51
|
Chen Y, De Schutter K. Biosafety aspects of RNAi-based pests control. PEST MANAGEMENT SCIENCE 2024; 80:3697-3706. [PMID: 38520331 DOI: 10.1002/ps.8098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
While the overuse of classical chemical pesticides has had a detrimental impact on the environment and human health, the discovery of RNA interference (RNAi) offered the opportunity to develop new and sustainable approaches for pest management. RNAi is a naturally occurring regulation and defense mechanism that can be exploited to effectively protect crops by silencing key genes affecting the growth, development, behavior or fecundity of pests. However, as with all technologies, there is a range of potential risks and challenges associated with the application of RNAi, such as dsRNA stability, the potential for off-target effects, the safety of non-target organisms, and other application challenges. A better understanding of the molecular mechanisms involved in RNAi and in-depth discussion and analysis of these associated safety risks, is required to limit or mitigate potential adverse effects. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yimeng Chen
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Molecular Entomology Lab, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
52
|
Gao C, Nie H. Exploring the Heat-Responsive miRNAs and their Target Gene Regulation in Ruditapes philippinarum Under Acute Heat Stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:810-826. [PMID: 39046591 DOI: 10.1007/s10126-024-10348-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/13/2024] [Indexed: 07/25/2024]
Abstract
This study aimed to investigate the inherent molecular regulatory mechanisms of Ruditapes philippinarum in response to extremely high-temperature environments and to enhance the sustainable development of the R. philippinarum aquaculture industry. In this study, we established a differential expression profile of miRNA under acute heat stress and identified a total of 46 known miRNAs and 80 novel miRNAs, three of which were detected to be significantly differentially expressed. We analyzed the functions of target genes regulated by differentially expressed miRNAs (DEMs) of R. philippinarum. The findings of the KEGG enrichment analysis revealed that 29 enriched pathways in the group were subjected to acute heat stress. Notably, fatty acid metabolism, FoxO signaling pathway, TGF-β signaling pathway, and ubiquitin-mediated proteolysis were found to play significant roles in response to acute heat stress. We established a regulatory map of DEMs and their target genes in response to heat stress and constructed the miRNA-mRNA regulation network. This study provides valuable insights into the response of R. philippinarum to high temperature, helping to understand its underlying molecular regulatory mechanisms under high-temperature stress.
Collapse
Affiliation(s)
- Changsheng Gao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China.
- Engineering and Technology Research Center of Shellfish Breeding in Liaoning Province, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
53
|
Röszer T. MicroRNA Profile of Mouse Adipocyte-Derived Extracellular Vesicles. Cells 2024; 13:1298. [PMID: 39120327 PMCID: PMC11311276 DOI: 10.3390/cells13151298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
The post-transcriptional control of gene expression is a complex and evolving field in adipocyte biology, with the premise that the delivery of microRNA (miRNA) species to the obese adipose tissue may facilitate weight loss. Cells shed extracellular vesicles (EVs) that may deliver miRNAs as intercellular messengers. However, we know little about the miRNA profile of EVs secreted by adipocytes during postnatal development. Here, we defined the miRNA cargo of EVs secreted by mouse adipocytes in two distinct phases of development: on postnatal day 6, when adipocytes are lipolytic and thermogenic, and on postnatal day 56, when adipocytes have active lipogenesis. EVs were collected from cell culture supernatants, and their miRNA profile was defined by small RNA sequencing. The most abundant miRNA of mouse adipocyte-derived EVs was mmu-miR-148a-3p. Adipocyte EVs on postnatal day 6 were hallmarked with mmu-miR-98-5p, and some miRNAs were specific to this developmental stage, such as mmu-miR-466i-5p and 12 novel miRNAs. Adipocytes on postnatal day 56 secreted mmu-miR-365-3p, and 16 miRNAs were specific to this developmental stage. The miRNA cargo of adipocyte EVs targeted gene networks of cell proliferation, insulin signaling, interferon response, thermogenesis, and lipogenesis. We provided here a database of miRNAs secreted by developing mouse adipocytes, which may be a tool for further studies on the regulation of gene networks that control mouse adipocyte development.
Collapse
Affiliation(s)
- Tamás Röszer
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| |
Collapse
|
54
|
Lin H, Chen X, Wang L, Zhu T, Feng X, Liu X, Chen H, Pan S. Unraveling the role of microRNAs: potential biomarkers for gestational diabetes mellitus revealed through RNA sequencing analysis. Arch Gynecol Obstet 2024; 310:1255-1264. [PMID: 38814453 PMCID: PMC11258170 DOI: 10.1007/s00404-024-07518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) poses significant health risks for both mothers and children, contributing to long-term complications such as type 2 diabetes and cardiovascular disease. This study explores the potential of microRNAs (miRNAs) as biomarkers for GDM by analyzing peripheral blood samples from GDM patients. METHOD Ten samples, including peripheral blood from 5 GDM patients and 5 controls, were collected to perform the RNA sequencing analysis. Differentially expressed miRNAs were further validated by quantitative real-time polymerase chain reaction. RESULTS A total of 2287 miRNAs were identified, 229 of which showed differential expression. Validation by qRT-PCR confirmed significant up-regulation of miR-5193, miR-5003-3p, miR-3127-5p, novel-miR-96, miR-6734-5p, and miR-122-5p, while miR-10395-3p was down-regulated. Bioinformatics analyses revealed the involvement of these miRNAs in pathways associated with herpes simplex virus 1 infection. CONCLUSION This study provides insights into the differential expression of miRNAs in GDM patients and their potential roles in disease pathogenesis. It suggests that the differentially expressed miRNAs could serve as potential biomarkers for GDM, shedding light on the complex molecular mechanisms involved.
Collapse
Affiliation(s)
- Huizhen Lin
- Department of Clinical Laboratory, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Xiao Chen
- Department of Clinical Laboratory, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Lisui Wang
- Department of Clinical Laboratory, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Tang Zhu
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, School of Basic Medicine Science, Putian, 351100, Fujian, China
| | - Xiaohui Feng
- Department of Clinical Laboratory, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Xiaomei Liu
- Department of Clinical Laboratory, The First Hospital of Putian, Teaching Hospital, Fujian Medical University, Putian, 351100, China
| | - Haiying Chen
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, School of Basic Medicine Science, Putian, 351100, Fujian, China
| | - Si Pan
- Key Laboratory of Translational Tumor Medicine in Fujian Province, Putian University, School of Basic Medicine Science, Putian, 351100, Fujian, China.
| |
Collapse
|
55
|
Dekkers MC, Lambooij JM, Pu X, Fagundes RR, Enciso-Martinez A, Kats K, Giepmans BNG, Guigas B, Zaldumbide A. Extracellular vesicles derived from stressed beta cells mediate monocyte activation and contribute to islet inflammation. Front Immunol 2024; 15:1393248. [PMID: 39114661 PMCID: PMC11303142 DOI: 10.3389/fimmu.2024.1393248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Objective Beta cell destruction in type 1 diabetes (T1D) results from the combined effect of inflammation and recurrent autoimmunity. In recent years, the role played by beta cells in the development of T1D has evolved from passive victims of the immune system to active contributors in their own destruction. We and others have demonstrated that perturbations in the islet microenvironment promote endoplasmic reticulum (ER) stress in beta cells, leading to enhanced immunogenicity. Among the underlying mechanisms, secretion of extracellular vesicles (EVs) by beta cells has been suggested to mediate the crosstalk with the immune cell compartment. Methods To study the role of cellular stress in the early events of T1D development, we generated a novel cellular model for constitutive ER stress by modulating the expression of HSPA5, which encodes BiP/GRP78, in EndoC-βH1 cells. To investigate the role of EVs in the interaction between beta cells and the immune system, we characterized the EV miRNA cargo and evaluated their effect on innate immune cells. Results Analysis of the transcriptome showed that HSPA5 knockdown resulted in the upregulation of signaling pathways involved in the unfolded protein response (UPR) and changes the miRNA content of EVs, including reduced levels of miRNAs involved in IL-1β signaling. Treatment of primary human monocytes with EVs from stressed beta cells resulted in increased surface expression of CD11b, HLA-DR, CD40 and CD86 and upregulation of IL-1β and IL-6. Conclusion These findings indicate that the content of EVs derived from stressed beta cells can be a mediator of islet inflammation.
Collapse
Affiliation(s)
- Mette C. Dekkers
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Joost M. Lambooij
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Xudong Pu
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Raphael R. Fagundes
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Agustin Enciso-Martinez
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
- Oncode institute, Leiden University Medical Center, Leiden, Netherlands
- Amsterdam Vesicle Center, Biomedical Engineering and Physics and Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam, Netherlands
| | - Kim Kats
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Bruno Guigas
- Leiden University Center of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Arnaud Zaldumbide
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
56
|
Liu Y, Sun D, Xu C, Liu X, Tang M, Ying S. In-depth transcriptome profiling of Cherry Valley duck lungs exposed to chronic heat stress. Front Vet Sci 2024; 11:1417244. [PMID: 39104549 PMCID: PMC11298465 DOI: 10.3389/fvets.2024.1417244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Amidst rising global temperatures, chronic heat stress (CHS) is increasingly problematic for the poultry industry. While mammalian CHS responses are well-studied, avian-specific research is lacking. This study uses in-depth transcriptome sequencing to evaluate the pulmonary response of Cherry Valley ducks to CHS at ambient temperatures of 20°C and a heat-stressed 29°C. We detailed the CHS-induced gene expression changes, encompassing mRNAs, lncRNAs, and miRNAs. Through protein-protein interaction network analysis, we identified central genes involved in the heat stress response-TLR7, IGF1, MAP3K1, CIITA, LCP2, PRKCB, and PLCB2. Subsequent functional enrichment analysis of the differentially expressed genes and RNA targets revealed significant engagement in immune responses and regulatory processes. KEGG pathway analysis underscored crucial immune pathways, specifically those related to intestinal IgA production and Toll-like receptor signaling, as well as Salmonella infection and calcium signaling pathways. Importantly, we determined six miRNAs-miR-146, miR-217, miR-29a-3p, miR-10926, miR-146b-5p, and miR-17-1-3p-as potential key regulators within the ceRNA network. These findings enhance our comprehension of the physiological adaptation of ducks to CHS and may provide a foundation for developing strategies to improve duck production under thermal stress.
Collapse
Affiliation(s)
- Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dongyue Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Congcong Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiaoyong Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijia Ying
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
57
|
Thapliyal A, Tomar AK, Naglot S, Dhiman S, Datta SK, Sharma JB, Singh N, Yadav S. Exploring Differentially Expressed Sperm miRNAs in Idiopathic Recurrent Pregnancy Loss and Their Association with Early Embryonic Development. Noncoding RNA 2024; 10:41. [PMID: 39051375 PMCID: PMC11270218 DOI: 10.3390/ncrna10040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024] Open
Abstract
The high incidence of idiopathic recurrent pregnancy loss (iRPL) may stem from the limited research on male contributory factors. Many studies suggest that sperm DNA fragmentation and oxidative stress contribute to iRPL, but their roles are still debated. MicroRNAs (miRNAs) are short non-coding RNAs that regulate various biological processes by modulating gene expression. While differential expression of specific miRNAs has been observed in women suffering from recurrent miscarriages, paternal miRNAs remain unexplored. We hypothesize that analyzing sperm miRNAs can provide crucial insights into the pathophysiology of iRPL. Therefore, this study aims to identify dysregulated miRNAs in the spermatozoa of male partners of iRPL patients. Total mRNA was extracted from sperm samples of iRPL and control groups, followed by miRNA library preparation and high-output miRNA sequencing. Subsequently, raw sequence reads were processed for differential expression analysis, target prediction, and bioinformatics analysis. Twelve differentially expressed miRNAs were identified in the iRPL group, with eight miRNAs upregulated (hsa-miR-4454, hsa-miR-142-3p, hsa-miR-145-5p, hsa-miR-1290, hsa-miR-1246, hsa-miR-7977, hsa-miR-449c-5p, and hsa-miR-92b-3p) and four downregulated (hsa-miR-29c-3p, hsa-miR-30b-5p, hsa-miR-519a-2-5p, and hsa-miR-520b-5p). Functional enrichment analysis revealed that gene targets of the upregulated miRNAs are involved in various biological processes closely associated with sperm quality and embryonic development.
