51
|
Conn A, Chandrasekhar A, van Rongen M, Leyser O, Chory J, Navlakha S. Network trade-offs and homeostasis in Arabidopsis shoot architectures. PLoS Comput Biol 2019; 15:e1007325. [PMID: 31509526 PMCID: PMC6738579 DOI: 10.1371/journal.pcbi.1007325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/08/2019] [Indexed: 12/02/2022] Open
Abstract
Understanding the optimization objectives that shape shoot architectures remains a critical problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot architectures, including wildtype and 10 mutant strains, and we uncovered a design principle that describes how architectures make trade-offs between competing objectives. First, we used graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal that can be captured as maximizing performance in transporting nutrients and minimizing costs in building the architecture. Second, we identify small sets of genes that can be mutated to shift the weight prioritizing one objective over the other. Third, we show that this prioritization weight feature is significantly less variable across replicates of the same genotype compared to other common plant traits (e.g., number of rosette leaves, total volume occupied). This suggests that this feature is a robust descriptor of a genotype, and that local variability in structure may be compensated for globally in a homeostatic manner. Overall, our work provides a framework to understand optimization trade-offs made by shoot architectures and provides evidence that these trade-offs can be modified genetically, which may aid plant breeding and selection efforts. In both engineered and biological systems, there is often no single structure that performs optimally on all tasks. For example, a transport system that can very quickly shuttle people to and from work will often not be very cheap to build, and vice-versa. Thus, trade-offs are born, and it is natural to ask how well evolution has resolved trade-offs between competing tasks. Here, we use 3D laser scanning and network analysis to show that Arabidopsis plant architectures make Pareto optimal trade-offs, which means that improving upon one task requires a sacrifice in the other task. In other words, an architecture that performs better on both tasks cannot be built. We also identify a small set of genes that can change how the architecture prioritizes one task versus the other, which may allow for better crop design in the future. Finally, we show that two replicate architectures that look visually diverse (e.g., variation in size, number of leaves, number of branches, etc.) often prioritize each task similarly. This suggests that despite local variability in the architecture, there may be a homeostatic drive to maintain globally balanced trade-offs.
Collapse
Affiliation(s)
- Adam Conn
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Arjun Chandrasekhar
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Martin van Rongen
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Chory
- Howard Hughes Medical Institute and Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Saket Navlakha
- Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
52
|
Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, Nielsen T, Lunn JE, Hawkins J, Whipple C, Chuck G. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nat Commun 2019; 10:3810. [PMID: 31444327 PMCID: PMC6707278 DOI: 10.1038/s41467-019-11774-w] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 08/05/2019] [Indexed: 01/08/2023] Open
Abstract
Many domesticated crop plants have been bred for increased apical dominance, displaying greatly reduced axillary branching compared to their wild ancestors. In maize, this was achieved through selection for a gain-of-function allele of the TCP transcription factor teosinte branched1 (tb1). The mechanism for how a dominant Tb1 allele increased apical dominance, is unknown. Through ChIP seq, RNA seq, hormone and sugar measurements on 1 mm axillary bud tissue, we identify the genetic pathways putatively regulated by TB1. These include pathways regulating phytohormones such as gibberellins, abscisic acid and jasmonic acid, but surprisingly, not auxin. In addition, metabolites involved in sugar sensing such as trehalose 6-phosphate were increased. This suggests that TB1 induces bud suppression through the production of inhibitory phytohormones and by reducing sugar levels and energy balance. Interestingly, TB1 also putatively targets several other domestication loci, including teosinte glume architecture1, prol1.1/grassy tillers1, as well as itself. This places tb1 on top of the domestication hierarchy, demonstrating its critical importance during the domestication of maize from teosinte. The TB1 transcription factor was selected for the increased apical dominance of maize compared to its ancestor teosinte. A metabolic and genomic analysis of domesticated axillary buds suggest that TB1 achieved this by regulating phytohormone signaling, sugar metabolism and other domestication genes.
Collapse
Affiliation(s)
- Zhaobin Dong
- Plant Gene Expression Center/USDA, University of California, Berkeley, Albany, CA, 94710, USA
| | - Yuguo Xiao
- Brigham Young University, Provo, UT, 84602, USA
| | | | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Muehlenberg, 14476, Potsdam-Golm, Germany
| | | | | | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Muehlenberg, 14476, Potsdam-Golm, Germany
| | | | | | - George Chuck
- Plant Gene Expression Center/USDA, University of California, Berkeley, Albany, CA, 94710, USA.
| |
Collapse
|
53
|
Deng S, Ma J, Zhang L, Chen F, Sang Z, Jia Z, Ma L. De novo transcriptome sequencing and gene expression profiling of Magnolia wufengensis in response to cold stress. BMC PLANT BIOLOGY 2019; 19:321. [PMID: 31319815 PMCID: PMC6637634 DOI: 10.1186/s12870-019-1933-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/09/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Magnolia wufengensis is a new species of Magnolia L. and has considerable ornamental and economic value due to its unique characteristics. However, because of its characteristic of poor low temperature resistance, M. wufengensis is hardly popularization and application in the north of China. Furthermore, the mechanisms of gene regulation and signaling pathways involved in the cold-stress response remained unclear in this species. In order to solve the above-mentioned problems, we performed de novo transcriptome assembly and compared the gene expression under the natural (25 °C) and cold (4 °C) conditions for M. wufengensis seedlings. RESULTS More than 46 million high-quality clean reads were produced from six samples (RNA was extracted from the leaves) and were used for performing de novo transcriptome assembly. A total of 59,764 non-redundant unigenes with an average length of 899 bp (N50 = 1,110) were generated. Among these unigenes, 31,038 unigenes exhibited significant sequence similarity to known genes, as determined by BLASTx searches (E-value ≤1.0E-05) against the Nr, SwissProt, String, GO, KEGG, and Cluster of COG databases. Based on a comparative transcriptome analysis, 3,910 unigenes were significantly differentially expressed (false discovery rate [FDR] < 0.05 and |log2FC (CT/CK)| ≥ 1) in the cold-treated samples, and 2,616 and 1,294 unigenes were up- and down-regulated by cold stress, respectively. Analysis of the expression patterns of 16 differentially expressed genes (DEGs) by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Gene Ontology and KEGG pathway functional enrichment analyses allowed us to better understand these differentially expressed unigenes. The most significant transcriptomic changes observed under cold stress were related to plant hormone and signal transduction pathways, primary and secondary metabolism, and photosynthesis. In addition, 113 transcription factors, including members of the AP2-EREBP, bHLH, WRKY, MYB, NAC, HSF, and bZIP families, were identified as cold responsive. CONCLUSION We generated a genome-wide transcript profile of M. wufengensis and a de novo-assembled transcriptome that can be used to analyze genes involved in biological processes. In this study, we provide the first report of transcriptome sequencing of cold-stressed M. wufengensis. Our findings provide important clues not only for understanding the molecular mechanisms of cold stress in plants but also for introducing cold hardiness into M. wufengensis.
