51
|
Zhang L, Chen Y, Liu M, Wang Y, Peng G. TDP-43 and Limbic-Predominant Age-Related TDP-43 Encephalopathy. Front Aging Neurosci 2020; 11:376. [PMID: 31992981 PMCID: PMC6971113 DOI: 10.3389/fnagi.2019.00376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
Through a number of an extensive autopsy, biomarker, and genomics studies, researchers have recently defined a novel type of dementia known as limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE is perhaps best characterized by the presence of hyperphosphorylated TDP-43, which plays multi-functional roles through interactions with DNA and RNA, leading to significant alterations in the transcription and translation of particular genes. As individuals of advanced age represent a rapidly growing demographic group globally, there is a steadily increasing rate of LATE incidence that has to date received insufficient recognition despite its serious implications for public health. TDP-43 is the common pathology of various age-related dementia, therefore, it may be a potential and promising therapeutic target for such diseases. In the present review, we discuss the pathways regulating TDP-43 expression, metabolism, and disease activity in order to better understand the link between TDP-43 proteinopathy and LATE at the genetic, pathological, and clinical levels.
Collapse
Affiliation(s)
- Lumi Zhang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Chen
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Liu
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Zhejiang University ShuLan International Hospital, Hangzhou, China
| | - Yunyun Wang
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology, Shengzhou People's Hospital, Shengzhou, China
| | - Guoping Peng
- Department of Neurology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
52
|
Are comorbidities compatible with a molecular pathological classification of neurodegenerative diseases? Curr Opin Neurol 2020; 32:279-291. [PMID: 30672825 DOI: 10.1097/wco.0000000000000664] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on comorbidities in neurodegenerative conditions. The term comorbidity is used here to distinguish cases with overlapping pathogenic mechanisms, which includes combinations of neurodegenerative proteinopathies from cases with multimorbidity, which is defined as concomitant brain and systemic disorders with different pathogenic mechanisms. RECENT FINDINGS Comorbid proteinopathies are more frequent in both sporadic and hereditary neurodegenerative diseases than previously assumed. The most frequent additional proteinopathies are related to Alzheimer's disease, Lewy body disorder, and limbic predominant transactive response DNA-binding protein 43 proteinopathy, however, different forms of tau pathologies are also increasingly recognized. In addition to ageing, synergistic interaction of proteins, common disease pathways, and the influence of genetic variations are discussed as possible pathogenic players. SUMMARY Comorbid proteinopathies might influence the clinical course and have implications for biomarker and therapeutic development. As pure forms of proteinopathies are still observed, the notion of current molecular classification is justified. This corroborates elucidation of various pathogenic pathways leading to neurodegeneration. Assuming that single proteins and associated pathways are targeted in therapy trials, efforts are needed to better stratify patients and to select pure proteinopathy forms lacking unfavorable genetic constellations. Otherwise combined therapeutic strategies might be necessary for comorbid proteinopathies.
Collapse
|
53
|
Jicha GA, Nelson PT. Hippocampal Sclerosis, Argyrophilic Grain Disease, and Primary Age-Related Tauopathy. Continuum (Minneap Minn) 2020; 25:208-233. [PMID: 30707194 DOI: 10.1212/con.0000000000000697] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy are common Alzheimer disease mimics that currently lack clinical diagnostic criteria. Increased understanding of these pathologic entities is important for the neurologist who may encounter patients with an unusually slowly progressive degenerative dementia that may appear to meet criteria for Alzheimer disease but who progress to develop symptoms that are unusual for classic Alzheimer disease RECENT FINDINGS: Hippocampal sclerosis has traditionally been associated with hypoxic/ischemic injury and poorly controlled epilepsy, but it is now recognized that hippocampal sclerosis may also be associated with a unique degenerative disease of aging or may be an associated pathologic finding in many cases of frontotemporal lobar degeneration. Argyrophilic grain disease has been recognized as an enigma in the field of pathology for over 30 years, but recent discoveries suggest that it may overlap with other tau-related disorders within the spectrum of frontotemporal lobar degeneration. Primary age-related tauopathy has long been recognized as a distinct clinical entity that lies on the Alzheimer pathologic spectrum, with the presence of neurofibrillary tangles that lack the coexistent Alzheimer plaque development; thus, it is thought to represent a distinct pathologic entity. SUMMARY Despite advances in dementia diagnosis that suggest that we have identified and unlocked the mysteries of the major degenerative disease states responsible for cognitive decline and dementia in the elderly, diseases such as hippocampal sclerosis, argyrophilic grain disease, and primary age-related tauopathy demonstrate that we remain on the frontier of discovery and that our diagnostic repertoire of diseases responsible for such clinical symptoms remains in its infancy. Understanding such diagnostic confounds is important for the neurologist in assigning appropriate diagnoses and selecting appropriate therapeutic management strategies for patients with mild cognitive impairment and dementia.
Collapse
|
54
|
Flanagan ME, Cholerton B, Latimer CS, Hemmy LS, Edland SD, Montine KS, White LR, Montine TJ. TDP-43 Neuropathologic Associations in the Nun Study and the Honolulu-Asia Aging Study. J Alzheimers Dis 2019; 66:1549-1558. [PMID: 30452409 DOI: 10.3233/jad-180162] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transactive response binding protein-43 (TDP-43) cytoplasmic neuronal and glial aggregates (pathologic TDP-43) have been described in multiple brain diseases. We describe the associations between neuropathologically confirmed TDP-43 and cognition in two population-based cohorts: the Nun Study (NS) and the Honolulu-Asia Aging Study (HAAS). In the HAAS, there was a significant association between hippocampal sclerosis (HS) and TDP-43 (OR = 11.04, p < 0.0001, 95% CI 3.57-34.13). In the NS, there were significant associations between TDP-43 and HS (OR = 16.44, p > 0.001 95%, CI 7.10-38.00) and Alzheimer's disease (AD) severity (OR = 1.74, p = 0.009, 95% CI 1.15-2.64). When cognitive scores were added to the model, HS remained significant but the other variables were not. When HS was removed from the model, the overall model remained significant and the associations between cognitive performance and TDP-43 (OR = 2.11, p = 0.022, 95% CI 1.11-4.02) were significant. In the NS, there was a significant association between cognitive performance and TDP-43 (OR 1.94 p = 0.005, 95% CI 1.22-3.09) (HS remained significant, but AD did not). When HS was removed from the model, only CERAD was significant (OR = 2.43 p < 0.001, 95% CI 1.58-3.74). These results support a consistent association between pathologic TDP-43, HS, and the development of cognitive impairment in two large studies of brain aging, while the relationship between AD pathology and TDP-43 may vary according to cohort-specific features.
Collapse
Affiliation(s)
- Margaret E Flanagan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Laura S Hemmy
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, USA.,Geriatric Research, Education, and Clinical Center, VA Health Care System, Minneapolis, MN, USA
| | - Steven D Edland
- Department of Family Medicine and Public Health, University of California, San Diego, CA, USA
| | | | - Lon R White
- Pacific Health Research and Education Institute (PHREI), Honolulu, HI, USA.,Department of Geriatric Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, USA
| | | |
Collapse
|
55
|
Bejanin A, Murray ME, Martin P, Botha H, Tosakulwong N, Schwarz CG, Senjem ML, Chételat G, Kantarci K, Jack CR, Boeve BF, Knopman DS, Petersen RC, Giannini C, Parisi JE, Dickson DW, Whitwell JL, Josephs KA. Antemortem volume loss mirrors TDP-43 staging in older adults with non-frontotemporal lobar degeneration. Brain 2019; 142:3621-3635. [PMID: 31562527 PMCID: PMC6821218 DOI: 10.1093/brain/awz277] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/26/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Over the past decade, the transactive response DNA-binding protein of 43 kDa (TDP-43) has been recognized as a major protein in normal and pathological ageing, increasing the risk of cognitive impairment and dementia. In conditions distinct from the frontotemporal lobar degenerations, TDP-43 appears to progress in a stereotypical pattern. In the present study, we aimed at providing a better understanding of the effects of TDP-43 and other age-related neuropathologies on cross-sectional grey matter volume in a cohort of non-FTLD subjects. We included 407 individuals with an antemortem MRI and post-mortem brain tissue from the Mayo Clinic Alzheimer's Disease Research Center, Mayo Clinic Alzheimer's Disease Patient Registry, or the Mayo Clinic Study of Aging. All individuals were assigned pathological stages for TDP-43, tau, amyloid-β, Lewy bodies, argyrophilic grain disease and vascular pathologies. Robust regressions were performed in regions of interest and voxel-wise to explore the relationships between TDP-43 stages and grey matter volume while controlling for other pathologies. Grey matter volumes adjusted for pathological and demographic variables were also computed for each TDP-43-positive case to further characterize the sequential involvement of brain structures associated with TDP-43, irrespective of the TDP-43 staging scheme. Robust regressions showed that the extent of TDP-43 pathology was associated with the extent of grey matter atrophy. Specifically, we found that the volume in medial temporal regions (i.e. amygdala, entorhinal cortex, hippocampus) decreased progressively with advancing TDP-43 stages. Importantly, these effects were of similar magnitude to those related to tau stages. Additional analyses using adjusted grey matter volume demonstrated a sequential pattern of volume loss associated with TDP-43, starting within the medial temporal lobe, followed by early involvement of the temporal pole, and eventually encompassing additional temporal and frontal regions. Altogether, this study demonstrates the major and independent contribution of TDP-43 pathology on neurodegeneration and provides further insight into the regional distribution of TDP-43 in non-FTLD subjects. Along with previous studies, these findings emphasized the importance of targeting TDP-43 in future clinical trials to prevent its detrimental effect on grey matter volume and, eventually, cognition.
Collapse
Affiliation(s)
- Alexandre Bejanin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | | | - Peter Martin
- Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
- Department of Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Gael Chételat
- Inserm, Inserm UMR-S U1237, Université de Caen-Normandie, GIP Cyceron, Caen, France
| | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | | | | |
Collapse
|
56
|
Abstract
BACKGROUND Understanding contributions of different brain pathologies to domain-specific cognitive trajectories in the oldest old is crucial to guide future intervention studies. METHODS Two-hundred-twenty Oregon Alzheimer's Disease Center research participants who were cognitively intact at entry were followed on average for 7.3 years with annual neuropsychological testing until death (mean age, 93.7 y) and autopsy. Mixed effects models examined the relationship between trajectories in memory, verbal fluency, and mini-mental state examination (MMSE) and pathology (neurofibrillary tangles, neuritic plaques, gross infarcts, hippocampal sclerosis, Lewy bodies, APOE genotype, age at death, and years of education). The association between the MMSE trajectory and pathologic variables were examined using a Poisson model with MMSE errors as outcomes given the nonlinear distribution of MMSE scores. RESULTS Memory trajectory was associated with the APOε4 allele (P=0.006). Verbal fluency trajectory was associated with gross infarcts (P=0.008). MMSE trajectory was associated with high Braak scores (P=0.03), gross infarcts (P<0.0001), hippocampal sclerosis (P=0.003), moderate neuritic plaques (P=0.04), and the APOε4 allele (P=0.02). CONCLUSIONS The association between trajectory of decline in global cognitive scores and multiple brain pathologies highlights the importance of accounting for comorbid pathologies in therapeutic trials aimed at one specific pathology in the oldest old. Only the APOε4 allele showed an association with memory decline, despite accounting for Alzheimer's disease pathology, suggesting that APOE may be involved in mechanisms beyond amyloid metabolism in its role in memory. Further studies are needed to examine the role of APOE in brain aging.