Collapse
Affiliation(s)
- Ayushi Thapliyal
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Anil Kumar Tomar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sarla Naglot
- Division of Reproductive, Child Health and Nutrition, Indian Council of Medical Research (ICMR), New Delhi 110029, India
| | - Soniya Dhiman
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Sudip Kumar Datta
- Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Neeta Singh
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Savita Yadav
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi 110029, India
| |
Collapse
|
58
|
Talevi V, Melas K, Pehlivan G, Imtiaz MA, Krüger DM, Centeno TP, Aziz NA, Fischer A, Breteler MMB. Peripheral whole blood microRNA expression in relation to vascular function: a population-based study. J Transl Med 2024; 22:670. [PMID: 39030538 PMCID: PMC11264787 DOI: 10.1186/s12967-024-05407-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/15/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND As key regulators of gene expression, microRNAs affect many cardiovascular mechanisms and have been associated with several cardiovascular diseases. In this study, we aimed to investigate the relation of whole blood microRNAs with several quantitative measurements of vascular function, and explore their biological role through an integrative microRNA-gene expression analysis. METHODS Peripheral whole blood microRNA expression was assessed through RNA-Seq in 2606 participants (45.8% men, mean age: 53.93, age range: 30 to 95 years) from the Rhineland Study, an ongoing population-based cohort study in Bonn, Germany. Weighted gene co-expression network analysis was used to cluster microRNAs with highly correlated expression levels into 14 modules. Through linear regression models, we investigated the association between each module's expression and quantitative markers of vascular health, including pulse wave velocity, total arterial compliance index, cardiac index, stroke index, systemic vascular resistance index, reactive skin hyperemia and white matter hyperintensity burden. For each module associated with at least one trait, one or more hub-microRNAs driving the association were defined. Hub-microRNAs were further characterized through mapping to putative target genes followed by gene ontology pathway analysis. RESULTS Four modules, represented by hub-microRNAs miR-320 family, miR-378 family, miR-3605-3p, miR-6747-3p, miR-6786-3p, and miR-330-5p, were associated with total arterial compliance index. Importantly, the miR-320 family module was also associated with white matter hyperintensity burden, an effect partially mediated through arterial compliance. Furthermore, hub-microRNA miR-192-5p was related to cardiac index. Functional analysis corroborated the relevance of the identified microRNAs for vascular function by revealing, among others, enrichment for pathways involved in blood vessel morphogenesis and development, angiogenesis, telomere organization and maintenance, and insulin secretion. CONCLUSIONS We identified several microRNAs robustly associated with cardiovascular function, especially arterial compliance and cardiac output. Moreover, our results highlight miR-320 as a regulator of cerebrovascular damage, partly through modulation of vascular function. As many of these microRNAs were involved in biological processes related to vasculature development and aging, our results contribute to the understanding of vascular physiology and provide putative targets for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Valentina Talevi
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Konstantinos Melas
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Gökhan Pehlivan
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Mohammed A Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
| | - Dennis Manfred Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - Tonatiuh Pena Centeno
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Bioinformatics Unit, German Center for Neurodegenerative Diseases, Göttingen, Germany
- Department for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Building 99, 53127, Bonn, Germany.
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany.
| |
Collapse
|
59
|
Xiong JL, Wang YX, Luo JY, Wang SM, Sun JJ, Xi QY, Chen T, Zhang YL. Pituitary-derived small extracellular vesicles promote liver repair by its cargo miR-143-3p. Sci Rep 2024; 14:16635. [PMID: 39025906 PMCID: PMC11258314 DOI: 10.1038/s41598-024-67434-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
The small Extracellular vesicles (sEV) has been recognized to be significant for intercellular communication due to their ability to transfer important cellular cargoes like miRNAs through circulation. The pituitary gland has not been clearly known about the role of its secreted sEV under normal physiological conditions. And Liver disease is a global public health burden. The present study is the first to investigate the effect of pituitary sEV on the liver. Sequencing and qRT-PCR revealed miR-143-3p is one of the richest in the pituitary sEV. MiR-143 Knockout (KO) mice resulted in a remarkable decrease in insulin-like growth factor 1 (IGF-1) levels and a significant increase in insulin-like growth factor binding protein 5 (IGFBP5) levels along with a reduction in liver primary cell growth. More importantly, compared with miR-143-KO-sEV, WT-sEV possesses a more robust capacity to improve miR-143 KO mice liver repair through the Wnt/β-catenin pathway after an acute injury caused by carbon tetrachloride (CCl4). Our results indicate that pituitary-derived sEV promotes hepatocyte proliferation and liver repair by its cargo miR-143-3p and provides new insight into the regulation mechanism of the pituitary-liver axis, and open a new window for endocrine regulation by using sEV.
Collapse
Affiliation(s)
- Jia-Li Xiong
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
- College of Medicine, Jiaxing University, Jiaxing, 314000, Zhejiang, China
| | - Yu-Xuan Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jun-Yi Luo
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Shu-Meng Wang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jia-Jie Sun
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qian-Yun Xi
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ting Chen
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| | - Yong-Liang Zhang
- College of Animal Science, Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Livestock and Poultry Breeding, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
60
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. Front Cell Infect Microbiol 2024; 14:1427562. [PMID: 39086604 PMCID: PMC11288922 DOI: 10.3389/fcimb.2024.1427562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
61
|
Ding W, Gong W, Liu H, Hu H, Shi L, Ren X, Cao Y, Zhang A, Shi X, Li Z, Bou T, Dugarjaviin M, Bai D. Changes of mRNA, miRNA and lncRNA expression contributing to skeletal muscle differences between fetus and adult Mongolian horses. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101294. [PMID: 39180870 DOI: 10.1016/j.cbd.2024.101294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/27/2024]
Abstract
The growth and development of myofibers, as the fundamental units comprising muscle tissue, and their composition type are indeed among the most crucial factors influencing skeletal muscle types. Muscle fiber adaptation is closely associated with alterations in physiological conditions. Muscle fiber types undergo dynamic changes in fetus and adult horses. Our aim is to investigate the mechanisms influencing the differences in muscle fiber types between fetal and adult stages of Mongolian horses. The study investigated the distribution of muscle fiber types within longissimus dorsi muscle of fetus and adult Mongolian horses. A total of 652 differentially expressed genes (DEGs), 476 Differentially expressed lncRNAs (DELs), and 174 Differentially expressed miRNAs (DEMIRs) were identified using deep RNA-seq analysis. The results of functional analysis reveal the transformations in muscle fiber type from the fetal to adult stage in Mongolian horses. The up-regulated DEGs were implicated in the development and differentiation of muscle fibers, while down-regulated DEGs were associated with muscle fiber contraction, transformation, and metabolism. Additionally, connections between non-coding RNA and mRNA landscapes were identified based on their functional alterations, some non-coding RNA target genes may be associated with immunity. These data have broadened our understanding of the specific roles and interrelationships among regulatory molecules involved in Mongolian horse development, this provides new perspectives for selecting and breeding superior individuals and for disease prevention.
Collapse
Affiliation(s)
- Wenqi Ding
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Wendian Gong
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Huiying Liu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hanwen Hu
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lin Shi
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiujuan Ren
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuying Cao
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Aaron Zhang
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xiaoyuan Shi
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Zheng Li
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tugeqin Bou
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Manglai Dugarjaviin
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dongyi Bai
- Key Laboratory of Equus Germplasm Innovation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Equus Research Center, College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
62
|
Lenart M, Siemińska I, Szatanek R, Mordel A, Szczepanik A, Rubinkiewicz M, Siedlar M, Baj-Krzyworzeka M. Identification of miRNAs Present in Cell- and Plasma-Derived Extracellular Vesicles-Possible Biomarkers of Colorectal Cancer. Cancers (Basel) 2024; 16:2464. [PMID: 39001526 PMCID: PMC11240749 DOI: 10.3390/cancers16132464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Globally, an increasing prevalence of colorectal cancer (CRC) prompts a need for the development of new methods for early tumor detection. MicroRNAs (also referred to as miRNAs) are short non-coding RNA molecules that play a pivotal role in the regulation of gene expression. MiRNAs are effectively transferred to extracellular vesicle (EVs) membrane sacs commonly released by cells. Our study aimed to examine the expression of miRNAs in four CRC cell lines and EVs derived from them (tumor EVs) in comparison to the normal colon epithelium cell line and its EVs. EVs were isolated by ultracentrifugation from the culture supernatant of SW480, SW620, SW1116, HCT116 and normal CCD841CoN cell lines and characterized according to the MISEV2023 guidelines. MiRNAs were analyzed by small RNA sequencing and validated by quantitative PCR. The performed analysis revealed 22 common miRNAs highly expressed in CRC cell lines and effectively transferred to tumor EVs, including miR-9-5p, miR-182-5p, miR-196b-5p, miR-200b-5p, miR-200c-3p, miR-425-5p and miR-429, which are associated with development, proliferation, invasion and migration of colorectal cancer cells, as well as in vesicle maturation and transport-associated pathways. In parallel, normal cells expressed miRNAs, such as miR-369 and miR-143, which play a role in proinflammatory response and tumor suppression. The analysis of selected miRNAs in plasma-derived EVs and tumor samples from CRC patients showed the similarity of miRNA expression profile between the patients' samples and CRC cell lines. Moreover, miR-182-5p, miR-196-5p, miR-425-5p and miR-429 were detected in several EV samples isolated from patients' plasma. Our results suggest that miR-182-5p, miR-196b-5p and miR-429 are differentially expressed between EVs from CRC patients and healthy donors, which might have clinical implications.
Collapse
Affiliation(s)
- Marzena Lenart
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Izabela Siemińska
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
- Institute of Veterinary Sciences, University Center of Veterinary Medicine JU-AU, University of Agriculture in Krakow, 30-059 Krakow, Poland
| | - Rafał Szatanek
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Anna Mordel
- Department of Clinical Immunology, University Children's Hospital of Cracow, 30-663 Krakow, Poland
| | - Antoni Szczepanik
- Third Department of Surgery, Faculty of Medicine, Jagiellonian University Medical College, 31-202 Krakow, Poland
| | - Mateusz Rubinkiewicz
- Second Department of Surgery, Jagiellonian University Medical College, 30-688 Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Medical College, Jagiellonian University, 30-663 Krakow, Poland
| |
Collapse
|
63
|
Ramos YFM, Rice SJ, Ali SA, Pastrello C, Jurisica I, Rai MF, Collins KH, Lang A, Maerz T, Geurts J, Ruiz-Romero C, June RK, Thomas Appleton C, Rockel JS, Kapoor M. Evolution and advancements in genomics and epigenomics in OA research: How far we have come. Osteoarthritis Cartilage 2024; 32:858-868. [PMID: 38428513 DOI: 10.1016/j.joca.2024.02.656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
OBJECTIVE Osteoarthritis (OA) is the most prevalent musculoskeletal disease affecting articulating joint tissues, resulting in local and systemic changes that contribute to increased pain and reduced function. Diverse technological advancements have culminated in the advent of high throughput "omic" technologies, enabling identification of comprehensive changes in molecular mediators associated with the disease. Amongst these technologies, genomics and epigenomics - including methylomics and miRNomics, have emerged as important tools to aid our biological understanding of disease. DESIGN In this narrative review, we selected articles discussing advancements and applications of these technologies to OA biology and pathology. We discuss how genomics, deoxyribonucleic acid (DNA) methylomics, and miRNomics have uncovered disease-related molecular markers in the local and systemic tissues or fluids of OA patients. RESULTS Genomics investigations into the genetic links of OA, including using genome-wide association studies, have evolved to identify 100+ genetic susceptibility markers of OA. Epigenomic investigations of gene methylation status have identified the importance of methylation to OA-related catabolic gene expression. Furthermore, miRNomic studies have identified key microRNA signatures in various tissues and fluids related to OA disease. CONCLUSIONS Sharing of standardized, well-annotated omic datasets in curated repositories will be key to enhancing statistical power to detect smaller and targetable changes in the biological signatures underlying OA pathogenesis. Additionally, continued technological developments and analysis methods, including using computational molecular and regulatory networks, are likely to facilitate improved detection of disease-relevant targets, in-turn, supporting precision medicine approaches and new treatment strategies for OA.
Collapse
Affiliation(s)
- Yolande F M Ramos
- Dept. Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Sarah J Rice
- Biosciences Institute, International Centre for Life, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Shabana Amanda Ali
- Henry Ford Health + Michigan State University Health Sciences, Detroit, MI, USA
| | - Chiara Pastrello
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada; Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Muhammad Farooq Rai
- Department of Biological Sciences, Center for Biotechnology, College of Medicine & Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Kelsey H Collins
- Department of Orthopaedic Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Annemarie Lang
- Departments of Orthopaedic Surgery and Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Tristan Maerz
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jeroen Geurts
- Rheumatology, Department of Musculoskeletal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Cristina Ruiz-Romero
- Grupo de Investigación de Reumatología (GIR), Unidad de Proteómica, INIBIC -Hospital Universitario A Coruña, SERGAS, A Coruña, Spain
| | - Ronald K June
- Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - C Thomas Appleton
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Jason S Rockel
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada
| | - Mohit Kapoor
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.
| |
Collapse
|
64
|
Cao M, Xiong L, Wang X, Guo S, Hu L, Kang Y, Wu X, Bao P, Chu M, Liang C, Pei J, Guo X. Comprehensive analysis of differentially expressed mRNAs, circRNAs, and miRNAs and their ceRNA network in the testis of cattle-yak, yak, and cattle. Genomics 2024; 116:110872. [PMID: 38849017 DOI: 10.1016/j.ygeno.2024.110872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/09/2024]
Abstract
Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.