Collapse
Affiliation(s)
- Shixin Deng
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Jiang Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Lili Zhang
- School of Landscape Architecture, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Faju Chen
- Biotechnology Research Center, China Three Gorges University, Yichang, Hubei Province 443002 People’s Republic of China
| | - Ziyang Sang
- Forestry Bureau of Wufeng County, Wufeng, Hubei Province 443400 People’s Republic of China
| | - Zhongkui Jia
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Luyi Ma
- Ministry of Education Key Laboratory of Silviculture and Conservation, Forestry College, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| |
Collapse
|
54
|
Genes involved in the deformations of the shoot apical meristem in somatic embryos of Capsicum chinense Jacq. J Genet 2019. [DOI: 10.1007/s12041-019-1117-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
55
|
Basile A, Fambrini M, Tani C, Shukla V, Licausi F, Pugliesi C. The
Ha‐ROXL
gene is required for initiation of axillary and floral meristems in sunflower. Genesis 2019; 57:e23307. [DOI: 10.1002/dvg.23307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Basile
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Camilla Tani
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
- Department of BiologyUniversity of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| |
Collapse
|
56
|
Danilevskaya ON, Yu G, Meng X, Xu J, Stephenson E, Estrada S, Chilakamarri S, Zastrow‐Hayes G, Thatcher S. Developmental and transcriptional responses of maize to drought stress under field conditions. PLANT DIRECT 2019; 3:e00129. [PMID: 31245774 PMCID: PMC6589525 DOI: 10.1002/pld3.129] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 05/23/2023]
Abstract
Drought is a common abiotic stress which significantly limits global crop productivity. Maize is an important staple crop and its yield is determined by successful development of the female inflorescence, the ear. We investigated drought stress responses across several developmental stages of the maize B73 inbred line under field conditions. Drought suppressed plant growth, but had little impact on progression through developmental stages. While ear growth was suppressed by drought, the process of spikelet initiation was not significantly affected. Tassel growth was reduced to a lesser extent compared to the observed reduction in ear growth under stress. Parallel RNA-seq profiling of leaves, ears, and tassels at several developmental stages revealed tissue-specific differences in response to drought stress. High temperature fluctuation was an additional environmental factor that also likely influenced gene expression patterns in the field. Drought induced significant transcriptional changes in leaves and ears but only minor changes in the tassel. Additionally, more genes were drought responsive in ears compared to leaves over the course of drought treatment. Genes that control DNA replication, cell cycle, and cell division were significantly down-regulated in stressed ears, which was consistent with inhibition of ear growth under drought. Inflorescence meristem genes were affected by drought to a lesser degree which was consistent with the minimal impact of drought on spikelet initiation. In contrast, genes that are involved in floret and ovule development were sensitive to stress, which is consistent with the detrimental effect of drought on gynoecium development and kernel set.
Collapse
Affiliation(s)
| | - GongXin Yu
- Iowa Institute of Human GeneticsUniversity of IowaIowa CityIowa
| | | | - John Xu
- Indigo AgricultureCharlestownMassachusetts
| | | | | | | | | | | |
Collapse
|
57
|
Stephenson E, Estrada S, Meng X, Ourada J, Muszynski MG, Habben JE, Danilevskaya ON. Over-expression of the photoperiod response regulator ZmCCT10 modifies plant architecture, flowering time and inflorescence morphology in maize. PLoS One 2019; 14:e0203728. [PMID: 30726207 PMCID: PMC6364868 DOI: 10.1371/journal.pone.0203728] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/11/2019] [Indexed: 11/19/2022] Open
Abstract
Maize originated as a tropical plant that required short days to transition from vegetative to reproductive development. ZmCCT10 [CO, CONSTANS, CO-LIKE and TIMING OF CAB1 (CCT) transcription factor family] is a regulator of photoperiod response and was identified as a major QTL controlling photoperiod sensitivity in maize. We modulated expression of ZmCCT10 in transgenic maize using two constitutive promoters with different expression levels. Transgenic plants over expressing ZmCCT10 with either promoter were delayed in their transition from vegetative to reproductive development but were not affected in their switch from juvenile-to-adult vegetative growth. Strikingly, transgenic plants containing the stronger expressing construct had a prolonged period of vegetative growth accompanied with dramatic modifications to plant architecture that impacted both vegetative and reproductive traits. These plants did not produce ears, but tassels were heavily branched. In more than half of the transgenic plants, tassels were converted into a branched leafy structure resembling phyllody, often composed of vegetative plantlets. Analysis of expression modules controlling the floral transition and meristem identity linked these networks to photoperiod dependent regulation, whereas phase change modules appeared to be photoperiod independent. Results from this study clarified the influence of the photoperiod pathway on vegetative and reproductive development and allowed for the fine-tuning of the maize flowering time model.
Collapse
Affiliation(s)
- Elizabeth Stephenson
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Stacey Estrada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Xin Meng
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Jesse Ourada
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Michael G. Muszynski
- University of Hawaii at Manoa, Tropical Plant and Soil Sciences, Honolulu, Hawaii; United States of America
| | - Jeffrey E. Habben
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
| | - Olga N. Danilevskaya
- CORTEVA Agrisciences, Agriculture Division of DowDuPont; Johnston, Iowa, United States of America
- * E-mail:
| |
Collapse
|
58
|
Wang W, Chen Q, Botella JR, Guo S. Beyond Light: Insights Into the Role of Constitutively Photomorphogenic1 in Plant Hormonal Signaling. FRONTIERS IN PLANT SCIENCE 2019; 10:557. [PMID: 31156657 PMCID: PMC6532413 DOI: 10.3389/fpls.2019.00557] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/12/2019] [Indexed: 05/20/2023]
Abstract
Light is an important environmental factor with profound effects in plant growth and development. Constitutively photomorphogenic1 (COP1) is a vital component of the light signaling pathway as a negative regulator of photomorphogenesis. Although the role of COP1 in light signaling has been firmly established for some time, recent studies have proven that COP1 is also a crucial part of multiple plant hormonal regulatory pathways. In this article, we review the available evidence involving COP1 in hormone signaling, its molecular mechanisms, and its contribution to the complicated regulatory network linking light and plant hormone signaling.
Collapse
Affiliation(s)
- Wenjing Wang
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology and Food Science, Shangqiu Normal University, Shangqiu, China
| | - Qingbin Chen
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - José Ramón Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, Australia
- *Correspondence: José Ramón Botella,
| | - Siyi Guo
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
- Siyi Guo,
| |
Collapse
|
59
|
Li L, Yang X, Cui S, Meng X, Mu G, Hou M, He M, Zhang H, Liu L, Chen CY. Construction of High-Density Genetic Map and Mapping Quantitative Trait Loci for Growth Habit-Related Traits of Peanut ( Arachis hypogaea L.). FRONTIERS IN PLANT SCIENCE 2019; 10:745. [PMID: 31263472 PMCID: PMC6584813 DOI: 10.3389/fpls.2019.00745] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Plant growth habit is an important and complex agronomic trait and is associated with yield, disease resistance, and mechanized harvesting in peanuts. There are at least two distinct growth habits (erect and prostrate) and several intermediate forms existing in the peanut germplasm. A recombinant inbred line population containing 188 individuals was developed from a cross of "Jihua 5" and "M130" for genetically dissecting the architecture of the growth habit. A new high-density genetic linkage map was constructed by using specific locus amplified fragment sequencing technology. The map contains 2,808 single-nucleotide polymorphism markers distributed on 20 linkage groups with a total length of 1,308.20 cM and an average inter-marker distance of 0.47 cM. The quantitative trait locus (QTL) analysis of the growth habit-related traits was conducted based on phenotyping data from seven environments. A total of 39 QTLs for growth habit-related traits was detected on 10 chromosomes explaining 4.55-27.74% of the phenotypic variance, in which 6 QTLs were for lateral branch angle, 8 QTLs were for extent radius, 7 QTLs were for the index of plant type, 11 QTLs were for main stem height, and 7 QTLs were for lateral branch length. Among these QTLs, 12 were co-localized on chromosome B05 spanning an approximately 0.17 Mb physical interval in comparison with the allotetraploid reference genome of "Tifrunner." Analysis of the co-localized genome region has shown that the putative genes are involved in light and hormones and will facilitate peanut growth habit molecular breeding and study of peanut domestication.
