51
|
Zhang Y, Dong Q, Wang Z, Liu Q, Yu H, Sun W, Cheema J, You Q, Ding L, Cao X, He C, Ding Y, Zhang H. A fine-scale Arabidopsis chromatin landscape reveals chromatin conformation-associated transcriptional dynamics. Nat Commun 2024; 15:3253. [PMID: 38627396 PMCID: PMC11021422 DOI: 10.1038/s41467-024-47678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Plants, as sessile organisms, deploy transcriptional dynamics for adapting to extreme growth conditions such as cold stress. Emerging evidence suggests that chromatin architecture contributes to transcriptional regulation. However, the relationship between chromatin architectural dynamics and transcriptional reprogramming in response to cold stress remains unclear. Here, we apply a chemical-crosslinking assisted proximity capture (CAP-C) method to elucidate the fine-scale chromatin landscape, revealing chromatin interactions within gene bodies closely associated with RNA polymerase II (Pol II) densities across initiation, pausing, and termination sites. We observe dynamic changes in chromatin interactions alongside Pol II activity alterations during cold stress, suggesting local chromatin dynamics may regulate Pol II activity. Notably, cold stress does not affect large-scale chromatin conformations. We further identify a comprehensive promoter-promoter interaction (PPI) network across the genome, potentially facilitating co-regulation of gene expression in response to cold stress. Our study deepens the understanding of chromatin conformation-associated gene regulation in plant response to cold.
Collapse
Affiliation(s)
- Yueying Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhen Wang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Qinzhe Liu
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Haopeng Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Wenqing Sun
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jitender Cheema
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Qiancheng You
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Ling Ding
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chuan He
- Howard Hughes Medical Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Huakun Zhang
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
52
|
Bai F, Shu P, Deng H, Wu Y, Chen Y, Wu M, Ma T, Zhang Y, Pirrello J, Li Z, Hong Y, Bouzayen M, Liu M. A distal enhancer guides the negative selection of toxic glycoalkaloids during tomato domestication. Nat Commun 2024; 15:2894. [PMID: 38570494 PMCID: PMC10991328 DOI: 10.1038/s41467-024-47292-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Steroidal glycoalkaloids (SGAs) are major plant defense metabolites against pests, while they are considered poisonous in food. The genetic basis that guides negative selection of SGAs production during tomato domestication remains poorly understood. Here, we identify a distal enhancer, GAME Enhancer 1 (GE1), as the key regulator of SGAs metabolism in tomato. GE1 recruits MYC2-GAME9 transcriptional complex to regulate the expression of GAME cluster genes via the formation of chromatin loops located in the neighboring DNA region. A naturally occurring GE176 allelic variant is found to be more active in stimulating GAME expression. We show that the weaker GE1 allele has been the main driver for selecting reduced SGAs levels during tomato domestication. Unravelling the "TFs-Enhancer-Promoter" regulatory mechanism operating in SGAs metabolism opens unprecedented prospects for SGAs manipulation in Solanaceae via precision breeding strategies.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Mondher Bouzayen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France.
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
53
|
Hintermann A, Bolt CC, Hawkins MB, Valentin G, Lopez-Delisle L, Gitto S, Gómez PB, Mascrez B, Mansour TA, Nakamura T, Harris MP, Shubin NH, Duboule D. EVOLUTIONARY CO-OPTION OF AN ANCESTRAL CLOACAL REGULATORY LANDSCAPE DURING THE EMERGENCE OF DIGITS AND GENITALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586442. [PMID: 38585989 PMCID: PMC10996561 DOI: 10.1101/2024.03.24.586442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The transition from fins to limbs has been a rich source of discussion for more than a century. One open and important issue is understanding how the mechanisms that pattern digits arose during vertebrate evolution. In this context, the analysis of Hox gene expression and functions to infer evolutionary scenarios has been a productive approach to explain the changes in organ formation, particularly in limbs. In tetrapods, the transcription of Hoxd genes in developing digits depends on a well-characterized set of enhancers forming a large regulatory landscape1,2. This control system has a syntenic counterpart in zebrafish, even though they lack bona fide digits, suggestive of deep homology3 between distal fin and limb developmental mechanisms. We tested the global function of this landscape to assess ancestry and source of limb and fin variation. In contrast to results in mice, we show here that the deletion of the homologous control region in zebrafish has a limited effect on the transcription of hoxd genes during fin development. However, it fully abrogates hoxd expression within the developing cloaca, an ancestral structure related to the mammalian urogenital sinus. We show that similar to the limb, Hoxd gene function in the urogenital sinus of the mouse also depends on enhancers located in this same genomic domain. Thus, we conclude that the current regulation underlying Hoxd gene expression in distal limbs was co-opted in tetrapods from a preexisting cloacal program. The orthologous chromatin domain in fishes may illustrate a rudimentary or partial step in this evolutionary co-option.
Collapse
Affiliation(s)
- Aurélie Hintermann
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA, Department of Orthopedic Research, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Guillaume Valentin
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Paula Barrera Gómez
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA, Department of Orthopedic Research, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
- Center for Interdisciplinary Research in Biology CIRB, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
54
|
Ang DA, Carter JM, Deka K, Tan JHL, Zhou J, Chen Q, Chng WJ, Harmston N, Li Y. Aberrant non-canonical NF-κB signalling reprograms the epigenome landscape to drive oncogenic transcriptomes in multiple myeloma. Nat Commun 2024; 15:2513. [PMID: 38514625 PMCID: PMC10957915 DOI: 10.1038/s41467-024-46728-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 03/07/2024] [Indexed: 03/23/2024] Open
Abstract
In multiple myeloma, abnormal plasma cells establish oncogenic niches within the bone marrow by engaging the NF-κB pathway to nurture their survival while they accumulate pro-proliferative mutations. Under these conditions, many cases eventually develop genetic abnormalities endowing them with constitutive NF-κB activation. Here, we find that sustained NF-κB/p52 levels resulting from such mutations favours the recruitment of enhancers beyond the normal B-cell repertoire. Furthermore, through targeted disruption of p52, we characterise how such enhancers are complicit in the formation of super-enhancers and the establishment of cis-regulatory interactions with myeloma dependencies during constitutive activation of p52. Finally, we functionally validate the pathological impact of these cis-regulatory modules on cell and tumour phenotypes using in vitro and in vivo models, confirming RGS1 as a p52-dependent myeloma driver. We conclude that the divergent epigenomic reprogramming enforced by aberrant non-canonical NF-κB signalling potentiates transcriptional programs beneficial for multiple myeloma progression.
Collapse
Affiliation(s)
- Daniel A Ang
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jean-Michel Carter
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Kamalakshi Deka
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Joel H L Tan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Wee Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore
- NUS Centre for Cancer Research, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Singapore
- Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Nathan Harmston
- Division of Science, Yale-NUS College, Singapore, 138527, Singapore
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, CF10 3AX, UK
| | - Yinghui Li
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), 60 Nanyang Drive, Singapore, 637551, Singapore.
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| |
Collapse
|
55
|
Xu X, Khunsriraksakul C, Eales JM, Rubin S, Scannali D, Saluja S, Talavera D, Markus H, Wang L, Drzal M, Maan A, Lay AC, Prestes PR, Regan J, Diwadkar AR, Denniff M, Rempega G, Ryszawy J, Król R, Dormer JP, Szulinska M, Walczak M, Antczak A, Matías-García PR, Waldenberger M, Woolf AS, Keavney B, Zukowska-Szczechowska E, Wystrychowski W, Zywiec J, Bogdanski P, Danser AHJ, Samani NJ, Guzik TJ, Morris AP, Liu DJ, Charchar FJ, Tomaszewski M. Genetic imputation of kidney transcriptome, proteome and multi-omics illuminates new blood pressure and hypertension targets. Nat Commun 2024; 15:2359. [PMID: 38504097 PMCID: PMC10950894 DOI: 10.1038/s41467-024-46132-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation. Imputation of kidney proteome and microRNAome uncovered 97 renal proteins and 11 miRNAs associated with BP. Integration with plasma proteomics and metabolomics illuminated circulating levels of myo-inositol, 4-guanidinobutanoate and angiotensinogen as downstream effectors of several kidney BP genes (SLC5A11, AGMAT, AGT, respectively). We showed that genetically determined reduction in renal expression may mimic the effects of rare loss-of-function variants on kidney mRNA/protein and lead to an increase in BP (e.g., ENPEP). We demonstrated a strong correlation (r = 0.81) in expression of protein-coding genes between cells harvested from urine and the kidney highlighting a diagnostic potential of urinary cell transcriptomics. We uncovered adenylyl cyclase activators as a repurposing opportunity for hypertension and illustrated examples of BP-elevating effects of anticancer drugs (e.g. tubulin polymerisation inhibitors). Collectively, our studies provide new biological insights into genetic regulation of BP with potential to drive clinical translation in hypertension.
Collapse
Affiliation(s)
- Xiaoguang Xu
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | | | - James M Eales
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sebastien Rubin
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Scannali
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Sushant Saluja
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David Talavera
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Havell Markus
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Lida Wang
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Maciej Drzal
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Akhlaq Maan
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Abigail C Lay
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Priscilla R Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Jeniece Regan
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Avantika R Diwadkar
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Matthew Denniff
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Grzegorz Rempega
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Jakub Ryszawy
- Department of Urology, Medical University of Silesia, Katowice, Poland
| | - Robert Król
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - John P Dormer
- Department of Cellular Pathology, University Hospitals of Leicester, Leicester, UK
| | - Monika Szulinska
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Marta Walczak
- Department of Internal Diseases, Metabolic Disorders and Arterial Hypertension, Poznan University of Medical Sciences, Poznan, Poland
| | - Andrzej Antczak
- Department of Urology and Uro-oncology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Pamela R Matías-García
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Melanie Waldenberger
- Institute of Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- Research Unit Molecular Epidemiology, Helmholtz Center Munich, Neuherberg, Germany
- German Research Center for Cardiovascular Disease (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Royal Manchester Children's Hospital and Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Bernard Keavney
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK
| | | | - Wojciech Wystrychowski
- Department of General, Vascular and Transplant Surgery, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Joanna Zywiec
- Department of Internal Medicine, Diabetology and Nephrology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Pawel Bogdanski
- Department of Obesity, Metabolic Disorders Treatment and Clinical Dietetics, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - A H Jan Danser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Tomasz J Guzik
- Department of Internal Medicine, Jagiellonian University Medical College, Kraków, Poland
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Dajiang J Liu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, USA
| | - Fadi J Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
- Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust Manchester, Manchester Royal Infirmary, Manchester, UK.
| |
Collapse
|
56
|
Lusby R, Zhang Z, Mahesh A, Tiwari VK. Decoding gene regulatory circuitry underlying TNBC chemoresistance reveals biomarkers for therapy response and therapeutic targets. NPJ Precis Oncol 2024; 8:64. [PMID: 38472332 DOI: 10.1038/s41698-024-00529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.
Collapse
Affiliation(s)
- Ryan Lusby
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Ziyi Zhang
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
| | - Arun Mahesh
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark
| | - Vijay K Tiwari
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry & Biomedical Science, Queens University, Belfast, BT9 7BL, UK.
- Institute of Molecular Medicine, University of Southern Denmark, Odense M, Denmark.
- Patrick G. Johnston Centre for Cancer Research, Queen's University, Belfast, BT9 7AE, UK.
- Danish Institute for Advanced Study (DIAS), Odense M, Denmark.