Collapse
Affiliation(s)
- Mengli Cao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Lin Xiong
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xingdong Wang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Shaoke Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Liyan Hu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Yandong Kang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Xiaoyu Wu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Pengjia Bao
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Min Chu
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Chunnian Liang
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China
| | - Jie Pei
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| | - Xian Guo
- Key Laboratory of Yak Breeding in Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou 730050, China.
| |
Collapse
|
65
|
Zhang J, Zhao C, Yao M, Qi J, Tan Y, Shi K, Wang J, Zhou S, Li Z. Transcriptome sequencing reveals non-coding RNAs respond to porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in Kele piglets. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:663-681. [PMID: 39165737 PMCID: PMC11331363 DOI: 10.5187/jast.2023.e46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 08/22/2024]
Abstract
Co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Haemophilus parasuis (HPS) has severely restricted the healthy development of pig breeding. Exploring disease resistance of non-coding RNAs in pigs co-infected with PRRSV and HPS is therefore critical to complement and elucidate the molecular mechanisms of disease resistance in Kele piglets and to innovate the use of local pig germplasm resources in China. RNA-seq of lungs from Kele piglets with single-infection of PRRSV or HPS and co-infection of both pathogens was performed. Two hundred and twenty-five differentially expressed long non-coding RNAs (DElncRNAs) and 30 DEmicroRNAs (DEmiRNAs) were identified and characterized in the PRRSV and HPS co-infection (PRRSV-HPS) group. Compared with the single-infection groups, 146 unique DElncRNAs, 17 unique DEmiRNAs, and 206 target differentially expressed genes (DEGs) were identified in the PRRSV-HPS group. The expression patterns of 20 DEmiRNAs and DElncRNAs confirmed by real-time quantitative polymerase chain reaction (RT-qPCR) were consistent with those determined by high-throughput sequencing. In the PRRSV-HPS group, the target DEGs were enriched in eight immune Gene Ontology terms relating to two unique DEmiRNAs and 16 DElncRNAs, and the unique target DEGs participated the host immune response to pathogens infection by affecting 15 immune-related Kyoto Encyclopedia of Genes and Genomes enrichment pathways. Notably, competitive endogenous RNA (ceRNA) networks of different groups were constructed, and the ssc-miR-671-5p miRNA was validated as a potential regulatory factor to regulate DTX4 and AEBP1 genes to achieve innate antiviral effects and inhibit pulmonary fibrosis by dual-luciferase reporter assays. These results provided insight into further study on the molecular mechanisms of resistance to PRRSV and HPS co-infection in Kele piglets.
Collapse
Affiliation(s)
- Jing Zhang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Chunping Zhao
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Min Yao
- Inspection and Testing Department, Guizhou
Testing Center for Livestock and Poultry Germplasm, Guiyang
550002, China
| | - Jing Qi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Ya Tan
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Kaizhi Shi
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Jing Wang
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Sixuan Zhou
- Institute of Animal Husbandry and
Veterinary Science, Guizhou Academy of Agricultural Sciences,
Guiyang 550002, China
| | - Zhixin Li
- College of Animal Science, Guizhou
University, Guiyang 550002, China
| |
Collapse
|
66
|
Liu L, Gao L, Zhou K, Li Q, Xu H, Feng X, Wang L, Song L. The expression patterns of exosomal miRNAs in the Pacific oyster after high-temperature stress or Vibrio stimulation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105174. [PMID: 38548001 DOI: 10.1016/j.dci.2024.105174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The exosomal miRNA plays a crucial role in the intercellular communication response to environmental stress and pathogenic stimulation. In the present study, the expression of exosomal miRNAs in the Pacific oyster Crassostrea gigas after high-temperature stress or Vibrio splendidus stimulation was investigated through high-throughput sequencing. The exosomes were identified to be teardrop-like vesicles with the average size of 81.7 nm by transmission electron microscopy. There were 66 known miRNAs and 33 novel miRNAs identified, of which 10 miRNAs were differentially expressed after both high-temperature stress and Vibrio stimulation compared to the control group. A total of 1868 genes were predicted as the putative targets of miRNAs, of which threonine aspartase 1-like was targeted by the highest number of related miRNAs. The robustness and reliability of miRNA expression from the sRNA sequencing data were verified by employing eight miRNAs for qPCR. GO and KEGG clustering analyses revealed that apoptosis was significantly enriched by the target genes of differentially expressed exosomal miRNAs after high-temperature stress, and autophagy and cytokine activity were significantly enriched after Vibrio stimulation. Energy metabolism was found to be significantly shared in the target gene enrichments after both high-temperature stress and Vibrio stimulation. These findings would improve our understanding of the regulatory mechanisms of exosomal miRNAs in C. gigas after high-temperature stress or Vibrio stimulation.
Collapse
Affiliation(s)
- Lu Liu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lei Gao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Keli Zhou
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Qingsong Li
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Hairu Xu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xingyi Feng
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
| |
Collapse
|
67
|
Chen Q, Zhang Y, Rong J, Chen C, Wang S, Wang J, Li Z, Hou Z, Liu D, Tao J, Xu J. MicroRNA expression profile of chicken liver at different times after Histomonas meleagridis infection. Vet Parasitol 2024; 329:110200. [PMID: 38744230 DOI: 10.1016/j.vetpar.2024.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Histomonas meleagridis, an anaerobic intercellular parasite, is known to infect gallinaceous birds, particularly turkeys and chickens. The resurgence of histomonosis in recent times has resulted in significant financial setbacks due to the prohibition of drugs used for disease treatment. Currently, research on about H. meleagridis primarily concentrate on the examination of its virulence, gene expression analysis, and the innate immunity response of the host organism. However, there is a lack of research on differentially expressed miRNAs (DEMs) related to liver infection induced by H. meleagridis. In this study, the weight gain and pathological changes at various post-infection time points were evaluated through animal experiments to determine the peak and early stages of infection. Next, High-throughput sequencing was used to examine the expression profile of liver miRNA at 10 and 15 days post-infection (DPI) in chickens infected with the Chinese JSYZ-F strain of H. meleagridis. A comparison with uninfected controls revealed the presence of 120 and 118 DEMs in the liver of infected chickens at 10 DPI and 15 DPI, respectively, with 74 DEMs being shared between the two time points. Differentially expressed microRNAs (DEMs) were categorized into three groups based on the time post-infection. The first group (L1) includes 45 miRNAs that were differentially expressed only at 10 DPI and were predicted to target 1646 genes. The second group (L2) includes 43 miRNAs that were differentially expressed only at 15 DPI and were predicted to target 2257 genes. The third group (L3) includes 75 miRNAs that were differentially expressed at both 10 DPI and 15 DPI and were predicted to target 1623 genes. At L1, L2, and L3, there were 89, 87, and 41 significantly enriched Gene Ontology (GO) terms, respectively (p<0.05). The analysis of differentially expressed miRNA target genes using KEGG pathways revealed significant enrichment at L1, L2, and L3, with 3, 4, and 5 pathways identified, respectively (p<0.05). This article suggests that the expression of liver miRNA undergoes dynamic alterations due to H. meleagridis and the host. It showed that the expression pattern of L1 class DEMs was more conducive to regulating the development of the inflammatory response, while the L2 class DEMs were more conducive to augmenting the inflammatory response. The observed patterns of miRNA expression associated with inflammation were in line with the liver's inflammatory process following infection. The results of this study provide a basis for conducting a comprehensive analysis of the pathogenic mechanism of H. meleagridis from the perspective of host miRNAs.
Collapse
Affiliation(s)
- Qiaoguang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Yuming Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Animal Husbandry and Veterinary Station of Daxindian, Penglai District, Yantai 265600, China
| | - Jie Rong
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Chen Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jiege Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zaifan Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhaofeng Hou
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Dandan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jinjun Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
68
|
Hu L, Zheng X, Zhou M, Wang J, Tong L, Dong M, Xu T, Li Z. Optimized AF4 combined with density cushion ultracentrifugation enables profiling of high-purity human blood extracellular vesicles. J Extracell Vesicles 2024; 13:e12470. [PMID: 39001700 PMCID: PMC11245685 DOI: 10.1002/jev2.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/11/2024] [Indexed: 07/15/2024] Open
Abstract
Extracellular vesicles (EVs) have emerged as a promising tool for clinical liquid biopsy. However, the identification of EVs derived from blood samples is hindered by the presence of abundant plasma proteins, which impairs the downstream biochemical analysis of EV-associated proteins and nucleic acids. Here, we employed optimized asymmetric flow field-flow fractionation (AF4) combined with density cushion ultracentrifugation (UC) to obtain high-purity and intact EVs with very low lipoprotein contamination from human plasma and serum. Further proteomic analysis revealed more than 1000 EV-associated proteins, a large proportion of which has not been previously reported. Specifically, we found that cell-line-derived EV markers are incompatible with the identification of plasma-EVs and proposed that the proteins MYCT1, TSPAN14, MPIG6B and MYADM, as well as the traditional EV markers CD63 and CD147, are plasma-EV markers. Benefiting from the high-purity of EVs, we conducted comprehensive miRNA profiling of plasma EVs and nanosized particles (NPs), as well as compared plasma- and serum-derived EVs, which provides a valuable resource for the EV research community. Overall, our findings provide a comprehensive assessment of human blood EVs as a basis for clinical biopsy applications.
Collapse
Affiliation(s)
- Liqiao Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
- Guangzhou National LaboratoryGuangzhouChina
| | - Xinyue Zheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Maoge Zhou
- Guangzhou National LaboratoryGuangzhouChina
| | - Jifeng Wang
- Laboratory of Proteomics, Institute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Lingjun Tong
- Jinan Central Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
| | - Ming Dong
- Guangzhou National LaboratoryGuangzhouChina
| | - Tao Xu
- Guangzhou National LaboratoryGuangzhouChina
- Jinan Central Hospital, Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanChina
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of SciencesBeijingChina
- School of Biomedical EngineeringGuangzhou Medical UniversityGuangzhouChina
| | | |
Collapse
|
69
|
Gravina T, Favero F, Rosano S, Parab S, Diaz Alcalde A, Bussolino F, Doronzo G, Corà D. Integrative Bioinformatics Analysis Reveals a Transcription Factor EB-Driven MicroRNA Regulatory Network in Endothelial Cells. Int J Mol Sci 2024; 25:7123. [PMID: 39000232 PMCID: PMC11241138 DOI: 10.3390/ijms25137123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Various human diseases are triggered by molecular alterations influencing the fine-tuned expression and activity of transcription factors, usually due to imbalances in targets including protein-coding genes and non-coding RNAs, such as microRNAs (miRNAs). The transcription factor EB (TFEB) modulates human cellular networks, overseeing lysosomal biogenesis and function, plasma-membrane trafficking, autophagic flux, and cell cycle progression. In endothelial cells (ECs), TFEB is essential for the maintenance of endothelial integrity and function, ensuring vascular health. However, the comprehensive regulatory network orchestrated by TFEB remains poorly understood. Here, we provide novel mechanistic insights into how TFEB regulates the transcriptional landscape in primary human umbilical vein ECs (HUVECs), using an integrated approach combining high-throughput experimental data with dedicated bioinformatics analysis. By analyzing HUVECs ectopically expressing TFEB using ChIP-seq and examining both polyadenylated mRNA and small RNA sequencing data from TFEB-silenced HUVECs, we have developed a bioinformatics pipeline mapping the different gene regulatory interactions driven by TFEB. We show that TFEB directly regulates multiple miRNAs, which in turn post-transcriptionally modulate a broad network of target genes, significantly expanding the repertoire of gene programs influenced by this transcription factor. These insights may have significant implications for vascular biology and the development of novel therapeutics for vascular disease.