Collapse
Affiliation(s)
- Li Li
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Xinlei Yang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Shunli Cui
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinhao Meng
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Guojun Mu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Mingyu Hou
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Meijing He
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Hui Zhang
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Lifeng Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, China
- *Correspondence: Lifeng Liu,
| | - Charles Y. Chen
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
- Charles Y. Chen,
| |
Collapse
|
60
|
Vaičiukynė M, Žiauka J, Žūkienė R, Vertelkaitė L, Kuusienė S. Abscisic acid promotes root system development in birch tissue culture: a comparison to aspen culture and conventional rooting-related growth regulators. PHYSIOLOGIA PLANTARUM 2019; 165:114-122. [PMID: 30367696 DOI: 10.1111/ppl.12860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 05/16/2023]
Abstract
The research aim was to assess the effects of the plant hormone abscisic acid (ABA) and the growth regulator paclobutrazol (PBZ) on root system development during the in vitro culture of different birch and aspen genotypes. The studied genotypes involved two aspen (Populus tremula and Populus tremuloides × P. tremula) and two silver birch (Betula pendula) trees, with one of the birches characterized by its inability to root in vitro. For experiments, apical shoot segments were cultured on nutrient medium enriched with either ABA or PBZ. Additionally, the analysis of the endogenous hormones in shoots developed on hormone-free medium was conducted by high-performance liquid chromatography. The endogenous concentration of auxin indole-3-acetic acid was much higher in the aspens than that in the birches, while the highest concentration of ABA was found in the root-forming birch. The culturing of this birch genotype on medium enriched with ABA resulted in an increased root length and a higher number of lateral roots without any negative effect on either shoot growth or adventitious root (AR) formation, although these two processes were largely inhibited by ABA in the aspens. Meanwhile, PBZ promoted AR formation in both aspen and birch cultures but impaired secondary root formation and shoot growth in birches. These results suggest the use of ABA for the in vitro rooting of birches and PBZ for the rooting of aspens.
Collapse
Affiliation(s)
- Miglė Vaičiukynė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Jonas Žiauka
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Rasa Žūkienė
- Department of Biochemistry, Vytautas Magnus University, Vileikos str. 8, Kaunas, LT-44404, Lithuania
| | - Lidija Vertelkaitė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| | - Sigutė Kuusienė
- Lithuanian Research Centre for Agriculture and Forestry, Institute of Forestry, Liepų str. 1, Girionys, Kaunas, LT-53101, Lithuania
| |
Collapse
|
61
|
Grewal RK, Saraf S, Deb A, Kundu S. Differentially Expressed MicroRNAs Link Cellular Physiology to Phenotypic Changes in Rice Under Stress Conditions. PLANT & CELL PHYSIOLOGY 2018; 59:2143-2154. [PMID: 30010993 DOI: 10.1093/pcp/pcy136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Indexed: 06/08/2023]
Abstract
Plant microRNAs (miRNAs) and their target genes have important functional roles in nutrition deficiency and stress response. However, the underlying mechanisms relating relative expression of miRNAs and target mRNAs to morphological adjustments are not well defined. By combining miRNA expression profiles, corresponding target genes and transcription factors that bind to computationally identified over-represented cis-regulatory elements (CREs) common in miRNAs and target gene promoters, we implement a strategy that identifies a set of differentially expressed regulatory interactions which, in turn, relate underlying cellular mechanisms to some of the phenotypic changes observed. Integration of experimentally reported individual interactions with identified regulatory interactions explains how (i) during mineral deficiency osa-miR167 inhibits shoot growth but activates adventitious root growth by influencing free auxin content; (ii) during sulfur deficiency osa-miR394 is involved in adventitious root growth inhibition, sulfur and iron homeostasis, and auxin-mediated regulation of sulfur homeostasis; (iii) osa-miR399 contributes to cross-talk between cytokinin and phosphorus deficiency signaling; and (iv) a feed-forward loop involving the osa-miR166, trihelix and HD-ZIP III transcription factors may regulate leaf senescence during drought. This strategy not only identifies various regulatory interactions connecting phenotypic changes with cellular or molecular events triggered by stress, but also provides a framework to deepen our understanding of stress cellular physiology.
Collapse
Affiliation(s)
- Rumdeep K Grewal
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
- Department of Botany, Bhairab Ganguly College, Kolkata, India
| | - Shradha Saraf
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Arindam Deb
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| | - Sudip Kundu
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, India
| |
Collapse
|
62
|
Zhang Z, Li J, Tang Z, Sun X, Zhang H, Yu J, Yao G, Li G, Guo H, Li J, Wu H, Huang H, Xu Y, Yin Z, Qi Y, Huang R, Yang W, Li Z. Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3-OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4723-4737. [PMID: 30295905 PMCID: PMC6137978 DOI: 10.1093/jxb/ery256] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/05/2018] [Indexed: 05/18/2023]
Abstract
Grain length is one of the determinants of yield in rice and auxin plays an important role in regulating it by mediating cell growth. Although several genes in the auxin pathway are involved in regulating grain length, the underlying molecular mechanisms remain unclear. In this study we identify a RING-finger and wd40-associated ubiquitin-like (RAWUL) domain-containing protein, Gnp4/LAX2, with a hitherto unknown role in regulation of grain length by its influence on cell expansion. Gnp4/LAX2 is broadly expressed in the plant and subcellular localization analysis shows that it encodes a nuclear protein. Overexpression of Gnp4/LAX2 can significantly increase grain length and thousand-kernel weight. Moreover, Gnp4/LAX2 physically interacts with OsIAA3 and consequently interferes with the OsIAA3-OsARF25 interaction in vitro and in vivo. OsIAA3 RNAi plants consistently exhibit longer grains, while the mutant osarf25 has small grains. In addition, OsARF25 binds to the promoter of OsERF142/SMOS1, a regulator of organ size, and positively regulates its expression. Taken together, the results reveal that Gnp4/LAX2 functions as a regulator of grain length through participation in the OsIAA3-OsARF25-OsERF142 pathway and that it has potential value for molecular breeding in rice.
Collapse
Affiliation(s)
- Zhanying Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jinjie Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zuoshun Tang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xingming Sun
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hongliang Zhang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jianping Yu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Guoxin Yao
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Gangling Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Haifeng Guo
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jilong Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Huamao Wu
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hanguang Huang
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yawen Xu
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Zhigang Yin
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yanhua Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Rongfeng Huang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weicai Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zichao Li
- Key Laboratory of Crop Heterosis and Utilization, the Ministry of Education/Key Laboratory of Crop Genetic Improvement, Beijing Municipality/ College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Correspondence:
| |
Collapse
|
63
|
Zhu C, Yang J, Box MS, Kellogg EA, Eveland AL. A Dynamic Co-expression Map of Early Inflorescence Development in Setaria viridis Provides a Resource for Gene Discovery and Comparative Genomics. FRONTIERS IN PLANT SCIENCE 2018; 9:1309. [PMID: 30258452 PMCID: PMC6143762 DOI: 10.3389/fpls.2018.01309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/20/2018] [Indexed: 05/29/2023]
Abstract
The morphological and functional diversity of plant form is governed by dynamic gene regulatory networks. In cereal crops, grain and/or pollen-bearing inflorescences exhibit vast architectural diversity and developmental complexity, yet the underlying genetic framework is only partly known. Setaria viridis is a small, rapidly growing grass species in the subfamily Panicoideae, a group that includes economically important cereal crops such as maize and sorghum. The S. viridis inflorescence displays complex branching patterns, but its early development is similar to that of other panicoid grasses, and thus is an ideal model for studying inflorescence architecture. Here we report a detailed transcriptional resource that captures dynamic transitions across six sequential stages of S. viridis inflorescence development, from reproductive onset to floral organ differentiation. Co-expression analyses identified stage-specific signatures of development, which include homologs of previously known developmental genes from maize and rice, suites of transcription factors and gene family members, and genes of unknown function. This spatiotemporal co-expression map and associated analyses provide a foundation for gene discovery in S. viridis inflorescence development, and a comparative model for exploring related architectural features in agronomically important cereals.
Collapse
|
64
|
Tenorio-Berrío R, Pérez-Alonso MM, Vicente-Carbajosa J, Martín-Torres L, Dreyer I, Pollmann S. Identification of Two Auxin-Regulated Potassium Transporters Involved in Seed Maturation. Int J Mol Sci 2018; 19:E2132. [PMID: 30037141 PMCID: PMC6073294 DOI: 10.3390/ijms19072132] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/16/2022] Open
Abstract
The seed is the most important plant reproductive unit responsible for the evolutionary success of flowering plants. Aside from its essential function in the sexual reproduction of plants, the seed also represents the most economically important agricultural product worldwide, providing energy, nutrients, and raw materials for human nutrition, livestock feed, and countless manufactured goods. Hence, improvements in seed quality or size are highly valuable, due to their economic potential in agriculture. Recently, the importance of indolic compounds in regulating these traits has been reported for Arabidopsis thaliana. The transcriptional and physiological mechanisms involved, however, remain largely undisclosed. Potassium transporters have been suggested as possible mediators of embryo cell size, controlling turgor pressure during seed maturation. In addition, it has been demonstrated that the expression of K⁺ transporters is effectively regulated by auxin. Here, we provide evidence for the identification of two Arabidopsis K⁺ transporters, HAK/KT12 (At1g60160) and KUP4 (At4g23640), that are likely to be implicated in determining seed size during seed maturation and, at the same time, show a differential regulation by indole-3-acetic acid and indole-3-acetamide.