Collapse
|
57
|
Kero M, Raunio A, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L. Hippocampal Sclerosis in the Oldest Old: A Finnish Population-Based Study. J Alzheimers Dis 2019; 63:263-272. [PMID: 29614661 PMCID: PMC5900558 DOI: 10.3233/jad-171068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: There are only few population-based studies that have systemically investigated the prevalence of hippocampal sclerosis (HS) in the very old. The frequency of unilateral versus bilateral HS has been rarely studied. Objective: We investigated the prevalence and laterality of HS and its association with other neurodegenerative and vascular pathologies in a population-based sample of very elderly. Furthermore, the concomitant presence of immunoreactivity for TDP-43, p62, and HPtau was studied. Methods: The population-based Vantaa 85+ study includes all inhabitants of the city of Vantaa, who were >85 years in 1991 (n = 601). Neuropathological assessment was possible in 302 subjects. Severity of neuronal loss of CA sectors and subiculum was determined bilaterally by HE- staining. Immunohistochemistry performed using antibodies for TDP-43, p62, and HPtau. Results: Neuronal loss and pathological changes in the hippocampus sector CA1 and subiculum were observed in 47 of the 302 individuals (16%), and 51% of these changes were bilateral. HS without comorbid neurodegenerative pathology was found in 1/47 subjects with HS (2%). Dementia (p < 0.001) and TDP-43 immunopositivity of the granular cell layer of the dentate fascia (p < 0.001) were strongly associated with HS. The CERAD score, immunopositivity for HPtau and p62 in the granular cell layer of the fascia dentate were also associated. Conclusion: HS is prevalent (16%) in the oldest old population, but HS without any comorbid neurodegenerative pathology is rare. The high frequency of unilateral HS (49%) implied that bilateral sampling of hippocampi should be routine practice in neuropathological examination.
Collapse
Affiliation(s)
- Mia Kero
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Anna Raunio
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Tuomo Polvikoski
- Institute of Neuroscience, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Pentti J Tienari
- Department of Neurology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki and HUSLAB, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
58
|
DeTure MA, Dickson DW. The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener 2019; 14:32. [PMID: 31375134 PMCID: PMC6679484 DOI: 10.1186/s13024-019-0333-5] [Citation(s) in RCA: 1569] [Impact Index Per Article: 261.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disease most often associated with memory deficits and cognitive decline, although less common clinical presentations are increasingly recognized. The cardinal pathological features of the disease have been known for more than one hundred years, and today the presence of these amyloid plaques and neurofibrillary tangles are still required for a pathological diagnosis. Alzheimer's disease is the most common cause of dementia globally. There remain no effective treatment options for the great majority of patients, and the primary causes of the disease are unknown except in a small number of familial cases driven by genetic mutations. Confounding efforts to develop effective diagnostic tools and disease-modifying therapies is the realization that Alzheimer's disease is a mixed proteinopathy (amyloid and tau) frequently associated with other age-related processes such as cerebrovascular disease and Lewy body disease. Defining the relationships between and interdependence of various co-pathologies remains an active area of investigation. This review outlines etiologically-linked pathologic features of Alzheimer's disease, as well as those that are inevitable findings of uncertain significance, such as granulovacuolar degeneration and Hirano bodies. Other disease processes that are frequent, but not inevitable, are also discussed, including pathologic processes that can clinically mimic Alzheimer's disease. These include cerebrovascular disease, Lewy body disease, TDP-43 proteinopathies and argyrophilic grain disease. The purpose of this review is to provide an overview of Alzheimer's disease pathology, its defining pathologic substrates and the related pathologies that can affect diagnosis and treatment.
Collapse
Affiliation(s)
- Michael A. DeTure
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, The Mayo Clinic Florida, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
59
|
Abner EL, Neltner JH, Jicha GA, Patel E, Anderson SL, Wilcock DM, Van Eldik LJ, Nelson PT. Diffuse Amyloid-β Plaques, Neurofibrillary Tangles, and the Impact of APOE in Elderly Persons' Brains Lacking Neuritic Amyloid Plaques. J Alzheimers Dis 2019; 64:1307-1324. [PMID: 30040735 DOI: 10.3233/jad-180514] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Data from a large autopsy series were analyzed to address questions pertinent to primary age-related tauopathy (PART) and Alzheimer's disease (AD): what factors are associated with increased severity of neurofibrillary degeneration in brains that lack neuritic amyloid plaques?; is there an association between Apolipoprotein E (APOE) alleles and PART pathologic severity independent of amyloid-β (Aβ) deposits?; and, how do the stains used to detect plaques and tangles impact the experimental results? Neuropathologic data were evaluated from elderly research volunteers whose brain autopsies were performed at University of Kentucky Alzheimer's Disease Center (UK-ADC; N = 145 subjects). All of the included subjects' brains lacked neuritic amyloid plaques according to the CERAD diagnostic criteria and the average final MMSE score before death was 26.8±4.6 stdev. The study incorporated evaluation of tissue with both silver histochemical stains and immunohistochemical stains to compare results; the immunohistochemical stains (Aβ and phospho-tau) were scanned and quantified using digital pathologic methods. Immunohistochemical stains provided important advantages over histochemical stains due to sensitivity and detectability via digital methods. When AD-type pathology was in its presumed earliest phases, neocortical parenchymal Aβ deposits were associated with increased medial temporal lobe neurofibrillary tangles. The observation supports the NIA-AA consensus recommendation for neuropathologic diagnoses, because even these "diffuse" Aβ deposits signal that AD pathobiologic mechanisms are occurring. Further, the data were most compatible with the hypothesis that the APOEɛ4 allele exerts its effect(s) via driving Aβ deposition, i.e., an "upstream" influence, rather than being associated directly with Aβ- independent PART pathology.
Collapse
Affiliation(s)
- Erin L Abner
- Department of Epidemiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Janna H Neltner
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA
| | - Gregory A Jicha
- Department of Neurology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Ela Patel
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Sonya L Anderson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Donna M Wilcock
- Department of Physiology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Linda J Van Eldik
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Peter T Nelson
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
60
|
Sahoo A, Bejanin A, Murray ME, Tosakulwong N, Weigand SD, Serie AM, Senjem ML, Machulda MM, Parisi JE, Boeve BF, Knopman DS, Petersen RC, Dickson DW, Whitwell JL, Josephs KA. TDP-43 and Alzheimer's Disease Pathologic Subtype in Non-Amnestic Alzheimer's Disease Dementia. J Alzheimers Dis 2019; 64:1227-1233. [PMID: 30010126 DOI: 10.3233/jad-180169] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND TDP-43 has been shown to be strongly associated with memory loss, smaller hippocampal volumes, and faster rates of hippocampal atrophy in Alzheimer's disease (AD) patients with an amnestic presentation. Whether TDP-43 has any clinical or anatomical associations in AD patients with non-amnestic phenotype is unknown. OBJECTIVE To determine whether TDP-43 plays a significant role in the clinic-anatomic features of non-amnestic AD. METHODS All cases with pathologically confirmed intermediate-high probability AD from 1996-2012 were identified and retrospectively sub-classified into amnestic versus non-amnestic dementia at the time of presentation. Neurofibrillary tangle counts were performed in those with a non-amnestic presentation using thioflavin-S microscopy in the hippocampus and three neocortical regions, and all cases were subtyped into hippocampal-sparing, limbic-predominant, and typical AD pathology. TDP-43 immunoreactivity was used to assess for the presence of TDP-43. Statistical analyses helped determine whether pathologic subtype or TDP-43 was more strongly associated with clinico-imaging features. RESULTS Out of 172 pathologically confirmed AD cases, 36 (19%) were classified as non-amnestic. Twenty-five of these 36 (69%) had typical pathology, 0 limbic-predominant pathology, and 11 (31%) hippocampal-sparing pathology. Eleven (44%) of the 25 cases with typical pathology were TDP-43+. Of the 11 cases with hippocampal-sparing pathology, 4 (36%) were TDP-43+. There were no differences in demographic, clinical, or neuroimaging features in those with TDP-43 versus those without except for older age at onset (p = 0.02) and age at death (p = 0.02) in those with TDP-43. AD pathological subtype accounted for slightly more of the variances in the neocortex than TDP-43. CONCLUSION In non-amnestic AD, we find little evidence that clinical or anatomical features of the disease are related to TDP-43.
Collapse
|
61
|
Iadecola C, Duering M, Hachinski V, Joutel A, Pendlebury ST, Schneider JA, Dichgans M. Vascular Cognitive Impairment and Dementia: JACC Scientific Expert Panel. J Am Coll Cardiol 2019; 73:3326-3344. [PMID: 31248555 PMCID: PMC6719789 DOI: 10.1016/j.jacc.2019.04.034] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/09/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
Cognitive impairment associated with aging has emerged as one of the major public health challenges of our time. Although Alzheimer's disease is the leading cause of clinically diagnosed dementia in Western countries, cognitive impairment of vascular etiology is the second most common cause and may be the predominant one in East Asia. Furthermore, alterations of the large and small cerebral vasculature, including those affecting the microcirculation of the subcortical white matter, are key contributors to the clinical expression of cognitive dysfunction caused by other pathologies, including Alzheimer's disease. This scientific expert panel provides a critical appraisal of the epidemiology, pathobiology, neuropathology, and neuroimaging of vascular cognitive impairment and dementia, and of current diagnostic and therapeutic approaches. Unresolved issues are also examined to shed light on new basic and clinical research avenues that may lead to mitigating one of the most devastating human conditions.
Collapse
Affiliation(s)
- Costantino Iadecola
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York.
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, Western University, London, Ontario, Canada
| | - Anne Joutel
- Institute of Psychiatry and Neurosciences of Paris, INSERM U1266, Université Paris Descartes, Paris, France
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital and the University of Oxford, Oxford, United Kingdom
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-Universität LMU, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE, Munich), Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
62
|
Tau and TDP-43 proteinopathies: kindred pathologic cascades and genetic pleiotropy. J Transl Med 2019; 99:993-1007. [PMID: 30742063 PMCID: PMC6609463 DOI: 10.1038/s41374-019-0196-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 12/11/2022] Open
Abstract
We review the literature on Tau and TDP-43 proteinopathies in aged human brains and the relevant underlying pathogenetic cascades. Complex interacting pathways are implicated in Alzheimer's disease and related dementias (ADRD), wherein multiple proteins tend to misfold in a manner that is "reactive," but, subsequently, each proteinopathy may contribute strongly to the clinical symptoms. Tau proteinopathy exists in brains of individuals across a broad spectrum of primary underlying conditions-e.g., developmental, traumatic, and inflammatory/infectious diseases. TDP-43 proteinopathy is also expressed in a wide range of clinical disorders. Although TDP-43 proteinopathy was first described in the central nervous system of patients with amyotrophic lateral sclerosis (ALS) and in subtypes of frontotemporal dementia (FTD/FTLD), TDP-43 proteinopathy is also present in chronic traumatic encephalopathy, cognitively impaired persons in advanced age with hippocampal sclerosis, Huntington's disease, and other diseases. We list known Tau and TDP-43 proteinopathies. There is also evidence of cellular co-localization between Tau and TDP-43 misfolded proteins, suggesting common pathways or protein interactions facilitating misfolding in one protein by the other. Multiple pleiotropic gene variants can alter risk for Tau or TDP-43 pathologies, and certain gene variants (e.g., APOE ε4, Huntingtin triplet repeats) are associated with increases of both Tau and TDP-43 proteinopathies. Studies of genetic risk factors have provided insights into multiple nodes of the pathologic cascades involved in Tau and TDP-43 proteinopathies. Variants from a specific gene can be either a low-penetrant risk factor for a group of diseases, or alternatively, a different variant of the same gene may be a disease-driving allele that is associated with a relatively aggressive and early-onset version of a clinically and pathologically specific disease type. Overall, a complex but enlightening paradigm has emerged, wherein both Tau and TDP-43 proteinopathies are linked to numerous overlapping upstream influences, and both are associated with multiple downstream pathologically- and clinically-defined deleterious effects.
