
- Companion Animal Clinic (Anesthesia and Intensive Care Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Albert E Jergens
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA
| | - Timoleon S Rallis
- Companion Animal Clinic (Medicine Unit), School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Karin Allenspach
- Departments of Veterinary Clinical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, USA.
| |
Collapse
|
78
|
Wohnhaas CT, Schmid R, Rolser M, Kaaru E, Langgartner D, Rieber K, Strobel B, Eisele C, Wiech F, Jakob I, Gantner F, Herichova I, Vinisko R, Böcher WO, Visvanathan S, Shen F, Panzenbeck M, Raymond E, Reber SO, Delić D, Baum P. Fecal MicroRNAs Show Promise as Noninvasive Crohn's Disease Biomarkers. CROHNS & COLITIS 360 2020; 2:otaa003. [PMID: 32551441 PMCID: PMC7291945 DOI: 10.1093/crocol/otaa003] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Background Short non-coding microRNAs (miRNAs) are involved in various cellular processes during disease progression of Crohn’s disease (CD) and remarkably stable in feces, which make them attractive biomarker candidates for reflecting intestinal inflammatory processes. Here we investigated the potential of fecal miRNAs as noninvasive and translational CD biomarkers. Methods MiRNAs were screened in feces of 52 patients with CD and 15 healthy controls using RNA sequencing and the results were confirmed by PCR. The relationship between fecal miRNA levels and the clinical CD activity index (CDAI) or CD endoscopic index of severity (CDEIS) was explored, respectively. Additionally, fecal miRNAs were investigated in dextran sodium sulfate, adoptive T-cell transfer, and Helicobacter typhlonius/stress-induced murine colitis models using the NanoString platform. Results Nine miRNAs (miR-15a-5p, miR-16-5p, miR-128-3p, miR-142-5p, miR-24-3p, miR-27a-3p, miR-223-3p, miR-223-5p, and miR-3074-5p) were significantly (adj. P < 0.05, >3-fold) increased whereas 8 miRNAs (miR-10a-5p, miR-10b-5p, miR-141-3p, miR-192-5p, miR-200a-3p, miR-375, miR-378a-3p, and let-7g-5p) were significantly decreased in CD. MiR-192-5p, miR-375, and miR-141-3p correlated (P < 0.05) with both CDAI and CDEIS whereas miR-15a-5p correlated only with CDEIS. Deregulated expression of miR-223-3p, miR-16-5p, miR-15a-5p, miR-24-3p, and miR-200a-3p was also observed in murine models. The identified altered fecal miRNA levels reflect pathophysiological mechanisms in CD, such as Th1 and Th17 inflammation, autophagy, and fibrotic processes. Conclusions Our translational study assessed global fecal miRNA changes of patients with CD and relevant preclinical models. These fecal miRNAs show promise as translational and clinically useful noninvasive biomarkers for mechanistic investigation of intestinal pathophysiology, including monitoring of disease progression. MicroRNAs are involved in disease progression of Crohn’s disease (CD). This study identified significantly altered fecal levels of 17 microRNAs in CD compared to healthy subjects. These microRNAs reflect pathophysiological mechanisms and show promise as clinically useful, noninvasive CD biomarkers.
Collapse
Affiliation(s)
| | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Marcel Rolser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Kaaru
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dominik Langgartner
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Kathrin Rieber
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Claudia Eisele
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Franziska Wiech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ines Jakob
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Wulf O Böcher
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - Fei Shen
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Mark Panzenbeck
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Ernest Raymond
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Stefan O Reber
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Denis Delić
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
79
|
Franck M, Schütte K, Malfertheiner P, Link A. Prognostic value of serum microRNA-122 in hepatocellular carcinoma is dependent on coexisting clinical and laboratory factors. World J Gastroenterol 2020; 26:86-96. [PMID: 31933516 PMCID: PMC6952302 DOI: 10.3748/wjg.v26.i1.86] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND There is ongoing search for new noninvasive biomarkers to improve management of patients with hepatocellular carcinoma (HCC). Studies, mostly from the Asian-Pacific region, demonstrated differential expression of liver-specific microRNA-122 (miR-122) in tissue as well as in sera of patients with hepatitis B virus- and hepatitis C virus-induced HCC.