Collapse
Affiliation(s)
- Teresa Gravina
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Francesco Favero
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Stefania Rosano
- Department of Oncology, University of Torino, 10124 Orbassano, Italy
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Sushant Parab
- Department of Oncology, University of Torino, 10124 Orbassano, Italy
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Alejandra Diaz Alcalde
- Department of Oncology, University of Torino, 10124 Orbassano, Italy
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, 10124 Orbassano, Italy
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, 10124 Orbassano, Italy
- Candiolo Cancer Institute, IRCCS-FPO, 10060 Candiolo, Italy
| | - Davide Corà
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research on Allergic and Autoimmune Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
70
|
Jin J, Yang L, Fan D, Li L, Hao Q. Integration analysis of miRNA-mRNA pairs between two contrasting genotypes reveals the molecular mechanism of jujube (Ziziphus jujuba Mill.) response to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:612. [PMID: 38937704 PMCID: PMC11209981 DOI: 10.1186/s12870-024-05304-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With global warming, high temperature (HT) has become one of the most common abiotic stresses resulting in significant crop yield losses, especially for jujube (Ziziphus jujuba Mill.), an important temperate economic crop cultivated worldwide. This study aims to explore the coping mechanism of jujube to HT stress at the transcriptional and post-transcriptional levels, including identifying differentially expressed miRNAs and mRNAs as well as elucidating the critical pathways involved. High-throughput sequencing analyses of miRNA and mRNA were performed on jujube leaves, which were collected from "Fucumi" (heat-tolerant) and "Junzao" (heat-sensitive) cultivars subjected to HT stress (42 °C) for 0, 1, 3, 5, and 7 days, respectively. The results showed that 45 known miRNAs, 482 novel miRNAs, and 13,884 differentially expressed mRNAs (DEMs) were identified. Among them, integrated analysis of miRNA target genes prediction and mRNA-seq obtained 1306 differentially expressed miRNAs-mRNAs pairs, including 484, 769, and 865 DEMIs-DEMs pairs discovered in "Fucuimi", "Junzao" and two genotypes comparative groups, respectively. Furthermore, functional enrichment analysis of 1306 DEMs revealed that plant-pathogen interaction, starch and sucrose metabolism, spliceosome, and plant hormone signal transduction were crucial pathways in jujube leaves response to HT stress. The constructed miRNA-mRNA network, composed of 20 DEMIs and 33 DEMs, displayed significant differently expressions between these two genotypes. This study further proved the regulatory role of miRNAs in the response to HT stress in plants and will provide a theoretical foundation for the innovation and cultivation of heat-tolerant varieties.
Collapse
Affiliation(s)
- Juan Jin
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lei Yang
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Dingyu Fan
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Lili Li
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China
| | - Qing Hao
- Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, Xinjiang, 830091, China.
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Urumqi, Xinjiang, 830091, China.
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Urumqi, Xinjiang, 830091, China.
| |
Collapse
|
71
|
Peyretaillade E, Akossi RF, Tournayre J, Delbac F, Wawrzyniak I. How to overcome constraints imposed by microsporidian genome features to ensure gene prediction? J Eukaryot Microbiol 2024:e13038. [PMID: 38934348 DOI: 10.1111/jeu.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Since the advent of sequencing techniques and due to their continuous evolution, it has become easier and less expensive to obtain the complete genome sequence of any organism. Nevertheless, to elucidate all biological processes governing organism development, quality annotation is essential. In genome annotation, predicting gene structure is one of the most important and captivating challenges for computational biology. This aspect of annotation requires continual optimization, particularly for genomes as unusual as those of microsporidia. Indeed, this group of fungal-related parasites exhibits specific features (highly reduced gene sizes, sequences with high rate of evolution) linked to their evolution as intracellular parasites, requiring the implementation of specific annotation approaches to consider all these features. This review aimed to outline these characteristics and to assess the increasingly efficient approaches and tools that have enhanced the accuracy of gene prediction for microsporidia, both in terms of sensitivity and specificity. Subsequently, a final part will be dedicated to postgenomic approaches aimed at reinforcing the annotation data generated by prediction software. These approaches include the characterization of other understudied genes, such as those encoding regulatory noncoding RNAs or very small proteins, which also play crucial roles in the life cycle of these microorganisms.
Collapse
Affiliation(s)
| | - Reginal F Akossi
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Jérémy Tournayre
- INRAE, UMR Herbivores, Université Clermont Auvergne, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Frédéric Delbac
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- LMGE, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
72
|
Cheng B, Yang R, Xu H, Wang L, Jiang N, Song T, Dong C. Peripheral Blood miRNA Expression in Patients with Essential Hypertension in the Han Chinese Population in Hefei, China. Biochem Genet 2024:10.1007/s10528-024-10867-6. [PMID: 38907084 DOI: 10.1007/s10528-024-10867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Primary hypertension is a significant risk factor for cardiovascular diseases. However, the pathogenesis of primary hypertension involves multiple biological processes, including the nervous system, circulatory system, endocrine system, and more. Despite extensive research, there is no clear understanding of the regulatory mechanism underlying its pathogenesis. In recent years, miRNAs have gained attention as a regulatory factor capable of modulating the expression of related molecules through gene silencing. Therefore, exploring differentially expressed miRNAs in patients with essential hypertension (EH) may offer a novel approach for future diagnosis and treatment of EH. This study included a total of twenty Han Chinese population samples from Hefei, China. The samples consisted of 10 healthy individuals and 10 patients with EH. Statistical analysis was conducted to analyze the general information of the two-sample groups. High-throughput sequencing and base identification were performed to obtain the original sequencing sequences. These sequences were then annotated using various databases including Rfam, cDNA sequences, species repetitive sequences library, and miRBase database. The number of miRNA species contained in the samples was measured. Next, TPM values were calculated to determine the expression level of each miRNA. The bioinformatics of the differentiated miRNAs were analyzed using the OECloud tool, and RPM values were calculated. Furthermore, the reliability of the expression was analyzed by calculating the area under the Roc curve using the OECloud tools. Statistical analysis revealed no significant differences between the two samples in terms of age distribution, gender composition, smoking history, and alcohol consumption history (P > 0.05). However, there was a notable presence of family genetic history and high BMI in the EH population (P < 0.05). The sequencing results identified a total of 245 miRNAs, out of which 16 miRNAs exhibited differential expression. Among the highly expressed miRNAs were let-7d-5p, miR-101-3p, miR-122-5p, miR-122b-3p, miR-192-5p, and miR-6722-3p. On the other hand, the lowly expressed miRNAs included miR-103a-3p, miR-16-5p, miR-181a-2-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-221-3p, miR-30d-5p, miR-342-5p, and miR-543. This study initially identified 16 miRNAs that are aberrantly expressed and function in various processes associated with the onset and progression of essential hypertension. These miRNAs have the potential to be targeted for future diagnosis and treatment of EH. However, further samples are required to provide additional support for this study.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Xu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Li Wang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Song
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
73
|
Bang JH, Kim EH, Kim HJ, Chung JW, Seo WK, Kim GM, Lee DH, Kim H, Bang OY. Machine Learning-Based Etiologic Subtyping of Ischemic Stroke Using Circulating Exosomal microRNAs. Int J Mol Sci 2024; 25:6761. [PMID: 38928481 PMCID: PMC11203849 DOI: 10.3390/ijms25126761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Ischemic stroke is a major cause of mortality worldwide. Proper etiological subtyping of ischemic stroke is crucial for tailoring treatment strategies. This study explored the utility of circulating microRNAs encapsulated in extracellular vesicles (EV-miRNAs) to distinguish the following ischemic stroke subtypes: large artery atherosclerosis (LAA), cardioembolic stroke (CES), and small artery occlusion (SAO). Using next-generation sequencing (NGS) and machine-learning techniques, we identified differentially expressed miRNAs (DEMs) associated with each subtype. Through patient selection and diagnostic evaluation, a cohort of 70 patients with acute ischemic stroke was classified: 24 in the LAA group, 24 in the SAO group, and 22 in the CES group. Our findings revealed distinct EV-miRNA profiles among the groups, suggesting their potential as diagnostic markers. Machine-learning models, particularly logistic regression models, exhibited a high diagnostic accuracy of 92% for subtype discrimination. The collective influence of multiple miRNAs was more crucial than that of individual miRNAs. Additionally, bioinformatics analyses have elucidated the functional implications of DEMs in stroke pathophysiology, offering insights into the underlying mechanisms. Despite limitations like sample size constraints and retrospective design, our study underscores the promise of EV-miRNAs coupled with machine learning for ischemic stroke subtype classification. Further investigations are warranted to validate the clinical utility of the identified EV-miRNA biomarkers in stroke patients.
Collapse
Affiliation(s)
- Ji Hoon Bang
- Global School of Media, College of IT, Soongsil University, Seoul 06978, Republic of Korea;
| | - Eun Hee Kim
- S&E Bio, Inc., Seoul 05855, Republic of Korea
| | - Hyung Jun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Jong-Won Chung
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Woo-Keun Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Gyeong-Moon Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Dong-Ho Lee
- Calth, Inc., Seongnam-si 13449, Republic of Korea
| | - Heewon Kim
- Global School of Media, College of IT, Soongsil University, Seoul 06978, Republic of Korea;
| | - Oh Young Bang
- S&E Bio, Inc., Seoul 05855, Republic of Korea
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Republic of Korea
| |
Collapse
|
74
|
Sun Y, Liu X, Shan X, Wang Y, Zhong C, Lu C, Guan B, Yao S, Huo Y, Sun R, Wei M, Dong Z. Comprehensive investigation of differentially expressed ncRNAs, mRNAs, and their ceRNA networks in the regulation of shell color formation in clam, Cyclina sinensis. Gene 2024; 911:148346. [PMID: 38452877 DOI: 10.1016/j.gene.2024.148346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Noncoding RNAs (ncRNAs) have gained significant attention in recent years due to their crucial roles in various biological processes. However, our understanding of the expression and functions of ncRNAs in Cyclina sinensis, an economically important marine bivalve, remains limited. This study aimed to address this knowledge gap by systematically identifying ncRNAs in the mantles of C. sinensis with purple and white shells. Through our analysis, we identified a differential expression of 1244 mRNAs, 196 lncRNAs, 49 circRNAs, and 23 miRNAs between purple- and white-shell clams. Functional enrichment analysis revealed the involvement of these differentially expressed ncRNAs in biomineralization and pigmentation processes. To gain further insights into the regulatory mechanisms underlying shell color formation, we established competitive endogenous RNA (ceRNA) networks. These networks allowed us to identify targeted differentially expressed miRNAs (DEMis) and genes associated with shell color formation. Based on the ceRNA networks, we obtained an up-down-up lncRNA-miRNA-mRNA network consisting of 13 upregulated lncRNAs and a circRNA-miRNA-mRNA network comprising three upregulated circRNAs (novel_circ_0004787, novel_circ_0001165, novel_circ_0000245). Through these networks, we identified and selected an upregulated novel gene (evm.TU.Hic_asm_7.988) and a downregulated sponge miRNA (hru-miR-1985) as potential contributors to shell color regulation. In summary, the present investigation offers a comprehensive analysis of ncRNA catalogs expressed in the clam mantle of C. sinensis. The findings enhance our comprehension of the molecular mechanisms governing shell coloration and offer new perspectives for selective breeding of C. sinensis in the future.
Collapse
Affiliation(s)
- Yuyan Sun
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xuxiao Liu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Xin Shan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Yiwo Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Chongyu Zhong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Chaofa Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China
| | - Bin Guan
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Shun Yao
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Yujia Huo
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Runkai Sun
- Jiangsu Marine Resources Development Institute, Lianyungang 222000, China
| | - Min Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China.
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222000, China; Jiangsu Marine Resources Development Institute, Lianyungang 222000, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222000, China.
| |
Collapse
|
75
|
Li L, Zhang L, Luo L, Shen F, Zhao Y, Wu H, Huang Y, Hou R, Yue B, Zhang X. Adaptive Expression and ncRNA Regulation of Genes Related to Digestion and Metabolism in Stomach of Red Pandas during Suckling and Adult Periods. Animals (Basel) 2024; 14:1795. [PMID: 38929414 PMCID: PMC11200446 DOI: 10.3390/ani14121795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Red pandas evolved from carnivores to herbivores and are unique within Carnivora. Red pandas and carnivorous mammals consume milk during the suckling period, while they consume bamboo and meat during the adult period, respectively. Red pandas and carnivorous mammal ferrets have a close phylogenetic relationship. To further investigate the molecular mechanisms of dietary changes and nutrient utilization in red pandas from suckling to adult, comparative analysis of the whole transcriptome was performed on stomach tissues from red pandas and ferrets during the suckling and adult periods. The main results are as follows: (1) we identified ncRNAs for the first time in stomach tissues of both species, and found significant expression changes of 109 lncRNAs and 106 miRNAs in red pandas and 756 lncRNAs and 109 miRNAs in ferrets between the two periods; (2) up-regulated genes related to amino acid transport regulated by lncRNA-miRNA-mRNA networks may efficiently utilize limited bamboo amino acids in adult red pandas, while up-regulated genes related to amino acid degradation regulated by lncRNAs may maintain the balance of amino acid metabolism due to larger daily intakes in adult ferrets; and (3) some up-regulated genes related to lipid digestion may contribute to the utilization of rich nutrients in milk for the rapid growth and development of suckling red pandas, while up-regulated genes associated with linoleic acid metabolism regulated by lncRNA-miRNA-mRNA networks may promote cholesterol decomposition to reduce health risks for carnivorous adult ferrets. Collectively, our study offers evidence of gene expression adaptation and ncRNA regulation in response to specific dietary changes and nutrient utilization in red pandas during suckling and adult periods.
Collapse
Affiliation(s)
- Lu Li
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Liang Zhang
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Lijun Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Fujun Shen
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Yanni Zhao
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Honglin Wu
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Dujiangyan 611800, China; (H.W.); (Y.H.)
| | - Rong Hou
- The Sichuan Key Laboratory for Conservation Biology of Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China; (L.Z.); (F.S.); (R.H.)