Collapse
|
63
|
Latimer CS, Burke BT, Liachko NF, Currey HN, Kilgore MD, Gibbons LE, Henriksen J, Darvas M, Domoto-Reilly K, Jayadev S, Grabowski TJ, Crane PK, Larson EB, Kraemer BC, Bird TD, Keene CD. Resistance and resilience to Alzheimer's disease pathology are associated with reduced cortical pTau and absence of limbic-predominant age-related TDP-43 encephalopathy in a community-based cohort. Acta Neuropathol Commun 2019; 7:91. [PMID: 31174609 PMCID: PMC6556006 DOI: 10.1186/s40478-019-0743-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease neuropathologic change (ADNC) is defined by progressive accumulation of β-amyloid plaques and hyperphosphorylated tau (pTau) neurofibrillary tangles across diverse regions of brain. Non-demented individuals who reach advanced age without significant ADNC are considered to be resistant to AD, while those burdened with ADNC are considered to be resilient. Understanding mechanisms underlying ADNC resistance and resilience may provide important clues to treating and/or preventing AD associated dementia. ADNC criteria for resistance and resilience are not well-defined, so we developed stringent pathologic cutoffs for non-demented subjects to eliminate cases of borderline pathology. We identified 14 resistant (85+ years old, non-demented, Braak stage ≤ III, CERAD absent) and 7 resilient (non-demented, Braak stage VI, CERAD frequent) individuals out of 684 autopsies from the Adult Changes in Thought study, a long-standing community-based cohort. We matched each resistant or resilient subject to a subject with dementia and severe ADNC (Braak stage VI, CERAD frequent) by age, sex, year of death, and post-mortem interval. We expanded the neuropathologic evaluation to include quantitative approaches to assess neuropathology and found that resilient participants had lower neocortical pTau burden despite fulfilling criteria for Braak stage VI. Moreover, limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) was robustly associated with clinical dementia and was more prevalent in cases with high pTau burden, supporting the notion that resilience to ADNC may depend, in part, on resistance to pTDP-43 pathology. To probe for interactions between tau and TDP-43, we developed a C. elegans model of combined human (h) Tau and TDP-43 proteotoxicity, which exhibited a severe degenerative phenotype most compatible with a synergistic, rather than simply additive, interaction between hTau and hTDP-43 neurodegeneration. Pathways that underlie this synergy may present novel therapeutic targets for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, 98104, USA.
| | - Bridget T Burke
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Nicole F Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Heather N Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Mitchell D Kilgore
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jonathan Henriksen
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| | - Martin Darvas
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| | | | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Tom J Grabowski
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Deparment of Radiology, University of Washington, Seattle, Washington, USA
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Brian C Kraemer
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Thomas D Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - C Dirk Keene
- Division of Neuropathology, Department of Pathology, University of Washington, Seattle, WA, 98104, USA
| |
Collapse
|
64
|
Knopman DS, Haeberlein SB, Carrillo MC, Hendrix JA, Kerchner G, Margolin R, Maruff P, Miller DS, Tong G, Tome MB, Murray ME, Nelson PT, Sano M, Mattsson N, Sultzer DL, Montine TJ, Jack CR, Kolb H, Petersen RC, Vemuri P, Canniere MZ, Schneider JA, Resnick SM, Romano G, van Harten AC, Wolk DA, Bain LJ, Siemers E. The National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease: Perspectives from the Research Roundtable. Alzheimers Dement 2019; 14:563-575. [PMID: 29653607 DOI: 10.1016/j.jalz.2018.03.002] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
Abstract
The Alzheimer's Association's Research Roundtable met in November 2017 to explore the new National Institute on Aging and the Alzheimer's Association Research Framework for Alzheimer's disease. The meeting allowed experts in the field from academia, industry, and government to provide perspectives on the new National Institute on Aging and the Alzheimer's Association Research Framework. This review will summarize the "A, T, N System" (Amyloid, Tau, and Neurodegeneration) using biomarkers and how this may be applied to clinical research and drug development. In addition, challenges and barriers to the potential adoption of this new framework will be discussed. Finally, future directions for research will be proposed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paul Maruff
- Cogstate Ltd, Melbourne, Victoria, Australia
| | | | | | | | | | | | - Mary Sano
- Mount Sinai School of Medicine, New York, NY, USA
| | - Niklas Mattsson
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - David L Sultzer
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | - Hartmuth Kolb
- Janssen Research and Development, San Diego, CA, USA
| | | | | | | | | | | | | | | | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa J Bain
- Independent Science Writer, Elverson, PA, USA
| | | |
Collapse
|
65
|
Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist ITS, Chui HC, Fardo DW, Flanagan ME, Halliday G, Hokkanen SRK, Hunter S, Jicha GA, Katsumata Y, Kawas CH, Keene CD, Kovacs GG, Kukull WA, Levey AI, Makkinejad N, Montine TJ, Murayama S, Murray ME, Nag S, Rissman RA, Seeley WW, Sperling RA, White III CL, Yu L, Schneider JA. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142:1503-1527. [PMID: 31039256 PMCID: PMC6536849 DOI: 10.1093/brain/awz099] [Citation(s) in RCA: 878] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer's-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the 'oldest-old' are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer's disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | - Helena C Chui
- University of Southern California, Los Angeles, CA, USA
| | | | | | - Glenda Halliday
- The University of Sydney Brain and Mind Centre and Central Clinical School Faculty of Medicine and Health, Sydney, Australia
| | | | | | | | | | | | | | - Gabor G Kovacs
- Institute of Neurology Medical University of Vienna, Vienna, Austria
| | | | | | | | | | - Shigeo Murayama
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | | | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | | | | | | | | | - Lei Yu
- Rush University Medical Center, Chicago, IL, USA
| | | |
Collapse
|
66
|
Babinchak WM, Haider R, Dumm BK, Sarkar P, Surewicz K, Choi JK, Surewicz WK. The role of liquid-liquid phase separation in aggregation of the TDP-43 low-complexity domain. J Biol Chem 2019; 294:6306-6317. [PMID: 30814253 PMCID: PMC6484124 DOI: 10.1074/jbc.ra118.007222] [Citation(s) in RCA: 217] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Pathological aggregation of the transactive response DNA-binding protein of 43 kDa (TDP-43) is associated with several neurodegenerative disorders, including ALS, frontotemporal dementia, chronic traumatic encephalopathy, and Alzheimer's disease. TDP-43 aggregation appears to be largely driven by its low-complexity domain (LCD), which also has a high propensity to undergo liquid-liquid phase separation (LLPS). However, the mechanism of TDP-43 LCD pathological aggregation and, most importantly, the relationship between the aggregation process and LLPS remains largely unknown. Here, we show that amyloid formation by the LCD is controlled by electrostatic repulsion. We also demonstrate that the liquid droplet environment strongly accelerates LCD fibrillation and that its aggregation under LLPS conditions involves several distinct events, culminating in rapid assembly of fibrillar aggregates that emanate from within mature liquid droplets. These combined results strongly suggest that LLPS may play a major role in pathological TDP-43 aggregation, contributing to pathogenesis in neurodegenerative diseases.
Collapse
Affiliation(s)
- W Michael Babinchak
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Raza Haider
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Benjamin K Dumm
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Prottusha Sarkar
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Krystyna Surewicz
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jin-Kyu Choi
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| | - Witold K Surewicz
- From the Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106
| |
Collapse
|
67
|
Kim D, Kim HS, Choi SM, Kim BC, Lee MC, Lee KH, Lee JH. Primary Age-Related Tauopathy: An Elderly Brain Pathology Frequently Encountered during Autopsy. J Pathol Transl Med 2019; 53:159-163. [PMID: 30887795 PMCID: PMC6527938 DOI: 10.4132/jptm.2019.03.14] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/14/2019] [Indexed: 11/17/2022] Open
Abstract
Due to the progressive aging of Korean society and the introduction of brain banks to the Korean medical system, the possibility that pathologists will have access to healthy elderly brains has increased. The histopathological analysis of an elderly brain from a subject with relatively well-preserved cognition is quite different from that of a brain from a demented subject. Additionally, the histology of elderly brains differs from that of young brains. This brief review discusses primary age-related tauopathy; this term was coined to describe elderly brains with Alzheimer’s diseasetype neurofibrillary tangles mainly confined to medial temporal structures, and no β-amyloid pathology.
Collapse
Affiliation(s)
- Daru Kim
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - Hyung-Seok Kim
- Department of Forensic Medicine, Chonnam National University Medical School, Hwasun, Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School, Hwasun, Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School, Hwasun, Korea
| | - Min-Cheol Lee
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| | - Jae-Hyuk Lee
- Department of Pathology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
68
|
TDP-43 proteinopathy in aging: Associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis 2019; 125:67-76. [PMID: 30682540 DOI: 10.1016/j.nbd.2019.01.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 02/08/2023] Open
Abstract
TDP-43 proteinopathy is very prevalent among the elderly (affecting at least 25% of individuals over 85 years of age) and is associated with substantial cognitive impairment. Risk factors implicated in age-related TDP-43 proteinopathy include commonly inherited gene variants, comorbid Alzheimer's disease pathology, and thyroid hormone dysfunction. To test parameters that are associated with aging-related TDP-43 pathology, we performed exploratory analyses of pathologic, genetic, and biochemical data derived from research volunteers in the University of Kentucky Alzheimer's Disease Center autopsy cohort (n = 136 subjects). Digital pathologic methods were used to discriminate and quantify both neuritic and intracytoplasmic TDP-43 pathology in the hippocampal formation. Overall, 46.4% of the cases were positive for TDP-43 intracellular inclusions, which is consistent with results in other prior community-based cohorts. The pathologies were correlated with hippocampal sclerosis of aging (HS-Aging) linked genotypes. We also assayed brain parenchymal thyroid hormone (triiodothyronine [T3] and thyroxine [T4]) levels. In cases with SLCO1A2/IAPP or ABCC9 risk associated genotypes, the T3/T4 ratio tended to be reduced (p = .051 using 2-tailed statistical test), and in cases with low T3/T4 ratios (bottom quintile), there was a higher likelihood of HS-Aging pathology (p = .025 using 2-tailed statistical test). This is intriguing because the SLCO1A2/IAPP and ABCC9 risk associated genotypes have been associated with altered expression of the astrocytic thyroid hormone receptor (protein product of the nearby gene SLCO1C1). These data indicate that dysregulation of thyroid hormone signaling may play a role in age-related TDP-43 proteinopathy.
Collapse
|
69
|
Castellani RJ, Perry G. Tau Biology, Tauopathy, Traumatic Brain Injury, and Diagnostic Challenges. J Alzheimers Dis 2019; 67:447-467. [PMID: 30584140 PMCID: PMC6398540 DOI: 10.3233/jad-180721] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/12/2022]
Abstract
There is considerable interest in the pathobiology of tau protein, given its potential role in neurodegenerative diseases and aging. Tau is an important microtubule associated protein, required for the assembly of tubulin into microtubules and maintaining structural integrity of axons. Tau has other diverse cellular functions involving signal transduction, cellular proliferation, developmental neurobiology, neuroplasticity, and synaptic activity. Alternative splicing results in tau isoforms with differing microtubule binding affinity, differing representation in pathological inclusions in certain disease states, and differing roles in developmental biology and homeostasis. Tau haplotypes confer differing susceptibility to neurodegeneration. Tau phosphorylation is a normal metabolic process, critical in controlling tau's binding to microtubules, and is ongoing within the brain at all times. Tau may be hyperphosphorylated, and may aggregate as detectable fibrillar deposits in tissues, in both aging and neurodegenerative disease. The hypothesis that p-tau is neurotoxic has prompted constructs related to isomers, low-n assembly intermediates or oligomers, and the "tau prion". Human postmortem studies have elucidated broad patterns of tauopathy, with tendencies for those patterns to differ as a function of disease phenotype. However, there is extensive overlap, not only between genuine neurodegenerative diseases, but also between aging and disease. Recent studies highlight uniqueness to pathological patterns, including a pattern attributed to repetitive head trauma, although clinical correlations have been elusive. The diagnostic process for tauopathies and neurodegenerative diseases in general is challenging in many respects, and may be particularly problematic for postmortem evaluation of former athletes and military service members.