AIM To evaluate prognostic value of miR-122 in patients with HCC in a European population and determine potential factors related to alteration of miR-122 in sera.
METHODS Patients with confirmed HCC (n = 91) were included in the study over a two-year period. Patients were characterized according to Child-Pugh score, Barcelona clinic liver cancer (BCLC) staging system, etiology of liver disease, laboratory parameters and overall survival. MiR-122 was measured in sera using TaqMan assay normalized to spiked-in cel-miR-39.
RESULTS Serum miR-122 quantity was independent of the Child-Pugh score, the BCLC stage or the underlying etiology. Significant positive correlation was found between miR-122 and alanine aminotransferase (P < 0.0001), aspartate aminotransferase (P = 0.0001), alpha-fetoprotein (AFP) (P = 0.0034) and hemoglobin concentration (P = 0.076). Negative correlation was observed between miR-122 level and creatinine concentration (P = 0.0028). AFP, Child-Pugh score and BCLC staging system were associated with survival differences. In overall cohort low miR-122 in sera was only associated with a trend for a better overall survival without reaching statistical significance. Subgroup analysis revealed that low miR-122 was significantly associated with better prognosis in patients with advanced cirrhosis (Child-Pugh class B/C), advanced tumor stage (BCLC B/C/D) and normal AFP (< 7 ng/mL).
CONCLUSION Our results strongly support the value of miR-122 as potential biomarker of liver injury and probably prognosis. Nevertheless, the value of miR-122 in prediction of prognosis of HCC patients was limited to certain patients’ subgroups. Since circulating miR-122 may be influenced by impaired renal function, AFP and hemoglobin concentration, those factors need to be considered while interpreting miR-122 level.
Collapse
Affiliation(s)
- Martin Franck
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover 30625, Germany
| | - Kerstin Schütte
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück 49074, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University Magdeburg, Magdeburg 39120, Germany
| |
Collapse
|
80
|
Verdier J, Breunig IR, Ohse MC, Roubrocks S, Kleinfeld S, Roy S, Streetz K, Trautwein C, Roderburg C, Sellge G. Faecal Micro-RNAs in Inflammatory Bowel Diseases. J Crohns Colitis 2020; 14:110-117. [PMID: 31209454 DOI: 10.1093/ecco-jcc/jjz120] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Faecal biomarkers are used as indicators of disease activity in inflammatory bowel diseases [IBD], which include Crohn's disease [CD] and ulcerative colitis [UC]. Micro-RNAs [miRNAs] are small non-coding RNAs detectable in extracellular fluids and can be used as clinical biomarkers. The aim of this study was to determine if faecal miRNA composition is altered in IBD. METHODS More than 800 different human faecal miRNAs were measured in stool samples from control individuals and patients with active CD by using NanoString technology. Selected miRNAs were quantified by qRT-PCR in faeces, serum and intestinal tissue of controls [n = 23] and patients with inactive or active CD [n = 22, n = 22] or UC [n = 11, n = 24] as well as patients with Clostridium difficile infection [CDI, n = 8]. RESULTS In total, 150 miRNAs were significantly detected in faeces from controls and patients, and multivariate analyses showed that CD patients with high disease activities had a distinct miRNA profile and that miR-223 and miR-1246 were distinct from other faecal miRNAs. In a larger cohort, active UC patients displayed significantly higher levels of miR-223 and miR-1246 than controls while patients with CDI had higher levels of faecal miR-1246 but not miR-223. No differences were noted in serum samples. CONCLUSIONS To our knowledge, this is the first comprehensive screen of faecal miRNAs performed in IBD. Further investigation will aim to confirm these findings in a larger cohort and to understand the biological function and cellular sources of faecal miRNAs.