Collapse
Affiliation(s)
- Rubén Tenorio-Berrío
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Marta-Marina Pérez-Alonso
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Leticia Martín-Torres
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
- Centro de Bioinformática y Simulación Molecular (CBSM), Universidad de Talca, 2 Norte 685, 3460000 Talca, Chile.
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA), Universidad Politécnica de Madrid (UPM), 28223 Pozuelo de Alarcón, Spain.
| |
Collapse
|
65
|
Vanous A, Gardner C, Blanco M, Martin-Schwarze A, Lipka AE, Flint-Garcia S, Bohn M, Edwards J, Lübberstedt T. Association Mapping of Flowering and Height Traits in Germplasm Enhancement of Maize Doubled Haploid (GEM-DH) Lines. THE PLANT GENOME 2018; 11. [PMID: 30025021 DOI: 10.3835/plantgenome2017.09.0083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Flowering and height related traits are extensively studied in maize for three main reasons: 1) easily obtained phenotypic measurements, 2) highly heritable, and 3) importance of these traits to adaptation and grain yield. However, variation in flowering and height traits is extensive and findings from previous studies are genotype specific. Herein, a diverse panel of exotic derived doubled haploid lines, in conjunction with genome-wide association analysis, is used to further explore adaptation related trait variation of exotic germplasm for potential use in adapting exotic germplasm to the U.S. Corn-Belt. Phenotypes for the association panel were obtained from six locations across the central-U.S. and genotyping was performed using the genotyping-by-sequencing method. Nineteen flowering time candidate genes were found for three flowering traits. Eighteen candidate genes were found for four height related traits, with the majority of the candidate genes relating to plant hormones auxin and gibberellin. A single gene was discovered for ear height that also had effects on -like flowering gene expression levels. Findings will be used to inform future research efforts of the USDA Germplasm Enhancement of Maize project and eventually aid in the rapid adaptation of exotic germplasm to temperate U.S. environments.
Collapse
|
66
|
Genome-wide analysis and transcriptomic profiling of the auxin biosynthesis, transport and signaling family genes in moso bamboo (Phyllostachys heterocycla). BMC Genomics 2017; 18:870. [PMID: 29132316 PMCID: PMC5683460 DOI: 10.1186/s12864-017-4250-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/31/2017] [Indexed: 11/10/2022] Open
Abstract
Background Auxin is essential for plant growth and development. Although substantial progress has been made in understanding auxin pathways in model plants such as Arabidopsis and rice, little is known in moso bamboo which is famous for its fast growth resulting from the rapid cell elongation and division. Results Here we showed that exogenous auxin has strong effects on crown and primary roots. Genes involved in auxin action, including 13 YUCCA (YUC) genes involved in auxin synthesis, 14 PIN-FORMED/PIN-like (PIN/PILS) and 7 AUXIN1/LIKE-AUX1 (AUX1/LAX) members involved in auxin transport, 10 auxin receptors (AFB) involved in auxin perception, 43 auxin/indole-3-aceticacid (AUX/IAA) genes, and 41 auxin response factors (ARF) involved in auxin signaling were identified through genome-wide analysis. Phylogenetic analysis of these genes from Arabidopsis, Oryza sativa and bamboo revealed that auxin biosynthesis, transport, and signaling pathways are conserved in these species. A comprehensive study of auxin-responsive genes using RNA sequencing technology was performed, and the results also supported that moso bamboo shared a conserved regulatory mechanism for the expression of auxin pathway genes; meanwhile it harbors its own specific properties. Conclusions In summary, we generated an overview of the auxin pathway in bamboo, which provides information for uncovering the precise roles of auxin pathway in this important species in the future. Electronic supplementary material The online version of this article (10.1186/s12864-017-4250-0) contains supplementary material, which is available to authorized users.
Collapse
|
67
|
Lorant A, Pedersen S, Holst I, Hufford MB, Winter K, Piperno D, Ross-Ibarra J. The potential role of genetic assimilation during maize domestication. PLoS One 2017; 12:e0184202. [PMID: 28886108 PMCID: PMC5590903 DOI: 10.1371/journal.pone.0184202] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
Domestication research has largely focused on identification of morphological and genetic differences between extant populations of crops and their wild relatives. Little attention has been paid to the potential effects of environment despite substantial known changes in climate from the time of domestication to modern day. In recent research, the exposure of teosinte (i.e., wild maize) to environments similar to the time of domestication, resulted in a plastic induction of domesticated phenotypes in teosinte. These results suggest that early agriculturalists may have selected for genetic mechanisms that cemented domestication phenotypes initially induced by a plastic response of teosinte to environment, a process known as genetic assimilation. To better understand this phenomenon and the potential role of environment in maize domestication, we examined differential gene expression in maize (Zea mays ssp. mays) and teosinte (Zea mays ssp. parviglumis) between past and present conditions. We identified a gene set of over 2000 loci showing a change in expression across environmental conditions in teosinte and invariance in maize. In fact, overall we observed both greater plasticity in gene expression and more substantial changes in co-expressionnal networks in teosinte across environments when compared to maize. While these results suggest genetic assimilation played at least some role in domestication, genes showing expression patterns consistent with assimilation are not significantly enriched for previously identified domestication candidates, indicating assimilation did not have a genome-wide effect.
Collapse
Affiliation(s)
- Anne Lorant
- Dept. of Plant Sciences, University of California Davis, Davis, CA, United States of America
| | - Sarah Pedersen
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Irene Holst
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Matthew B. Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States of America
| | - Klaus Winter
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Dolores Piperno
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
- Department of Anthropology, Smithsonian National Museum of Natural History, Washington, DC, United States of America
| | - Jeffrey Ross-Ibarra
- Dept. of Plant Sciences, University of California Davis, Davis, CA, United States of America
- Genome Center and Center for Population Biology, University of California Davis, Davis, CA, United States of America
- * E-mail:
| |
Collapse
|
68
|
Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García ÁA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. PLANT MOLECULAR BIOLOGY 2017; 95:141-156. [PMID: 28780645 DOI: 10.1007/s11103-017-0647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 05/23/2023]
Abstract
Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
69
|
Simonini S, Deb J, Moubayidin L, Stephenson P, Valluru M, Freire-Rios A, Sorefan K, Weijers D, Friml J, Østergaard L. A noncanonical auxin-sensing mechanism is required for organ morphogenesis in Arabidopsis. Genes Dev 2017; 30:2286-2296. [PMID: 27898393 PMCID: PMC5110995 DOI: 10.1101/gad.285361.116] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/13/2016] [Indexed: 01/18/2023]
Abstract
Tissue patterning in multicellular organisms is the output of precise spatio-temporal regulation of gene expression coupled with changes in hormone dynamics. In plants, the hormone auxin regulates growth and development at every stage of a plant's life cycle. Auxin signaling occurs through binding of the auxin molecule to a TIR1/AFB F-box ubiquitin ligase, allowing interaction with Aux/IAA transcriptional repressor proteins. These are subsequently ubiquitinated and degraded via the 26S proteasome, leading to derepression of auxin response factors (ARFs). How auxin is able to elicit such a diverse range of developmental responses through a single signaling module has not yet been resolved. Here we present an alternative auxin-sensing mechanism in which the ARF ARF3/ETTIN controls gene expression through interactions with process-specific transcription factors. This noncanonical hormone-sensing mechanism exhibits strong preference for the naturally occurring auxin indole 3-acetic acid (IAA) and is important for coordinating growth and patterning in diverse developmental contexts such as gynoecium morphogenesis, lateral root emergence, ovule development, and primary branch formation. Disrupting this IAA-sensing ability induces morphological aberrations with consequences for plant fitness. Therefore, our findings introduce a novel transcription factor-based mechanism of hormone perception in plants.