Collapse
Affiliation(s)
- Rudy J. Castellani
- Departments of Pathology and Neuroscience, West Virginia University School of Medicine, Morgantown, WV, USA
| | - George Perry
- College of Sciences, University of Texas, San Antonio, San Antonio, TX, USA
| |
Collapse
|
70
|
Katsumata Y, Fardo DW, Kukull WA, Nelson PT. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer's disease and cerebrovascular disease pathologies. Acta Neuropathol Commun 2018; 6:142. [PMID: 30567576 PMCID: PMC6299605 DOI: 10.1186/s40478-018-0641-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
TAR-DNA binding protein 43 (TDP-43) proteinopathy is a common brain pathology in elderly persons, but much remains to be learned about this high-morbidity condition. Published stage-based systems for operationalizing disease severity rely on the involvement (presence/absence) of pathology in specific anatomic regions. To examine the comorbidities associated with TDP-43 pathology in aged individuals, we studied data from the National Alzheimer's Coordinating Center (NACC) Neuropathology Data Set. Data were analyzed from 929 included subjects with available TDP-43 pathology information, sourced from 27 different American Alzheimer's Disease Centers (ADCs). Cases with relatively unusual diseases including autopsy-proven frontotemporal lobar degeneration (FTLD-TDP or FTLD-tau) were excluded from the study. Our data provide new information about pathologic features that are and are not associated with TDP-43 pathologies in different brain areas-spinal cord, amygdala, hippocampus, entorhinal cortex/inferior temporal cortex, and frontal neocortex. Different research centers used cite-specific methods including different TDP-43 antibodies. TDP-43 pathology in at least one brain region was common (31.4%) but the pathology was rarely observed in spinal cord (1.8%) and also unusual in frontal cortex (5.3%). As expected, TDP-43 pathology was positively associated with comorbid hippocampal sclerosis pathology and with severe AD pathology. TDP-43 pathology was also associated with comorbid moderate-to-severe brain arteriolosclerosis. The association between TDP-43 pathology and brain arteriolosclerosis appears relatively specific since there was no detected association between TDP-43 pathology and microinfarcts, lacunar infarcts, large infarcts, cerebral amyloid angiopathy (CAA), or circle of Willis atherosclerosis. Together, these observations provide support for the hypothesis that many aged brains are affected by a TDP-43 proteinopathy that is more likely to be seen in brains with AD pathology, arteriolosclerosis pathology, or both.
Collapse
Affiliation(s)
- Yuriko Katsumata
- 0000 0004 1936 8438grid.266539.dDepartment of Biostatistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| | - David W. Fardo
- 0000 0004 1936 8438grid.266539.dDepartment of Biostatistics, University of Kentucky, 725 Rose Street, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
| | - Walter A. Kukull
- 0000000122986657grid.34477.33National Alzheimer’s Coordinating Center, Department of Epidemiology, University of Washington, Seattle, WA 98105 USA
| | - Peter T. Nelson
- 0000 0004 1936 8438grid.266539.dSanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536 USA
- 0000 0004 1936 8438grid.266539.dDepartment of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536 USA
| |
Collapse
|
71
|
[Brain pathology of centenarians and supercentenarians]. Nihon Ronen Igakkai Zasshi 2018; 55:562-569. [PMID: 30542021 DOI: 10.3143/geriatrics.55.562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
72
|
Bell WR, An Y, Kageyama Y, English C, Rudow GL, Pletnikova O, Thambisetty M, O'Brien R, Moghekar AR, Albert MS, Rabins PV, Resnick SM, Troncoso JC. Neuropathologic, genetic, and longitudinal cognitive profiles in primary age-related tauopathy (PART) and Alzheimer's disease. Alzheimers Dement 2018; 15:8-16. [PMID: 30465754 DOI: 10.1016/j.jalz.2018.07.215] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 07/16/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Primary age-related tauopathy (PART) is a recently described entity that can cause cognitive impairment in the absence of Alzheimer's disease (AD). Here, we compared neuropathological features, tau haplotypes, apolipoprotein E (APOE) genotypes, and cognitive profiles in age-matched subjects with PART and AD pathology. METHODS Brain autopsies (n = 183) were conducted on participants 85 years and older from the Baltimore Longitudinal Study of Aging and Johns Hopkins Alzheimer's Disease Research Center. Participants, normal at enrollment, were followed with periodic cognitive evaluations until death. RESULTS Compared with AD, PART subjects showed significantly slower rates of decline on measures of memory, language, and visuospatial performance. They also showed lower APOE ε4 allele frequency (4.1% vs. 17.6%, P = .0046). DISCUSSION Our observations suggest that PART is separate from AD and its distinction will be important for the clinical management of patients with cognitive impairment and for public health care planning.
Collapse
Affiliation(s)
- W Robert Bell
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yusuke Kageyama
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Collin English
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gay L Rudow
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marilyn S Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter V Rabins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
73
|
Smirnov DS, Galasko D, Hansen LA, Edland SD, Brewer JB, Salmon DP. Trajectories of cognitive decline differ in hippocampal sclerosis and Alzheimer's disease. Neurobiol Aging 2018; 75:169-177. [PMID: 30579145 DOI: 10.1016/j.neurobiolaging.2018.11.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/13/2018] [Accepted: 11/15/2018] [Indexed: 11/16/2022]
Abstract
Hippocampal sclerosis (HS) is a prevalent cause of dementia in the oldest old but is generally misdiagnosed as Alzheimer's disease (AD) due to similarities in clinical presentation. To determine if clinical and cognitive features diverge over time, we compared results from longitudinal evaluations of participants in the University of California, San Diego, Alzheimer's Disease Research Center with autopsy-confirmed AD (n = 195), HS (n = 21), or both HS + AD (n = 18). Each group exhibited decline in all cognitive measures, with HS declining at a slower rate than AD on the Mini-Mental State Examination, immediate recall condition of a word-list learning test, and Dementia Rating Scale total and subtest scores (except memory). Five years before the final evaluation, more prominent semantic and visuospatial deficits were apparent in AD participants than in HS participants despite comparable global cognitive impairment. Groups did not differ on any measure of executive function. HS + AD differed from AD only on the Boston Naming Test. Overall, results suggest that HS dementia is associated with cognitive deficits that progress more slowly than, but generally mimic, those observed in AD.
Collapse
Affiliation(s)
- Denis S Smirnov
- Neurosciences Graduate Program, Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Lawrence A Hansen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Steven D Edland
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - David P Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
74
|
Iwasaki Y, Deguchi A, Mori K, Ito M, Kawai Y, Akagi A, Mimuro M, Miyahara H, Yoshida M. Autopsied centenarian case of Alzheimer's disease combined with hippocampal sclerosis, TDP-43, and α-synuclein pathologies. Neuropathology 2018; 38:653-659. [PMID: 30411407 DOI: 10.1111/neup.12521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/01/2022]
Abstract
A Japanese woman showed slowly progressive memory disturbance starting at the age of 84 years, and disorientation gradually appeared. Head computed tomography revealed severe hippocampal atrophy, whereas the atrophy of the frontal lobe was considerably mild for her age. Behavioral and psychological symptoms of dementia were relatively inconspicuous during the disease course. Apolipoprotein E gene analysis showed ε3/ε4 heterozygosity. She died at the age of 100 years and she was clinically diagnosed as having Alzheimer's disease (AD). Autopsy revealed numerous neurofibrillary tangles, particularly in the hippocampal region, and extensively distributed senile plaques in the brain. Although the findings were compatible with the pathological criteria for AD, combined pathologies of hippocampal sclerosis, trans-activation response DNA-binding protein 43 kDa, and α-synuclein were also revealed. We believe that the clinicopathological findings of the present case are of significance for the diagnosis of elderly dementia and pathogenesis of AD.
Collapse
Affiliation(s)
- Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Akira Deguchi
- Department of Internal medicine, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Keiko Mori
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Masumi Ito
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Yoshinari Kawai
- Department of Neurology, Oyamada Memorial Spa Hospital, Yokkaichi, Japan
| | - Akio Akagi
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Maya Mimuro
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
75
|
Steinacker P, Barschke P, Otto M. Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 2018; 97:43-59. [PMID: 30399416 DOI: 10.1016/j.mcn.2018.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 01/01/2023] Open
Abstract
The discovery that aggregated transactive response DNA-binding protein 43 kDa (TDP-43) is the major component of pathological ubiquitinated inclusions in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) caused seminal progress in the unveiling of the genetic bases and molecular characteristics of these now so-called TDP-43 proteinopathies. Substantial increase in the knowledge of clinic-pathological coherencies, especially for FTLD variants, could be made in the last decade, but also revealed a considerable complexity of TDP-43 pathology and often a poor correlation of clinical and molecular disease characteristics. To date, an underlying TDP-43 pathology can be predicted only for patients with mutations in the genes C9orf72 and GRN, but is dependent on neuropathological verification in patients without family history, which represent the majority of cases. As etiology-specific therapies for neurodegenerative proteinopathies are emerging, methods to forecast TDP-43 pathology at patients' lifetime are highly required. Here, we review the current status of research pursued to identify specific indicators to predict or exclude TDP-43 pathology in the ALS-FTLD spectrum disorders and findings on candidates for prognosis and monitoring of disease progression in TDP-43 proteinopathies with a focus on TDP-43 with its pathological forms, neurochemical and imaging biomarkers.
Collapse
Affiliation(s)
| | - Peggy Barschke
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
| |
Collapse
|
76
|
Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer's disease. Acta Neuropathol 2018; 136:663-689. [PMID: 30349969 PMCID: PMC6208728 DOI: 10.1007/s00401-018-1918-8] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 12/29/2022]
Abstract
The dominant hypothesis of Alzheimer’s disease (AD) aetiology, the neuropathological guidelines for diagnosing AD and the majority of high-profile therapeutic efforts, in both research and in clinical practice, have been built around one possible causal factor, amyloid-β (Aβ). However, the causal link between Aβ and AD remains unproven. Here, in the context of a detailed assessment of historical and contemporary studies, we raise critical questions regarding the role of Aβ in the definition, diagnosis and aetiology of AD. We illustrate that a holistic view of the available data does not support an unequivocal conclusion that Aβ has a central or unique role in AD. Instead, the data suggest alternative views of AD aetiology are potentially valid, at this time. We propose that an unbiased way forward for the field, beyond the current Aβ-centric approach, without excluding a role for Aβ, is required to come to an accurate understanding of AD dementia and, ultimately, an effective treatment.
Collapse
|
77
|
Heard DS, Tuttle CSL, Lautenschlager NT, Maier AB. Repurposing Proteostasis-Modifying Drugs to Prevent or Treat Age-Related Dementia: A Systematic Review. Front Physiol 2018; 9:1520. [PMID: 30425653 PMCID: PMC6218672 DOI: 10.3389/fphys.2018.01520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/09/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Dementia has a significant impact on quality of life of older individuals. Impaired proteostasis has been implicated as a potential cause of dementia, that can be therapeutically targeted to improve patient outcomes. This review aimed to collate all current evidence of the potential for targeting proteostasis with repurposed drugs as an intervention for age-related dementia and cognitive decline. Methods: PubMed, Web of Science and Embase databases were searched from inception until 4th July 2017 for studies published in English. Interventional studies of repurposed proteostasis-modifying drugs in Alzheimer's disease (AD), Parkinson's disease (PD), Lewy Body disease, vascular dementia, and cognitive aging, in either animal models or humans with change in cognition as the outcome were included. The SYRCLE and Cochrane tools were used to assess risk of bias for included studies. Results: Overall 47 trials, 38 animal and 9 human, were isolated for inclusion in this review. Drugs tested in animals and humans included lithium, rapamycin, rifampicin, and tyrosine kinase inhibitors. Drugs tested only in animals included Macrophage and Granulocyte-Macrophage Colony Stimulating Factors, methylene blue, dantrolene, geranylgeranylacetone, minocycline and phenylbutyric acid. Lithium (n = 10 animal, n = 6 human) and rapamycin (n = 12 animal, n = 1 human) were the most studied proteostasis modifying drugs influencing cognition. Nine of ten animal studies of lithium showed a statistically significant benefit in Alzheimer's models. Rapamycin demonstrated a significant benefit in models of vascular dementia, aging, and Alzheimer's, but may not be effective in treating established Alzheimer's pathology. Lithium and nilotinib had positive outcomes in human studies including Alzheimer's and Parkinson's patients respectively, while a human study of rifampicin in Alzheimer's failed to demonstrate benefit. Microdose lithium showed a strongly significant benefit in both animals and humans. While the risk of bias was relatively low in human studies, the risk of bias in animal studies was largely unclear. Conclusion: Overall, the collective findings support the hypothesis that targeting proteostasis for treatment of dementia may be beneficial, and therefore future studies in humans with repurposed proteostasis modifying drugs are warranted. Larger human clinical trials focusing on safety, efficacy, tolerability, and reproducibility are required to translate these therapeutics into clinical practice.