Collapse
Affiliation(s)
- Julien Verdier
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany.,INSERM, Sorbonne Universités, UPMC Univ Paris, AIM-Institute of Myology, Paris, France
| | | | - Margarete Clara Ohse
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Silvia Roubrocks
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sandra Kleinfeld
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Sanchari Roy
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Konrad Streetz
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Christoph Roderburg
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Gernot Sellge
- Department of Internal Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
81
|
Zhao D, Wu N, Wang L, Pang X, Liu X, Zhang X. Role of microRNA-449a in the progress of inflammatory bowel disease in children. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1724828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Dandan Zhao
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Na Wu
- Department of Neonatology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Libo Wang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaoli Pang
- Pediatric Gastrointestinal Department, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xuehua Liu
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, PR China
| | - Xiaohong Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, PR China
| |
Collapse
|
82
|
Parasite-derived circulating microRNAs as biomarkers for the detection of human Schistosoma japonicum infection. Parasitology 2019; 147:889-896. [PMID: 31840631 PMCID: PMC7391863 DOI: 10.1017/s0031182019001690] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Novel tools for early diagnosis and monitoring of schistosomiasis are urgently needed. This study aimed to validate parasite-derived miRNAs as potential novel biomarkers for the detection of human Schistosoma japonicum infection. A total of 21 miRNAs were initially validated by real-time-polymerase chain reaction (RT-PCR) using serum samples of S. japonicum-infected BALB/c mice. Of these, 6 miRNAs were further validated with a human cohort of individuals from a schistosomiasis-endemic area of the Philippines. RT-PCR analysis showed that two parasite-derived miRNAs (sja-miR-2b-5p and sja-miR-2c-5p) could detect infected individuals with low infection intensity with moderate sensitivity/specificity values of 66%/68% and 55%/80%, respectively. Analysis of the combined data for the two parasite miRNAs revealed a specificity of 77.4% and a sensitivity of 60.0% with an area under the curve (AUC) value of 0.6906 (P = 0.0069); however, a duplex RT-PCR targeting both sja-miR-2b-5p and sja-miR-2c-5p did not result in an increased diagnostic performance compared with the singleplex assays. Furthermore, the serum level of sja-miR-2c-5p correlated significantly with faecal egg counts, whereas the other five miRNAs did not. Targeting S. japonicum-derived miRNAs in serum resulted in a moderate diagnostic performance when applied to a low schistosome infection intensity setting.
Collapse
|
83
|
Alrafas HR, Busbee PB, Nagarkatti M, Nagarkatti PS. Resveratrol Downregulates miR-31 to Promote T Regulatory Cells during Prevention of TNBS-Induced Colitis. Mol Nutr Food Res 2019; 64:e1900633. [PMID: 31730734 DOI: 10.1002/mnfr.201900633] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/21/2019] [Indexed: 12/11/2022]
Abstract
SCOPE Colitis, an inflammatory bowel disease, is associated with aberrant regulation of the colonic mucosal immune system. Resveratrol, a natural plant product, has been found to exert anti-inflammatory properties and attenuate the development of murine colitis. In the current study, the role of microRNA (miR) in the ability of resveratrol to suppress colonic inflammation is examined. METHODS AND RESULTS BALB/C mice with 2,4,6-Trinitrobenzenesulfonic acid solution (TNBS)-induced colitis, when treated with resveratrol, show improved clinical outcomes and reduce induction of inflammatory T cells (Th17 and Th1) while increasing CD4+Foxp3+ regulatory T cells (Tregs) and IL-10-producing CD4+ T cells. miR microarray analysis and polymerase chain reaction (PCR) validation from CD4+ T cells show treatment with resveratrol decreases the expression of several miRs (miR-31, Let7a, miR-132) that targets cytokines and transcription factors involved in anti-inflammatory T cell responses (Foxp3 and TGF-β). Transfection studies with miR-31 confirm that this miR directly regulates the expression of Foxp3. Lastly, analysis of public data from human patients with ulcerative colitis reveals that miR-31 expression is significantly increased when compared to controls. CONCLUSION Together, the current study demonstrates that resveratrol-mediated attenuation of colitis may be regulated by miR-31 through induction of Tregs and miR-31 may serve as a therapeutic target for human colitis.