Collapse
Affiliation(s)
- Sara Simonini
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joyita Deb
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Laila Moubayidin
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Pauline Stephenson
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Manoj Valluru
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Alejandra Freire-Rios
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Karim Sorefan
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, the Netherlands
| | - Jiří Friml
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Lars Østergaard
- Department of Crop Genetics, John Innes Centre, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
70
|
Xie X, Qin G, Si P, Luo Z, Gao J, Chen X, Zhang J, Wei P, Xia Q, Lin F, Yang J. Analysis of Nicotiana tabacum PIN genes identifies NtPIN4 as a key regulator of axillary bud growth. PHYSIOLOGIA PLANTARUM 2017; 160:222-239. [PMID: 28128458 DOI: 10.1111/ppl.12547] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/23/2016] [Accepted: 01/18/2017] [Indexed: 06/06/2023]
Abstract
The plant-specific PIN-FORMED (PIN) auxin efflux proteins have been well characterized in many plant species, where they are crucial in the regulation of auxin transport in various aspects of plant development. However, little is known about the exact roles of the PIN genes during plant development in Nicotiana species. This study investigated the PIN genes in tobacco (Nicotiana tabacum) and in two ancestral species (Nicotiana sylvestris and Nicotiana tomentosiformis). Genome-wide analysis of the N. tabacum genome identified 20 genes of the PIN family. An in-depth phylogenetic analysis of the PIN genes of N. tabacum, N. sylvestris and N. tomentosiformis was conducted. NtPIN4 expression was strongly induced by the application of exogenous indole-3-acetic acid (IAA), but was downregulated by the application of ABA, a strigolactone analogue, and cytokinin, as well as by decapitation treatments, suggesting that the NtPIN4 expression level is likely positively regulated by auxin. Expression analysis indicated that NtPIN4 was highly expressed in tobacco stems and shoots, which was further validated through analysis of the activity of the NtPIN4 promoter. We used CRISPR-Cas9 technology to generate mutants for NtPIN4 and observed that both T0 and T1 plants had a significantly increased axillary bud growth phenotype, as compared with the wild-type plants. Therefore, NtPIN4 offers an opportunity for studying auxin-dependent branching processes.
Collapse
Affiliation(s)
- Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Guangyong Qin
- College of Physical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Ping Si
- Centre for Plant Genetics and Breeding, School of Plant Biology, The University of Western Australia, Crawley, 6009, Australia
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Junping Gao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Xia Chen
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jianfeng Zhang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pan Wei
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, 400715, China
| | - Fucheng Lin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| |
Collapse
|
71
|
Thapa S, Stewart BA, Xue Q, Chen Y. Manipulating plant geometry to improve microclimate, grain yield, and harvest index in grain sorghum. PLoS One 2017; 12:e0173511. [PMID: 28264051 PMCID: PMC5338834 DOI: 10.1371/journal.pone.0173511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 02/21/2017] [Indexed: 11/19/2022] Open
Abstract
Cultivar selection, planting geometry, and plant population are the key factors determining grain sorghum yields in water deficit areas. The objective of this study was to investigate whether clump geometry (three plants clustered) improves microclimate within crop canopy when plants are grown under varying water levels. In a 2-yr sorghum (Sorghum bicolor L. Moench) greenhouse study, plants were grown at two geometries (clump and conventional evenly spaced planting, ESP), two water levels (high and low, representing well-watered and water-limited condition, respectively), and three soil surface treatments (lid covered, straw-mulched, and bare). Air temperature and relative humidity (RH) within the plant canopy were measured every five minutes at different growth stages. Mean vapor pressure deficits (VPDs) within the clumps were consistently lower than those for ESPs, indicating that clumps improved the microclimate. Clumps had significantly higher harvest index (HI) compared to ESPs (0.48 vs. 0.43), which was largely due to clumps having an average of 0.4 tillers per plant compared to 1.2 tillers per plant for ESPs. Grain yield in the current study was similar between clumps and ESPs. However, our results suggest that improved microclimate was likely a reason for clumps producing significantly higher grain yields compared to ESPs in previous studies.
Collapse
Affiliation(s)
- Sushil Thapa
- Dryland Agriculture Institute, West Texas A&M University, Canyon, TX, United States of America
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States of America
- * E-mail:
| | - Bob A. Stewart
- Dryland Agriculture Institute, West Texas A&M University, Canyon, TX, United States of America
| | - Qingwu Xue
- Texas A&M AgriLife Research and Extension Center, Amarillo, TX, United States of America
| | - Yuanquan Chen
- College of Agronomy, China Agricultural University, Beijing, China
| |
Collapse
|
72
|
Song C, Zhang D, Zheng L, Zhang J, Zhang B, Luo W, Li Y, Li G, Ma J, Han M. miRNA and Degradome Sequencing Reveal miRNA and Their Target Genes That May Mediate Shoot Growth in Spur Type Mutant "Yanfu 6". FRONTIERS IN PLANT SCIENCE 2017; 8:441. [PMID: 28424721 PMCID: PMC5371658 DOI: 10.3389/fpls.2017.00441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/14/2017] [Indexed: 05/22/2023]
Abstract
The spur-type growth habit in apple trees is characterized by short internodes, increased number of fruiting spurs, and compact growth that promotes flowering and facilitates management practices, such as pruning. The molecular mechanisms responsible for regulating spur-type growth have not been elucidated. In the present study, miRNAs and the expression of their potential target genes were evaluated in shoot tips of "Nagafu 2" (CF) and spur-type bud mutation "Yanfu 6" (YF). A total of 700 mature miRNAs were identified, including 202 known apple miRNAs and 498 potential novel miRNA candidates. A comparison of miRNA expression in CF and YF revealed 135 differentially expressed genes, most of which were downregulated in YF. YF also had lower levels of GA, ZR, IAA, and ABA hormones, relative to CF. Exogenous applications of GA promoted YF shoot growth. Based on the obtained results, a regulatory network involving plant hormones, miRNA, and their potential target genes is proposed for the molecular mechanism regulating the growth of YF. miRNA164, miRNA166, miRNA171, and their potential targets, and associated plant hormones, appear to regulate shoot apical meristem (SAM) growth. miRNA159, miRNA167, miRNA396, and their potential targets, and associated plant hormones appear to regulate cell division and internode length. This study provides a foundation for further studies designed to elucidate the mechanism underlying spur-type apple architecture.
Collapse
Affiliation(s)
- Chunhui Song
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Dong Zhang
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Liwei Zheng
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Jie Zhang
- Tongchuan Fruit Tree Experiment StationTongchuan, China
| | - Baojuan Zhang
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Wenwen Luo
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Youmei Li
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Guangfang Li
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Juanjuan Ma
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
| | - Mingyu Han
- College of Horticulture, Yangling Subsidiary Center Project of National Apple Improvement Center, Collaborative Innovation Center of Shaanxi Fruit Industry Development, Northwest A&F UniversityYangling, China
- *Correspondence: Mingyu Han
| |
Collapse
|
73
|
Jásik J, Bokor B, Stuchlík S, Mičieta K, Turňa J, Schmelzer E. Effects of Auxins on PIN-FORMED2 (PIN2) Dynamics Are Not Mediated by Inhibiting PIN2 Endocytosis. PLANT PHYSIOLOGY 2016; 172:1019-1031. [PMID: 27506239 PMCID: PMC5047079 DOI: 10.1104/pp.16.00563] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/04/2016] [Indexed: 05/20/2023]
Abstract
By using the photoconvertible fluorescence protein Dendra2 as a tag we demonstrated that neither the naturally occurring auxins indole-3-acetic acid and indole-3-butyric acid, nor the synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid nor compounds inhibiting polar auxin transport such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid, were able to inhibit endocytosis of the putative auxin transporter PIN-FORMED2 (PIN2) in Arabidopsis (Arabidopsis thaliana) root epidermis cells. All compounds, except Indole-3-butyric acid, repressed the recovery of the PIN2-Dendra2 plasma membrane pool after photoconversion when they were used in high concentrations. The synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid showed the strongest inhibition. Auxins and auxin transport inhibitors suppressed also the accumulation of both newly synthesized and endocytotic PIN2 pools in Brefeldin A compartments (BFACs). Furthermore, we demonstrated that all compounds are also interfering with BFAC formation. The synthetic auxin analogs caused the highest reduction in the number and size of BFACs. We concluded that auxins and inhibitors of auxin transport do affect PIN2 turnover in the cells, but it is through the synthetic rather than the endocytotic pathway. The study also confirmed inappropriateness of the BFA-based approach to study PIN2 endocytosis because the majority of PIN2 accumulating in BFACs is newly synthesized and not derived from the plasma membrane.