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China; (L.L.); (L.L.); (Y.Z.); (B.Y.)
| |
Collapse
|
76
|
McDonald JT, Kim J, Farmerie L, Johnson ML, Trovao NS, Arif S, Siew K, Tsoy S, Bram Y, Park J, Overbey E, Ryon K, Haltom J, Singh U, Enguita FJ, Zaksas V, Guarnieri JW, Topper M, Wallace DC, Meydan C, Baylin S, Meller R, Muratani M, Porterfield DM, Kaufman B, Mori MA, Walsh SB, Sigaudo-Roussel D, Mebarek S, Bottini M, Marquette CA, Wurtele ES, Schwartz RE, Galeano D, Mason CE, Grabham P, Beheshti A. Space radiation damage rescued by inhibition of key spaceflight associated miRNAs. Nat Commun 2024; 15:4825. [PMID: 38862542 PMCID: PMC11166944 DOI: 10.1038/s41467-024-48920-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/17/2024] [Indexed: 06/13/2024] Open
Abstract
Our previous research revealed a key microRNA signature that is associated with spaceflight that can be used as a biomarker and to develop countermeasure treatments to mitigate the damage caused by space radiation. Here, we expand on this work to determine the biological factors rescued by the countermeasure treatment. We performed RNA-sequencing and transcriptomic analysis on 3D microvessel cell cultures exposed to simulated deep space radiation (0.5 Gy of Galactic Cosmic Radiation) with and without the antagonists to three microRNAs: miR-16-5p, miR-125b-5p, and let-7a-5p (i.e., antagomirs). Significant reduction of inflammation and DNA double strand breaks (DSBs) activity and rescue of mitochondria functions are observed after antagomir treatment. Using data from astronaut participants in the NASA Twin Study, Inspiration4, and JAXA missions, we reveal the genes and pathways implicated in the action of these antagomirs are altered in humans. Our findings indicate a countermeasure strategy that can potentially be utilized by astronauts in spaceflight missions to mitigate space radiation damage.
Collapse
Affiliation(s)
- J Tyson McDonald
- Department of Radiation Medicine, Georgetown University School of Medicine, Washington, D.C, USA
| | - JangKeun Kim
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Lily Farmerie
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Meghan L Johnson
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Nidia S Trovao
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Shehbeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Keith Siew
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | - Sergey Tsoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Yaron Bram
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Jiwoon Park
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Eliah Overbey
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Krista Ryon
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey Haltom
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Urminder Singh
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Francisco J Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Victoria Zaksas
- Center for Translational Data Science, University of Chicago, Chicago, IL, 60637, USA
- Clever Research Lab, Springfield, IL, 62704, USA
| | - Joseph W Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Michael Topper
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Douglas C Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Pediatrics, Division of Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Cem Meydan
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Stephen Baylin
- Departments of Oncology and Medicine and the Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Robert Meller
- Neuroscience Institute, Department of Neurobiology/ Department of Pharmacology and Toxicology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Masafumi Muratani
- Transborder Medical Research Center, University of Tsukuba, Ibaraki, 305-8575, Japan
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Ibaraki, 305-8575, Japan
| | - D Marshall Porterfield
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Brett Kaufman
- Vascular Medicine Institute at the University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Stephen B Walsh
- London Tubular Centre, Department of Renal Medicine, University College London, London, UK
| | | | - Saida Mebarek
- ICBMS, UMR5246, CNRS, INSA, CPE-Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Massimo Bottini
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, CPE-Lyon, UMR5246, ICBMS, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Eve Syrkin Wurtele
- Bioinformatics and Computational Biology Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
- Genetics Program, Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 90011, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Diego Galeano
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology and the WorldQuant Initiative, Weill Cornell Medicine, New York, NY, USA
| | - Peter Grabham
- Center for Radiological Research, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| | - Afshin Beheshti
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, US.
| |
Collapse
|
77
|
Borg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, Felice A, Liu T, Matei I, Meydan C, Muratani M, Mzava O, Overbey E, Ryon KA, Smith SM, Tierney BT, Trudel G, Zwart SR, Beheshti A, Mason CE, Borg J. Spatiotemporal expression and control of haemoglobin in space. Nat Commun 2024; 15:4927. [PMID: 38862545 PMCID: PMC11166948 DOI: 10.1038/s41467-024-49289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Collapse
Affiliation(s)
- Josef Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Conor Loy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Buhagiar
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alex Felice
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Tammy Liu
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Irina Matei
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guy Trudel
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Sara R Zwart
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch, Galveston, TX, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
78
|
Yu H, Tang J, Dong L, Tang M, Arif A, Zhang T, Zhang G, Xie K, Zhao Z, Dai G. Transcriptome analysis reveals that gga-miR-2954 inhibits the inflammatory response against Eimeria tenella infection. Int J Biol Macromol 2024; 269:131807. [PMID: 38670189 DOI: 10.1016/j.ijbiomac.2024.131807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Coccidiosis is an important parasitic protozoan disease in poultry farming, causing huge economic losses in the global poultry industry every year. MicroRNAs (miRNAs) are a class of RNA macromolecules that play important roles in the immune response to pathogens. However, the expression profiles and functions of miRNAs during Eimeria tenella (E. tenella) infection in chickens remain mostly uncharacterized. In this study, high-throughput sequencing of cecal tissues of control (JC), resistant (JR), and susceptible (JS) chickens led to the identification of 35 differentially expressed miRNAs among the three groups. Functional enrichment analysis showed that the differentially expressed miRNAs were mainly associated with the TGF-beta, NF-kB, and Jak-STAT signaling pathways. Notably, gga-miR-2954 was found to be significantly upregulated after coccidial infection. Functional analysis showed that gga-miR-2954 inhibited the production of the inflammatory cytokines IL-6, IL-1β, TNF-α, and IL-8 in sporozoite-stimulated DF-1 cells. Mechanistically, we found that gga-miR-2954 targeted the RORC gene and that RORC promoted the inflammatory response in sporozoite-stimulated DF-1 cells. In conclusion, our study was the first to identify differentially expressed miRNAs in chicken cecal tissue during E. tenella infection and found that gga-miR-2954 regulates the host immune response to coccidial infection in chickens by targeting the RORC gene.
Collapse
Affiliation(s)
- Hailiang Yu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jianqiang Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Liyue Dong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Meihui Tang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - AreeJ Arif
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Zhenhua Zhao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.
| |
Collapse
|
79
|
Xiao F, Zhao Y, Wang X, Jian X, Zhou H. Analysis of differential mRNA and miRNA expression induced by heterogeneous grafting in Gleditsia sinensis. Int J Biol Macromol 2024; 270:132235. [PMID: 38734341 DOI: 10.1016/j.ijbiomac.2024.132235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Gleditsia sinensis Lam. is a multifaceted plant with medicinal, edible, chemical, timber, and ornamental applications. However, the effect of rootstocks on scions after grafting is still unclear. This study examined the mRNA and miRNA transcriptome among homografts, heterografts, and seedlings. GO enrichment analysis between seedlings and homograft/heterograft combinations revealed that biosynthesis, degradation, and transport were enriched. The KEGG enrichment results showed that plant hormone signal transduction and the plant MAPK signaling pathway were enriched in both seedlings and heterograft combinations. Through weighted correlation network analysis (WGCNA), the hub genes related to the content of plant hormones were obtained. Taking G. sinensis as the scion, there were 4594, 2887, 3429, and 5959 mRNAs that were specifically expressed in the grafted plants of G. sinensis/G. fera, G. sinensis/G. delavayi, G. sinensis/G. microphylla, and G. sinensis/G. japonica, respectively. The specifically expressed mRNA genes may participate in such processes and pathways as the rhythmic process, circadian rhythm, gibberellic-acid-mediated signaling pathway, and peptide-based amino acid modification. Additionally, 3, 16, 2, and 15 specifically expressed miRNAs were identified. This study examines the impact of grafting on gene expression in Gleditsia plants and establishes a foundation for the development of new resources and rootstock breeding.
Collapse
Affiliation(s)
- Feng Xiao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yang Zhao
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Xiurong Wang
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xueyan Jian
- College of Continuing Education, Yanbian University, Yanji 133002, Jilin, China
| | - Heying Zhou
- Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang 550025, Guizhou, China
| |
Collapse
|
80
|
Yu S, Wang G, Shen X, Chen J, Liao J, Yang Y, Aikebai G. Comprehensive analysis of changes in expression of lncRNA, microRNA and mRNA in liver tissues of chickens with high or low abdominal fat deposition. Br Poult Sci 2024; 65:250-258. [PMID: 38808584 DOI: 10.1080/00071668.2024.2319779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/07/2023] [Indexed: 05/30/2024]
Abstract
1. The liver of chickens is a dominant lipid biosynthetic tissue and plays a vital role in fat deposition, particularly in the abdomen. To determine the molecular mechanisms involved in its lipid metabolism, the livers of chickens with high (H) or low (L) abdominal fat content were sampled and sequencing on long non-coding RNA (lncRNA), messenger RNA (mRNA) and small RNA (microRNA) was performed.2. In total, 351 expressed protein-coding genes for long non-coding RNA (DEL; 201 upregulated and 150 downregulated), 400 differentially expressed genes (DEG; 223 upregulated and 177 downregulated) and 10 differentially expressed miRNA (DEM; four upregulated and six downregulated) were identified between the two groups. Multiple potential signalling pathways related to lipogenesis and lipid metabolism were identified via pathway enrichment analysis. In addition, 173 lncRNA - miRNA - mRNA interaction regulatory networks were identified, including 30 lncRNA, 27 mRNA and seven miRNA.3. These networks may help regulate lipid metabolism and fat deposition. Five promising candidate genes and two lncRNA may play important roles in the regulation of adipogenesis and lipid metabolism in chickens.
Collapse
Affiliation(s)
- S Yu
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Wang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - X Shen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Chen
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - J Liao
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - Y Yang
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| | - G Aikebai
- Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan, College of Life Science, Leshan Normal University, Leshan, China
| |
Collapse
|
81
|
Jiang J, Zhang Z, Bai Y, Wang X, Dou Y, Geng R, Wu C, Zhang H, Lu C, Gu L, Gao J. Chromosomal-level genome and metabolome analyses of highly heterozygous allohexaploid Dendrocalamus brandisii elucidate shoot quality and developmental characteristics. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1087-1105. [PMID: 38051011 DOI: 10.1111/jipb.13592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/07/2023]
Abstract
Dendrocalamus brandisii (Munro) Kurz is a sympodial bamboo species with inimitable taste and flavorful shoots. Its rapid growth and use as high-quality material make this bamboo species highly valued for both food processing and wood applications. However, genome information for D. brandisii is lacking, primarily due to its polyploidy and large genome size. Here, we assembled a high-quality genome for hexaploid D. brandisii, which comprises 70 chromosomes with a total size of 2,756 Mb, using long-read HiFi sequencing. Furthermore, we accurately separated the genome into its three constituent subgenomes. We used Oxford Nanopore Technologies long reads to construct a transcriptomic dataset covering 15 tissues for gene annotation to complement our genome assembly, revealing differential gene expression and post-transcriptional regulation. By integrating metabolome analysis, we unveiled that well-balanced lignin formation, as well as abundant flavonoid and fructose contents, contribute to the superior quality of D. brandisii shoots. Integrating genomic, transcriptomic, and metabolomic datasets provided a solid foundation for enhancing bamboo shoot quality and developing efficient gene-editing techniques. This study should facilitate research on D. brandisii and enhance its use as a food source and wood material by providing crucial genomic resources.
Collapse
Affiliation(s)
- Jutang Jiang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Zeyu Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yucong Bai
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Xiaojing Wang
- School of Life Science, Peking University, Beijing, 100871, China
| | - Yuping Dou
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Ruiman Geng
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Chongyang Wu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| | - Hangxiao Zhang
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lianfeng Gu
- College of Forestry, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jian Gao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, 100102, China
| |
Collapse
|
82
|
Yu H, Chen Z, Liu Y, Shen Y, Gui L, Qiu J, Xu X, Li J. Deep sequencing identified miR-193b-3p as a positive regulator of autophagy targeting Akt3 in Ctenopharyngodon idella CIK cells during GCRV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109586. [PMID: 38670410 DOI: 10.1016/j.fsi.2024.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Recent research has highlighted complex and close interaction between miRNAs, autophagy, and viral infection. In this study, we observed the autophagy status in CIK cells infected with GCRV at various time points. We found that GCRV consistently induced cellar autophagy from 0 h to 12 h post infection. Subsequently, we performed deep sequencing on CIK cells infected with GCRV at 0 h and 12 h respectively, identifying 38 DEMs and predicting 9581 target genes. With the functional enrichment analyses of GO and KEGG, we identified 35 autophagy-related target genes of these DEMs, among which akt3 was pinpointed as the most central hub gene using module assay of the PPI network. Then employing the miRanda and Targetscan programs for prediction, and verification through a double fluorescent enzyme system and qPCR method, we confirmed that miR-193 b-3p could target the 3'-UTR of grass carp akt3, reducing its gene expression. Ultimately, we illustrated that grass carp miR-193 b-3p could promote autophagy in CIK cells. Above results collectively indicated that miRNAs might play a critical role in autophagy of grass carp during GCRV infection and contributed significantly to antiviral immunity by targeting autophagy-related genes. This study may provide new insights into the intricate mechanisms involved in virus, autophagy, and miRNAs.