Collapse
Affiliation(s)
- Haider Rasheed Alrafas
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29208, USA
| |
Collapse
|
84
|
Liu S, Rezende RM, Moreira TG, Tankou SK, Cox LM, Wu M, Song A, Dhang FH, Wei Z, Costamagna G, Weiner HL. Oral Administration of miR-30d from Feces of MS Patients Suppresses MS-like Symptoms in Mice by Expanding Akkermansia muciniphila. Cell Host Microbe 2019; 26:779-794.e8. [PMID: 31784260 PMCID: PMC6948921 DOI: 10.1016/j.chom.2019.10.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/08/2019] [Accepted: 10/14/2019] [Indexed: 01/15/2023]
Abstract
Fecal transfer from healthy donors is being explored as a microbiome modality. MicroRNAs (miRNAs) have been found to affect the microbiome. Multiple sclerosis (MS) patients have been shown to have an altered gut microbiome. Here, we unexpectedly found that transfer of feces harvested at peak disease from the experimental autoimmune encephalomyelitis (EAE) model of MS ameliorates disease in recipients in a miRNA-dependent manner. Specifically, we show that miR-30d is enriched in the feces of peak EAE and untreated MS patients. Synthetic miR-30d given orally ameliorates EAE through expansion of regulatory T cells (Tregs). Mechanistically, miR-30d regulates the expression of a lactase in Akkermansia muciniphila, which increases Akkermansia abundance in the gut. The expanded Akkermansia in turn increases Tregs to suppress EAE symptoms. Our findings report the mechanistic underpinnings of a miRNA-microbiome axis and suggest that the feces of diseased subjects might be enriched with miRNAs with therapeutic properties.
Collapse
Affiliation(s)
- Shirong Liu
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Rafael M Rezende
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Thais G Moreira
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Stephanie K Tankou
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Meng Wu
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Anya Song
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Fyonn H Dhang
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Zhiyun Wei
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gianluca Costamagna
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Partners Multiple Sclerosis Center, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
85
|
Novel potential biomarkers for the diagnosis and monitoring of patients with ulcerative colitis. Eur J Gastroenterol Hepatol 2019; 31:1173-1183. [PMID: 31498278 DOI: 10.1097/meg.0000000000001490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unambiguously, great progress has been achieved in the unraveling of more pathological pathways implicated in the development and progression of ulcerative colitis during the last decades. Novel effective drugs that have augmented the management armamentarium have been developed alongside this growing comprehension of the disease, rendering mucosal healing not only a feasible but the optimal goal of every therapy. Clinical evaluation, colonoscopy and biomarkers are the tools used by practitioners for the diagnosis and assessment of the status of the disease in order to achieve clinical remission and mucosal healing for their patients. Among these tools, colonoscopy is the gold method for the cause but is still an invasive, high-cost procedure with possible adverse events such as perforation. While clinical evaluation entails much subjectivity, biomarkers are objective, easily reproducible, non-invasive, cheap and potent surrogate tools of mucosal inflammation. Unfortunately, the well-established, currently in use serum biomarkers, such as C-reactive protein, erythrocyte sedimentation rate and others, do not display sufficiently acceptable sensitivity and specificity rates for the diagnosis of ulcerative colitis and, most importantly, do not represent precisely the mucosal inflammation status of the disease. Therefore, the discovery of new serum biomarkers has been the cause of several studies attempting to discover an "optimal" serum biomarker during the recent years. After thorough research, collection and examination of current data, this review focuses on and selectively presents promising, potential, novel serum biomarkers of ulcerative colitis as they are indicated by studies on the patient over the last years.