Collapse
Affiliation(s)
- Ján Jásik
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| | - Boris Bokor
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| | - Stanislav Stuchlík
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| | - Karol Mičieta
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| | - Ján Turňa
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| | - Elmon Schmelzer
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia (J.J., B.B., S.S., K.M., J.T.); Institute of Botany, Slovak Academy of Sciences, 845 23 Bratislava (J.J.); Department of Molecular Biology, Comenius University, Faculty of Natural Sciences, Mlynská dolina, 842 15 Bratislava, Slovakia (S.S., J.T.); Department of Botany, Faculty of Natural Sciences, Comenius University, 811 02 Bratislava, Slovakia (K.M.); and Central Microscopy, Max Planck Institute for Plant Breeding Research, 508 29 Cologne, Germany (E.S.)
| |
Collapse
|
74
|
Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES. Genome‐wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Well‐Watered Conditions in Sub‐Saharan Africa. CROP SCIENCE 2016; 56:2365-2378. [PMID: 0 DOI: 10.2135/cropsci2015.10.0632] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Jason G. Wallace
- Dep. of Crop and Soil Sciences The Univ. of Georgia Athens GA 30602‐6810
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT) Apdo. Postal 6‐641 06600 Mexico, DF Mexico
| | - Yoseph Beyene
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | - Kassa Semagn
- Dep. of Agricultural, Food and Nutritional Science Univ. of Alberta Edmonton Canada
| | - Michael Olsen
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | | | - Edward S. Buckler
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
- USDA – Agricultural Research Service Ithaca NY 14853
| |
Collapse
|
75
|
Sornay E, Dewitte W, Murray JAH. Seed size plasticity in response to embryonic lethality conferred by ectopic CYCD activation is dependent on plant architecture. PLANT SIGNALING & BEHAVIOR 2016; 11:e1192741. [PMID: 27286190 PMCID: PMC4991333 DOI: 10.1080/15592324.2016.1192741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The size of seeds is the result of cell proliferation and growth in the three seed compartments: the embryo, endosperm and integuments. Targeting expression of the D-type cyclin CYCD7;1 to the central cell and early endosperm (FWA:CYCD7;1) triggered nuclear divisions and partial ovule abortion, reducing seed number in each silique and leading to increased seed size. A similar effect on seed size was observed with other segregating embryo lethal mutations, suggesting caution is needed in interpreting apparent seed size phenotypes. Here, we show that the positive effect of FWA:CYCD7;1 on Arabidopsis seed size is modulated by the architecture of the mother plant. Larger seeds were produced in FWA:CYCD7;1 lines with unmodified inflorescences, and also upon removal of side branches and axillary stems. This phenotype was absent from inflorescences with increased axillary floral stems produced by pruning of the main stem. Given this apparent confounding influence of resource allocation on transgenes effect, we conclude that plant architecture is a further important factor to consider in appraising seed phenotypes.
Collapse
Affiliation(s)
- E. Sornay
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - W. Dewitte
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
| | - J. A. H. Murray
- Cardiff School Biosciences, Cardiff University, Cardiff, Wales, UK
- CONTACT E. Sornay J.A.H. Murray Cardiff School of Biosciences, Sir Martin Evasn Building, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| |
Collapse
|
76
|
Harrop TWR, Ud Din I, Gregis V, Osnato M, Jouannic S, Adam H, Kater MM. Gene expression profiling of reproductive meristem types in early rice inflorescences by laser microdissection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 86:75-88. [PMID: 26932536 DOI: 10.1111/tpj.13147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 05/05/2023]
Abstract
In rice, inflorescence architecture is established at early stages of reproductive development and contributes directly to grain yield potential. After induction of flowering, the complexity of branching, and therefore the number of seeds on the panicle, is determined by the activity of different meristem types and the timing of transitions between them. Although some of the genes involved in these transitions have been identified, an understanding of the network of transcriptional regulators controlling this process is lacking. To address this we used a precise laser microdissection and RNA-sequencing approach in Oryza sativa ssp. japonica cv. Nipponbare to produce quantitative data that describe the landscape of gene expression in four different meristem types: the rachis meristem, the primary branch meristem, the elongating primary branch meristem (including axillary meristems), and the spikelet meristem. A switch in expression profile between apical and axillary meristem types followed by more gradual changes during transitions in axillary meristem identity was observed, and several genes potentially involved in branching were identified. This resource will be vital for a mechanistic understanding of the link between inflorescence development and grain yield.
Collapse
Affiliation(s)
- Thomas W R Harrop
- Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Israr Ud Din
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Veronica Gregis
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Michela Osnato
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Stefan Jouannic
- Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Hélène Adam
- Institut de Recherche pour le Développement, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier, France
| | - Martin M Kater
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| |
Collapse
|
77
|
Wang L, Wang Y, Cao H, Hao X, Zeng J, Yang Y, Wang X. Transcriptome Analysis of an Anthracnose-Resistant Tea Plant Cultivar Reveals Genes Associated with Resistance to Colletotrichum camelliae. PLoS One 2016; 11:e0148535. [PMID: 26849553 PMCID: PMC4743920 DOI: 10.1371/journal.pone.0148535] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/20/2016] [Indexed: 11/28/2022] Open
Abstract
Tea plant breeding is a topic of great economic importance. However, disease remains a major cause of yield and quality losses. In this study, an anthracnose-resistant cultivar, ZC108, was developed. An infection assay revealed different responses to Colletotrichum sp. infection between ZC108 and its parent cultivar LJ43. ZC108 had greater resistance than LJ43 to Colletotrichum camelliae. Additionally, ZC108 exhibited earlier sprouting in the spring, as well as different leaf shape and plant architecture. Microarray data revealed that the genes that are differentially expressed between LJ43 and ZC108 mapped to secondary metabolism-related pathways, including phenylpropanoid biosynthesis, phenylalanine metabolism, and flavonoid biosynthesis pathways. In addition, genes involved in plant hormone biosynthesis and signaling as well as plant-pathogen interaction pathways were also changed. Quantitative real-time PCR was used to examine the expression of 27 selected genes in infected and uninfected tea plant leaves. Genes encoding a MADS-box transcription factor, NBS-LRR disease-resistance protein, and phenylpropanoid metabolism pathway components (CAD, CCR, POD, beta-glucosidase, ALDH and PAL) were among those differentially expressed in ZC108.
Collapse
Affiliation(s)
- Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Northwest Agriculture and Forestry University, Yangling, 712100, Shaanxi, China
| | - Hongli Cao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- * E-mail: (YJY); (XCW)
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- * E-mail: (YJY); (XCW)
| |
Collapse
|
78
|
Chai C, Subudhi PK. Comprehensive Analysis and Expression Profiling of the OsLAX and OsABCB Auxin Transporter Gene Families in Rice (Oryza sativa) under Phytohormone Stimuli and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:593. [PMID: 27200061 PMCID: PMC4853607 DOI: 10.3389/fpls.2016.00593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/18/2016] [Indexed: 05/20/2023]
Abstract
The plant hormone auxin regulates many aspects of plant growth and developmental processes. Auxin gradient is formed in plant as a result of polar auxin transportation by three types of auxin transporters such as OsLAX, OsPIN, and OsABCB. We report here the analysis of two rice auxin transporter gene families, OsLAX and OsABCB, using bioinformatics tools, publicly accessible microarray data, and quantitative RT-PCR. There are 5 putative OsLAXs and 22 putative OsABCBs in rice genome, which were mapped on 8 chromosomes. The exon-intron structure of OsLAX genes and properties of deduced proteins were relatively conserved within grass family, while that of OsABCB genes varied greatly. Both constitutive and organ/tissue specific expression patterns were observed in OsLAXs and OsABCBs. Analysis of evolutionarily closely related "gene pairs" together with organ/tissue specific expression revealed possible "function gaining" and "function losing" events during rice evolution. Most OsLAX and OsABCB genes were regulated by drought and salt stress, as well as hormonal stimuli [auxin and Abscisic Acid (ABA)], which suggests extensive crosstalk between abiotic stresses and hormone signaling pathways. The existence of large number of auxin and stress related cis-regulatory elements in promoter regions might account for their massive responsiveness of these genes to these environmental stimuli, indicating complexity of regulatory networks involved in various developmental and physiological processes. The comprehensive analysis of OsLAX and OsABCB auxin transporter genes in this study would be helpful for understanding the biological significance of these gene families in hormone signaling and adaptation of rice plants to unfavorable environments.