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark.
| |
Collapse
|
57
|
Deng L, Pollmeier L, Bednarz R, Cao C, Laurette P, Wirth L, Mamazhakypov A, Bode C, Hein L, Gilsbach R, Lother A. Atlas of cardiac endothelial cell enhancer elements linking the mineralocorticoid receptor to pathological gene expression. SCIENCE ADVANCES 2024; 10:eadj5101. [PMID: 38446896 PMCID: PMC10917356 DOI: 10.1126/sciadv.adj5101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/31/2024] [Indexed: 03/08/2024]
Abstract
Endothelial cells play crucial roles in physiology and are increasingly recognized as therapeutic targets in cardiovascular disease. Here, we analyzed the regulatory landscape of cardiac endothelial cells by assessing chromatin accessibility, histone modifications, and 3D chromatin organization and confirmed the functional relevance of enhancer-promoter interactions by CRISPRi-mediated enhancer silencing. We used this dataset to explore mechanisms of transcriptional regulation in cardiovascular disease and compared six different experimental models of heart failure, hypertension, or diabetes. Enhancers that regulate gene expression in diseased endothelial cells were enriched with binding sites for a distinct set of transcription factors, including the mineralocorticoid receptor (MR), a known drug target in heart failure and hypertension. For proof of concept, we applied endothelial cell-specific MR deletion in mice to confirm MR-dependent gene expression and predicted direct MR target genes. Overall, we have compiled here a comprehensive atlas of cardiac endothelial cell enhancer elements that provides insight into the role of transcription factors in cardiovascular disease.
Collapse
Affiliation(s)
- Lisa Deng
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Cardiovascular Research Track, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Luisa Pollmeier
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rebecca Bednarz
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Can Cao
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Patrick Laurette
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Luisa Wirth
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Argen Mamazhakypov
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christine Bode
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lutz Hein
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Ralf Gilsbach
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany
- DZHK (German Center of Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Achim Lother
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Interdisciplinary Medical Intensive Care, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
58
|
Pollex T, Marco-Ferreres R, Ciglar L, Ghavi-Helm Y, Rabinowitz A, Viales RR, Schaub C, Jankowski A, Girardot C, Furlong EEM. Chromatin gene-gene loops support the cross-regulation of genes with related function. Mol Cell 2024; 84:822-838.e8. [PMID: 38157845 DOI: 10.1016/j.molcel.2023.12.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/31/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Chromatin loops between gene pairs have been observed in diverse contexts in both flies and vertebrates. Combining high-resolution Capture-C, DNA fluorescence in situ hybridization, and genetic perturbations, we dissect the functional role of three loops between genes with related function during Drosophila embryogenesis. By mutating the loop anchor (but not the gene) or the gene (but not loop anchor), we disentangle loop formation and gene expression and show that the 3D proximity of paralogous gene loci supports their co-regulation. Breaking the loop leads to either an attenuation or enhancement of expression and perturbs their relative levels of expression and cross-regulation. Although many loops appear constitutive across embryogenesis, their function can change in different developmental contexts. Taken together, our results indicate that chromatin gene-gene loops act as architectural scaffolds that can be used in different ways in different contexts to fine-tune the coordinated expression of genes with related functions and sustain their cross-regulation.
Collapse
Affiliation(s)
- Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Raquel Marco-Ferreres
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lucia Ciglar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Yad Ghavi-Helm
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Adam Rabinowitz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | | | - Christoph Schaub
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Aleksander Jankowski
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany.
| |
Collapse
|
59
|
Oberbeckmann E, Quililan K, Cramer P, Oudelaar AM. In vitro reconstitution of chromatin domains shows a role for nucleosome positioning in 3D genome organization. Nat Genet 2024; 56:483-492. [PMID: 38291333 PMCID: PMC10937381 DOI: 10.1038/s41588-023-01649-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/15/2023] [Indexed: 02/01/2024]
Abstract
Eukaryotic genomes are organized into chromatin domains. The molecular mechanisms driving the formation of these domains are difficult to dissect in vivo and remain poorly understood. Here we reconstitute Saccharomyces cerevisiae chromatin in vitro and determine its 3D organization at subnucleosome resolution by micrococcal nuclease-based chromosome conformation capture and molecular dynamics simulations. We show that regularly spaced and phased nucleosome arrays form chromatin domains in vitro that resemble domains in vivo. This demonstrates that neither loop extrusion nor transcription is required for basic domain formation in yeast. In addition, we find that the boundaries of reconstituted domains correspond to nucleosome-free regions and that insulation strength scales with their width. Finally, we show that domain compaction depends on nucleosome linker length, with longer linkers forming more compact structures. Together, our results demonstrate that regular nucleosome positioning is important for the formation of chromatin domains and provide a proof-of-principle for bottom-up 3D genome studies.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany.
| | - Kimberly Quililan
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany
- The Francis Crick Institute, London, UK
| | - Patrick Cramer
- Max Planck Institute for Multidisciplinary Sciences, Department of Molecular Biology, Göttingen, Germany
| | - A Marieke Oudelaar
- Max Planck Institute for Multidisciplinary Sciences, Genome Organization and Regulation, Göttingen, Germany.
| |
Collapse
|
60
|
Marie P, Bazire M, Ladet J, Ameur LB, Chahar S, Fontrodona N, Sexton T, Auboeuf D, Bourgeois CF, Mortreux F. Gene-to-gene coordinated regulation of transcription and alternative splicing by 3D chromatin remodeling upon NF-κB activation. Nucleic Acids Res 2024; 52:1527-1543. [PMID: 38272542 PMCID: PMC10899780 DOI: 10.1093/nar/gkae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 12/13/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
The NF-κB protein p65/RelA plays a pivotal role in coordinating gene expression in response to diverse stimuli, including viral infections. At the chromatin level, p65/RelA regulates gene transcription and alternative splicing through promoter enrichment and genomic exon occupancy, respectively. The intricate ways in which p65/RelA simultaneously governs these functions across various genes remain to be fully elucidated. In this study, we employed the HTLV-1 Tax oncoprotein, a potent activator of NF-κB, to investigate its influence on the three-dimensional organization of the genome, a key factor in gene regulation. We discovered that Tax restructures the 3D genomic landscape, bringing together genes based on their regulation and splicing patterns. Notably, we found that the Tax-induced gene-gene contact between the two master genes NFKBIA and RELA is associated with their respective changes in gene expression and alternative splicing. Through dCas9-mediated approaches, we demonstrated that NFKBIA-RELA interaction is required for alternative splicing regulation and is caused by an intragenic enrichment of p65/RelA on RELA. Our findings shed light on new regulatory mechanisms upon HTLV-1 Tax and underscore the integral role of p65/RelA in coordinated regulation of NF-κB-responsive genes at both transcriptional and splicing levels in the context of the 3D genome.
Collapse
Affiliation(s)
- Paul Marie
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Matéo Bazire
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Julien Ladet
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Lamya Ben Ameur
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Sanjay Chahar
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Nicolas Fontrodona
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Tom Sexton
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 6704 Illkirch, France
| | - Didier Auboeuf
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Cyril F Bourgeois
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| | - Franck Mortreux
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d’Italie Site Jacques Monod, F-69007 Lyon, France
| |
Collapse
|
61
|
Kim YY, Gryder BE, Sinniah R, Peach ML, Shern JF, Abdelmaksoud A, Pomella S, Woldemichael GM, Stanton BZ, Milewski D, Barchi JJ, Schneekloth JS, Chari R, Kowalczyk JT, Shenoy SR, Evans JR, Song YK, Wang C, Wen X, Chou HC, Gangalapudi V, Esposito D, Jones J, Procter L, O'Neill M, Jenkins LM, Tarasova NI, Wei JS, McMahon JB, O'Keefe BR, Hawley RG, Khan J. KDM3B inhibitors disrupt the oncogenic activity of PAX3-FOXO1 in fusion-positive rhabdomyosarcoma. Nat Commun 2024; 15:1703. [PMID: 38402212 PMCID: PMC10894237 DOI: 10.1038/s41467-024-45902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/07/2024] [Indexed: 02/26/2024] Open
Abstract
Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.
Collapse
Affiliation(s)
| | - Berkley E Gryder
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | | | - Megan L Peach
- Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Silvia Pomella
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Girma M Woldemichael
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Benjamin Z Stanton
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Nationwide Children's Hospital, Center for Childhood Cancer Research, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Biological Chemistry & Pharmacology, The Ohio State University College of Medicine, Columbus, OH, USA
| | | | | | | | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, FNLCR, Frederick, MD, USA
| | | | - Shilpa R Shenoy
- Leidos Biomed Res Inc, FNLCR, Basic Sci Program, Frederick, MD, USA
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
| | - Jason R Evans
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | | | - Chaoyu Wang
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | - Xinyu Wen
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | | | | | - Jane Jones
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Lauren Procter
- Protein Expression Laboratory, FNLCR, NIH, Frederick, MD, USA
| | - Maura O'Neill
- Protein Characterization Laboratory, FNLCR, NIH, Frederick, MD, USA
| | | | | | - Jun S Wei
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Barry R O'Keefe
- Molecular Targets Program, NCI, NIH, Frederick, MD, USA
- Natural Products Branch, NCI, NIH, Frederick, MD, USA
| | - Robert G Hawley
- Genetics Branch, NCI, NIH, Bethesda, MD, USA
- Department of Anatomy and Cell Biology, George Washington University, Washington, DC, USA
| | - Javed Khan
- Genetics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
62
|
Torres DE, Kramer HM, Tracanna V, Fiorin GL, Cook DE, Seidl MF, Thomma BPHJ. Implications of the three-dimensional chromatin organization for genome evolution in a fungal plant pathogen. Nat Commun 2024; 15:1701. [PMID: 38402218 PMCID: PMC10894299 DOI: 10.1038/s41467-024-45884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/05/2024] [Indexed: 02/26/2024] Open
Abstract
The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.
Collapse
Affiliation(s)
- David E Torres
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - H Martin Kramer
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Vittorio Tracanna
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany
| | - Gabriel L Fiorin
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - David E Cook
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Manhattan, KS, USA
| | - Michael F Seidl
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Utrecht, The Netherlands.
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- University of Cologne, Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), Cologne, Germany.
| |
Collapse
|
63
|
Xing M, Xiong Y, Zhang Y. Ku80 is indispensable for repairing DNA double-strand breaks at highly methylated sites in human HCT116 cells. DNA Repair (Amst) 2024; 134:103627. [PMID: 38219597 DOI: 10.1016/j.dnarep.2024.103627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
DNA double-strand breaks (DSBs) are harmful to mammalian cells and a few of them can cause cell death. Accumulating DSBs in these cells to analyze their genomic distribution and their potential impact on chromatin structure is difficult. In this study, we used CRISPR to generate Ku80-/- human cells and arrested the cells in G1 phase to accumulate DSBs before conducting END-seq and Nanopore analysis. Our analysis revealed that DNA with high methylation level accumulates DSB hotspots in Ku80-/- human cells. Furthermore, we identified chromosome structural variants (SVs) using Nanopore sequencing and observed a higher number of SVs in Ku80-/- human cells. Based on our findings, we suggest that the high efficiency of Ku80 knockout in human HCT116 cells makes it a promising model for characterizing SVs in the context of 3D chromatin structure and studying the alternative-end joining (Alt-EJ) DSB repair pathway.