Collapse
|
86
|
Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int J Mol Sci 2019; 20:ijms20153662. [PMID: 31357438 PMCID: PMC6696129 DOI: 10.3390/ijms20153662] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.
Collapse
|
87
|
Yau TO, Tang CM, Harriss EK, Dickins B, Polytarchou C. Faecal microRNAs as a non-invasive tool in the diagnosis of colonic adenomas and colorectal cancer: A meta-analysis. Sci Rep 2019; 9:9491. [PMID: 31263200 PMCID: PMC6603164 DOI: 10.1038/s41598-019-45570-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are proposed as potential biomarkers for the diagnosis of numerous diseases. Here, we performed a meta-analysis to evaluate the utility of faecal miRNAs as a non-invasive tool in colorectal cancer (CRC) screening. A systematic literature search, according to predetermined criteria, in five databases identified 17 research articles including 6475, 783 and 5569 faecal-based miRNA tests in CRC, adenoma patients and healthy individuals, respectively. Sensitivity, specificity, positive/negative likelihood and diagnostic odds ratios, area under curve (AUC), summary receiver operator characteristic (sROC) curves, association of individual or combinations of miRNAs to cancer stage and location, subgroup, meta-regression and Deeks' funnel plot asymmetry analyses were employed. Pooled miRNAs for CRC had an AUC of 0.811, with a sensitivity of 58.8% (95% confidence interval [CI]: 51.7-65.5%) and specificity of 84.8% (95% CI: 81.1-87.8%), whilst for colonic adenoma, it was 0.747, 57.3% (95% CI: 40.8-72.3%) and 76.1% (95% CI: 66.1-89.4%), respectively. The most reliable individual miRNA was miR-21, with an AUC of 0.843, sensitivity of 59.3% (95% CI: 26.3-85.6%) and specificity of 85.6% (95% CI: 72.2-93.2%). Paired stage analysis showed a better diagnostic accuracy in late stage CRC and sensitivity higher in distal than proximal CRC. In conclusion, faecal miR-21, miR-92a and their combination are promising non-invasive biomarkers for faecal-based CRC screening.
Collapse
Affiliation(s)
- Tung On Yau
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ceen-Ming Tang
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, Oxford, UK
| | - Elinor K Harriss
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Benjamin Dickins
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Christos Polytarchou
- Department of Biosciences, John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK.
| |
Collapse
|
88
|
Viennois E, Chassaing B, Tahsin A, Pujada A, Wang L, Gewirtz AT, Merlin D. Host-derived fecal microRNAs can indicate gut microbiota healthiness and ability to induce inflammation. Theranostics 2019; 9:4542-4557. [PMID: 31285778 PMCID: PMC6599659 DOI: 10.7150/thno.35282] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/24/2019] [Indexed: 12/27/2022] Open
Abstract
Disruption of intestine-microbiota symbiosis can result in chronic gut inflammation. We hypothesize that assessing the initial inflammatory potential of the microbiota in patients is essential and that host-derived miRNAs, which can be found in feces, could fulfill this function. We investigated whether the gut microbiota composition impacts the fecal miRNA profile and thereby indicates its ability to influence intestinal inflammation. Methods: We used high-throughput qPCR to compare fecal miRNA profile between germ-free and conventional mice. Conventionalization of germfree mice by various colitogenic and non-colitogenic microbiotas (IL10-/- and TLR5-/- associated microbiota) was performed. Results: We identified 12 fecal miRNAs impacted by the presence of a microbiota. Conventionalization of germfree mice by various colitogenic and non-colitogenic microbiotas associated with the development of intestinal inflammation (IL10-/- and TLR5-/- associated microbiota) yielded distinctively altered fecal miRNA profiles compared to that of mice receiving a “healthy” microbiota. Correlation analysis revealed the existence of interactions between the 12 abovementioned miRNAs and specific microbiota members. Conclusion: These results showed that fecal miRNA profile can be differentially and specifically impacted by microbiota composition, and that miRNA could importantly serve as markers of the colitogenic potential of the microbiota. This is particularly relevant to assess individual state of the microbiota in patients with dysbiosis-related disorders, such as IBD and potentially determine their ability to respond to therapeutics.