Collapse
|
79
|
Huang Z, Duan W, Song X, Tang J, Wu P, Zhang B, Hou X. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families in Brassica Rapa Shed Light on Their Evolution Patterns in Plants. Genome Biol Evol 2015; 8:302-16. [PMID: 26721260 PMCID: PMC4779605 DOI: 10.1093/gbe/evv259] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Auxin/indole acetic acids (Aux/IAAs) and auxin response factors (ARFs), major components of the Aux signaling network, are involved in many developmental processes in plants. Investigating their evolution will provide new sight on the relationship between the molecular evolution of these genes and the increasing morphotypes of plants. We constructed comparative analyses of the retention, structure, expansion, and expression patterns of Aux/IAAs and ARFs in Brassica rapa and their evolution in eight other plant species, including algae, bryophytes, lycophytes, and angiosperms. All 33 of the ARFs, including 1 ARF-like (AL) (a type of ARF-like protein) and 53 Aux/IAAs, were identified in the B. rapa genome. The genes mainly diverged approximately 13 Ma. After the split, no Aux/IAA was completely lost, and they were more preferentially retained than ARFs. In land plants, compared with ARFs, which increased in stability, Aux/IAAs expanded more rapidly and were under more relaxed selective pressure. Moreover, BraIAAs were expressed in a more tissue-specific fashion than BraARFs and demonstrated functional diversification during gene duplication under different treatments, which enhanced the cooperative interaction of homologs to help plants adapt to complex environments. In addition, ALs existed widely and had a closer relationship with ARFs, suggesting that ALs might be the initial structure of ARFs. Our results suggest that the rapid expansion and preferential retention of Aux/IAAs are likely paralleled by the increasingly complex morphotypes in Brassicas and even in land plants. Meanwhile, the data support the hypothesis that the PB1 domain plays a key role in the origin of both Aux/IAAs and ARFs.
Collapse
Affiliation(s)
- Zhinan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| | - Xiaoming Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China Center of Genomics and Computational Biology, College of Life Sciences, North China University of Science and Technology, Tangshan, Hebei, China
| | - Jun Tang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| | - Peng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| | - Bei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture of Nanjing Agricultural University, Nanjing, P.R. China
| |
Collapse
|
80
|
Gao F, Wang K, Liu Y, Chen Y, Chen P, Shi Z, Luo J, Jiang D, Fan F, Zhu Y, Li S. Blocking miR396 increases rice yield by shaping inflorescence architecture. NATURE PLANTS 2015; 2:15196. [PMID: 27250748 DOI: 10.1038/nplants.2015.196] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/03/2015] [Indexed: 05/22/2023]
Abstract
Strategies to increase rice productivity to meet the global demand have been the main concern of breeders around the world. Although a growing number of functional genes related to crop yield have been characterized, our understanding of its associated regulatory pathways is limited. Using rice as a model, we find that blocking miR396 greatly increases grain yield by modulating development of auxiliary branches and spikelets through direct induction of the growth regulating factor 6 (OsGRF6) gene. The upregulation of OsGRF6 results in the coordinated activation of several immediate downstream biological clades, including auxin (IAA) biosynthesis, auxin response factors, and branch and spikelet development-related transcription factors. This study describes a conserved microRNA (miRNA)-dependent regulatory module that integrates inflorescence development, auxin biosynthesis and signalling pathways, and could potentially be used in engineering high-yield crop plants.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Pian Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Zhenying Shi
- Institute of Plant Physiology &Ecology, SIBS, CAS
| | - Jie Luo
- National Key Laboratory of Genetic Crop Improvement, Huazhong Agriculture University, Wuhan 430070, China
| | - Daqing Jiang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Science, Wuhan University, Wuhan 430072, China
| |
Collapse
|
81
|
Timm CM, Campbell AG, Utturkar SM, Jun SR, Parales RE, Tan WA, Robeson MS, Lu TYS, Jawdy S, Brown SD, Ussery DW, Schadt CW, Tuskan GA, Doktycz MJ, Weston DJ, Pelletier DA. Metabolic functions of Pseudomonas fluorescens strains from Populus deltoides depend on rhizosphere or endosphere isolation compartment. Front Microbiol 2015; 6:1118. [PMID: 26528266 PMCID: PMC4604316 DOI: 10.3389/fmicb.2015.01118] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022] Open
Abstract
The bacterial microbiota of plants is diverse, with 1000s of operational taxonomic units (OTUs) associated with any individual plant. In this work, we used phenotypic analysis, comparative genomics, and metabolic models to investigate the differences between 19 sequenced Pseudomonas fluorescens strains. These isolates represent a single OTU and were collected from the rhizosphere and endosphere of Populus deltoides. While no traits were exclusive to either endosphere or rhizosphere P. fluorescens isolates, multiple pathways relevant for plant-bacterial interactions are enriched in endosphere isolate genomes. Further, growth phenotypes such as phosphate solubilization, protease activity, denitrification and root growth promotion are biased toward endosphere isolates. Endosphere isolates have significantly more metabolic pathways for plant signaling compounds and an increased metabolic range that includes utilization of energy rich nucleotides and sugars, consistent with endosphere colonization. Rhizosphere P. fluorescens have fewer pathways representative of plant-bacterial interactions but show metabolic bias toward chemical substrates often found in root exudates. This work reveals the diverse functions that may contribute to colonization of the endosphere by bacteria and are enriched among closely related isolates.
Collapse
Affiliation(s)
- Collin M Timm
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Alisha G Campbell
- Department of Natural Sciences, Northwest Missouri State University Maryville, MO, USA
| | - Sagar M Utturkar
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA ; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville Knoxville, TN, USA
| | - Se-Ran Jun
- Joint Institute for Computational Sciences, University of Tennessee, Knoxville Knoxville, TN, USA
| | - Rebecca E Parales
- Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| | - Watumesa A Tan
- Microbiology and Molecular Genetics, University of California, Davis Davis, CA, USA
| | - Michael S Robeson
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA ; Fish, Wildlife and Conservation Biology, Colorado State University Fort Collins, CO, USA
| | - Tse-Yuan S Lu
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Sara Jawdy
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Steven D Brown
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA ; Graduate School of Genome Science and Technology, University of Tennessee, Knoxville Knoxville, TN, USA
| | - David W Ussery
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Christopher W Schadt
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA ; Department of Microbiology, University of Tennessee, Knoxville Knoxville, TN, USA
| | - Gerald A Tuskan
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Mitchel J Doktycz
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - David J Weston
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| | - Dale A Pelletier
- Biosciences Division, Oak Ridge National Laboratory Oak Ridge, TN, USA
| |
Collapse
|
82
|
Lu G, Coneva V, Casaretto JA, Ying S, Mahmood K, Liu F, Nambara E, Bi YM, Rothstein SJ. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:913-925. [PMID: 26213119 DOI: 10.1111/tpj.12939] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 07/01/2015] [Accepted: 07/08/2015] [Indexed: 05/21/2023]
Abstract
Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits.