Collapse
Affiliation(s)
- Mengtan Xing
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanhong Xiong
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yong Zhang
- Institute for Regenerative Medicine, Department of Neurosurgery, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
64
|
Wu Z, Miedzinska K, Krause JS, Pérez JH, Wingfield JC, Meddle SL, Smith J. A chromosome-level genome assembly of a free-living white-crowned sparrow (Zonotrichia leucophrys gambelii). Sci Data 2024; 11:86. [PMID: 38238322 PMCID: PMC10796373 DOI: 10.1038/s41597-024-02929-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
The white-crowned sparrow, Zonotrichia leucophrys, is a passerine bird with a wide distribution and it is extensively adapted to environmental changes. It has historically acted as a model species in studies on avian ecology, physiology and behaviour. Here, we present a high-quality chromosome-level genome of Zonotrichia leucophrys using PacBio and OmniC sequencing data. Gene models were constructed by combining RNA-seq and Iso-seq data from liver, hypothalamus, and ovary. In total a 1,123,996,003 bp genome was generated, including 31 chromosomes assembled in complete scaffolds along with other, unplaced scaffolds. This high-quality genome assembly offers an important genomic resource for the research community using the white-crowned sparrow as a model for understanding avian genome biology and development, and provides a genomic basis for future studies, both fundamental and applied.
Collapse
Affiliation(s)
- Zhou Wu
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Katarzyna Miedzinska
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jesse S Krause
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
- Department of Biology, University of Nevada Reno, Reno, NV, 89557, USA
| | - Jonathan H Pérez
- Department of Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - John C Wingfield
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, 95616, USA
| | - Simone L Meddle
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
65
|
Hong L, Xu XD, Yang L, Wang M, Li S, Yang H, Ye SY, Chen LL, Song JM. Construction and analysis of telomere-to-telomere genomes for 2 sweet oranges: Longhuihong and Newhall (Citrus sinensis). Gigascience 2024; 13:giae084. [PMID: 39589440 PMCID: PMC11590112 DOI: 10.1093/gigascience/giae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Sweet orange (Citrus sinensis Osbeck) is a fruit crop of high nutritional value that is widely consumed around the world. However, its susceptibility to low-temperature stress limits its cultivation and production in regions prone to frost damage, severely impacting the sustainable development of the sweet orange industry. Therefore, developing cold-resistant sweet orange varieties is of great necessity. Traditional hybrid breeding methods are not feasible due to the polyembryonic phenomenon in sweet oranges, necessitating the enhancement of its germplasm through molecular breeding. High-quality reference genomes are valuable for studying crop resistance to biotic and abiotic stresses. However, the lack of genomic resources for cold-resistant sweet orange varieties has hindered the progress in developing such varieties and researching their molecular mechanisms of cold resistance. FINDINGS This study integrated PacBio HiFi, ONT, Hi-C, and Illumina sequencing data to assemble telomere-to-telomere (T2T) reference genomes for the cold-resistant sweet orange mutant "Longhuihong" (Citrus sinensis [L.] Osb. cv. LHH) and its wild-type counterpart "Newhall" (C. sinensis [L.] Osb. cv. Newhall). Comprehensive evaluations based on multiple criteria revealed that both genomes exhibit high continuity, completeness, and accuracy. The genome sizes were 340.28 Mb and 346.33 Mb, with contig N50 of 39.31 Mb and 36.77 Mb, respectively. In total, 31,456 and 30,021 gene models were annotated in the respective genomes. Leveraging these assembled genomes, comparative genomics analyses were performed, elucidating the evolutionary history of the sweet orange genome. Moreover, the study identified 2,886 structural variants between the 2 genomes, with several SVs located in the upstream, downstream, or intronic regions of homologous genes known to be associated with cold resistance. CONCLUSIONS The study de novo assembled 2 T2T reference genomes of sweet orange varieties exhibiting different levels of cold tolerance. These genomes serve as valuable foundational resources for genomic research and molecular breeding aimed at enhancing cold tolerance in sweet oranges. Additionally, they expand the existing repository of reference genomes and sequencing data resources for C. sinensis. Moreover, these genomes provide a critical data foundation for comparative genomics analyses across different plant species.
Collapse
Affiliation(s)
- Lin Hong
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Xin-Dong Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lei Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Min Wang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Shuang Li
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Haijian Yang
- Fruit Tree Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Si-Ying Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
66
|
Liao Z, Zhang T, Lei W, Wang Y, Yu J, Wang Y, Chai K, Wang G, Zhang H, Zhang X. A telomere-to-telomere reference genome of ficus ( Ficus hispida) provides new insights into sex determination. HORTICULTURE RESEARCH 2024; 11:uhad257. [PMID: 38269293 PMCID: PMC10807705 DOI: 10.1093/hr/uhad257] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/20/2023] [Indexed: 01/26/2024]
Abstract
A high-quality reference genome is indispensable for resolving biologically essential traits. Ficus hispida is a dioecious plant. A complete Ficus reference genome will be crucial for understanding their sex evolution and important biological characteristics, such as aerial roots, mutualistic symbiosis with ficus-wasps, and fruiting from old stems. Here, we generated a telomere-to-telomere (T2T) genome for F. hispida using PacBio HiFi and Oxford Nanopore Ultra-long sequencing technologies. The genome contiguity and completeness has shown improvement compared with the previously released genome, with the annotation of six centromeres and 28 telomeres. We have refined our previously reported 2-Mb male-specific region into a 7.2-Mb genomic region containing 51 newly predicted genes and candidate sex-determination genes AG2 and AG3. Many of these genes showed extremely low expression, likely attributed to hypermethylation in the gene body and promoter regions. Gene regulatory networks (GRNs) revealed that AG2 and AG3 are related to the regulation of stamen development in male flowers, while the AG1 gene is responsible for regulating female flowers' defense responses and secondary metabolite processes. Comparative analysis of GRNs showed that the NAC, WRKY, and MYB transcription factor families dominate the female GRN, whereas the MADS and MYB transcription factor families are prevalent in the male GRN.
Collapse
Affiliation(s)
- Zhenyang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Tianwen Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
- College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenlong Lei
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yibin Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jiaxin Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yinghao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Kun Chai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Huahao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang 332005, China
| | - Xingtan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| |
Collapse
|
67
|
Xu MRX, Liao ZY, Brock JR, Du K, Li GY, Chen ZQ, Wang YH, Gao ZN, Agarwal G, Wei KHC, Shao F, Pang S, Platts AE, van de Velde J, Lin HM, Teresi SJ, Bird K, Niederhuth CE, Xu JG, Yu GH, Yang JY, Dai SF, Nelson A, Braasch I, Zhang XG, Schartl M, Edger PP, Han MJ, Zhang HH. Maternal dominance contributes to subgenome differentiation in allopolyploid fishes. Nat Commun 2023; 14:8357. [PMID: 38102128 PMCID: PMC10724154 DOI: 10.1038/s41467-023-43740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Teleost fishes, which are the largest and most diverse group of living vertebrates, have a rich history of ancient and recent polyploidy. Previous studies of allotetraploid common carp and goldfish (cyprinids) reported a dominant subgenome, which is more expressed and exhibits biased gene retention. However, the underlying mechanisms contributing to observed 'subgenome dominance' remains poorly understood. Here we report high-quality genomes of twenty-one cyprinids to investigate the origin and subsequent subgenome evolution patterns following three independent allopolyploidy events. We identify the closest extant relatives of the diploid progenitor species, investigate genetic and epigenetic differences among subgenomes, and conclude that observed subgenome dominance patterns are likely due to a combination of maternal dominance and transposable element densities in each polyploid. These findings provide an important foundation to understanding subgenome dominance patterns observed in teleost fishes, and ultimately the role of polyploidy in contributing to evolutionary innovations.
Collapse
Affiliation(s)
- Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Zhen-Yang Liao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jordan R Brock
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Guo-Yin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, Henan, China
| | | | - Ying-Hao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhong-Nan Gao
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Gaurav Agarwal
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University, School of Life Sciences, Chongqing, China
| | | | - Adrian E Platts
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Jozefien van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Hong-Min Lin
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Scott J Teresi
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Kevin Bird
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Jin-Gen Xu
- Jiujiang Academy of Agricultural Sciences, Jiujiang, China
| | - Guo-Hua Yu
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Jian-Yuan Yang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Si-Fa Dai
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | | | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI, USA
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| | - Manfred Schartl
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bayern, Germany.
| | - Patrick P Edger
- Department of Horticulture, Michigan State University, East Lansing, MI, USA.
| | - Min-Jin Han
- State Key Laboratory of Resource Insects, Key Laboratory for Sericulture Functional Genomics and Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China.
| | - Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, China.
| |
Collapse
|
68
|
Bsteh D, Moussa HF, Michlits G, Yelagandula R, Wang J, Elling U, Bell O. Loss of cohesin regulator PDS5A reveals repressive role of Polycomb loops. Nat Commun 2023; 14:8160. [PMID: 38071364 PMCID: PMC10710464 DOI: 10.1038/s41467-023-43869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Polycomb Repressive Complexes 1 and 2 (PRC1, PRC2) are conserved epigenetic regulators that promote transcriptional gene silencing. PRC1 and PRC2 converge on shared targets, catalyzing repressive histone modifications. Additionally, a subset of PRC1/PRC2 targets engage in long-range interactions whose functions in gene silencing are poorly understood. Using a CRISPR screen in mouse embryonic stem cells, we found that the cohesin regulator PDS5A links transcriptional silencing by Polycomb and 3D genome organization. PDS5A deletion impairs cohesin unloading and results in derepression of a subset of endogenous PRC1/PRC2 target genes. Importantly, derepression is not linked to loss of Polycomb chromatin domains. Instead, PDS5A removal causes aberrant cohesin activity leading to ectopic insulation sites, which disrupt the formation of ultra-long Polycomb loops. We show that these loops are important for robust silencing at a subset of PRC1/PRC2 target genes and that maintenance of cohesin-dependent genome architecture is critical for Polycomb regulation.
Collapse
Affiliation(s)
- Daniel Bsteh
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Medical Oncology, Department of Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hagar F Moussa
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Department of Biomedical Engineering and Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Georg Michlits
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- JLP Health GmbH, Himmelhofgasse 62, 1130, Vienna, Austria
| | - Ramesh Yelagandula
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Laboratory of Epigenetics, Cell Fate & Disease, Centre for DNA Fingerprinting and Diagnostics (CDFD), Uppal, Hyderabad, 500039, India
| | - Jingkui Wang
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Ulrich Elling
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Oliver Bell
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), Vienna, Austria.
- Departments of Biochemistry and Molecular Medicine, and Stem Cell and Regenerative Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
69
|
Okhovat M, VanCampen J, Nevonen KA, Harshman L, Li W, Layman CE, Ward S, Herrera J, Wells J, Sheng RR, Mao Y, Ndjamen B, Lima AC, Vigh-Conrad KA, Stendahl AM, Yang R, Fedorov L, Matthews IR, Easow SA, Chan DK, Jan TA, Eichler EE, Rugonyi S, Conrad DF, Ahituv N, Carbone L. TAD evolutionary and functional characterization reveals diversity in mammalian TAD boundary properties and function. Nat Commun 2023; 14:8111. [PMID: 38062027 PMCID: PMC10703881 DOI: 10.1038/s41467-023-43841-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Topological associating domains (TADs) are self-interacting genomic units crucial for shaping gene regulation patterns. Despite their importance, the extent of their evolutionary conservation and its functional implications remain largely unknown. In this study, we generate Hi-C and ChIP-seq data and compare TAD organization across four primate and four rodent species and characterize the genetic and epigenetic properties of TAD boundaries in correspondence to their evolutionary conservation. We find 14% of all human TAD boundaries to be shared among all eight species (ultraconserved), while 15% are human-specific. Ultraconserved TAD boundaries have stronger insulation strength, CTCF binding, and enrichment of older retrotransposons compared to species-specific boundaries. CRISPR-Cas9 knockouts of an ultraconserved boundary in a mouse model lead to tissue-specific gene expression changes and morphological phenotypes. Deletion of a human-specific boundary near the autism-related AUTS2 gene results in the upregulation of this gene in neurons. Overall, our study provides pertinent TAD boundary evolutionary conservation annotations and showcases the functional importance of TAD evolution.