Collapse
|
89
|
Yan L, Liang M, Hou X, Zhang Y, Zhang H, Guo Z, Jinyu J, Feng Z, Mei Z. The role of microRNA-16 in the pathogenesis of autoimmune diseases: A comprehensive review. Biomed Pharmacother 2019; 112:108583. [DOI: 10.1016/j.biopha.2019.01.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
|
90
|
Chao G, Li X, Ji Y, Zhu Y, Li N, Zhang N, Feng Z, Niu M. MiR-155 controls follicular Treg cell-mediated humoral autoimmune intestinal injury by inhibiting CTLA-4 expression. Int Immunopharmacol 2019; 71:267-276. [PMID: 30927737 DOI: 10.1016/j.intimp.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/02/2019] [Accepted: 03/05/2019] [Indexed: 12/30/2022]
Abstract
High expression levels of miR-155 are involved in the pathogenesis of inflammatory bowel disease (IBD). We observed an increase in miR-155 in peripheral regulatory T (Treg) cells from IBD patients. Mice that specifically overexpress miR-155 in Foxp3+ Treg cells exhibit spontaneous autoimmunity and more severe dextran sulfate sodium (DSS)-induced intestinal injury. MiR-155 overexpression can lead to a lack of follicular Treg (Tfr) cells and central Treg (cTreg), whereas DSS treatment further depletes the Tfr cells. Furthermore, miR-155 can target the expression of CTLA-4 in cTreg and Tfr, directly inhibiting Tfr cell production and promoting enhanced germinal center (GC) B cell activation and autoantibody overproduction. This outcome may be the cause of severe intestinal injury in patients with autoimmune IBD.
Collapse
Affiliation(s)
- Gao Chao
- Department of Microsurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoli Li
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yahong Ji
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ying Zhu
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Na Li
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Nana Zhang
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Zunyong Feng
- Department of Forensic Medicine, Wannan Medical College, Wuhu, China
| | - Min Niu
- Department of Gastroenterology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
91
|
Francavilla A, Tarallo S, Pardini B, Naccarati A. Fecal microRNAs as non-invasive biomarkers for the detection of colorectal cancer: a systematic review. MINERVA BIOTECNOL 2019. [DOI: 10.23736/s1120-4826.18.02495-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
92
|
Kalla R, Boyapati R, Vatn S, Hijos G, Crooks B, Moore GT, Hall V, Lipscomb G, Gomollón F, Jahnsen J, Singh S. Patients' perceptions of faecal calprotectin testing in inflammatory bowel disease: results from a prospective multicentre patient-based survey. Scand J Gastroenterol 2018; 53:1437-1442. [PMID: 30451040 DOI: 10.1080/00365521.2018.1527394] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Despite its success, there appears to be practical issues with Faecal Calprotectin (FC) testing in Inflammatory Bowel Diseases (IBD), including sample collection, delivery and processing delays. Patients' perception and barriers to FC testing are yet to be explored in clinical practice. METHOD A prospective patient survey was undertaken at IBD units in UK, Europe and Australia. A 9-point patient-based questionnaire was completed in clinic and included demographics, previous FC testing and FC sample difficulty rating score. Predictors of testing difficulty were derived using multivariable logistic regression analysis. RESULTS A total of 585 patients with IBD completed the survey; 306 males with a median age of 43 years (IQR: 31-54). There were 446 patients (76%) who had prior FC testing experience. Of these, 37% (n = 165) rated FC testing difficult; 'sample collection' (n = 106; 67%) being the most common reason reported. Multivariable regression analysis identified age <49 years (odds ratio (OR): 2.5, CI:1.6-4.0), disease duration <35 months (OR 1.4, CI:0.9-2.1) and testing location (UK centre: OR 1.9, CI:1.2-3.1) as predictors of a difficult FC rating score. CONCLUSIONS A total of 37% of patients find FC testing challenging, in particular those aged <49 years, disease duration <35 months. Further studies understanding and addressing these practical issues may aid higher FC uptake in clinic.