Collapse
Affiliation(s)
- Guangwen Lu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Viktoriya Coneva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - José A Casaretto
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Shan Ying
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Kashif Mahmood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Fang Liu
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Eiji Nambara
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Yong-Mei Bi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
83
|
Zhao L, Tan L, Zhu Z, Xiao L, Xie D, Sun C. PAY1 improves plant architecture and enhances grain yield in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:528-36. [PMID: 26095647 PMCID: PMC4758413 DOI: 10.1111/tpj.12905] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Accepted: 06/03/2015] [Indexed: 05/02/2023]
Abstract
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over-expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole-3-acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker-assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high-yielding rice varieties.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Lubin Tan
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zuofeng Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Daoxin Xie
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuanqing Sun
- State Key Laboratory of Plant Physiology and Biochemistry, National Center for Evaluation of Agricultural Wild Plants (Rice), Beijing Key Laboratory of Crop Genetic Improvement, Department of Plant Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
84
|
Šiukšta R, Vaitkūnienė V, Kaselytė G, Okockytė V, Žukauskaitė J, Žvingila D, Rančelis V. Inherited phenotype instability of inflorescence and floral organ development in homeotic barley double mutants and its specific modification by auxin inhibitors and 2,4-D. ANNALS OF BOTANY 2015; 115:651-63. [PMID: 25660346 PMCID: PMC4343296 DOI: 10.1093/aob/mcu263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Barley (Hordeum vulgare) double mutants Hv-Hd/tw2, formed by hybridization, are characterized by inherited phenotypic instability and by several new features, such as bract/leaf-like structures, long naked gaps in the spike, and a wide spectrum of variations in the basic and ectopic flowers, which are absent in single mutants. Several of these features resemble those of mutations in auxin distribution, and thus the aim of this study was to determine whether auxin imbalances are related to phenotypic variations and instability. The effects of auxin inhibitors and 2,4-D (2,4-dichlorophenoxyacetic acid) on variation in basic and ectopic flowers were therefore examined, together with the effects of 2,4-D on spike structure. METHODS The character of phenotypic instability and the effects of auxin inhibitors and 2,4-D were compared in callus cultures and intact plants of single homeotic Hv-tw2 and Hv-Hooded/Kap (in the BKn3 gene) mutants and alternative double mutant lines: offspring from individual plants in distal hybrid generations (F9-F10) that all had the same BKn3 allele as determined by DNA sequencing. For intact plants, two auxin inhibitors, 9-hydroxyfluorene-9-carboxylic acid (HFCA) and p-chlorophenoxyisobutyric acid (PCIB), were used. KEY RESULTS Callus growth and flower/spike structures of the Hv-tw2 mutant differed in their responses to HFCA and PCIB. An increase in normal basic flowers after exposure to auxin inhibitors and a decrease in their frequencies caused by 2,4-D were observed, and there were also modifications in the spectra of ectopic flowers, especially those with sexual organs, but the effects depended on the genotype. Exposure to 2,4-D decreased the frequency of short gaps and lodicule transformations in Hv-tw2 and of long naked gaps in double mutants. CONCLUSIONS The effects of auxin inhibitors and 2,4-D suggest that ectopic auxin maxima or deficiencies arise in various regions of the inflorescence/flower primordia. Based on the phenotypic instability observed, definite trends in the development of ectopic flower structures may be detected, from insignificant outgrowths on awns to flowers with sterile organs. Phenotypically unstable barley double mutants provide a highly promising genetic system for the investigation of gene expression modules and trend orders.
Collapse
Affiliation(s)
- Raimondas Šiukšta
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Virginija Vaitkūnienė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Greta Kaselytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vaiva Okockytė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Justina Žukauskaitė
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Donatas Žvingila
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| | - Vytautas Rančelis
- Department of Botany and Genetics, Faculty of Natural Sciences, Vilnius University, M. K. Čiurlionis Str. 21/27, LT-03101 Vilnius, Lithuania and Botanical Garden of Vilnius University, Kairėnai Str. 43, LT-10239 Vilnius, Lithuania
| |
Collapse
|
85
|
Kruszka K, Pacak A, Swida-Barteczka A, Nuc P, Alaba S, Wroblewska Z, Karlowski W, Jarmolowski A, Szweykowska-Kulinska Z. Transcriptionally and post-transcriptionally regulated microRNAs in heat stress response in barley. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6123-35. [PMID: 25183744 PMCID: PMC4203144 DOI: 10.1093/jxb/eru353] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Heat stress is one of the major abiotic factors that can induce severe plant damage, leading to a decrease in crop plant productivity. Despite barley being a cereal of great economic importance, few data are available concerning its thermotolerance mechanisms. In this work microRNAs (miRNAs) involved in heat stress response in barley were investigated. The level of selected barley mature miRNAs was examined by hybridization. Quantitative real-time PCR (RT-qPCR) was used to monitor the changes in the expression profiles of primary miRNA (pri-miRNA) precursors, as well as novel and conserved target genes during heat stress. The miRNA-mediated cleavage sites in the target transcripts were confirmed by degradome analysis and the 5' RACE (rapid amplification of cDNA ends) approach. Four barley miRNAs (miR160a, 166a, 167h, and 5175a) were found which are heat stress up-regulated at the level of both mature miRNAs and precursor pri-miRNAs. Moreover, the splicing of introns hosting miR160a and miR5175a is also heat induced. The results demonstrate transcriptional and post-transcriptional regulation of heat-responsive miRNAs in barley. The observed induction of miRNA expression is correlated with the down-regulation of the expression level of their experimentally identified new and conservative target genes.
Collapse
Affiliation(s)
- Katarzyna Kruszka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Andrzej Pacak
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Aleksandra Swida-Barteczka
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Przemyslaw Nuc
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Sylwia Alaba
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Zuzanna Wroblewska
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Wojciech Karlowski
- Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Artur Jarmolowski
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| | - Zofia Szweykowska-Kulinska
- Department of Gene Expression, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznan, Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
86
|
Balzan S, Johal GS, Carraro N. The role of auxin transporters in monocots development. FRONTIERS IN PLANT SCIENCE 2014; 5:393. [PMID: 25177324 PMCID: PMC4133927 DOI: 10.3389/fpls.2014.00393] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 07/23/2014] [Indexed: 05/04/2023]
Abstract
Auxin is a key regulator of plant growth and development, orchestrating cell division, elongation and differentiation, embryonic development, root and stem tropisms, apical dominance, and transition to flowering. Auxin levels are higher in undifferentiated cell populations and decrease following organ initiation and tissue differentiation. This differential auxin distribution is achieved by polar auxin transport (PAT) mediated by auxin transport proteins. There are four major families of auxin transporters in plants: PIN-FORMED (PIN), ATP-binding cassette family B (ABCB), AUXIN1/LIKE-AUX1s, and PIN-LIKES. These families include proteins located at the plasma membrane or at the endoplasmic reticulum (ER), which participate in auxin influx, efflux or both, from the apoplast into the cell or from the cytosol into the ER compartment. Auxin transporters have been largely studied in the dicotyledon model species Arabidopsis, but there is increasing evidence of their role in auxin regulated development in monocotyledon species. In monocots, families of auxin transporters are enlarged and often include duplicated genes and proteins with high sequence similarity. Some of these proteins underwent sub- and neo-functionalization with substantial modification to their structure and expression in organs such as adventitious roots, panicles, tassels, and ears. Most of the present information on monocot auxin transporters function derives from studies conducted in rice, maize, sorghum, and Brachypodium, using pharmacological applications (PAT inhibitors) or down-/up-regulation (over-expression and RNA interference) of candidate genes. Gene expression studies and comparison of predicted protein structures have also increased our knowledge of the role of PAT in monocots. However, knockout mutants and functional characterization of single genes are still scarce and the future availability of such resources will prove crucial to elucidate the role of auxin transporters in monocots development.
Collapse
Affiliation(s)
- Sara Balzan
- Department of Agronomy, Animals, Food, Natural Resources and Environment, Agripolis, University of PadovaPadova, Italy
| | - Gurmukh S. Johal
- Department of Botany and Plant Pathology, Purdue UniversityWest Lafayette, IN, USA
| | - Nicola Carraro
- Department of Agronomy, Purdue UniversityWest Lafayette, IN, USA
| |
Collapse
|
87
|
Abstract
The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6−9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions.
Collapse
|