Collapse
Affiliation(s)
- Mariam Okhovat
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
| | - Jake VanCampen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Lana Harshman
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Weiyu Li
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Samantha Ward
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jarod Herrera
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Jackson Wells
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA
| | - Rory R Sheng
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Yafei Mao
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Blaise Ndjamen
- Histology and Light Microscopy Core Facility, Gladstone Institutes, San Francisco, CA, USA
| | - Ana C Lima
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | - Alexandra M Stendahl
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Ran Yang
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Lev Fedorov
- OHSU Transgenic Mouse Models Core Lab, Oregon Health and Science University, Portland, OR, USA
| | - Ian R Matthews
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Sarah A Easow
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Dylan K Chan
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, CA, USA
| | - Taha A Jan
- Department of Otolaryngology-Head and Neck Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA
| | - Donald F Conrad
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA.
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.
| | - Lucia Carbone
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, USA.
- Division of Genetics, Oregon National Primate Research Center, Beaverton, OR, USA.
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA.
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
70
|
Yan Y, Tian Y, Wu Z, Zhang K, Yang R. Interchromosomal Colocalization with Parental Genes Is Linked to the Function and Evolution of Mammalian Retrocopies. Mol Biol Evol 2023; 40:msad265. [PMID: 38060983 PMCID: PMC10733166 DOI: 10.1093/molbev/msad265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023] Open
Abstract
Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of 3D genome organization. By mapping retrocopy-parent pairs onto sequencing-based and imaging-based chromatin contact maps in human and mouse cell lines and onto Hi-C interaction maps in 5 other mammals, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis of retroposed gene copy number variants in human populations revealed that retrocopy insertions are not entirely random in regard to interchromosomal interactions and that colocalized retroposed gene copy number variants are more likely to reach high frequencies, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroposed gene copy number variants. Overall, our results hint a role of interchromosomal colocalization in the "resurrection" of initially neutral retrocopies.
Collapse
Affiliation(s)
- Yubin Yan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuhan Tian
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zefeng Wu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Kunling Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Ruolin Yang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
71
|
Roth C, Venu V, Job V, Lubbers N, Sanbonmatsu KY, Steadman CR, Starkenburg SR. Improved quality metrics for association and reproducibility in chromatin accessibility data using mutual information. BMC Bioinformatics 2023; 24:441. [PMID: 37990143 PMCID: PMC10664258 DOI: 10.1186/s12859-023-05553-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/30/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Correlation metrics are widely utilized in genomics analysis and often implemented with little regard to assumptions of normality, homoscedasticity, and independence of values. This is especially true when comparing values between replicated sequencing experiments that probe chromatin accessibility, such as assays for transposase-accessible chromatin via sequencing (ATAC-seq). Such data can possess several regions across the human genome with little to no sequencing depth and are thus non-normal with a large portion of zero values. Despite distributed use in the epigenomics field, few studies have evaluated and benchmarked how correlation and association statistics behave across ATAC-seq experiments with known differences or the effects of removing specific outliers from the data. Here, we developed a computational simulation of ATAC-seq data to elucidate the behavior of correlation statistics and to compare their accuracy under set conditions of reproducibility. RESULTS Using these simulations, we monitored the behavior of several correlation statistics, including the Pearson's R and Spearman's [Formula: see text] coefficients as well as Kendall's [Formula: see text] and Top-Down correlation. We also test the behavior of association measures, including the coefficient of determination R[Formula: see text], Kendall's W, and normalized mutual information. Our experiments reveal an insensitivity of most statistics, including Spearman's [Formula: see text], Kendall's [Formula: see text], and Kendall's W, to increasing differences between simulated ATAC-seq replicates. The removal of co-zeros (regions lacking mapped sequenced reads) between simulated experiments greatly improves the estimates of correlation and association. After removing co-zeros, the R[Formula: see text] coefficient and normalized mutual information display the best performance, having a closer one-to-one relationship with the known portion of shared, enhanced loci between simulated replicates. When comparing values between experimental ATAC-seq data using a random forest model, mutual information best predicts ATAC-seq replicate relationships. CONCLUSIONS Collectively, this study demonstrates how measures of correlation and association can behave in epigenomics experiments. We provide improved strategies for quantifying relationships in these increasingly prevalent and important chromatin accessibility assays.
Collapse
Affiliation(s)
- Cullen Roth
- Los Alamos National Laboratory, Genomics and Bioanalytics, Los Alamos, NM, USA.
| | - Vrinda Venu
- Los Alamos National Laboratory, Climate, Ecosystems, and Environmental Science, Los Alamos, NM, USA
| | - Vanessa Job
- Los Alamos National Laboratory, High Performance Computing and Design, Los Alamos, NM, USA
| | - Nicholas Lubbers
- Los Alamos National Laboratory, Information Sciences, Los Alamos, NM, USA
| | - Karissa Y Sanbonmatsu
- Los Alamos National Laboratory, Theoretical Biology and Biophysics, Los Alamos, NM, USA
| | - Christina R Steadman
- Los Alamos National Laboratory, Climate, Ecosystems, and Environmental Science, Los Alamos, NM, USA
| | - Shawn R Starkenburg
- Los Alamos National Laboratory, Genomics and Bioanalytics, Los Alamos, NM, USA
| |
Collapse
|
72
|
Hu Y, Salgado Figueroa D, Zhang Z, Veselits M, Bhattacharyya S, Kashiwagi M, Clark MR, Morgan BA, Ay F, Georgopoulos K. Lineage-specific 3D genome organization is assembled at multiple scales by IKAROS. Cell 2023; 186:5269-5289.e22. [PMID: 37995656 PMCID: PMC10895928 DOI: 10.1016/j.cell.2023.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
A generic level of chromatin organization generated by the interplay between cohesin and CTCF suffices to limit promiscuous interactions between regulatory elements, but a lineage-specific chromatin assembly that supersedes these constraints is required to configure the genome to guide gene expression changes that drive faithful lineage progression. Loss-of-function approaches in B cell precursors show that IKAROS assembles interactions across megabase distances in preparation for lymphoid development. Interactions emanating from IKAROS-bound enhancers override CTCF-imposed boundaries to assemble lineage-specific regulatory units built on a backbone of smaller invariant topological domains. Gain of function in epithelial cells confirms IKAROS' ability to reconfigure chromatin architecture at multiple scales. Although the compaction of the Igκ locus required for genome editing represents a function of IKAROS unique to lymphocytes, the more general function to preconfigure the genome to support lineage-specific gene expression and suppress activation of extra-lineage genes provides a paradigm for lineage restriction.
Collapse
Affiliation(s)
- Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniela Salgado Figueroa
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Margaret Veselits
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Sourya Bhattacharyya
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariko Kashiwagi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Bruce A Morgan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ferhat Ay
- Centers for Autoimmunity, Inflammation and Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Bioinformatics and Systems Biology Program, La Jolla, CA, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
73
|
Basu S, Shukron O, Hall D, Parutto P, Ponjavic A, Shah D, Boucher W, Lando D, Zhang W, Reynolds N, Sober LH, Jartseva A, Ragheb R, Ma X, Cramard J, Floyd R, Balmer J, Drury TA, Carr AR, Needham LM, Aubert A, Communie G, Gor K, Steindel M, Morey L, Blanco E, Bartke T, Di Croce L, Berger I, Schaffitzel C, Lee SF, Stevens TJ, Klenerman D, Hendrich BD, Holcman D, Laue ED. Live-cell three-dimensional single-molecule tracking reveals modulation of enhancer dynamics by NuRD. Nat Struct Mol Biol 2023; 30:1628-1639. [PMID: 37770717 PMCID: PMC10643137 DOI: 10.1038/s41594-023-01095-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/14/2023] [Indexed: 09/30/2023]
Abstract
To understand how the nucleosome remodeling and deacetylase (NuRD) complex regulates enhancers and enhancer-promoter interactions, we have developed an approach to segment and extract key biophysical parameters from live-cell three-dimensional single-molecule trajectories. Unexpectedly, this has revealed that NuRD binds to chromatin for minutes, decompacts chromatin structure and increases enhancer dynamics. We also uncovered a rare fast-diffusing state of enhancers and found that NuRD restricts the time spent in this state. Hi-C and Cut&Run experiments revealed that NuRD modulates enhancer-promoter interactions in active chromatin, allowing them to contact each other over longer distances. Furthermore, NuRD leads to a marked redistribution of CTCF and, in particular, cohesin. We propose that NuRD promotes a decondensed chromatin environment, where enhancers and promoters can contact each other over longer distances, and where the resetting of enhancer-promoter interactions brought about by the fast decondensed chromatin motions is reduced, leading to more stable, long-lived enhancer-promoter relationships.
Collapse
Affiliation(s)
- S Basu
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - O Shukron
- Department of Applied Mathematics and Computational Biology, Ecole Normale Supérieure, Paris, France
| | - D Hall
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - P Parutto
- Department of Applied Mathematics and Computational Biology, Ecole Normale Supérieure, Paris, France
| | - A Ponjavic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- School of Physics and Astronomy, University of Leeds, Leeds, UK
- School of Food Science and Nutrition, University of Leeds, Leeds, UK
| | - D Shah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W Boucher
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - D Lando
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - W Zhang
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - N Reynolds
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - L H Sober
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A Jartseva
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - R Ragheb
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - X Ma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - J Cramard
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
| | - R Floyd
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Centre for Biodiversity Genomics, University of Guelph, Guelph, Ontario, Canada
| | - J Balmer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - T A Drury
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - A R Carr
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - L-M Needham
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - A Aubert
- The European Molecular Biology Laboratory EMBL, Grenoble, France
| | - G Communie
- The European Molecular Biology Laboratory EMBL, Grenoble, France
| | - K Gor
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- The European Molecular Biology Laboratory, Heidelberg, Germany
| | - M Steindel
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - L Morey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Biomedical Research Building, Miami, FL, USA
| | - E Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - T Bartke
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Functional Epigenetics, Neuherberg, Germany
| | - L Di Croce
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - I Berger
- School of Biochemistry, University of Bristol, Bristol, UK
| | - C Schaffitzel
- School of Biochemistry, University of Bristol, Bristol, UK
| | - S F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - T J Stevens
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - D Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
| | - B D Hendrich
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| | - D Holcman
- Department of Applied Mathematics and Computational Biology, Ecole Normale Supérieure, Paris, France.
| | - E D Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge, UK.
| |
Collapse
|
74
|
Sperschneider J, Yildirir G, Rizzi YS, Malar C M, Mayrand Nicol A, Sorwar E, Villeneuve-Laroche M, Chen ECH, Iwasaki W, Brauer EK, Bosnich W, Gutjahr C, Corradi N. Arbuscular mycorrhizal fungi heterokaryons have two nuclear populations with distinct roles in host-plant interactions. Nat Microbiol 2023; 8:2142-2153. [PMID: 37884816 DOI: 10.1038/s41564-023-01495-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are prominent root symbionts that can carry thousands of nuclei deriving from two parental strains in a large syncytium. These co-existing genomes can also vary in abundance with changing environmental conditions. Here we assemble the nuclear genomes of all four publicly available AMF heterokaryons using PacBio high-fidelity and Hi-C sequencing. We find that the two co-existing genomes of these strains are phylogenetically related but differ in structure, content and epigenetics. We confirm that AMF heterokaryon genomes vary in relative abundance across conditions and show this can lead to nucleus-specific differences in expression during interactions with plants. Population analyses also reveal signatures of genetic exchange indicative of past events of sexual reproduction in these strains. This work uncovers the origin and contribution of two nuclear genomes in AMF heterokaryons and opens avenues for the improvement and environmental application of these strains.