Collapse
Affiliation(s)
- Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Zheyan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yuting Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
83
|
Li W, Cao Z, Xu F, Zhang X, Sun Y, Xie Z, Ning C, Zhang Q, Wang D, Tang H. Whole transcriptome sequencing reveals key genes and ceRNA regulatory networks associated with pimpled eggs in hens. Poult Sci 2024; 103:103715. [PMID: 38652954 PMCID: PMC11063507 DOI: 10.1016/j.psj.2024.103715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/25/2024] Open
Abstract
Eggshell is one of the most important indicators of egg quality, and due to low shell strength, pimple eggs (PE) are more susceptible to breakage, thus causing huge economic losses to the egg industry. At the current time, the molecular mechanisms that regulate the formation of pimple eggs are poorly understood. In this study, uterine tissues of PE-laying hens (n = 8) and normal egg (NE) -laying hens (n = 8) were analyzed by whole transcriptome sequencing, and a total of 619 differentially expressed mRNAs (DE mRNAs), 122 differentially expressed lncRNAs (DE lncRNAs) and 21 differentially expressed miRNAs (DE miRNAs) were obtained. Based on the targeting relationship among DE mRNAs, DE lncRNAs and DE miRNAs, we constructed a competitive endogenous RNA (ceRNA) network including 12 DE miRNAs, 19 DE lncRNAs, and 128 DE mRNAs. Considering the large amount of information contained in the network, we constructed a smaller ceRNA network to better understand the complex mechanisms of pimple egg formation. The smaller ceRNA network network contains 7 DE lncRNAs (LOC107056551, LOC121109367, LOC121108909, LOC121108862, LOC112530033, LOC121113165, LOC107054145), 5 DE miRNAs (gga-miR-6568-3p, gga-miR-31-5p, gga-miR-18b-3p, gga-miR-1759-3p, gga-miR-12240-3p) and 7 DE mRNAs (CABP1, DNAJC5, HCN3, HPCA, IBSP, KCNT1, OTOP3), and these differentially expressed genes may play key regulatory roles in the formation of pimpled eggs in hens. This study provides the overall expression profiles of mRNAs, lncRNAs and miRNAs in the uterine tissues of hens, which provides a theoretical basis for further research on the molecular mechanisms of pimpled egg formation, and has potential applications in improving eggshell quality.
Collapse
Affiliation(s)
- Wenqiang Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhi Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Fei Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xuguang Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Yifei Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Zhongbiao Xie
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Hui Tang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science & Technology, Shandong Agricultural University, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
84
|
Gordillo-Sampedro S, Antounians L, Wei W, Mufteev M, Lendemeijer B, Kushner SA, de Vrij FMS, Zani A, Ellis J. iPSC-derived healthy human astrocytes selectively load miRNAs targeting neuronal genes into extracellular vesicles. Mol Cell Neurosci 2024; 129:103933. [PMID: 38663691 DOI: 10.1016/j.mcn.2024.103933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/31/2024] [Accepted: 04/20/2024] [Indexed: 05/05/2024] Open
Abstract
Astrocytes are in constant communication with neurons during the establishment and maturation of functional networks in the developing brain. Astrocytes release extracellular vesicles (EVs) containing microRNA (miRNA) cargo that regulates transcript stability in recipient cells. Astrocyte released factors are thought to be involved in neurodevelopmental disorders. Healthy astrocytes partially rescue Rett Syndrome (RTT) neuron function. EVs isolated from stem cell progeny also correct aspects of RTT. EVs cross the blood-brain barrier (BBB) and their cargo is found in peripheral blood which may allow non-invasive detection of EV cargo as biomarkers produced by healthy astrocytes. Here we characterize miRNA cargo and sequence motifs in healthy human astrocyte derived EVs (ADEVs). First, human induced Pluripotent Stem Cells (iPSC) were differentiated into Neural Progenitor Cells (NPCs) and subsequently into astrocytes using a rapid differentiation protocol. iPSC derived astrocytes expressed specific markers, displayed intracellular calcium transients and secreted ADEVs. miRNAs were identified by RNA-Seq on astrocytes and ADEVs and target gene pathway analysis detected brain and immune related terms. The miRNA profile was consistent with astrocyte identity, and included approximately 80 miRNAs found in astrocytes that were relatively depleted in ADEVs suggestive of passive loading. About 120 miRNAs were relatively enriched in ADEVs and motif analysis discovered binding sites for RNA binding proteins FUS, SRSF7 and CELF5. miR-483-5p was the most significantly enriched in ADEVs. This miRNA regulates MECP2 expression in neurons and has been found differentially expressed in blood samples from RTT patients. Our results identify potential miRNA biomarkers selectively sorted into ADEVs and implicate RNA binding protein sequence dependent mechanisms for miRNA cargo loading.
Collapse
Affiliation(s)
- Sara Gordillo-Sampedro
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lina Antounians
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada
| | - Wei Wei
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada
| | - Marat Mufteev
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Bas Lendemeijer
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Steven A Kushner
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | - Femke M S de Vrij
- Department of Psychiatry, Erasmus University Medical Center, Rotterdam, The Netherlands; Center of Expertise for Neurodevelopmental Disorders (ENCORE), Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Augusto Zani
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Division of General and Thoracic Surgery, Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - James Ellis
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
85
|
Fang K, Fang DL, Yu H, Chen YA, Yu PZ, Wang ZF, Zhang RB, Yang W, Tao L, Fukushima H, Dong Y, Han CH. Exploring the microRNA-mRNA regulatory network associated with solasonine in bladder cancer. Transl Androl Urol 2024; 13:812-827. [PMID: 38855608 PMCID: PMC11157407 DOI: 10.21037/tau-23-469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Background Solasonine has been demonstrated to exert an inhibitory effect on bladder cancer (BC), but the potential mechanisms remain unclear. Therefore, the aim of this study is to explore the association between microRNAs (miRNAs)-mediated regulation and the anti-tumor activities of solasonine in BC. Methods MiRNA sequencing was performed to identify the differentially expressed microRNAs (DE-miRNAs) associated with solasonine in BC cells. Functional enrichment analyses of the DE-miRNAs activated and inhibited by solasonine were then conducted. The DE-miRNAs with prognostic value for BC and those differentially expressed in the BC samples were subsequently identified as the hub DE-miRNAs. After identifying the messenger RNAs (mRNAs) that were targeted by the hub DE-miRNAs and those differentially expressed in the BC samples, a protein-protein interaction analysis was performed to identify the core downstream genes, which were then used to construct a solasonine-miRNA-mRNA regulatory network. Results A total of 27 activated and 19 inhibited solasonine-mediated DE-miRNAs were identified that were found to be associated with several tumor-related biological functions and pathways. After integrating the results of the survival analysis and expression assessment, the following nine hub DE-miRNAs were identified: hsa-miR-127-3p, hsa-miR-450b-5p, hsa-miR-99a-5p, hsa-miR-197-3p, hsa-miR-423-3p, hsa-miR-4326, hsa-miR-625-3p, hsa-miR-625-5p, and hsa-miR-92a-3p. The DE-mRNAs targeted by the hub DE-miRNAs were predicted, and 30 core downstream genes were used to construct the solasonine-miRNA-mRNA regulatory network. miR-450b-5p was shown to be associated with the most mRNAs in this network, which suggests that it plays a crucial role in the solasonine-mediated anti-BC effect. Conclusions A regulatory network, including solasonine, miRNAs, and mRNAs related to BC, was constructed. This network provides extensive insights into the molecular regulatory mechanisms that underlie the anti-cancer efficacy of solasonine in BC.
Collapse
Affiliation(s)
- Kun Fang
- Nanjing University of Chinese Medicine, Nanjing, China
- The Third Affiliated Hospital of Shandong First Medical University, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Da-Lang Fang
- Department of Gland Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, China
| | - Hui Yu
- Department of Urology, Yantai Hospital of Traditional Chinese Medicine, Yantai, China
| | - Yu-Ang Chen
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Pei-Ze Yu
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zi-Fan Wang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Rui-Bin Zhang
- Department of Nephrology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Yang
- The Third Affiliated Hospital of Shandong First Medical University, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Lei Tao
- The Third Affiliated Hospital of Shandong First Medical University, Affiliated Hospital of Shandong Academy of Medical Sciences, Jinan, China
| | - Hiroshi Fukushima
- Department of Urology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Medical College of Soochow University, Suzhou, China
| | - Cong-Hui Han
- Nanjing University of Chinese Medicine, Nanjing, China
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- Department of Urology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, China
- Medical College of Soochow University, Suzhou, China
| |
Collapse
|
86
|
Qi WH, Hu LF, Gu YJ, Zhang XY, Jiang XM, Li WJ, Qi JS, Xiao GS, Jie H. Integrated mRNA-miRNA transcriptome profiling of blood immune responses potentially related to pulmonary fibrosis in forest musk deer. Front Immunol 2024; 15:1404108. [PMID: 38873601 PMCID: PMC11169664 DOI: 10.3389/fimmu.2024.1404108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 06/15/2024] Open
Abstract
Background Forest musk deer (FMD, Moschus Berezovskii) is a critically endangered species world-widely, the death of which can be caused by pulmonary disease in the farm. Pulmonary fibrosis (PF) was a huge threat to the health and survival of captive FMD. MicroRNAs (miRNAs) and messenger RNAs (mRNAs) have been involved in the regulation of immune genes and disease development. However, the regulatory profiles of mRNAs and miRNAs involved in immune regulation of FMD are unclear. Methods In this study, mRNA-seq and miRNA-seq in blood were performed to constructed coexpression regulatory networks between PF and healthy groups of FMD. The hub immune- and apoptosis-related genes in the PF blood of FMD were explored through Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Further, protein-protein interaction (PPI) network of immune-associated and apoptosis-associated key signaling pathways were constructed based on mRNA-miRNA in the PF blood of the FMD. Immune hub DEGs and immune hub DEmiRNAs were selected for experimental verification using RT-qPCR. Results A total of 2744 differentially expressed genes (DEGs) and 356 differentially expressed miRNAs (DEmiRNAs) were identified in the PF blood group compared to the healthy blood group. Among them, 42 DEmiRNAs were negatively correlated with 20 immune DEGs from a total of 57 correlations. The DEGs were significantly associated with pathways related to CD molecules, immune disease, immune system, cytokine receptors, T cell receptor signaling pathway, Th1 and Th2 cell differentiation, cytokine-cytokine receptor interaction, intestinal immune network for IgA production, and NOD-like receptor signaling pathway. There were 240 immune-related DEGs, in which 186 immune-related DEGs were up-regulated and 54 immune-related DEGs were down-regulated. In the protein-protein interaction (PPI) analysis of immune-related signaling pathway, TYK2, TLR2, TLR4, IL18, CSF1, CXCL13, LCK, ITGB2, PIK3CB, HCK, CD40, CD86, CCL3, CCR7, IL2RA, TLR3, and IL4R were identified as the hub immune genes. The mRNA-miRNA coregulation analysis showed that let-7d, miR-324-3p, miR-760, miR-185, miR-149, miR-149-5p, and miR-1842-5p are key miRNAs that target DEGs involved in immune disease, immune system and immunoregulation. Conclusion The development and occurrence of PF were significantly influenced by the immune-related and apoptosis-related genes present in PF blood. mRNAs and miRNAs associated with the development and occurrence of PF in the FMD.