Collapse
Affiliation(s)
- Daniel S Heard
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Camilla S L Tuttle
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia
| | - Nicola T Lautenschlager
- North West Mental Health, Melbourne Health, Melbourne, VIC, Australia.,Academic Unit for Psychiatry of Old Age, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea B Maier
- @AgeMelbourne, Department of Medicine and Aged Care, University of Melbourne, Melbourne, VIC, Australia.,@AgeAmsterdam, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
78
|
Ihara R, Vincent BD, Baxter MR, Franklin EE, Hassenstab JJ, Xiong C, Morris JC, Cairns NJ. Relative neuron loss in hippocampal sclerosis of aging and Alzheimer's disease. Ann Neurol 2018; 84:741-753. [PMID: 30246887 DOI: 10.1002/ana.25344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To characterize the pattern of neuron loss in hippocampal sclerosis of aging (HS-Aging) and age-related diseases and to evaluate its contribution to cognitive impairment in the elderly. METHODS Participants (n = 1,361) came from longitudinal observational studies of aging at the Knight Alzheimer Disease Research Center, Washington University (St. Louis, MO). Relative neuron loss in the hippocampus of HS-Aging was measured using unbiased stereological methods. Transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy, a putative marker of HS-Aging, was assessed. Clinical and cognitive data were analyzed using parametric statistical methods. RESULTS Ninety-three cases had HS-Aging (6.8%), 8 cases had "pure" HS-Aging, and 37 cases had comorbid intermediate or high Alzheimer's disease neuropathological change (i/h ADNC). Relative neuron loss (ratio of neuron number in hippocampal subfield CA1 to the neuron number in parahippocampal gyrus) was 0.15 for HS-Aging; this was significantly lower than 0.64 for i/h ADNC and 0.66 for control cases (Kruskal-Wallis test, p < 0.0001; p = 0.0003, respectively). TDP-43 proteinopathy was present in 92.4% of HS-Aging cases, higher than that in i/h ADNC (52%) and control (25%) cases. Pure HS-Aging cases were more likely to have cognitive impairment in the memory domain. INTERPRETATION Relative neuron loss in the hippocampus compared to the parahippocampus gyrus may be useful in distinguishing HS-Aging in the context of comorbid ADNC. HS-Aging contributes to cognitive impairment, which phenotypically resembles AD dementia. TDP proteinopathy is a frequent comorbidity in HS-Aging and may contribute to cognitive impairment to a modest degree. Ann Neurol 2018;84:749-761.
Collapse
Affiliation(s)
- Ryoko Ihara
- Department of Neuropathology, the University of Tokyo, Tokyo, Japan.,Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO
| | - Benjamin D Vincent
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Michael R Baxter
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Erin E Franklin
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Jason J Hassenstab
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Biostatistics, Washington University School of Medicine, St Louis, MO
| | - John C Morris
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO
| | - Nigel J Cairns
- Knight Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, MO.,Department of Neurology, Washington University School of Medicine, St Louis, MO.,Department of Pathology & Immunology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
79
|
Hofmann JW, Seeley WW, Huang EJ. RNA Binding Proteins and the Pathogenesis of Frontotemporal Lobar Degeneration. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 14:469-495. [PMID: 30355151 DOI: 10.1146/annurev-pathmechdis-012418-012955] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia is a group of early onset dementia syndromes linked to underlying frontotemporal lobar degeneration (FTLD) pathology that can be classified based on the formation of abnormal protein aggregates involving tau and two RNA binding proteins, TDP-43 and FUS. Although elucidation of the mechanisms leading to FTLD pathology is in progress, recent advances in genetics and neuropathology indicate that a majority of FTLD cases with proteinopathy involving RNA binding proteins show highly congruent genotype-phenotype correlations. Specifically, recent studies have uncovered the unique properties of the low-complexity domains in RNA binding proteins that can facilitate liquid-liquid phase separation in the formation of membraneless organelles. Furthermore, there is compelling evidence that mutations in FTLD genes lead to dysfunction in diverse cellular pathways that converge on the endolysosomal pathway, autophagy, and neuroinflammation. Together, these results provide key mechanistic insights into the pathogenesis and potential therapeutic targets of FTLD.
Collapse
Affiliation(s)
- Jeffrey W Hofmann
- Department of Pathology, University of California, San Francisco, California 94143, USA;
| | - William W Seeley
- Department of Pathology, University of California, San Francisco, California 94143, USA; .,Department of Neurology, University of California, San Francisco, California 94148, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, California 94143, USA; .,Pathology Service 113B, Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
80
|
Braun DJ, Van Eldik LJ. In vivo Brainstem Imaging in Alzheimer's Disease: Potential for Biomarker Development. Front Aging Neurosci 2018; 10:266. [PMID: 30254583 PMCID: PMC6141632 DOI: 10.3389/fnagi.2018.00266] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/17/2018] [Indexed: 12/25/2022] Open
Abstract
The dearth of effective treatments for Alzheimer's disease (AD) is one of the largest public health issues worldwide, costing hundreds of billions of dollars per year. From a therapeutic standpoint, research efforts to date have met with strikingly little clinical success. One major issue is that trials begin after substantial pathological change has occurred, and it is increasingly clear that the most effective treatment regimens will need to be administered earlier in the disease process. In order to identify individuals within the long preclinical phase of AD who are likely to progress to dementia, improvements are required in biomarker development. One potential area of research that might prove fruitful in this regard is the in vivo detection of brainstem pathology. The brainstem is known to undergo pathological changes very early and progressively in AD. With an updated and harmonized AD research framework, and emerging advances in neuroimaging technology, the potential to leverage knowledge of brainstem pathology into biomarkers for AD will be discussed.
Collapse
Affiliation(s)
- David J Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States.,Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, United States.,Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
81
|
Robinson JL, Corrada MM, Kovacs GG, Dominique M, Caswell C, Xie SX, Lee VMY, Kawas CH, Trojanowski JQ. Non-Alzheimer's contributions to dementia and cognitive resilience in The 90+ Study. Acta Neuropathol 2018; 136:377-388. [PMID: 29916037 DOI: 10.1007/s00401-018-1872-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/05/2018] [Indexed: 11/30/2022]
Abstract
The diagnosis of Alzheimer's disease (AD) in the oldest-old is complicated by the increasing prevalence of age-related neurofibrillary tangles, plaques and non-AD pathologies such as cerebrovascular disease (CVD), hippocampal sclerosis (HS), aging-related tau astrogliopathy (ARTAG), as well as TDP-43 and Lewy pathology. The contribution of these non-AD pathologies to dementia and cognitive resilience is unclear. We assessed the level of AD neuropathologic change (ADNPC) and non-AD pathology in 185 participants enrolled in The 90+ Study with available cognitive assessments and brain tissue. Logistic regression models-adjusting for age, sex and education-determined the association between each pathology and dementia or between subgroups. 53% had dementia, primarily AD or mixed AD; 23% had cognitive impairment without dementia (CIND); 23% were not impaired. Both AD and non-AD pathology was prevalent. 100% had tangles, 81% had plaques, and both tangles and plaques associated with dementia. ARTAG distributed across limbic (70%), brainstem (39%) and cortical regions (24%). 49% had possible CVD and 26% had definite CVD, while HS was noted in 15%. Cortical ARTAG, CVD and HS were each associated with dementia, but limbic and brainstem ARTAGs were not. TDP-43 and Lewy pathologies were found in 36 and 17% and both associated with dementia. No pathology distinguished CIND and the not impaired. By NIA-AA criteria and dementia status, the cohort was subdivided into four groups: those with minimal ADNPC included the not dementia (ND) and Not AD dementia groups; and those with significant ADNPC included the Resilient without dementia and AD dementia groups. Compared to the ND group, the Not AD dementia group had more HS, cortical ARTAG, TDP-43, and Lewy pathology. Compared to the AD dementia group, the Resilient group had less CVD, no HS and less cortical ARTAG, TDP-43 and Lewy pathology. Our findings imply that reductions in non-AD pathologies including CVD contribute to cognitive resilience in the oldest-old.
Collapse
Affiliation(s)
- John L Robinson
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, University of California at Irvine, Irvine, CA, USA
| | - Gabor G Kovacs
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Myrna Dominique
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Carrie Caswell
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sharon X Xie
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, University of California at Irvine, Irvine, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Institute on Aging, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
82
|
Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE ε4 haplotype status: a community-based cohort study. Lancet Neurol 2018; 17:773-781. [PMID: 30093249 PMCID: PMC6154505 DOI: 10.1016/s1474-4422(18)30251-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Transactive response DNA-binding protein of 43 kDa (TDP-43) proteinopathy in older adults frequently coexists with Alzheimer's disease pathology and hippocampal sclerosis. It is unclear whether there is a link between APOE ε4 and TDP-43 proteinopathy, and the role of APOE ε4 in the association of TDP-43 proteinopathy with hippocampal sclerosis remains to be examined. We investigated the relationships of TDP-43 proteinopathy and hippocampal sclerosis with APOE ε4. METHODS We used data from two community-based cohort studies of ageing and dementia: the Religious Orders Study (ROS) and the Rush Memory and Aging Project (MAP). A battery of cognitive tests examining multiple cognitive domains is given to ROS-MAP participants each year, and a measure of annual global cognitive function for each participant is derived by averaging Z scores of these tests. The final clinical diagnosis is assigned after death by a neurologist using all available clinical data without access to post-mortem pathology. Amyloid-β, paired helical filament tau, Lewy bodies, TDP-43, and hippocampal sclerosis were microscopically evaluated in the midbrain, medial temporal, and neocortical regions that capture the progression of each neuropathology. TDP-43 proteinopathy topographic stage was recorded as an ordinal variable, and TDP-43 burden was defined by averaging a semi-quantitative six-point scale across six brain regions. The relationships among APOE ε4, TDP-43 proteinopathy, and hippocampal sclerosis were tested with regression models controlled for sex and age at death, and they were further explored with a mediation analysis using the quasi-Bayesian Monte Carlo method. FINDINGS ROS began data collection in 1994, and MAP began data collection in 1997. The data included in this study were analysed from Jan 16, 2017, to July 12, 2017. When analysis began in January, 2017, a total of 1059 ROS-MAP participants who were deceased had APOE genotype and complete pathological measures for amyloid-β, paired helical filament tau, and TDP-43 proteinopathy stage. After excluding 15 participants with other pathological diagnoses, 1044 participants, 1042 of whom also had measures of Lewy body pathology, were included in this study (470 from ROS and 574 from MAP). APOE ε4 count was associated with higher TDP-43 proteinopathy stage (odds ratio [OR] 2·0, 95% CI 1·6-2·6; p=1·9 × 10-9) and TDP-43 burden (0·40, 0·28-0·52; p=1·2 × 10-10). Amyloid-β, paired helical filament tau, or Lewy body pathology did not fully explain this association. APOE ε4 increased the odds of hippocampal sclerosis (OR 2·1, 95% CI 1·4-3·0; p=1·7 × 10-4); this effect was largely mediated by TDP-43 burden (mediated effect p<1·0 × 10-4) but not directly by APOE ε4 (direct effect p=0·40). APOE ε4 was associated with worse global cognition proximate to death even after adjusting for amyloid-β and paired helical filament tau (estimated effect -0·18, 95% CI -0·31 to -0·04; p=0·010), but this association was attenuated by additionally adjusting for TDP-43 burden (-0·09, -0·22 to 0·04; p=0·18). INTERPRETATION APOE ε4 seems to increase TDP-43 burden, and this effect in turn was associated with higher odds of hippocampal sclerosis, a pathology potentially downstream of TDP-43 proteinopathy. TDP-43 proteinopathy contributes to the detrimental effect of APOE ε4 on late-life cognition through mechanisms independent of Alzheimer's disease pathology, and future research should consider that TDP-43 proteinopathy might be an integral component of APOE-related neurodegeneration. FUNDING US National Institute on Aging and Alzheimer's Association.