Collapse
Affiliation(s)
- Jana Sperschneider
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Yanina S Rizzi
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Mathu Malar C
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Essam Sorwar
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | | | - Eric C H Chen
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Wataru Iwasaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Elizabeth K Brauer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, Ontario, Canada
| | - Caroline Gutjahr
- Plant Genetics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
75
|
He Z, Chao H, Zhou X, Ni Q, Hu Y, Yu R, Wang M, Li C, Chen J, Chen Y, Chen Y, Cui C, Zhang L, Chen M, Chen D. A chromosome-level genome assembly provides insights into Cornus wilsoniana evolution, oil biosynthesis, and floral bud development. HORTICULTURE RESEARCH 2023; 10:uhad196. [PMID: 38023476 PMCID: PMC10673659 DOI: 10.1093/hr/uhad196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023]
Abstract
Cornus wilsoniana W. is a woody oil plant with high oil content and strong hypolipidemic effects, making it a valuable species for medicinal, landscaping, and ecological purposes in China. To advance genetic research on this species, we employed PacBio together with Hi-C data to create a draft genome assembly for C. wilsoniana. Based on an 11-chromosome anchored chromosome-level assembly, the estimated genome size was determined to be 843.51 Mb. The N50 contig size and N50 scaffold size were calculated to be 4.49 and 78.00 Mb, respectively. Furthermore, 30 474 protein-coding genes were annotated. Comparative genomics analysis revealed that C. wilsoniana diverged from its closest species ~12.46 million years ago (Mya). Furthermore, the divergence between Cornaceae and Nyssaceae occurred >62.22 Mya. We also found evidence of whole-genome duplication events and whole-genome triplication γ, occurring at ~44.90 and 115.86 Mya. We further inferred the origins of chromosomes, which sheds light on the complex evolutionary history of the karyotype of C. wilsoniana. Through transcriptional and metabolic analysis, we identified two FAD2 homologous genes that may play a crucial role in controlling the oleic to linoleic acid ratio. We further investigated the correlation between metabolites and genes and identified 33 MADS-TF homologous genes that may affect flower morphology in C. wilsoniana. Overall, this study lays the groundwork for future research aimed at identifying the genetic basis of crucial traits in C. wilsoniana.
Collapse
Affiliation(s)
- Zhenxiang He
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Haoyu Chao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinkai Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Qingyang Ni
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yueming Hu
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ranran Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Minghuai Wang
- Forest Protection Department, Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Jingzhen Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yunzhu Chen
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Yong Chen
- Xishan Forest Farm, Dazu District, Chongqing 402360, China
| | - Chunyi Cui
- Longshan Forest Farm, Lechang 512221, China
| | - Liangbo Zhang
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
- Hunan Horticultural Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dijun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
76
|
Xu XD, Zhao RP, Xiao L, Lu L, Gao M, Luo YH, Zhou ZW, Ye SY, Qian YQ, Fan BL, Shang X, Shi P, Zeng W, Cao S, Wu Z, Yan H, Chen LL, Song JM. Telomere-to-telomere assembly of cassava genome reveals the evolution of cassava and divergence of allelic expression. HORTICULTURE RESEARCH 2023; 10:uhad200. [PMID: 38023477 PMCID: PMC10673656 DOI: 10.1093/hr/uhad200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023]
Abstract
Cassava is a crucial crop that makes a significant contribution to ensuring human food security. However, high-quality telomere-to-telomere cassava genomes have not been available up to now, which has restricted the progress of haploid molecular breeding for cassava. In this study, we constructed two nearly complete haploid resolved genomes and an integrated, telomere-to-telomere gap-free reference genome of an excellent cassava variety, 'Xinxuan 048', thereby providing a new high-quality genomic resource. Furthermore, the evolutionary history of several species within the Euphorbiaceae family was revealed. Through comparative analysis of haploid genomes, it was found that two haploid genomes had extensive differences in linear structure, transcriptome features, and epigenetic characteristics. Genes located within the highly divergent regions and differentially expressed alleles are enriched in the functions of auxin response and the starch synthesis pathway. The high heterozygosity of cassava 'Xinxuan 048' leads to rapid trait segregation in the first selfed generation. This study provides a theoretical basis and genomic resource for molecular breeding of cassava haploids.
Collapse
Affiliation(s)
- Xin-Dong Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Ru-Peng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Liang Xiao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Liuying Lu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Min Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu-Hong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Zu-Wen Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Si-Ying Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yong-Qing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Bing-Liang Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaohong Shang
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Pingli Shi
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wendan Zeng
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Sheng Cao
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Zhengdan Wu
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huabing Yan
- Cash Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
77
|
Zeng T, He Z, He J, Lv W, Huang S, Li J, Zhu L, Wan S, Zhou W, Yang Z, Zhang Y, Luo C, He J, Wang C, Wang L. The telomere-to-telomere gap-free reference genome of wild blueberry ( Vaccinium duclouxii) provides its high soluble sugar and anthocyanin accumulation. HORTICULTURE RESEARCH 2023; 10:uhad209. [PMID: 38023474 PMCID: PMC10681038 DOI: 10.1093/hr/uhad209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/19/2023] [Indexed: 12/01/2023]
Abstract
Vaccinium duclouxii, endemic to southwestern China, is a berry-producing shrub or small tree belonging to the Ericaceae family, with high nutritive, medicinal, and ornamental value, abundant germplasm resources, and good edible properties. In addition, V. duclouxii exhibits strong tolerance to adverse environmental conditions, making it a promising candidate for research and offering wide-ranging possibilities for utilization. However, the lack of V. duclouxii genome sequence has hampered its development and utilization. Here, a high-quality telomere-to-telomere genome sequence of V. duclouxii was de novo assembled and annotated. All of 12 chromosomes were assembled into gap-free single contigs, providing the highest integrity and quality assembly reported so far for blueberry. The V. duclouxii genome is 573.67 Mb, which encodes 41 953 protein-coding genes. Combining transcriptomics and metabolomics analyses, we have uncovered the molecular mechanisms involved in sugar and acid accumulation and anthocyanin biosynthesis in V. duclouxii. This provides essential molecular information for further research on the quality of V. duclouxii. Moreover, the high-quality telomere-to-telomere assembly of the V. duclouxii genome will provide insights into the genomic evolution of Vaccinium and support advancements in blueberry genetics and molecular breeding.
Collapse
Affiliation(s)
- Tuo Zeng
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Zhijiao He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Jiefang He
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Wei Lv
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Shixiang Huang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawen Li
- School of Advanced Agricultural Sciences, Peking University, 100871 Beijing, China
| | - Liyong Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuang Wan
- Wuhan Benagen Technology Co., Ltd, Wuhan 430070, China
| | - Wanfei Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhengsong Yang
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Yatao Zhang
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Chong Luo
- School of Life Sciences, Guizhou Normal University, Guiyang 550000, China
| | - Jiawei He
- Institute of Alpine Economic Plant, Yunnan Academy of Agricultural Sciences, Lijiang 674199, Yunnan, China
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangsheng Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
78
|
Gao GF, Li P, Leonard WJ. Co-localization of clusters of TCR-regulated genes with TAD rearrangements. BMC Genomics 2023; 24:650. [PMID: 37898735 PMCID: PMC10613383 DOI: 10.1186/s12864-023-09693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Gene expression has long been known to be influenced by the relative proximity of DNA regulatory elements. Topologically associating domains (TADs) are self-interacting genomic regions involved in regulating gene expression by controlling the proximity of these elements. Prior studies of TADs and their biological roles have revealed correlations between TAD changes and cellular differentiation. Here, we used Hi-C and RNA-seq data to correlate TCR-induced changes in TAD structure and gene expression in human CD4+ T cells. RESULTS We developed a pipeline, Differentially Expressed Gene Enrichment Finder (DEGEF), that identifies regions of differentially expressed gene enrichment. Using DEGEF, we found that TCR-regulated genes cluster non-uniformly across the genome and that these clusters preferentially localized in regions of TAD rearrangement. Interestingly, clusters of upregulated genes preferentially formed new Hi-C contacts compared to downregulated clusters, suggesting that TCR-activated CD4+ T cells may regulate genes by changing stimulatory contacts rather than inhibitory contacts. CONCLUSIONS Our observations support a significant relationship between TAD rearrangements and changes in local gene expression. These findings indicate potentially important roles for TAD rearrangements in shaping their local regulatory environments and thus driving differential expression of nearby genes during CD4+ T cell activation. Moreover, they provide new insights into global mechanisms that regulate gene expression.
Collapse
Affiliation(s)
- Galen F Gao
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892-1674, USA.
| |
Collapse
|
79
|
龚 海, 麻 付, 张 晓. [Advances in methods and applications of single-cell Hi-C data analysis]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:1033-1039. [PMID: 37879935 PMCID: PMC10600426 DOI: 10.7507/1001-5515.202303046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/29/2023] [Indexed: 10/27/2023]
Abstract
Chromatin three-dimensional genome structure plays a key role in cell function and gene regulation. Single-cell Hi-C techniques can capture genomic structure information at the cellular level, which provides an opportunity to study changes in genomic structure between different cell types. Recently, some excellent computational methods have been developed for single-cell Hi-C data analysis. In this paper, the available methods for single-cell Hi-C data analysis were first reviewed, including preprocessing of single-cell Hi-C data, multi-scale structure recognition based on single-cell Hi-C data, bulk-like Hi-C contact matrix generation based on single-cell Hi-C data sets, pseudo-time series analysis, and cell classification. Then the application of single-cell Hi-C data in cell differentiation and structural variation was described. Finally, the future development direction of single-cell Hi-C data analysis was also prospected.
Collapse
Affiliation(s)
- 海燕 龚
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 付强 麻
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - 晓彤 张
- 北京科技大学 新材料技术研究院 (北京 100083)Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China
- 北京科技大学 计算机与通信工程学院(北京 100083)School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| |
Collapse
|
80
|
Li B, Yang Q, Yang L, Zhou X, Deng L, Qu L, Guo D, Hui R, Guo Y, Liu X, Wang T, Fan L, Li M, Yan M. A gap-free reference genome reveals structural variations associated with flowering time in rapeseed ( Brassica napus). HORTICULTURE RESEARCH 2023; 10:uhad171. [PMID: 37841499 PMCID: PMC10569240 DOI: 10.1093/hr/uhad171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/20/2023] [Indexed: 10/17/2023]
Abstract
Allopolyploid oilseed rape (Brassica napus) is an important oil crop and vegetable. However, the latest version of its reference genome, with collapsed duplications, gaps, and other issues, prevents comprehensive genomic analysis. Herein, we report a gap-free assembly of the rapeseed cv. Xiang5A genome using a combination of ONT (Oxford Nanopore Technologies) ultra-long reads, PacBio high-fidelity reads, and Hi-C datasets. It includes gap-free assemblies of all 19 chromosomes and telomere-to-telomere assemblies of eight chromosomes. Compared with previously published genomes of B. napus, our gap-free genome, with a contig N50 length of 50.70 Mb, has complete assemblies of 9 of 19 chromosomes without manual intervention, and greatly improves contiguity and completeness, thereby representing the highest quality genome assembly to date. Our results revealed that B. napus Xiang5A underwent nearly complete triplication and allotetraploidy relative to Arabidopsis thaliana. Using the gap-free assembly, we found that 917 flowering-related genes were affected by structural variation, including BnaA03.VERNALIZATION INSENSITIVE 3 and BnaC04.HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1. These genes may play crucial roles in regulating flowering time and facilitating the adaptation of Xiang5A in the Yangtze River Basin of China. This reference genome provides a valuable genetic resource for rapeseed functional genomic studies and breeding.