Collapse
Affiliation(s)
- Rahul Kalla
- a Department of Gastroenterology , Royal Bolton Hospital , Bolton , UK
| | - Ray Boyapati
- b Department of Gastroenterology , Monash Health , Melbourne , Australia
| | - Simen Vatn
- c Department of Gastroenterology , Akershus University Hospital , Akershus , Norway
| | - Gonzalo Hijos
- d Gastroenterology Unit , Clinical University Hospital Lozano Blesa , Zaragoza , Spain
| | - Benjamin Crooks
- a Department of Gastroenterology , Royal Bolton Hospital , Bolton , UK
| | | | - Veronica Hall
- a Department of Gastroenterology , Royal Bolton Hospital , Bolton , UK
| | - George Lipscomb
- a Department of Gastroenterology , Royal Bolton Hospital , Bolton , UK
| | - Fernando Gomollón
- d Gastroenterology Unit , Clinical University Hospital Lozano Blesa , Zaragoza , Spain
| | - Jørgen Jahnsen
- c Department of Gastroenterology , Akershus University Hospital , Akershus , Norway.,e Institute of Clinical Medicine , University of Oslo , Oslo , Norway
| | - Salil Singh
- a Department of Gastroenterology , Royal Bolton Hospital , Bolton , UK
| |
Collapse
|
93
|
Egea Valenzuela J, Antón Ródenas G, Sánchez Martínez A. Use of biomarkers in inflammatory bowel disease. Med Clin (Barc) 2018; 152:310-316. [PMID: 30502302 DOI: 10.1016/j.medcli.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
There are many useful biomarkers for initial diagnosis and the management of inflammatory bowel disease. Serologic biomarkers have been traditionally used because they are widely disposable, but recently faecal biomarkers, especially faecal calprotectin, have acquired great importance as they have shown to be more precise when establishing suspicion of the disease and also as predictors of mucosal healing or persistence of inflammatory activity. Faecal calprotectin is a good tool for predicting abnormal endoscopic studies, but has limited specificity because its levels can be altered in many digestive diseases presenting with similar symptoms. The precision of faecal calprotectin is higher when associated with other altered parameters, especially with C-reactive protein, or with clinical scores of inflammatory activity. Finally, there are many new generation serologic and faecal biomarkers. Despite there not being much evidence about these yet, some of them have shown promising results in different studies.
Collapse
Affiliation(s)
- Juan Egea Valenzuela
- Servicio de Medicina del Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España.
| | - Gonzalo Antón Ródenas
- Servicio de Medicina del Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| | - Ana Sánchez Martínez
- Servicio de Medicina del Aparato Digestivo, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, España
| |
Collapse
|
94
|
Link J, Thon C, Schanze D, Steponaitiene R, Kupcinskas J, Zenker M, Canbay A, Malfertheiner P, Link A. Food-Derived Xeno-microRNAs: Influence of Diet and Detectability in Gastrointestinal Tract-Proof-of-Principle Study. Mol Nutr Food Res 2018; 63:e1800076. [PMID: 30378765 DOI: 10.1002/mnfr.201800076] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/17/2018] [Indexed: 12/25/2022]
Abstract
SCOPE Diet is amongst the most crucial factors contributing to the multistep process of carcinogenesis. The role of exogenous microRNAs (miRNAs) is still debatable. In this proof-of-principle work, the presence of miRNAs in a variety of foods, its stability to processing, and detectability in GI mucosa and feces are studied and the effect of short-term diet on human- or plant-derived miRNAs in feces and blood is examined. METHODS AND RESULTS Animal and plant miRNAs are detected in all foods irrespective of processing. Animal-derived foods showed the highest miRNA level and the lowest is found in cheese and milk. The impact of the short-term vegetarian or meat-rich diet on blood and feces miRNA is evaluated in healthy subjects using qPCR and Affymetrix profiling. Diet is not associated with changes in ultraconserved miRNAs. However, a vegetarian diet is associated with an increase of miR-168 in feces but not in blood. Overall, plant miR-168 is detectable in normal GI mucosa and in colorectal cancer. CONCLUSIONS Food provides a great source of miRNAs and diet may be associated with changes in xenomiRs. Plant-derived miR-168 is ubiquitously present in feces, normal mucosa, and cancer. Further studies are needed to evaluate the functional interaction between diet-derived miRNAs and GI tract.