Collapse
|
83
|
Herline K, Prelli F, Mehta P, MacMurray C, Goñi F, Wisniewski T. Immunotherapy to improve cognition and reduce pathological species in an Alzheimer's disease mouse model. ALZHEIMERS RESEARCH & THERAPY 2018; 10:54. [PMID: 29914551 PMCID: PMC6006698 DOI: 10.1186/s13195-018-0384-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022]
Abstract
Background Alzheimer’s disease (AD) is characterized by physiologically endogenous proteins amyloid beta (Aβ) and tau undergoing a conformational change and accumulating as soluble oligomers and insoluble aggregates. Tau and Aβ soluble oligomers, which contain extensive β-sheet secondary structure, are thought to be the most toxic forms. The objective of this study was to determine the ability of TWF9, an anti-β-sheet conformation antibody (aβComAb), to selectively recognize pathological Aβ and phosphorylated tau in AD human tissue compared with cognitively normal age-matched controls and to improve the performance of old 3xTg-AD mice with advanced pathology in behavioral testing after acute treatment with TWF9. Methods In this study, we used immunohistochemistry, immunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) to characterize TWF9 specificity. We further assessed cognitive performance in old (18–22 months) 3xTg-AD mice using both a Barnes maze and novel object recognition after intraperitoneal administration of TWF9 (4 mg/kg) biweekly for 2 weeks before the start of behavioral testing. Injections continued for the duration of the behavioral testing, which lasted 2 weeks. Results Histological analysis of TWF9 in formalin-fixed paraffin-embedded human control and AD (ABC score: A3B3C3) brain tissue revealed preferential cytoplasmic immunoreactivity in neurons in the AD tissue compared with controls (p < 0.05). Furthermore, ELISA using oligomeric and monomeric Aβ showed a preferential affinity for oligomeric Aβ. Immunoprecipitation studies showed that TWF9 extracted both phosphorylated tau (p < 0.01) and Aβ (p < 0.01) from fresh frozen brain tissues. Results show that treated old 3xTg-AD mice have an enhanced novel object recognition memory (p < 0.01) and Barnes maze performance (p = 0.05) compared with control animals. Overall plaque burden, neurofibrillary tangles, microgliosis, and astrocytosis remained unchanged. Soluble phosphorylated tau was significantly reduced in TWF9-treated mice (p < 0.05), and there was a trend for a reduction in soluble Aβ levels in the brain homogenates of female 3xTg-AD mice (p = 0.06). Conclusions This study shows that acute treatment with an aβComAb can effectively improve performance in behavioral testing without reduction of amyloid plaque burden, and that peripherally administered IgG can affect levels of pathological species in the brain.
Collapse
Affiliation(s)
- Krystal Herline
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Frances Prelli
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Pankaj Mehta
- Department of Immunology, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, USA
| | | | - Fernando Goñi
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Department of Neurology, New York University School of Medicine, Alexandria, ERSP Rm 802, 450 East 29th Street, New York, NY, USA. .,Departments of Pathology and Psychiatry, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
84
|
Gefen T, Ahmadian SS, Mao Q, Kim G, Seckin M, Bonakdarpour B, Ramos EM, Coppola G, Rademakers R, Rogalski E, Rademaker A, Weintraub S, Mesulam MM, Geula C, Bigio EH. Combined Pathologies in FTLD-TDP Types A and C. J Neuropathol Exp Neurol 2018; 77:405-412. [PMID: 29584904 PMCID: PMC6019001 DOI: 10.1093/jnen/nly018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the presence of combined pathologies in a large cohort of autopsies that show a primary pathologic diagnosis of phosphorylated 43-kDa TAR DNA-binding protein (FTLD-TDP), the majority of which portrayed clinical phenotypes consistent with primary progressive aphasia or behavioral variant frontotemporal dementia (bvFTD). Thirty-eight cases with FTLD-TDP (30 type-A and 8 type-C) were identified to determine characteristic differences between cases with and without combined pathologies. Findings indicated that combined pathologies co-occur with FTLD-TDP type-A at a high frequency (50%)-greater than when compared to FTLD-TDP type-C cases (12.5%). Those with FTLD-TDP type-A and combined pathologies showed significantly longer lifespans (p < 0.05), and longer disease durations (p < 0.05), than those with only FTLD-TDP type-A. Cases with FTLD-TDP type-A and known genetic mutations tended not to show combined pathology. Those with the GRN mutation and FTLD-TDP type-A showed a significantly younger age of onset (p < 0.05) and younger age at death (p < 0.01) compared to noncarriers. In 1 bvFTD case, we highlight the rare presence of "triple" FTLD-TDP type-A, FTLD-tau, and Alzheimer pathology. The ante- and post-mortem features associated with combined pathologies in FTLD-related disorders are of useful consideration in the stratification of patients to drug trials, and in the development of therapeutic targets for FTLD.
Collapse
Affiliation(s)
- Tamar Gefen
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Psychiatry and Behavioral Sciences, University Feinberg School of Medicine, Chicago, Illinois
| | | | - Qinwen Mao
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Garam Kim
- Cognitive Neurology and Alzheimer’s Disease Center
| | | | | | - Eliana Marisa Ramos
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Psychiatry and Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Giovanni Coppola
- Department of Psychiatry and Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida
| | | | - Alfred Rademaker
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Preventive Medicine, University Feinberg School of Medicine, Chicago, Illinois
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Psychiatry and Behavioral Sciences, University Feinberg School of Medicine, Chicago, Illinois
| | - M -Marsel Mesulam
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Changiz Geula
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Eileen H Bigio
- Cognitive Neurology and Alzheimer’s Disease Center
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
85
|
NIA commentary on the NIA‐AA Research Framework: Towards a biological definition of Alzheimer's disease. Alzheimers Dement 2018; 14:576-578. [DOI: 10.1016/j.jalz.2018.03.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
86
|
Nascimento C, Di Lorenzo Alho AT, Conceição Amaral CB, Paraizo Leite RE, Nitrini R, Jacob-Filho W, Pasqualucci CA, Kastehelmi Hokkanen SR, Hunter S, Keage H, Kovacs GG, Grinberg LT, Suemoto CK. Prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults: systematic review and meta-analysis. Neuropathol Appl Neurobiol 2018; 44:286-297. [PMID: 28793370 PMCID: PMC5902737 DOI: 10.1111/nan.12430] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/03/2017] [Accepted: 08/09/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To perform a systematic review and meta-analysis on the prevalence of transactive response DNA-binding protein 43 (TDP-43) proteinopathy in cognitively normal older adults. METHODS We systematically reviewed and performed a meta-analysis on the prevalence of TDP-43 proteinopathy in older adults with normal cognition, evaluated by the Mini-Mental State Examination or the Clinical Dementia Rating. We estimated the overall prevalence of TDP-43 using random-effect models, and stratified by age, sex, sample size, study quality, antibody used to assess TDP-43 aggregates, analysed brain regions, Braak stage, Consortium to Establish a Registry for Alzheimer's Disease score, hippocampal sclerosis and geographic location. RESULTS A total of 505 articles were identified in the systematic review, and 7 were included in the meta-analysis with 1196 cognitively normal older adults. We found an overall prevalence of TDP-43 proteinopathy of 24%. Prevalence of TDP-43 proteinopathy varied widely across geographic location (North America: 37%, Asia: 29%, Europe: 14%, and Latin America: 11%). Estimated prevalence of TDP-43 proteinopathy also varied according to study quality (quality score >7: 22% vs. quality score <7: 42%), antibody used to assess TDP-43 proteinopathy (native: 18% vs. hyperphosphorylated: 24%) and presence of hippocampal sclerosis (without 24% vs. with hippocampal sclerosis: 48%). Other stratified analyses by age, sex, analysed brain regions, sample size and severity of AD neuropathology showed similar pooled TDP-43 prevalence. CONCLUSIONS Different methodology to access TDP-43, and also differences in lifestyle and genetic factors across different populations could explain our results. Standardization of TDP-43 measurement, and future studies about the impact of genetic and lifestyle characteristics on the development of neurodegenerative diseases are needed.
Collapse
Affiliation(s)
- Camila Nascimento
- University of São Paulo Medical School, Department of Psychiatry, São Paulo, BR
| | - Ana Tereza Di Lorenzo Alho
- University of São Paulo Medical School, Department of Radiology, São Paulo, BR
- Hospital Israelita Albert Einstein, Instituto do Cérebro, São Paulo, BR
| | | | | | - Ricardo Nitrini
- University of São Paulo Medical School, Department of Neurology, São Paulo, BR
| | - Wilson Jacob-Filho
- University of São Paulo Medical School, Division of Geriatrics, São Paulo, BR
| | | | | | - Sally Hunter
- University of Cambridge, Department of Public Health and Primary Care, Cambridge, United Kingdom
| | - Hannah Keage
- University of South Australia, School of Psychology, Social Work and Social Policy, AU
| | - Gabor G Kovacs
- Medical University of Vienna, Institute of Neurology, Vienna, Austria
| | - Lea Tenenholz Grinberg
- University of São Paulo Medical School, Department of Pathology, São Paulo, BR
- University of San Francisco, Department of Neurology, Memory and Aging Center, San Francisco, CA, USA
| | | |
Collapse
|
87
|
Lang B, Kindy MS, Kozel FA, Schultz SK, Taheri S. Multi-Parametric Classification of Vascular Cognitive Impairment and Dementia: The Impact of Diverse Cerebrovascular Injury Biomarkers. J Alzheimers Dis 2018; 62:39-60. [DOI: 10.3233/jad-170733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Brittany Lang
- Clinical Psychology Program, University of South Florida, Tampa, FL, USA
| | - Mark S. Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- James A. Haley VA Medical Center, Tampa, FL, USA
| | - F. Andrew Kozel
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Susan K. Schultz
- James A. Haley VA Medical Center, Tampa, FL, USA
- Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Saeid Taheri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida Tampa, FL, USA
- Byrd Alzheimer’s Institute, Tampa, FL, USA
| |
Collapse
|
88
|
Brenowitz WD, Han F, Kukull WA, Nelson PT. Treated hypothyroidism is associated with cerebrovascular disease but not Alzheimer's disease pathology in older adults. Neurobiol Aging 2018; 62:64-71. [PMID: 29107848 PMCID: PMC5743774 DOI: 10.1016/j.neurobiolaging.2017.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023]
Abstract
Thyroid hormone disease is common among older adults and is associated with cognitive impairment. However, pathologic correlates are not well understood. We studied pathologic and clinical factors associated with hypothyroidism, the most common manifestation of thyroid disease, in research subjects seen annually for clinical evaluations at U.S. Alzheimer's Disease Centers. Thyroid disease and treatment status were assessed during clinician interviews. Among autopsied subjects, there were 555 participants with treated hypothyroidism and 2146 without known thyroid disease; hypothyroidism was associated with severe atherosclerosis (odds ratio: 1.35; 95% confidence interval: 1.02, 1.79) but not Alzheimer's disease pathologies (amyloid plaques or neurofibrillary tangles). Among participants who did not undergo autopsy (4598 with treated hypothyroidism and 20,945 without known thyroid hormone disease), hypercholesterolemia and cerebrovascular disease (stroke and/or transient ischemic attack) were associated with hypothyroidism, complementing findings in the smaller autopsy sample. This is the first large-scale evaluation of neuropathologic concomitants of hypothyroidism in aged individuals. Clinical hypothyroidism was prevalent (>20% of individuals studied) and was associated with cerebrovascular disease but not Alzheimer's disease-type neuropathology.