Collapse
Affiliation(s)
- Wen-Hua Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Li-Fan Hu
- College of Environmental and Chemical Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yu-Jiawei Gu
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | | | - Xue-Mei Jiang
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Wu-Jiao Li
- Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, China
| | - Jun-Sheng Qi
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Guo-Sheng Xiao
- College of Biological and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Hang Jie
- Jinfo Mountain Forest Ecosystem Field Scientific Observation and Research Station of Chongqing, Chongqing Institute of Medicinal Plant Cultivation, Chongqing, China
| |
Collapse
|
87
|
Liu S, An X, Xu C, Guo B, Li X, Chen C, He D, Xu D, Li Y. Exploring the dynamic adaptive responses of Epimedium pubescens to phosphorus deficiency by Integrated transcriptome and miRNA analysis. BMC PLANT BIOLOGY 2024; 24:480. [PMID: 38816792 PMCID: PMC11138043 DOI: 10.1186/s12870-024-05063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 06/01/2024]
Abstract
Phosphorus, a crucial macronutrient essential for plant growth and development. Due to widespread phosphorus deficiency in soils, phosphorus deficiency stress has become one of the major abiotic stresses that plants encounter. Despite the evolution of adaptive mechanisms in plants to address phosphorus deficiency, the specific strategies employed by species such as Epimedium pubescens remain elusive. Therefore, this study observed the changes in the growth, physiological reponses, and active components accumulation in E. pubescensunder phosphorus deficiency treatment, and integrated transcriptome and miRNA analysis, so as to offer comprehensive insights into the adaptive mechanisms employed by E. pubescens in response to phosphorus deficiency across various stages of phosphorus treatment. Remarkably, our findings indicate that phosphorus deficiency induces root growth stimulation in E. pubescens, while concurrently inhibiting the growth of leaves, which are of medicinal value. Surprisingly, this stressful condition results in an augmented accumulation of active components in the leaves. During the early stages (30 days), leaves respond by upregulating genes associated with carbon metabolism, flavonoid biosynthesis, and hormone signaling. This adaptive response facilitates energy production, ROS scavenging, and morphological adjustments to cope with short-term phosphorus deficiency and sustain its growth. As time progresses (90 days), the expression of genes related to phosphorus cycling and recycling in leaves is upregulated, and transcriptional and post-transcriptional regulation (miRNA regulation and protein modification) is enhanced. Simultaneously, plant growth is further suppressed, and it gradually begins to discard and decompose leaves to resist the challenges of long-term phosphorus deficiency stress and sustain survival. In conclusion, our study deeply and comprehensively reveals adaptive strategies utilized by E. pubescens in response to phosphorus deficiency, demonstrating its resilience and thriving potential under stressful conditions. Furthermore, it provides valuable information on potential target genes for the cultivation of E. pubescens genotypes tolerant to low phosphorus.
Collapse
Affiliation(s)
- Shangnian Liu
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xiaojing An
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
- Tianjin University of Traditional Chinese Medicine, Tianjin, 10063, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Xianen Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China
| | - Caixia Chen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education & National Engineering Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, China.
| | - Dongmei He
- School of Pharmacy, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - De Xu
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| | - Yi Li
- Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China
| |
Collapse
|
88
|
Liang W, Xu Y, Cui X, Li C, Lu S. Genome-Wide Identification and Characterization of miRNAs and Natural Antisense Transcripts Show the Complexity of Gene Regulatory Networks for Secondary Metabolism in Aristolochia contorta. Int J Mol Sci 2024; 25:6043. [PMID: 38892231 PMCID: PMC11172604 DOI: 10.3390/ijms25116043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Aristolochia contorta Bunge is an academically and medicinally important plant species. It belongs to the magnoliids, with an uncertain phylogenetic position, and is one of the few plant species lacking a whole-genome duplication (WGD) event after the angiosperm-wide WGD. A. contorta has been an important traditional Chinese medicine material. Since it contains aristolochic acids (AAs), chemical compounds with nephrotoxity and carcinogenicity, the utilization of this plant has attracted widespread attention. Great efforts are being made to increase its bioactive compounds and reduce or completely remove toxic compounds. MicroRNAs (miRNAs) and natural antisense transcripts (NATs) are two classes of regulators potentially involved in metabolism regulation. Here, we report the identification and characterization of 223 miRNAs and 363 miRNA targets. The identified miRNAs include 51 known miRNAs belonging to 20 families and 172 novel miRNAs belonging to 107 families. A negative correlation between the expression of miRNAs and their targets was observed. In addition, we identified 441 A. contorta NATs and 560 NAT-sense transcript (ST) pairs, of which 12 NATs were targets of 13 miRNAs, forming 18 miRNA-NAT-ST modules. Various miRNAs and NATs potentially regulated secondary metabolism through the modes of miRNA-target gene-enzyme genes, NAT-STs, and NAT-miRNA-target gene-enzyme genes, suggesting the complexity of gene regulatory networks in A. contorta. The results lay a solid foundation for further manipulating the production of its bioactive and toxic compounds.
Collapse
Affiliation(s)
- Wenjing Liang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yayun Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Xinyun Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Caili Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Shanfa Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
89
|
Li S, Yang Q, Li M, Lan Y, Song Z. Integrated miRNA and mRNA Sequencing Reveals the Sterility Mechanism in Hybrid Yellow Catfish Resulting from Pelteobagrus fulvidraco (♀) × Pelteobagrus vachelli (♂). Animals (Basel) 2024; 14:1586. [PMID: 38891632 PMCID: PMC11171309 DOI: 10.3390/ani14111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The hybrid yellow catfish exhibits advantages over pure yellow catfish in terms of fast growth, fast development, a high feeding rate, and strong immunity; additionally, it is almost sterile, thus ensuring the conservation of the genetic stock of fish populations. To investigate the sterility mechanism in hybrid yellow catfish (P. fulvidraco (♀) × P. vachelli (♂)), the mRNA and miRNA of the gonads of P. fulvidraco, P. vachelli, and a hybrid yellow catfish were analyzed to characterize the differentially expressed genes; this was carried out to help establish gene expression datasets to assist in the further determination of the mechanisms of genetic sterility in hybrid yellow catfish. In total, 1709 DEGs were identified between the hybrid and two pure yellow catfishes. A KEGG pathway analysis indicated that several genes related to reproductive functions were upregulated, including those involved in the cell cycle, progesterone-mediated oocyte maturation, and oocyte meiosis, and genes associated with ECM-receptor interaction were downregulated. The spermatogenesis-related GO genes CFAP70, RSPH6A, and TSGA10 were identified as being downregulated DEGs in the hybrid yellow catfish. Sixty-three DEmiRNAs were identified between the hybrid and the two pure yellow catfish species. The upregulated DEmiRNAs ipu-miR-194a and ipu-miR-499 were found to target the spermatogenesis-related genes CFAP70 and RSPH6A, respectively, playing a negative regulatory role, which may underscore the miRNA-mRNA regulatory mechanism of sterility in hybrid yellow catfish. The differential expression of ipu-miR-196d, ipu-miR-125b, and ipu-miR-150 and their target genes spidr, cep85, and kcnn4, implicated in reproductive processes, was verified via qRT-PCR, consistent with the transcriptome sequencing expression trends. This study provides deep insights into the mechanism of hybrid sterility in vertebrate groups, thereby contributing to achieving a better understanding and management of fish conservation related to hybrid sterility.
Collapse
Affiliation(s)
- Shu Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Qiao Yang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Maohua Li
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Yue Lan
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
| | - Zhaobin Song
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu 610065, China; (S.L.); (Q.Y.); (M.L.); (Y.L.)
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
90
|
Liu W, Liu Y, Li P, Chen J, Liu J, Shi Z, Liu H, Ye J. Identification of candidate plasma miRNA biomarkers for the diagnosis of head and neck squamous cell carcinoma. Future Sci OA 2024; 10:FSO928. [PMID: 38827810 PMCID: PMC11140639 DOI: 10.2144/fsoa-2023-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/26/2023] [Indexed: 06/05/2024] Open
Abstract
Aim: Current head and neck squamous cell carcinoma (HNSCC) diagnostic tools are limited, so this study aimed to identify diagnostic microRNA (miRNA) biomarkers from plasma. Materials & methods: A total of 76 HNSCC and 76 noncancerous control (NC) plasma samples underwent microarray analysis and quantitative reverse transcription PCR to screen for diagnostic plasma miRNAs. The diagnostic potential of the miRNAs was evaluated by the receiver operating characteristic curve. Results: miR-95-3p and miR-579-5p expression was shown to be significantly upregulated, and that of miR-1298-3p to be downregulated in HNSCC patients compared with controls. The final diagnostic panel included miR-95-3p, miR-579-5p and miR-1298-3p with an area under the curve of 0.83. Conclusion: This three-miRNA panel has potential for the diagnosis of HNSCC.
Collapse
Affiliation(s)
- Weixing Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yue Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pei Li
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jia Chen
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiamin Liu
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhi Shi
- Jinan University, Guangzhou, Guangdong, China
| | - Hui Liu
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin Ye
- Department of Otolaryngology, Head and Neck Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
91
|
Khanabdali R, Mandrekar M, Grygiel R, Vo PA, Palma C, Nikseresht S, Barton S, Shojaee M, Bhuiyan S, Asari K, Belzer S, Ansari K, Coward JI, Perrin L, Hooper J, Guanzon D, Lai A, Salomon C, Kershner K, Newton C, Horejsh D, Rice G. High-throughput surface epitope immunoaffinity isolation of extracellular vesicles and downstream analysis. Biol Methods Protoc 2024; 9:bpae032. [PMID: 39070184 PMCID: PMC11272960 DOI: 10.1093/biomethods/bpae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/09/2024] [Accepted: 05/16/2024] [Indexed: 07/30/2024] Open
Abstract
Extracellular vesicles (EVs), including exosomes, have significant potential for diagnostic and therapeutic applications. The lack of standardized methods for efficient and high-throughput isolation and analysis of EVs, however, has limited their widespread use in clinical practice. Surface epitope immunoaffinity (SEI) isolation utilizes affinity ligands, including antibodies, aptamers, or lectins, that target specific surface proteins present on EVs. Paramagnetic bead-SEI isolation represents a fit-for-purpose solution for the reproducible, high-throughput isolation of EVs from biofluids and downstream analysis of RNA, protein, and lipid biomarkers that is compatible with clinical laboratory workflows. This study evaluates a new SEI isolation method for enriching subpopulations of EVs. EVs were isolated from human plasma using a bead-based SEI method designed for on-bead and downstream analysis of EV-associated RNA and protein biomarkers. Western blot analysis confirmed the presence of EV markers in the captured nanoparticles. Mass spectrometry analysis of the SEI lysate identified over 1500 proteins, with the top 100 including known EV-associated proteins. microRNA (miRNA) sequencing followed by RT-qPCR analysis identified EV-associated miRNA transcripts. Using SEI, EVs were isolated using automated high-throughput particle moving instruments, demonstrating equal or higher protein and miRNA yield and recovery compared to manual processing. SEI is a rapid, efficient, and high-throughput method for isolating enriched populations of EVs; effectively reducing contamination and enabling the isolation of a specific subpopulation of EVs. In this study, high-throughput EV isolation and RNA extraction have been successfully implemented. This technology holds great promise for advancing the field of EV research and facilitating their application for biomarker discovery and clinical research.
Collapse
Affiliation(s)
| | | | - Rick Grygiel
- Promega Corporation, Madison, WI 53711, United States
| | - Phuoc-An Vo
- Promega Corporation, Madison, WI 53711, United States
| | | | | | | | | | | | | | | | | | - Jermaine I Coward
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
- ICON Cancer Care, South Brisbane, QLD 4101, Australia
| | - Lewis Perrin
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - John Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Dominic Guanzon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Andrew Lai
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | | | | | - Gregory Rice
- INOVIQ Ltd., Notting Hill, VIC 3168, Australia
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women’s Hospital, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| |
Collapse
|
92
|
He W, Tang H, Li Y, Wang M, Li Y, Chen J, Gao S, Han Z. Overexpression of Let-7a mitigates diploidization in mouse androgenetic haploid embryonic stem cells. iScience 2024; 27:109769. [PMID: 38711447 PMCID: PMC11070717 DOI: 10.1016/j.isci.2024.109769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Mouse androgenetic haploid embryonic stem cells (mAG-haESCs) can be utilized to uncover gene functions, especially those of genes with recessive effects, and to produce semicloned mice when injected into mature oocytes. However, mouse haploid cells undergo rapid diploidization during long-term culture in vitro and subsequently lose the advantages of haploidy, and the factors that drive diploidization are poorly understood. In this study, we compared the small RNAs (sRNAs) of mAG-haESCs, normal embryonic stem cells (ESCs), and mouse round spermatids by high-throughput sequencing and identified distinct sRNA profiles. Several let-7 family members and miR-290-295 cluster microRNAs (miRNAs) were found significantly differentially transcribed. Knockdown and overexpression experiments showed that let-7a and let-7g suppress diploidization while miR-290a facilitates diploidization. Our study revealed the unique sRNA profile of mAG-haESCs and demonstrated that let-7a overexpression can mitigate diploidization in mAG-haESCs. These findings will help us to better understand mAG-haESCs and utilize them as tools in the future.
Collapse
Affiliation(s)
- Wenteng He
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hongming Tang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Mingzhu Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Yuanyuan Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayu Chen
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Shaorong Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
- Clinical and Translation Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhiming Han
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| |
Collapse
|
93
|
Iyer DP, Moyon L, Wittler L, Cheng CY, Ringeling FR, Canzar S, Marsico A, Bulut-Karslioğlu A. Combinatorial microRNA activity is essential for the transition of pluripotent cells from proliferation into dormancy. Genome Res 2024; 34:572-589. [PMID: 38719471 PMCID: PMC11146600 DOI: 10.1101/gr.278662.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 06/05/2024]
Abstract
Dormancy is a key feature of stem cell function in adult tissues as well as in embryonic cells in the context of diapause. The establishment of dormancy is an active process that involves extensive transcriptional, epigenetic, and metabolic rewiring. How these processes are coordinated to successfully transition cells to the resting dormant state remains unclear. Here we show that microRNA activity, which is otherwise dispensable for preimplantation development, is essential for the adaptation of early mouse embryos to the dormant state of diapause. In particular, the pluripotent epiblast depends on miRNA activity, the absence of which results in the loss of pluripotent cells. Through the integration of high-sensitivity small RNA expression profiling of individual embryos and protein expression of miRNA targets with public data of protein-protein interactions, we constructed the miRNA-mediated regulatory network of mouse early embryos specific to diapause. We find that individual miRNAs contribute to the combinatorial regulation by the network, and the perturbation of the network compromises embryo survival in diapause. We further identified the nutrient-sensitive transcription factor TFE3 as an upstream regulator of diapause-specific miRNAs, linking cytoplasmic MTOR activity to nuclear miRNA biogenesis. Our results place miRNAs as a critical regulatory layer for the molecular rewiring of early embryos to establish dormancy.