Collapse
Affiliation(s)
- Jastin Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Cosima Thon
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Denny Schanze
- Institute of Human Genetics, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Ruta Steponaitiene
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany.,Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, 50161, Lithuania
| | - Juozas Kupcinskas
- Department of Gastroenterology and Institute for Digestive Research, Lithuanian University of Health Sciences, Kaunas, 50161, Lithuania
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Ali Canbay
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, 39120, Germany
| |
Collapse
|
95
|
Kearney M, Cooper PR, Smith AJ, Duncan HF. Epigenetic Approaches to the Treatment of Dental Pulp Inflammation and Repair: Opportunities and Obstacles. Front Genet 2018; 9:311. [PMID: 30131827 PMCID: PMC6090030 DOI: 10.3389/fgene.2018.00311] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Concerns over the cost and destructive nature of dental treatment have led to the call for novel minimally invasive, biologically based restorative solutions. For patients with toothache, this has resulted in a shift from invasive root-canal-treatment (RCT) toward more conservative vital-pulp-treatment (VPT) procedures, aimed to protect the pulp and harness its natural regenerative capacity. If the dental pulp is exposed, as long as the infection and inflammation can be controlled, conservative therapies can promote the formation of new tertiary dentine in a stem cell-led reparative process. Crucially, the volume and quality of new dentine is dependent on the material applied; however, currently available dental-materials are limited by non-specific action, cytotoxicity and poor clinical handling. Looking to the future, an improved understanding of the cellular regulators of pulpal inflammation and associated repair mechanisms is critical to predict pulpal responses and devise novel treatment strategies. Epigenetic modifications of DNA-associated proteins and the influences of non-coding RNAs have been demonstrated to control the self-renewal of stem cell populations as well as regulate mineralised tissue development and repair. Notably, the stability of microRNAs and their relative ease of sampling from pulpal blood highlight their potential for application as diagnostic inflammatory biomarkers, while increased understanding of their actions will not only enhance our knowledge of pulpal disease and repair, but also identify novel molecular targets. The potential therapeutic application of epigenetic modifying agents, DNA-methyltransferase-inhibitors (DNMTi) and histone-deacetylase-inhibitors (HDACi), have been shown to promote mineralisation and repair processes in dental-pulp-cell (DPC) populations as well as induce the release of bioactive dentine-matrix-components. Consequently, HDACis and DNMTis have the potential to enhance tertiary dentinogenesis by influencing the cellular and tissue processes at low concentrations with minimal side effects, providing an opportunity to develop a topically placed, inexpensive bio-inductive restorative material. The aim of this review is to highlight the potential role of epigenetic approaches in the treatment of the damaged dental pulp, considering the opportunities and obstacles, such as off-target effects, delivery mechanisms, for the therapeutic use of miRNA as an inflammatory biomarker or molecular target, before discussing the application of HDACi and DNMTi to the damaged pulp to stimulate repair.
Collapse
Affiliation(s)
- Michaela Kearney
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| | - Paul R. Cooper
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Anthony J. Smith
- Oral Biology, School of Dentistry, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Henry F. Duncan
- Division of Restorative Dentistry & Periodontology, Dublin Dental University Hospital, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|