Collapse
Affiliation(s)
- Willa D Brenowitz
- National Alzheimer's Coordinating Center (NACC), Department of Epidemiology, University of Washington, Seattle, WA, USA.
| | - Fang Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Walter A Kukull
- National Alzheimer's Coordinating Center (NACC), Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Peter T Nelson
- Division of Neuropathology, Department of Pathology, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
89
|
Nelson PT, Abner EL, Patel E, Anderson S, Wilcock DM, Kryscio RJ, Van Eldik LJ, Jicha GA, Gal Z, Nelson RS, Nelson BG, Gal J, Azam MT, Fardo DW, Cykowski MD. The Amygdala as a Locus of Pathologic Misfolding in Neurodegenerative Diseases. J Neuropathol Exp Neurol 2018; 77:2-20. [PMID: 29186501 DOI: 10.1093/jnen/nlx099] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/14/2022] Open
Abstract
Over the course of most common neurodegenerative diseases the amygdala accumulates pathologically misfolded proteins. Misfolding of 1 protein in aged brains often is accompanied by the misfolding of other proteins, suggesting synergistic mechanisms. The multiplicity of pathogenic processes in human amygdalae has potentially important implications for the pathogenesis of Alzheimer disease, Lewy body diseases, chronic traumatic encephalopathy, primary age-related tauopathy, and hippocampal sclerosis, and for the biomarkers used to diagnose those diseases. Converging data indicate that the amygdala may represent a preferential locus for a pivotal transition from a relatively benign clinical condition to a more aggressive disease wherein multiple protein species are misfolded. Thus, understanding of amygdalar pathobiology may yield insights relevant to diagnoses and therapies; it is, however, a complex and imperfectly defined brain region. Here, we review aspects of amygdalar anatomy, connectivity, vasculature, and pathologic involvement in neurodegenerative diseases with supporting data from the University of Kentucky Alzheimer's Disease Center autopsy cohort. Immunohistochemical staining of amygdalae for Aβ, Tau, α-synuclein, and TDP-43 highlight the often-coexisting pathologies. We suggest that the amygdala may represent an "incubator" for misfolded proteins and that it is possible that misfolded amygdalar protein species are yet to be discovered.
Collapse
Affiliation(s)
- Peter T Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Erin L Abner
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ela Patel
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Sonya Anderson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Donna M Wilcock
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Richard J Kryscio
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Linda J Van Eldik
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Gregory A Jicha
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Zsombor Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Ruth S Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Bela G Nelson
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Jozsef Gal
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Md Tofial Azam
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - David W Fardo
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| | - Matthew D Cykowski
- Division of Neuropathology; Sanders-Brown Center on Aging; Department of Pathology; Department of Epidemiology; Department of Physiology; Department of Statistics; Department of Neurology; Department of Neuroscience; Department of Molecular and Cellular Biochemistry; Department of Biostatistics, University of Kentucky, Lexington, Kentucky; and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
90
|
Gal J, Chen J, Katsumata Y, Fardo DW, Wang WX, Artiushin S, Price D, Anderson S, Patel E, Zhu H, Nelson PT. Detergent Insoluble Proteins and Inclusion Body-Like Structures Immunoreactive for PRKDC/DNA-PK/DNA-PKcs, FTL, NNT, and AIFM1 in the Amygdala of Cognitively Impaired Elderly Persons. J Neuropathol Exp Neurol 2018; 77:21-39. [PMID: 29186589 DOI: 10.1093/jnen/nlx097] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/15/2017] [Indexed: 12/21/2022] Open
Abstract
Misfolded protein in the amygdala is a neuropathologic feature of Alzheimer disease and many other neurodegenerative disorders. We examined extracts from human amygdala (snap-frozen at autopsy) to investigate whether novel and as yet uncharacterized misfolded proteins would be detectable. Polypeptides from the detergent-insoluble, urea-soluble protein fractions of amygdala were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. Among the detergent-insoluble proteins identified in amygdala of demented subjects but not controls were Tau, TDP-43, Aβ, α-synuclein, and ApoE. Additional detergent-insoluble proteins from demented subjects in the high-molecular weight portion of SDS gels included NNT, TNIK, PRKDC (DNA-PK, or DNA-PKcs), ferritin light chain (FTL), AIFM1, SYT11, STX1B, EAA1, COL25A1, M4K4, CLH1, SQSTM, SYNJ1, C3, and C4. In follow-up immunohistochemical experiments, NNT, TNIK, PRKDC, AIFM1, and FTL were observed in inclusion body-like structures in cognitively impaired subjects' amygdalae. Double-label immunofluorescence revealed that FTL and phospho-PRKDC immunoreactivity colocalized partially with TDP-43 and/or Tau inclusion bodies. Western blots showed high-molecular weight "smears", particularly for NNT and PRKDC. A preliminary genetic association study indicated that rare NNT, TNIK, and PRKDC gene variants had nominally significant association with Alzheimer-type dementia risk. In summary, novel detergent-insoluble proteins, with evidence of proteinaceous deposits, were found in amygdalae of elderly, cognitively impaired subjects.
Collapse
Affiliation(s)
- Jozsef Gal
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - David W Fardo
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Wang-Xia Wang
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sergey Artiushin
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Douglas Price
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sonya Anderson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Ela Patel
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Peter T Nelson
- Department of Molecular and Cellular Biochemistry; Department of Biostatistics; Sanders-Brown Center on Aging; Department of Pathology, University of Kentucky, Lexington, Kentucky; and Research and Development, Lexington VA Medical Center, Lexington, Kentucky
| |
Collapse
|
91
|
Gan EH, Razvi S. The role of local thyroid hormone perturbation in hippocampal sclerosis dementia-commentary on a multi-modality study. Gland Surg 2018; 6:604-607. [PMID: 29302474 DOI: 10.21037/gs.2017.05.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Earn H Gan
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Endocrinology, Queen Elizabeth Hospital, Gateshead NE9 6SX, UK
| | - Salman Razvi
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, UK.,Department of Endocrinology, Queen Elizabeth Hospital, Gateshead NE9 6SX, UK
| |
Collapse
|
92
|
Rubí S, Noguera A, Tarongí S, Oporto M, García A, Vico H, Espino A, Picado M, Mas A, Peña C, Amer G. Concordance between brain 18 F-FDG PET and cerebrospinal fluid biomarkers in diagnosing Alzheimer's disease. Rev Esp Med Nucl Imagen Mol 2018. [DOI: 10.1016/j.remnie.2017.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
93
|
Abstract
Alzheimer's disease, the commonest cause of dementia, is a growing global health concern with huge implications for individuals and society. In this review, current understanding of the epidemiology, genetics, pathology and pathogenesis of Alzheimer's disease is outlined, before its clinical presentation and current treatment strategies are discussed. Finally, the review discusses how our enhanced understanding of Alzheimer pathogenesis, including the recognition of a protracted preclinical phase, is informing new therapeutic strategies with the aim of moving from treatment to prevention.
Collapse
Affiliation(s)
- C A Lane
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| | - J Hardy
- Reta Lila Weston Research Laboratories, Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - J M Schott
- Dementia Research Centre, UCL Institute of Neurology, London, UK
| |
Collapse
|
94
|
Hohman TJ, Dumitrescu L, Oksol A, Wagener M, Gifford KA, Jefferson AL. APOE allele frequencies in suspected non-amyloid pathophysiology (SNAP) and the prodromal stages of Alzheimer's Disease. PLoS One 2017; 12:e0188501. [PMID: 29190651 PMCID: PMC5708777 DOI: 10.1371/journal.pone.0188501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/08/2017] [Indexed: 01/14/2023] Open
Abstract
Biomarker definitions for preclinical Alzheimer’s disease (AD) have identified individuals with neurodegeneration (ND+) without β-amyloidosis (Aβ-) and labeled them with suspected non-AD pathophysiology (SNAP). We evaluated Apolipoprotein E (APOE) ε2 and ε4 allele frequencies across biomarker definitions—Aβ-/ND- (n = 268), Aβ+/ND- (n = 236), Aβ-/ND+ or SNAP (n = 78), Aβ+/ND+ (n = 204)—hypothesizing that SNAP would have an APOE profile comparable to Aβ-/ND-. Using AD Neuroimaging Initiative data (n = 786, 72±7 years, 48% female), amyloid status (Aβ+ or Aβ-) was defined by cerebrospinal fluid (CSF) Aβ-42 levels, and neurodegeneration status (ND+ or ND-) was defined by hippocampal volume from MRI. Binary logistic regression related biomarker status to APOE ε2 and ε4 allele carrier status, adjusting for age, sex, education, and cognitive diagnosis. Compared to the biomarker negative (Aβ-/ND-) participants, higher proportions of ε4 and lower proportions of ε2 carriers were observed among Aβ+/ND- (ε4: OR = 6.23, p<0.001; ε2: OR = 0.53, p = 0.03) and Aβ+/ND+ participants (ε4: OR = 12.07, p<0.001; ε2: OR = 0.29, p = 0.004). SNAP participants were statistically comparable to biomarker negative participants (p-values>0.30). In supplemental analyses, comparable results were observed when coding SNAP using amyloid imaging and when using CSF tau levels. In contrast to APOE, a polygenic risk score for AD that excluded APOE did not show an association with amyloidosis or neurodegeneration (p-values>0.15), but did show an association with SNAP defined using CSF tau (β = 0.004, p = 0.02). Thus, in a population with low levels of cerebrovascular disease and a lower prevalence of SNAP than the general population, APOE and known genetic drivers of AD do not appear to contribute to the neurodegeneration observed in SNAP. Additional work in population based samples is needed to better elucidate the genetic contributors to various etiological drivers of SNAP.
Collapse
Affiliation(s)
- Timothy J. Hohman
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
- * E-mail:
| | - Logan Dumitrescu
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Amy Oksol
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Madison Wagener
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Katherine A. Gifford
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Angela L. Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | | |
Collapse
|
95
|
Miller JA, Guillozet-Bongaarts A, Gibbons LE, Postupna N, Renz A, Beller AE, Sunkin SM, Ng L, Rose SE, Smith KA, Szafer A, Barber C, Bertagnolli D, Bickley K, Brouner K, Caldejon S, Chapin M, Chua ML, Coleman NM, Cudaback E, Cuhaciyan C, Dalley RA, Dee N, Desta T, Dolbeare TA, Dotson NI, Fisher M, Gaudreault N, Gee G, Gilbert TL, Goldy J, Griffin F, Habel C, Haradon Z, Hejazinia N, Hellstern LL, Horvath S, Howard K, Howard R, Johal J, Jorstad NL, Josephsen SR, Kuan CL, Lai F, Lee E, Lee F, Lemon T, Li X, Marshall DA, Melchor J, Mukherjee S, Nyhus J, Pendergraft J, Potekhina L, Rha EY, Rice S, Rosen D, Sapru A, Schantz A, Shen E, Sherfield E, Shi S, Sodt AJ, Thatra N, Tieu M, Wilson AM, Montine TJ, Larson EB, Bernard A, Crane PK, Ellenbogen RG, Keene CD, Lein E. Neuropathological and transcriptomic characteristics of the aged brain. eLife 2017; 6. [PMID: 29120328 PMCID: PMC5679757 DOI: 10.7554/elife.31126] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
As more people live longer, age-related neurodegenerative diseases are an increasingly important societal health issue. Treatments targeting specific pathologies such as amyloid beta in Alzheimer’s disease (AD) have not led to effective treatments, and there is increasing evidence of a disconnect between traditional pathology and cognitive abilities with advancing age, indicative of individual variation in resilience to pathology. Here, we generated a comprehensive neuropathological, molecular, and transcriptomic characterization of hippocampus and two regions cortex in 107 aged donors (median = 90) from the Adult Changes in Thought (ACT) study as a freely-available resource (http://aging.brain-map.org/). We confirm established associations between AD pathology and dementia, albeit with increased, presumably aging-related variability, and identify sets of co-expressed genes correlated with pathological tau and inflammation markers. Finally, we demonstrate a relationship between dementia and RNA quality, and find common gene signatures, highlighting the importance of properly controlling for RNA quality when studying dementia.