Collapse
Affiliation(s)
- Bao Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Qian Yang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Lulu Yang
- Department of Cell Biology and Genetics, Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Xing Zhou
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Lichao Deng
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Liang Qu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Dengli Guo
- Department of Cell Biology and Genetics, Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Rongkui Hui
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Yiming Guo
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Xinhong Liu
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Tonghua Wang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Lianyi Fan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Mei Li
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| | - Mingli Yan
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, China
- Hunan Hybrid Rapeseed Engineering and Technology Research Center, Changsha, Hunan 410125, China
| |
Collapse
|
81
|
Wang M, Sreenivas P, Sunkel BD, Wang L, Ignatius M, Stanton B. The 3D chromatin landscape of rhabdomyosarcoma. NAR Cancer 2023; 5:zcad028. [PMID: 37325549 PMCID: PMC10261698 DOI: 10.1093/narcan/zcad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
Rhabdomyosarcoma (RMS) is a pediatric soft tissue cancer with a lack of precision therapy options for patients. We hypothesized that with a general paucity of known mutations in RMS, chromatin structural driving mechanisms are essential for tumor proliferation. Thus, we carried out high-depth in situ Hi-C in representative cell lines and patient-derived xenografts (PDXs) to define chromatin architecture in each major RMS subtype. We report a comprehensive 3D chromatin structural analysis and characterization of fusion-positive (FP-RMS) and fusion-negative RMS (FN-RMS). We have generated spike-in in situ Hi-C chromatin interaction maps for the most common FP-RMS and FN-RMS cell lines and compared our data with PDX models. In our studies, we uncover common and distinct structural elements in large Mb-scale chromatin compartments, tumor-essential genes within variable topologically associating domains and unique patterns of structural variation. Our high-depth chromatin interactivity maps and comprehensive analyses provide context for gene regulatory events and reveal functional chromatin domains in RMS.
Collapse
Affiliation(s)
- Meng Wang
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Prethish Sreenivas
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin D Sunkel
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
| | - Long Wang
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Myron Ignatius
- Greehey Children’s Cancer Research Institute, Department of Molecular Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Benjamin Z Stanton
- Nationwide Children’s Hospital, Center for Childhood Cancer, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
82
|
Qu J, Sun J, Zhao C, Liu X, Zhang X, Jiang S, Wei C, Yu H, Zeng X, Fan L, Ding J. Simultaneous profiling of chromatin architecture and transcription in single cells. Nat Struct Mol Biol 2023; 30:1393-1402. [PMID: 37580628 DOI: 10.1038/s41594-023-01066-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/12/2023] [Indexed: 08/16/2023]
Abstract
The three-dimensional structure of chromatin plays a crucial role in development and disease, both of which are associated with transcriptional changes. However, given the heterogeneity in single-cell chromatin architecture and transcription, the regulatory relationship between the three-dimensional chromatin structure and gene expression is difficult to explain based on bulk cell populations. Here we develop a single-cell, multimodal, omics method allowing the simultaneous detection of chromatin architecture and messenger RNA expression by sequencing (single-cell transcriptome sequencing (scCARE-seq)). Applying scCARE-seq to examine chromatin architecture and transcription from 2i to serum single mouse embryonic stem cells, we observe improved separation of cell clusters compared with single-cell chromatin conformation capture. In addition, after defining the cell-cycle phase of each cell through chromatin architecture extracted by scCARE-seq, we find that periodic changes in chromatin architecture occur in parallel with transcription during the cell cycle. These findings highlight the potential of scCARE-seq to facilitate comprehensive analyses that may boost our understanding of chromatin architecture and transcription in the same single cell.
Collapse
Affiliation(s)
- Jiale Qu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Sun
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Cai Zhao
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyi Liu
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xinyao Zhang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chao Wei
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Haopeng Yu
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoxi Zeng
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Lili Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
83
|
SoRelle ED, Reinoso-Vizcaino NM, Dai J, Barry AP, Chan C, Luftig MA. Epstein-Barr virus evades restrictive host chromatin closure by subverting B cell activation and germinal center regulatory loci. Cell Rep 2023; 42:112958. [PMID: 37561629 PMCID: PMC10559315 DOI: 10.1016/j.celrep.2023.112958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Chromatin accessibility fundamentally governs gene expression and biological response programs that can be manipulated by pathogens. Here we capture dynamic chromatin landscapes of individual B cells during Epstein-Barr virus (EBV) infection. EBV+ cells that exhibit arrest via antiviral sensing and proliferation-linked DNA damage experience global accessibility reduction. Proliferative EBV+ cells develop expression-linked architectures and motif accessibility profiles resembling in vivo germinal center (GC) phenotypes. Remarkably, EBV elicits dark zone (DZ), light zone (LZ), and post-GC B cell chromatin features despite BCL6 downregulation. Integration of single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq), single-cell RNA sequencing (scRNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) data enables genome-wide cis-regulatory predictions implicating EBV nuclear antigens (EBNAs) in phenotype-specific control of GC B cell activation, survival, and immune evasion. Knockouts validate bioinformatically identified regulators (MEF2C and NFE2L2) of EBV-induced GC phenotypes and EBNA-associated loci that regulate gene expression (CD274/PD-L1). These data and methods can inform high-resolution investigations of EBV-host interactions, B cell fates, and virus-mediated lymphomagenesis.
Collapse
Affiliation(s)
- Elliott D SoRelle
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Nicolás M Reinoso-Vizcaino
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joanne Dai
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ashley P Barry
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Cliburn Chan
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Micah A Luftig
- Department of Molecular Genetics and Microbiology, Duke Center for Virology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
84
|
Varberg KM, Dominguez EM, Koseva B, Varberg JM, McNally RP, Moreno-Irusta A, Wesley ER, Iqbal K, Cheung WA, Schwendinger-Schreck C, Smail C, Okae H, Arima T, Lydic M, Holoch K, Marsh C, Soares MJ, Grundberg E. Extravillous trophoblast cell lineage development is associated with active remodeling of the chromatin landscape. Nat Commun 2023; 14:4826. [PMID: 37563143 PMCID: PMC10415281 DOI: 10.1038/s41467-023-40424-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
The extravillous trophoblast cell lineage is a key feature of placentation and successful pregnancy. Knowledge of transcriptional regulation driving extravillous trophoblast cell development is limited. Here, we map the transcriptome and epigenome landscape as well as chromatin interactions of human trophoblast stem cells and their transition into extravillous trophoblast cells. We show that integrating chromatin accessibility, long-range chromatin interactions, transcriptomic, and transcription factor binding motif enrichment enables identification of transcription factors and regulatory mechanisms critical for extravillous trophoblast cell development. We elucidate functional roles for TFAP2C, SNAI1, and EPAS1 in the regulation of extravillous trophoblast cell development. EPAS1 is identified as an upstream regulator of key extravillous trophoblast cell transcription factors, including ASCL2 and SNAI1 and together with its target genes, is linked to pregnancy loss and birth weight. Collectively, we reveal activation of a dynamic regulatory network and provide a framework for understanding extravillous trophoblast cell specification in trophoblast cell lineage development and human placentation.
Collapse
Affiliation(s)
- Kaela M Varberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| | - Esteban M Dominguez
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Boryana Koseva
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Joseph M Varberg
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Ross P McNally
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Ayelen Moreno-Irusta
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Emily R Wesley
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Khursheed Iqbal
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Warren A Cheung
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Carl Schwendinger-Schreck
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Craig Smail
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA
| | - Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, 860-0811, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, 980-8575, Japan
| | - Michael Lydic
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Kristin Holoch
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Courtney Marsh
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael J Soares
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Center for Perinatal Research, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| | - Elin Grundberg
- Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, Kansas, 66160, USA.
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
85
|
Park DS, Nguyen SC, Isenhart R, Shah PP, Kim W, Barnett RJ, Chandra A, Luppino JM, Harke J, Wai M, Walsh PJ, Abdill RJ, Yang R, Lan Y, Yoon S, Yunker R, Kanemaki MT, Vahedi G, Phillips-Cremins JE, Jain R, Joyce EF. High-throughput Oligopaint screen identifies druggable 3D genome regulators. Nature 2023; 620:209-217. [PMID: 37438531 PMCID: PMC11305015 DOI: 10.1038/s41586-023-06340-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
The human genome functions as a three-dimensional chromatin polymer, driven by a complex collection of chromosome interactions1-3. Although the molecular rules governing these interactions are being quickly elucidated, relatively few proteins regulating this process have been identified. Here, to address this gap, we developed high-throughput DNA or RNA labelling with optimized Oligopaints (HiDRO)-an automated imaging pipeline that enables the quantitative measurement of chromatin interactions in single cells across thousands of samples. By screening the human druggable genome, we identified more than 300 factors that influence genome folding during interphase. Among these, 43 genes were validated as either increasing or decreasing interactions between topologically associating domains. Our findings show that genetic or chemical inhibition of the ubiquitous kinase GSK3A leads to increased long-range chromatin looping interactions in a genome-wide and cohesin-dependent manner. These results demonstrate the importance of GSK3A signalling in nuclear architecture and the use of HiDRO for identifying mechanisms of spatial genome organization.
Collapse
Affiliation(s)
- Daniel S Park
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randi Isenhart
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Parisha P Shah
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wonho Kim
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer M Luppino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jailynn Harke
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - May Wai
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick J Walsh
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard J Abdill
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Yang
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yemin Lan
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca Yunker
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan
- Department of Genetics, The Graduate University for Advanced Studies (SOKENDAI), Shizuoka, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rajan Jain
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
86
|
He Y, Xue Y, Wang J, Huang Y, Liu L, Huang Y, Gao YQ. Diffusion-enhanced characterization of 3D chromatin structure reveals its linkage to gene regulatory networks and the interactome. Genome Res 2023; 33:1354-1368. [PMID: 37491077 PMCID: PMC10547250 DOI: 10.1101/gr.277737.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
The interactome networks at the DNA, RNA, and protein levels are crucial for cellular functions, and the diverse variations of these networks are heavily involved in the establishment of different cell states. We have developed a diffusion-based method, Hi-C to geometry (CTG), to obtain reliable geometric information on the chromatin from Hi-C data. CTG produces a consistent and reproducible framework for the 3D genomic structure and provides a reliable and quantitative understanding of the alterations of genomic structures under different cellular conditions. The genomic structure yielded by CTG serves as an architectural blueprint of the dynamic gene regulatory network, based on which cell-specific correspondence between gene-gene and corresponding protein-protein physical interactions, as well as transcription correlation, is revealed. We also find that gene fusion events are significantly enriched between genes of short CTG distances and are thus close in 3D space. These findings indicate that 3D chromatin structure is at least partially correlated with downstream processes such as transcription, gene regulation, and even regulatory networking through affecting protein-protein interactions.
Collapse
Affiliation(s)
- Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yupeng Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lu Liu
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China;
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing 100871, China
| |
Collapse
|
87
|
Gao VR, Yang R, Das A, Luo R, Luo H, McNally DR, Karagiannidis I, Rivas MA, Wang ZM, Barisic D, Karbalayghareh A, Wong W, Zhan YA, Chin CR, Noble W, Bilmes JA, Apostolou E, Kharas MG, Béguelin W, Viny AD, Huangfu D, Rudensky AY, Melnick AM, Leslie CS. ChromaFold predicts the 3D contact map from single-cell chromatin accessibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.27.550836. [PMID: 37546906 PMCID: PMC10402156 DOI: 10.1101/2023.07.27.550836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.