Collapse
Affiliation(s)
- Dhanur P Iyer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lambert Moyon
- Computational Health Center, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chieh-Yu Cheng
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Francisca R Ringeling
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Stefan Canzar
- Faculty of Informatics and Data Science, University of Regensburg, 93053 Regensburg, Germany
| | - Annalisa Marsico
- Computational Health Center, Helmholtz Center Munich, 85764 Neuherberg, Germany;
| | | |
Collapse
|
94
|
Božić M, Ignjatović Micić D, Delić N, Nikolić A. Maize miRNAs and their putative target genes involved in chilling stress response in 5-day old seedlings. BMC Genomics 2024; 25:479. [PMID: 38750515 PMCID: PMC11094857 DOI: 10.1186/s12864-024-10403-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND In the context of early sowing of maize as a promising adaptation strategy that could significantly reduce the negative effects of climate change, an in-depth understanding of mechanisms underlying plant response to low-temperature stress is demanded. Although microRNAs (miRNAs) have been recognized as key regulators of plant stress response, research on their role in chilling tolerance of maize during early seedling stages is scarce. Therefore, it is of great significance to explore chilling-responsive miRNAs, reveal their expression patterns and associated target genes, as well as to examine the possible functions of the conserved and novel miRNAs. In this study, the role of miRNAs was examined in 5d-old maize seedlings of one tolerant and one sensitive inbred line exposed to chilling (10/8 °C) stress for 6 h and 24 h, by applying high throughput sequencing. RESULTS A total of 145 annotated known miRNAs belonging to 30 families and 876 potentially novel miRNAs were identified. Differential expression (DE) analysis between control and stress conditions identified 98 common miRNAs for both genotypes at one time point and eight miRNAs at both time points. Target prediction and enrichment analysis showed that the DE zma-miR396, zma-miR156, zma-miR319, and zma-miR159 miRNAs modulate growth and development. Furthermore, it was found that several other DE miRNAs were involved in abiotic stress response: antioxidative mechanisms (zma-miR398), signal transduction (zma-miR156, zma-miR167, zma-miR169) and regulation of water content (zma-miR164, zma-miR394, zma-miR396). The results underline the zma-miRNAs involvement in the modulation of their target genes expression as an important aspect of the plant's survival strategy and acclimation to chilling stress conditions. CONCLUSIONS To our understanding, this is the first study on miRNAs in 5-d old seedlings' response to chilling stress, providing data on the role of known and novel miRNAs post-transcriptional regulation of expressed genes and contributing a possible platform for further network and functional analysis.
Collapse
Affiliation(s)
- Manja Božić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Dragana Ignjatović Micić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia.
| | - Nenad Delić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| | - Ana Nikolić
- Laboratory for Molecular Genetics and Physiology, Research and Development Department, Maize Research Institute Zemun Polje, Belgrade, Serbia
| |
Collapse
|
95
|
Zhang YH, Qian X, Zong X, An SH, Yan S, Shen J. Dual-role regulator of a novel miR-3040 in photoperiod-mediated wing dimorphism and wing development in green peach aphid. INSECT SCIENCE 2024. [PMID: 38728615 DOI: 10.1111/1744-7917.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin Qian
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
96
|
Kumar D, Budachetri K, Rikihisa Y, Karim S. Analysis of Amblyomma americanum microRNAs in response to Ehrlichia chaffeensis infection and their potential role in vectorial capacity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592465. [PMID: 38765993 PMCID: PMC11100627 DOI: 10.1101/2024.05.03.592465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Background MicroRNAs (miRNAs) represent a subset of small noncoding RNAs and carry tremendous potential for regulating gene expression at the post-transcriptional level. They play pivotal roles in distinct cellular mechanisms including inhibition of bacterial, parasitic, and viral infections via immune response pathways. Intriguingly, pathogens have developed strategies to manipulate the host's miRNA profile, fostering environments conducive to successful infection. Therefore, changes in an arthropod host's miRNA profile in response to pathogen invasion could be critical in understanding host-pathogen dynamics. Additionally, this area of study could provide insights into discovering new targets for disease control and prevention. The main objective of the present study is to investigate the functional role of differentially expressed miRNAs upon Ehrlichia chaffeensis, a tick-borne pathogen, infection in tick vector, Amblyomma americanum. Methods Small RNA libraries from uninfected and E. chaffeensis-infected Am. americanum midgut and salivary gland tissues were prepared using the Illumina Truseq kit. Small RNA sequencing data was analyzed using miRDeep2 and sRNAtoolbox to identify novel and known miRNAs. The differentially expressed miRNAs were validated using a quantitative PCR assay. Furthermore, a miRNA inhibitor approach was used to determine the functional role of selected miRNA candidates. Results The sequencing of small RNA libraries generated >147 million raw reads in all four libraries and identified a total of >250 miRNAs across the four libraries. We identified 23 and 14 differentially expressed miRNAs in salivary glands, and midgut tissues infected with E. chaffeensis, respectively. Three differentially expressed miRNAs (miR-87, miR-750, and miR-275) were further characterized to determine their roles in pathogen infection. Inhibition of target miRNAs significantly decreased the E. chaffeensis load in tick tissues, which warrants more in-depth mechanistic studies. Conclusions The current study identified known and novel miRNAs and suggests that interfering with these miRNAs may impact the vectorial capacity of ticks to harbor Ehrlichia. This study identified several new miRNAs for future analysis of their functions in tick biology and tick-pathogen interaction studies.
Collapse
Affiliation(s)
- Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Khemraj Budachetri
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Yasuko Rikihisa
- Laboratory of Molecular, Cellular, and Environmental Rickettsiology, Department of Veterinary Biosciences, College of Veterinary Medicine, Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS 39406, USA
| |
Collapse
|
97
|
Formaggioni A, Cavalli G, Hamada M, Sakamoto T, Plazzi F, Passamonti M. The Evolution and Characterization of the RNA Interference Pathways in Lophotrochozoa. Genome Biol Evol 2024; 16:evae098. [PMID: 38713108 PMCID: PMC11114477 DOI: 10.1093/gbe/evae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 05/08/2024] Open
Abstract
In animals, three main RNA interference mechanisms have been described so far, which respectively maturate three types of small noncoding RNAs (sncRNAs): miRNAs, piRNAs, and endo-siRNAs. The diversification of these mechanisms is deeply linked with the evolution of the Argonaute gene superfamily since each type of sncRNA is typically loaded by a specific Argonaute homolog. Moreover, other protein families play pivotal roles in the maturation of sncRNAs, like the DICER ribonuclease family, whose DICER1 and DICER2 paralogs maturate respectively miRNAs and endo-siRNAs. Within Metazoa, the distribution of these families has been only studied in major groups, and there are very few data for clades like Lophotrochozoa. Thus, we here inferred the evolutionary history of the animal Argonaute and DICER families including 43 lophotrochozoan species. Phylogenetic analyses along with newly sequenced sncRNA libraries suggested that in all Trochozoa, the proteins related to the endo-siRNA pathway have been lost, a part of them in some phyla (i.e. Nemertea, Bryozoa, Entoprocta), while all of them in all the others. On the contrary, early diverging phyla, Platyhelminthes and Syndermata, showed a complete endo-siRNA pathway. On the other hand, miRNAs were revealed the most conserved and ubiquitous mechanism of the metazoan RNA interference machinery, confirming their pivotal role in animal cell regulation.
Collapse
Affiliation(s)
- Alessandro Formaggioni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Gianmarco Cavalli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Mayuko Hamada
- Ushimado Marine Institute, Okayama University, Okayama, Japan
| | | | - Federico Plazzi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Marco Passamonti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
98
|
Wang Z, Zhou Y, Li X, Tang F. Importance of core microRNA pathway genes and microRNAs associated with the defense of Odontotermes formosanus (Shiraki) against Serratia marcescens infection. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105864. [PMID: 38685240 DOI: 10.1016/j.pestbp.2024.105864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 05/02/2024]
Abstract
MicroRNAs (miRNAs) are noncoding small regulatory RNAs involved in diverse biological processes. Odontotermes formosanus (Shiraki) is a polyphagous pest that causes economic damage to agroforestry. Serratia marcescens is a bacterium with great potential for controlling this insect. However, knowledge about the miRNA pathway and the role of miRNAs in O. formosanus defense against SM1 is limited. In this study, OfAgo1, OfDicer1 and OfDrosha were differentially expressed in different castes and tissues. SM1 infection affected the expression of all three genes in O. formosanus. Then, we used specific double-stranded RNAs to silence OfAgo1, OfDicer1 and OfDrosha. Knockdown of these genes enhanced the virulence of SM1 to O. formosanus, suggesting that miRNAs were critical in the defense of O. formosanus against SM1. Furthermore, we sequenced miRNAs from SM1-infected and uninfected O. formosanus. 33 differentially expressed (DE) miRNAs were identified, whereby 22 were upregulated and 11 were downregulated. Finally, the miRNA-mRNA networks were constructed, which further suggested the important role of miRNAs in the defense of O. formosanus against SM1. Totally, O. formosanus miRNA core genes defend against SM1 infection by regulating miRNA expression. This study elucidates the interactions between O. formosanus and SM1 and provides new theories for biological control.
Collapse
Affiliation(s)
- Zhiqiang Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Yujingyun Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Fang Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; College of Forestry, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
99
|
Wang J, Wang X, Wang L, Nazir MF, Fu G, Peng Z, Chen B, Xing A, Zhu M, Ma X, Wang X, Jia Y, Pan Z, Wang L, Xia Y, He S, Du X. Exploring the regulatory role of non-coding RNAs in fiber development and direct regulation of GhKCR2 in the fatty acid metabolic pathway in upland cotton. Int J Biol Macromol 2024; 266:131345. [PMID: 38574935 DOI: 10.1016/j.ijbiomac.2024.131345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024]
Abstract
Cotton fiber holds immense importance as the primary raw material for the textile industry. Consequently, comprehending the regulatory mechanisms governing fiber development is pivotal for enhancing fiber quality. Our study aimed to construct a regulatory network of competing endogenous RNAs (ceRNAs) and assess the impact of non-coding RNAs on gene expression throughout fiber development. Through whole transcriptome data analysis, we identified differentially expressed genes (DEGs) regulated by non-coding RNA (ncRNA) that were predominantly enriched in phenylpropanoid biosynthesis and the fatty acid elongation pathway. This analysis involved two contrasting phenotypic materials (J02-508 and ZRI015) at five stages of fiber development. Additionally, we conducted a detailed analysis of genes involved in fatty acid elongation, including KCS, KCR, HACD, ECR, and ACOT, to unveil the factors contributing to the variation in fatty acid elongation between J02-508 and ZRI015. Through the integration of histochemical GUS staining, dual luciferase assay experiments, and correlation analysis of expression levels during fiber development stages for lncRNA MSTRG.44818.23 (MST23) and GhKCR2, we elucidated that MST23 positively regulates GhKCR2 expression in the fatty acid elongation pathway. This identification provides valuable insights into the molecular mechanisms underlying fiber development, emphasizing the intricate interplay between non-coding RNAs and protein-coding genes.
Collapse
Affiliation(s)
- Jingjing Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyang Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liyuan Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Mian Faisal Nazir
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guoyong Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Zhen Peng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Baojun Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Aishuang Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Mengchen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xinli Ma
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiuxiu Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yinhua Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Zhaoe Pan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Liru Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yingying Xia
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou 455001, China
| | - Shoupu He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China
| | - Xiongming Du
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 455001, China.
| |
Collapse
|
100
|
Zhang W, Liu J, Zhou Y, Liu S, Wu J, Jiang H, Xu J, Mao H, Liu S, Chen B. Signaling pathways and regulatory networks in quail skeletal muscle development: insights from whole transcriptome sequencing. Poult Sci 2024; 103:103603. [PMID: 38457990 PMCID: PMC11067775 DOI: 10.1016/j.psj.2024.103603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024] Open
Abstract
Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China
| | - Ya'nan Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Shuibing Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jintao Wu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Hongxia Jiang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Jiguo Xu
- Biotech Research Institute of Nanchang Normal University, Nanchang 330032, Jiangxi, P. R. China
| | - Huirong Mao
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Sanfeng Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China
| | - Biao Chen
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, P. R. China; Poultry Institute, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| |
Collapse
|