Collapse
Affiliation(s)
| | | | - Laura E Gibbons
- Department of Medicine, University of Washington, Seattle, United States
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, United States
| | - Anne Renz
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Allison E Beller
- Department of Pathology, University of Washington, Seattle, United States
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, United States
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, United States
| | - Shannon E Rose
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, United States
| | - Chris Barber
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Krissy Brouner
- Allen Institute for Brain Science, Seattle, United States
| | | | - Mike Chapin
- Allen Institute for Brain Science, Seattle, United States
| | - Mindy L Chua
- Department of Pathology, University of Washington, Seattle, United States
| | - Natalie M Coleman
- Department of Pathology, University of Washington, Seattle, United States
| | - Eiron Cudaback
- Department of Pathology, University of Washington, Seattle, United States
| | | | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, United States
| | - Tsega Desta
- Allen Institute for Brain Science, Seattle, United States
| | - Tim A Dolbeare
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Fisher
- Allen Institute for Brain Science, Seattle, United States
| | | | - Garrett Gee
- Allen Institute for Brain Science, Seattle, United States
| | | | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, United States
| | - Fiona Griffin
- Allen Institute for Brain Science, Seattle, United States
| | - Caroline Habel
- Allen Institute for Brain Science, Seattle, United States
| | - Zeb Haradon
- Allen Institute for Brain Science, Seattle, United States
| | - Nika Hejazinia
- Allen Institute for Brain Science, Seattle, United States
| | - Leanne L Hellstern
- Department of Pathology, University of Washington, Seattle, United States
| | - Steve Horvath
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, United States
| | - Kim Howard
- Department of Pathology, University of Washington, Seattle, United States
| | - Robert Howard
- Allen Institute for Brain Science, Seattle, United States
| | - Justin Johal
- Allen Institute for Brain Science, Seattle, United States
| | - Nikolas L Jorstad
- Department of Pathology, University of Washington, Seattle, United States
| | - Samuel R Josephsen
- Department of Pathology, University of Washington, Seattle, United States
| | | | - Florence Lai
- Allen Institute for Brain Science, Seattle, United States
| | - Eric Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Felix Lee
- Allen Institute for Brain Science, Seattle, United States
| | - Tracy Lemon
- Allen Institute for Brain Science, Seattle, United States
| | - Xianwu Li
- Department of Pathology, University of Washington, Seattle, United States
| | - Desiree A Marshall
- Department of Pathology, University of Washington, Seattle, United States
| | - Jose Melchor
- Allen Institute for Brain Science, Seattle, United States
| | | | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, United States
| | | | | | - Elizabeth Y Rha
- Department of Pathology, University of Washington, Seattle, United States
| | - Samantha Rice
- Department of Pathology, University of Washington, Seattle, United States
| | - David Rosen
- Allen Institute for Brain Science, Seattle, United States
| | - Abharika Sapru
- Department of Pathology, University of Washington, Seattle, United States
| | - Aimee Schantz
- Department of Pathology, University of Washington, Seattle, United States
| | - Elaine Shen
- Allen Institute for Brain Science, Seattle, United States
| | - Emily Sherfield
- Department of Pathology, University of Washington, Seattle, United States
| | - Shu Shi
- Allen Institute for Brain Science, Seattle, United States
| | - Andy J Sodt
- Allen Institute for Brain Science, Seattle, United States
| | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, United States
| | - Angela M Wilson
- Department of Pathology, University of Washington, Seattle, United States
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, United States
| | - Eric B Larson
- Kaiser Permanente Washington Health Research Institute, Seattle, United States
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, United States
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle, United States
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, United States
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, United States
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, United States
| |
Collapse
|
96
|
Fischer CE, Qian W, Schweizer TA, Ismail Z, Smith EE, Millikin CP, Munoz DG. Determining the impact of psychosis on rates of false-positive and false-negative diagnosis in Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2017; 3:385-392. [PMID: 29067344 PMCID: PMC5651446 DOI: 10.1016/j.trci.2017.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The rate of clinical misdiagnosis of Alzheimer's disease (AD) and how psychosis impacts that clinical judgment is unclear. METHODS Using data from National Alzheimer's Coordinating Center, we compared the clinical and neuropathologic diagnosis in patients with a diagnosis of AD with autopsy and in neuropathology-confirmed AD cases (n = 961). We determined the rate of true positives, false positives, and false negatives in patients with and without psychosis. RESULTS A total of 76% received a correct AD diagnosis, 11.9% had a false-negative diagnosis, and 12.1% had a false-positive diagnosis of AD. Psychotic patients had a higher rate of false-negative diagnosis and a lower rate of false-positive diagnosis of AD compared with nonpsychotic patients. DISCUSSION Patients with psychosis were five times more likely to be misdiagnosed as dementia with Lewy bodies, whereas patients without psychosis were more likely to be falsely diagnosed with AD when vascular pathology is the underlying neuropathologic cause of dementia.
Collapse
Affiliation(s)
- Corinne E. Fischer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, Division of Geriatric Psychiatry, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Qian
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Faculty of Medicine, Division of Geriatric Psychiatry, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Tom A. Schweizer
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Zahinoor Ismail
- Department of Psychiatry, Mathison Centre for Mental Health Research & Education, Ron and Rene Ward Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Neurology, Mathison Centre for Mental Health Research & Education, Ron and Rene Ward Centre for Healthy Brain Aging Research, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Eric E. Smith
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Colleen P. Millikin
- Department of Clinical Healthy Psychology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David G. Munoz
- Keenan Research Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Pathology, St. Michael's Hospital, Toronto, Ontario, Canada
| |
Collapse
|
97
|
Cykowski MD, Powell SZ, Peterson LE, Appel JW, Rivera AL, Takei H, Chang E, Appel SH. Clinical Significance of TDP-43 Neuropathology in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol 2017; 76:402-413. [PMID: 28521037 PMCID: PMC5901081 DOI: 10.1093/jnen/nlx025] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
To determine the significance of TAR DNA binding protein 43 kDa (TDP-43) pathology in amyotrophic lateral sclerosis (ALS), we examined the whole brains and spinal cords of 57 patients (35 men; 22 women; mean age 63.3 years; 15 patients with c9orf72-associated ALS [c9ALS]). TDP-43 pathologic burden was determined relative to symptom onset site, disease duration, progression rate, cognitive status, and c9ALS status. There was a trend for greater TDP-43 pathologic burden in cognitively impaired patients (p = 0.07), though no association with disease duration or progression rate was seen. Shorter disease duration (p = 0.0016), more severe striatal pathology (p = 0.0029), and a trend toward greater whole brain TDP-43 pathology (p = 0.059) were found in c9ALS. Cluster analysis identified “TDP43-limited,” “TDP43-moderate,” and “TDP43-severe” subgroups. The TDP43-limited group contained more cognitively intact (p = 0.005) and lower extremity onset site (p = 0.019) patients, while other subgroups contained more cognitively impaired patients. We conclude that TDP-43 pathologic burden in ALS is associated with cognitive impairment and c9ALS, but not duration of disease or rate of progression. Further, we demonstrate a subgroup of patients with low TDP-43 burden, lower extremity onset, and intact cognition, which requires further investigation.
Collapse
Affiliation(s)
- Matthew D Cykowski
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Suzanne Z Powell
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Leif E Peterson
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Joan W Appel
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Andreana L Rivera
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Hidehiro Takei
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Ellen Chang
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| | - Stanley H Appel
- From the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX (MDC, SZP, ALR, HT); Houston Methodist Neurological Institute, Houston Methodist Hospital, Houston, Texas (SZP, JWA, ALR, HT, SHA); Center for Biostatistics, Houston Methodist Research Institute, Houston, Texas (LP); Stanley H. Appel Department of Neurology, Houston Methodist Hospital, Houston, Texas (JWA, SHA); and Residency Program in the Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, California (EC)
| |
Collapse
|
98
|
Kapasi A, DeCarli C, Schneider JA. Impact of multiple pathologies on the threshold for clinically overt dementia. Acta Neuropathol 2017; 134:171-186. [PMID: 28488154 PMCID: PMC5663642 DOI: 10.1007/s00401-017-1717-7] [Citation(s) in RCA: 412] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 12/14/2022]
Abstract
Longitudinal clinical-pathological studies have increasingly recognized the importance of mixed pathologies (the coexistence of one or more neurodegenerative and cerebrovascular disease pathologies) as important factors in the development of Alzheimer's disease (AD) and other forms of dementia. Older persons with AD pathology, often have concomitant cerebrovascular disease pathologies (macroinfarcts, microinfarcts, atherosclerosis, arteriolosclerosis, cerebral amyloid angiopathy) as well as other concomitant neurodegenerative disease pathologies (Lewy bodies, TDP-43, hippocampal sclerosis). These additional pathologies lower the threshold for clinical diagnosis of AD. Many of these findings from pathologic studies, especially for CVD, have been confirmed using sophisticated neuroimaging technologies. In vivo biomarker studies are necessary to provide an understanding of specific pathologic contributions and time course relationships along the spectrum of accumulating pathologies. In this review, we provide a clinical-pathological perspective on the role of multiple brain pathologies in dementia followed by a review of the available clinical and biomarker data on some of the mixed pathologies.
Collapse
Affiliation(s)
- Alifiya Kapasi
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA
- Department of Pathology, Rush University Medical Center, Chicago, USA
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, Sacramento, USA
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, USA.
- Department of Pathology, Rush University Medical Center, Chicago, USA.
- Department of Neurological Sciences, Rush University Medical Center, Chicago, USA.
| |
Collapse
|
99
|
Kovacs GG, Robinson JL, Xie SX, Lee EB, Grossman M, Wolk DA, Irwin DJ, Weintraub D, Kim CF, Schuck T, Yousef A, Wagner ST, Suh E, Van Deerlin VM, Lee VMY, Trojanowski JQ. Evaluating the Patterns of Aging-Related Tau Astrogliopathy Unravels Novel Insights Into Brain Aging and Neurodegenerative Diseases. J Neuropathol Exp Neurol 2017; 76:270-288. [PMID: 28340083 DOI: 10.1093/jnen/nlx007] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The term "aging-related tau astrogliopathy" (ARTAG) describes pathological accumulation of abnormally phosphorylated tau protein in astrocytes. We evaluated the correlates of ARTAG types (i.e., subpial, subependymal, white and gray matter, and perivascular) in different neuroanatomical regions. Clinical, neuropathological, and genetic (eg, APOE ε4 allele, MAPT H1/H2 haplotype) data from 628 postmortem brains from subjects were investigated; most of the patients had been longitudinally followed at the University of Pennsylvania. We found that (i) the amygdala is a hotspot for all ARTAG types; (ii) age at death, male sex, and presence of primary frontotemporal lobar degeneration (FTLD) tauopathy are significantly associated with ARTAG; (iii) age at death, greater degree of brain atrophy, ventricular enlargement, and Alzheimer disease (AD)-related variables are associated with subpial, white matter, and perivascular ARTAG types; (iv) AD-related variables are associated particularly with lobar white matter ARTAG; and (v) gray matter ARTAG in primary FTLD-tauopathies appears in areas without neuronal tau pathology. We provide a reference map of ARTAG types and propose at least 5 constellations of ARTAG. Furthermore, we propose a conceptual link between primary FTLD-tauopathy and ARTAG-related astrocytic tau pathologies. Our observations serve as a basis for etiological stratification and definition of progression patterns of ARTAG.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, Vienna, Austria.,Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - John L Robinson
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Sharon X Xie
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dan Weintraub
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher F Kim
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Theresa Schuck
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Ahmed Yousef
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | | | - Eunran Suh
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Institute on Aging and Department of Pathology & Laboratory Medicine, Philadelphia, PA, USA
| |
Collapse
|
100
|
Dani M, Brooks D, Edison P. Suspected non-Alzheimer's pathology - Is it non-Alzheimer's or non-amyloid? Ageing Res Rev 2017; 36:20-31. [PMID: 28235659 DOI: 10.1016/j.arr.2017.02.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023]
Abstract
Neurodegeneration, the progressive loss of neurons, is a major process involved in dementia and age-related cognitive impairment. It can be detected clinically using currently available biomarker tests. Suspected Non-Alzheimer Pathology (SNAP) is a biomarker-based concept that encompasses a group of individuals with neurodegeneration, but no evidence of amyloid deposition (thereby distinguishing it from Alzheimer's disease (AD)). These individuals may often have a clinical diagnosis of AD, but their clinical features, genetic susceptibility and progression can differ significantly, carrying crucial implications for precise diagnostics, clinical management, and efficacy of clinical drug trials. SNAP has caused wide interest in the dementia research community, because it is still unclear whether it represents distinct pathology separate from AD, or whether in some individuals, it could represent the earliest stage of AD. This debate has raised pertinent questions about the pathways to AD, the need for biomarkers, and the sensitivity of current biomarker tests. In this review, we discuss the biomarker and imaging trials that first recognized SNAP. We describe the pathological correlates of SNAP and comment on the different causes of neurodegeneration. Finally, we discuss the debate around the concept of SNAP, and further unanswered questions that are emerging.
Collapse
|