Collapse
Affiliation(s)
- Vianne R. Gao
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Rui Yang
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Arnav Das
- University of Washington, Seattle, WA, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Hanzhi Luo
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dylan R. McNally
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ioannis Karagiannidis
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Martin A. Rivas
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Zhong-Min Wang
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Darko Barisic
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Alireza Karbalayghareh
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wilfred Wong
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tri-Institutional Program in Computational Biology and Medicine, New York, NY, USA
| | - Yingqian A. Zhan
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher R. Chin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | | | | | - Effie Apostolou
- Sanford I Weill department of Medicine, Sandra and Edward Meyer Cancer center, Weill Cornell Medicine, New York, NY, USA
| | - Michael G. Kharas
- Molecular Pharmacology Program, Experimental Therapeutics Center and Center for Stem Cell Biology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wendy Béguelin
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Aaron D. Viny
- Departments of Medicine, Division of Hematology & Oncology, and of Genetics & Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Alexander Y. Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute and Ludwig Center at Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ari M. Melnick
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Christina S. Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
88
|
Wang Z, Ma X, Zhu J, Zheng B, Yuan R, Lu Z, Shu X, Fang Y, Tian S, Qu Q, Ye X, Tang P, Chen X. Chromosome-level genome assembly of Chouioia cunea Yang, the parasitic wasp of the fall webworm. Sci Data 2023; 10:485. [PMID: 37495588 PMCID: PMC10372138 DOI: 10.1038/s41597-023-02388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Chouioia cunea Yang 1989 is a parasitic wasp of many lepidopteran insects during their pupal stage, and has been successfully used to control pests such as the fall webworm Hyphantria cunea. Here we reported the chromosome-level genome of C. cunea by using short (MGI-SEQ), long (Oxford Nanopore), chromatin-linked (Hi-C) sequencing reads and transcriptomic data, representing the first chromosome-level genome of parasitic wasps of the family Eulophidae. The total assembly length is 171.99 Mb, containing 6 pesudo-chromosomes with a GC content of 36.89% and the scaffold/contig N50 length of 31.70/26.52 Mb. The BUSCO completeness of the assembly was estimated to be 98.7%. A total of 12,258 protein-coding genes (PCGs), 10,547 3'-UTRs, and 10,671 5'-UTRs were annotated. This high-quality genome is an important step toward a better understanding of the genomes of the Eulophidae (Chalcidoidea), and will serve as a valuable resource for analyses of phylogenetic relationships and the evolution of Hymenoptera.
Collapse
Affiliation(s)
- Ziqi Wang
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xingzhou Ma
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jiachen Zhu
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Boying Zheng
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ruizhong Yuan
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhaohe Lu
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaohan Shu
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yu Fang
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Shiji Tian
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Qiuyu Qu
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xiqian Ye
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Pu Tang
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xuexin Chen
- State Key Lab of Rice Biology, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China.
- Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
89
|
Li D, Zhao XY, Zhou S, Hu Q, Wu F, Lee HY. Multidimensional profiling reveals GATA1-modulated stage-specific chromatin states and functional associations during human erythropoiesis. Nucleic Acids Res 2023; 51:6634-6653. [PMID: 37254808 PMCID: PMC10359633 DOI: 10.1093/nar/gkad468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/18/2023] [Accepted: 05/13/2023] [Indexed: 06/01/2023] Open
Abstract
Mammalian erythroid development can be divided into three stages: hematopoietic stem and progenitor cell (HSPC), erythroid progenitor (Ery-Pro), and erythroid precursor (Ery-Pre). However, the mechanisms by which the 3D genome changes to establish the stage-specific transcription programs that are critical for erythropoiesis remain unclear. Here, we analyze the chromatin landscape at multiple levels in defined populations from primary human erythroid culture. While compartments and topologically associating domains remain largely unchanged, ∼50% of H3K27Ac-marked enhancers are dynamic in HSPC versus Ery-Pre. The enhancer anchors of enhancer-promoter loops are enriched for occupancy of respective stage-specific transcription factors (TFs), indicating these TFs orchestrate the enhancer connectome rewiring. The master TF of erythropoiesis, GATA1, is found to occupy most erythroid gene promoters at the Ery-Pro stage, and mediate conspicuous local rewiring through acquiring binding at the distal regions in Ery-Pre, promoting productive erythroid transcription output. Knocking out GATA1 binding sites precisely abrogates local rewiring and corresponding gene expression. Interestingly, knocking down GATA1 can transiently revert the cell state to an earlier stage and prolong the window of progenitor state. This study reveals mechanistic insights underlying chromatin rearrangements during development by integrating multidimensional chromatin landscape analyses to associate with transcription output and cellular states.
Collapse
Affiliation(s)
- Dong Li
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xin-Ying Zhao
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuo Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Hu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Fan Wu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hsiang-Ying Lee
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing 100871, China
| |
Collapse
|
90
|
Lainscsek X, Taher L. Predicting chromosomal compartments directly from the nucleotide sequence with DNA-DDA. Brief Bioinform 2023; 24:bbad198. [PMID: 37264486 PMCID: PMC10359093 DOI: 10.1093/bib/bbad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023] Open
Abstract
Three-dimensional (3D) genome architecture is characterized by multi-scale patterns and plays an essential role in gene regulation. Chromatin conformation capturing experiments have revealed many properties underlying 3D genome architecture, such as the compartmentalization of chromatin based on transcriptional states. However, they are complex, costly and time consuming, and therefore only a limited number of cell types have been examined using these techniques. Increasing effort is being directed towards deriving computational methods that can predict chromatin conformation and associated structures. Here we present DNA-delay differential analysis (DDA), a purely sequence-based method based on chaos theory to predict genome-wide A and B compartments. We show that DNA-DDA models derived from a 20 Mb sequence are sufficient to predict genome wide compartmentalization at the scale of 100 kb in four different cell types. Although this is a proof-of-concept study, our method shows promise in elucidating the mechanisms responsible for genome folding as well as modeling the impact of genetic variation on 3D genome architecture and the processes regulated thereby.
Collapse
Affiliation(s)
- Xenia Lainscsek
- Institute of Biomedical Informatics, Graz University of Technology, Austria
| | - Leila Taher
- Institute of Biomedical Informatics, Graz University of Technology, Austria
| |
Collapse
|
91
|
Li K, Zhang P, Wang Z, Shen W, Sun W, Xu J, Wen Z, Li L. iEnhance: a multi-scale spatial projection encoding network for enhancing chromatin interaction data resolution. Brief Bioinform 2023; 24:bbad245. [PMID: 37381618 DOI: 10.1093/bib/bbad245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/30/2023] Open
Abstract
Although sequencing-based high-throughput chromatin interaction data are widely used to uncover genome-wide three-dimensional chromatin architecture, their sparseness and high signal-noise-ratio greatly restrict the precision of the obtained structural elements. To improve data quality, we here present iEnhance (chromatin interaction data resolution enhancement), a multi-scale spatial projection and encoding network, to predict high-resolution chromatin interaction matrices from low-resolution and noisy input data. Specifically, iEnhance projects the input data into matrix spaces to extract multi-scale global and local feature sets, then hierarchically fused these features by attention mechanism. After that, dense channel encoding and residual channel decoding are used to effectively infer robust chromatin interaction maps. iEnhance outperforms state-of-the-art Hi-C resolution enhancement tools in both visual and quantitative evaluation. Comprehensive analysis shows that unlike other tools, iEnhance can recover both short-range structural elements and long-range interaction patterns precisely. More importantly, iEnhance can be transferred to data enhancement of other tissues or cell lines of unknown resolution. Furthermore, iEnhance performs robustly in enhancement of diverse chromatin interaction data including those from single-cell Hi-C and Micro-C experiments.
Collapse
Affiliation(s)
- Kai Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zilin Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Shen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Weicheng Sun
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Zi Wen
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Li
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
92
|
Kolesnikova UK, Scott AD, Van de Velde JD, Burns R, Tikhomirov NP, Pfordt U, Clarke AC, Yant L, Seregin AP, Vekemans X, Laurent S, Novikova PY. Transition to Self-compatibility Associated With Dominant S-allele in a Diploid Siberian Progenitor of Allotetraploid Arabidopsis kamchatica Revealed by Arabidopsis lyrata Genomes. Mol Biol Evol 2023; 40:msad122. [PMID: 37432770 PMCID: PMC10335350 DOI: 10.1093/molbev/msad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
A transition to selfing can be beneficial when mating partners are scarce, for example, due to ploidy changes or at species range edges. Here, we explain how self-compatibility evolved in diploid Siberian Arabidopsis lyrata, and how it contributed to the establishment of allotetraploid Arabidopsis kamchatica. First, we provide chromosome-level genome assemblies for two self-fertilizing diploid A. lyrata accessions, one from North America and one from Siberia, including a fully assembled S-locus for the latter. We then propose a sequence of events leading to the loss of self-incompatibility in Siberian A. lyrata, date this independent transition to ∼90 Kya, and infer evolutionary relationships between Siberian and North American A. lyrata, showing an independent transition to selfing in Siberia. Finally, we provide evidence that this selfing Siberian A. lyrata lineage contributed to the formation of the allotetraploid A. kamchatica and propose that the selfing of the latter is mediated by the loss-of-function mutation in a dominant S-allele inherited from A. lyrata.
Collapse
Affiliation(s)
- Uliana K Kolesnikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alison Dawn Scott
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jozefien D Van de Velde
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Robin Burns
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nikita P Tikhomirov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Ursula Pfordt
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Andrew C Clarke
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Sutton Bonington, United Kingdom
| | - Levi Yant
- Future Food Beacon of Excellence and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alexey P Seregin
- Herbarium (MW), Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - Xavier Vekemans
- University Lille, CNRS, UMR 8198—Evo-Eco-Paleo, Lille, France
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Polina Yu Novikova
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| |
Collapse
|
93
|
Ma B, Wang H, Liu J, Chen L, Xia X, Wei W, Yang Z, Yuan J, Luo Y, He N. The gap-free genome of mulberry elucidates the architecture and evolution of polycentric chromosomes. HORTICULTURE RESEARCH 2023; 10:uhad111. [PMID: 37786730 PMCID: PMC10541557 DOI: 10.1093/hr/uhad111] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/15/2023] [Indexed: 10/04/2023]
Abstract
Mulberry is a fundamental component of the global sericulture industry, and its positive impact on our health and the environment cannot be overstated. However, the mulberry reference genomes reported previously remained unassembled or unplaced sequences. Here, we report the assembly and analysis of the telomere-to-telomere gap-free reference genome of the mulberry species, Morus notabilis, which has emerged as an important reference in mulberry gene function research and genetic improvement. The mulberry gap-free reference genome produced here provides an unprecedented opportunity for us to study the structure and function of centromeres. Our results revealed that all mulberry centromeric regions share conserved centromeric satellite repeats with different copies. Strikingly, we found that M. notabilis is a species with polycentric chromosomes and the only reported polycentric chromosome species up to now. We propose a compelling model that explains the formation mechanism of new centromeres and addresses the unsolved scientific question of the chromosome fusion-fission cycle in mulberry species. Our study sheds light on the functional genomics, chromosome evolution, and genetic improvement of mulberry species.
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Honghong Wang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jingchun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Lin Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Xiaoyu Xia
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Wuqi Wei
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Zhen Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Jianglian Yuan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Yiwei Luo
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| | - Ningjia He
- State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400715, China
| |
Collapse
|
94
|
Gregoricchio S, Zwart W. snHiC: a complete and simplified snakemake pipeline for grouped Hi-C data analysis. BIOINFORMATICS ADVANCES 2023; 3:vbad080. [PMID: 37397353 PMCID: PMC10307938 DOI: 10.1093/bioadv/vbad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/04/2023]
Abstract
Summary Genome-wide chromosome conformation capture (Hi-C) is a technique that allows the study of 3D genome organization. Despite being widely used, analysis of Hi-C data is technically challenging and involves several time-consuming steps that often require manual involvement making it error prone, potentially affecting data reproducibility. In order to facilitate and simplify these analyses we implemented snHiC, a snakemake-based pipeline that allows for the generation of contact matrices at multiple resolutions in one single run, aggregation of individual samples into user-specified groups, detection of domains, compartments, loops and stripes and performance of differential compartment and chromatin interaction analyses. Availability and implementation Source code is freely available at https://github.com/sebastian-gregoricchio/snHiC. A yaml-formatted file (snHiC/workflow/envs/snHiC_conda_env_stable.yaml) is available to build a compatible conda environment. Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
|
95
|
Yang R, Das A, Gao VR, Karbalayghareh A, Noble WS, Bilmes JA, Leslie CS. Epiphany: predicting Hi-C contact maps from 1D epigenomic signals. Genome Biol 2023; 24:134. [PMID: 37280678 PMCID: PMC10242996 DOI: 10.1186/s13059-023-02934-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Recent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and or even capture differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from widely available epigenomic tracks. Epiphany uses bidirectional long short-term memory layers to capture long-range dependencies and optionally a generative adversarial network architecture to encourage contact map realism. Epiphany shows excellent generalization to held-out chromosomes within and across cell types, yields accurate TAD and interaction calls, and predicts structural changes caused by perturbations of epigenomic signals.
Collapse
Affiliation(s)
- Rui Yang
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - Arnav Das
- University of Washington, Seattle, USA
| | - Vianne R Gao
- Memorial Sloan Kettering Cancer Center, New York, USA
| | | | | | | | | |
Collapse
|
96
|
Kessler S, Minoux M, Joshi O, Ben Zouari Y, Ducret S, Ross F, Vilain N, Salvi A, Wolff J, Kohler H, Stadler MB, Rijli FM. A multiple super-enhancer region establishes inter-TAD interactions and controls Hoxa function in cranial neural crest. Nat Commun 2023; 14:3242. [PMID: 37277355 DOI: 10.1038/s41467-023-38953-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
Enhancer-promoter interactions preferentially occur within boundary-insulated topologically associating domains (TADs), limiting inter-TAD interactions. Enhancer clusters in linear proximity, termed super-enhancers (SEs), ensure high target gene expression levels. Little is known about SE topological regulatory impact during craniofacial development. Here, we identify 2232 genome-wide putative SEs in mouse cranial neural crest cells (CNCCs), 147 of which target genes establishing CNCC positional identity during face formation. In second pharyngeal arch (PA2) CNCCs, a multiple SE-containing region, partitioned into Hoxa Inter-TAD Regulatory Element 1 and 2 (HIRE1 and HIRE2), establishes long-range inter-TAD interactions selectively with Hoxa2, that is required for external and middle ear structures. HIRE2 deletion in a Hoxa2 haploinsufficient background results in microtia. HIRE1 deletion phenocopies the full homeotic Hoxa2 knockout phenotype and induces PA3 and PA4 CNCC abnormalities correlating with Hoxa2 and Hoxa3 transcriptional downregulation. Thus, SEs can overcome TAD insulation and regulate anterior Hoxa gene collinear expression in a CNCC subpopulation-specific manner during craniofacial development.
Collapse
Affiliation(s)
- Sandra Kessler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Maryline Minoux
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- INSERM UMR 1121, Université de Strasbourg, Faculté de Chirurgie Dentaire, 8, rue Sainte Elisabeth, 67 000, Strasbourg, France
| | - Onkar Joshi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Yousra Ben Zouari
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Sebastien Ducret
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Fiona Ross
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nathalie Vilain
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Adwait Salvi
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joachim Wolff
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Hubertus Kohler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Michael B Stadler
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Filippo M Rijli
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
97
|
Quon S, Yu B, Russ BE, Tsyganov K, Nguyen H, Toma C, Heeg M, Hocker JD, Milner JJ, Crotty S, Pipkin ME, Turner SJ, Goldrath AW. DNA architectural protein CTCF facilitates subset-specific chromatin interactions to limit the formation of memory CD8 + T cells. Immunity 2023; 56:959-978.e10. [PMID: 37040762 PMCID: PMC10265493 DOI: 10.1016/j.immuni.2023.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/14/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
Although the importance of genome organization for transcriptional regulation of cell-fate decisions and function is clear, the changes in chromatin architecture and how these impact effector and memory CD8+ T cell differentiation remain unknown. Using Hi-C, we studied how genome configuration is integrated with CD8+ T cell differentiation during infection and investigated the role of CTCF, a key chromatin remodeler, in modulating CD8+ T cell fates through CTCF knockdown approaches and perturbation of specific CTCF-binding sites. We observed subset-specific changes in chromatin organization and CTCF binding and revealed that weak-affinity CTCF binding promotes terminal differentiation of CD8+ T cells through the regulation of transcriptional programs. Further, patients with de novo CTCF mutations had reduced expression of the terminal-effector genes in peripheral blood lymphocytes. Therefore, in addition to establishing genome architecture, CTCF regulates effector CD8+ T cell heterogeneity through altering interactions that regulate the transcription factor landscape and transcriptome.
Collapse
Affiliation(s)
- Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bingfei Yu
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brendan E Russ
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kirill Tsyganov
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Bioinformatics Platform, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Hongtuyet Nguyen
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Clara Toma
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - James D Hocker
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - J Justin Milner
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA 92037, USA
| | - Matthew E Pipkin
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Stephen J Turner
- Department of Microbiology, Immunity Theme, Biomedical Discovery Institute, Monash University, Clayton, VIC 3800, Australia.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
98
|
Smits WK, Vermeulen C, Hagelaar R, Kimura S, Vroegindeweij EM, Buijs-Gladdines JGCAM, van de Geer E, Verstegen MJAM, Splinter E, van Reijmersdal SV, Buijs A, Galjart N, van Eyndhoven W, van Min M, Kuiper R, Kemmeren P, Mullighan CG, de Laat W, Meijerink JPP. Elevated enhancer-oncogene contacts and higher oncogene expression levels by recurrent CTCF inactivating mutations in acute T cell leukemia. Cell Rep 2023; 42:112373. [PMID: 37060567 PMCID: PMC10750298 DOI: 10.1016/j.celrep.2023.112373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023] Open
Abstract
Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.
Collapse
Affiliation(s)
- Willem K Smits
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Carlo Vermeulen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Rico Hagelaar
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Oncode Institute, Utrecht, the Netherlands
| | - Shunsuke Kimura
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | | | | | - Ellen van de Geer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Marjon J A M Verstegen
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | | | | - Arjan Buijs
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Niels Galjart
- Department of Cell Biology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | - Roland Kuiper
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands; Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Charles G Mullighan
- Laboratory of Pathology, St. Jude's Children's Research Hospital, Memphis TN, USA
| | - Wouter de Laat
- Oncode Institute, Utrecht, the Netherlands; Hubrecht Institute-KNAW, Utrecht, the Netherlands
| | | |
Collapse
|
99
|
Singh P, Lonardi S, Liang Q, Vydyam P, Khabirova E, Fang T, Gihaz S, Thekkiniath J, Munshi M, Abel S, Ciampossin L, Batugedara G, Gupta M, Lu XM, Lenz T, Chakravarty S, Cornillot E, Hu Y, Ma W, Gonzalez LM, Sánchez S, Estrada K, Sánchez-Flores A, Montero E, Harb OS, Le Roch KG, Mamoun CB. Babesia duncani multi-omics identifies virulence factors and drug targets. Nat Microbiol 2023; 8:845-859. [PMID: 37055610 PMCID: PMC10159843 DOI: 10.1038/s41564-023-01360-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.
Collapse
Affiliation(s)
- Pallavi Singh
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA.
| | - Qihua Liang
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Pratap Vydyam
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | | | - Tiffany Fang
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Shalev Gihaz
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jose Thekkiniath
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Muhammad Munshi
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Loic Ciampossin
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Gayani Batugedara
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Mohit Gupta
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Xueqing Maggie Lu
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Todd Lenz
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Sakshar Chakravarty
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Emmanuel Cornillot
- Institut de Biologie Computationnelle (IBC), and Institut de Recherche en Cancérologie de Montpellier (IRCM - INSERM U1194), Institut régional du Cancer Montpellier (ICM) and Université de Montpellier, Montpellier, France
| | - Yangyang Hu
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California, Riverside, CA, USA
| | - Luis Miguel Gonzalez
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Sergio Sánchez
- Reference and Research Laboratory on Food and Waterborne Bacterial Infections, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Karel Estrada
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Alejandro Sánchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Estrella Montero
- Parasitology Reference and Research Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Omar S Harb
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA.
| | - Choukri Ben Mamoun
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
100
|
Zhou Y, Xiong J, Shu Z, Dong C, Gu T, Sun P, He S, Jiang M, Xia Z, Xue J, Khan WU, Chen F, Cheng ZM. The telomere-to-telomere genome of Fragaria vesca reveals the genomic evolution of Fragaria and the origin of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad027. [PMID: 37090094 PMCID: PMC10116950 DOI: 10.1093/hr/uhad027] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Fragaria vesca, commonly known as wild or woodland strawberry, is the most widely distributed diploid Fragaria species and is native to Europe and Asia. Because of its small plant size, low heterozygosity, and relative ease of genetic transformation, F. vesca has been a model plant for fruit research since the publication of its Illumina-based genome in 2011. However, its genomic contribution to octoploid cultivated strawberry remains a long-standing question. Here, we de novo assembled and annotated a telomere-to-telomere, gap-free genome of F. vesca 'Hawaii 4', with all seven chromosomes assembled into single contigs, providing the highest completeness and assembly quality to date. The gap-free genome is 220 785 082 bp in length and encodes 36 173 protein-coding gene models, including 1153 newly annotated genes. All 14 telomeres and seven centromeres were annotated within the seven chromosomes. Among the three previously recognized wild diploid strawberry ancestors, F. vesca, F. iinumae, and F. viridis, phylogenomic analysis showed that F. vesca and F. viridis are the ancestors of the cultivated octoploid strawberry F. × ananassa, and F. vesca is its closest relative. Three subgenomes of F. × ananassa belong to the F. vesca group, and one is sister to F. viridis. We anticipate that this high-quality, telomere-to-telomere, gap-free F. vesca genome, combined with our phylogenomic inference of the origin of cultivated strawberry, will provide insight into the genomic evolution of Fragaria and facilitate strawberry genetics and molecular breeding.
Collapse
Affiliation(s)
| | | | - Ziqiang Shu
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Chao Dong
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Pengchuan Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education & State Key Laboratory of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shuang He
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Mian Jiang
- Wuhan Benagen Tech Solutions Company Limited, Wuhan, Hubei 430021, China
| | - Zhiqiang Xia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Tropical Crops, Hainan University, Haikou 570228, China
- Sanya Nanfan Research Institute from Hainan University, Sanya 572025, China
| | - Jiayu Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wasi Ullah Khan
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Fei Chen
- Corresponding authors. E-mail: ,
| | | |
Collapse
|