51
|
Kim CK, Sachdev PS, Braidy N. Recent Neurotherapeutic Strategies to Promote Healthy Brain Aging: Are we there yet? Aging Dis 2022; 13:175-214. [PMID: 35111369 PMCID: PMC8782556 DOI: 10.14336/ad.2021.0705] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
Owing to the global exponential increase in population ageing, there is an urgent unmet need to develop reliable strategies to slow down and delay the ageing process. Age-related neurodegenerative diseases are among the main causes of morbidity and mortality in our contemporary society and represent a major socio-economic burden. There are several controversial factors that are thought to play a causal role in brain ageing which are continuously being examined in experimental models. Among them are oxidative stress and brain inflammation which are empirical to brain ageing. Although some candidate drugs have been developed which reduce the ageing phenotype, their clinical translation is limited. There are several strategies currently in development to improve brain ageing. These include strategies such as caloric restriction, ketogenic diet, promotion of cellular nicotinamide adenine dinucleotide (NAD+) levels, removal of senescent cells, 'young blood' transfusions, enhancement of adult neurogenesis, stem cell therapy, vascular risk reduction, and non-pharmacological lifestyle strategies. Several studies have shown that these strategies can not only improve brain ageing by attenuating age-related neurodegenerative disease mechanisms, but also maintain cognitive function in a variety of pre-clinical experimental murine models. However, clinical evidence is limited and many of these strategies are awaiting findings from large-scale clinical trials which are nascent in the current literature. Further studies are needed to determine their long-term efficacy and lack of adverse effects in various tissues and organs to gain a greater understanding of their potential beneficial effects on brain ageing and health span in humans.
Collapse
Affiliation(s)
- Chul-Kyu Kim
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Perminder S Sachdev
- Neuropsychiatric Institute, Euroa Centre, Prince of Wales Hospital, Sydney, Australia
| | - Nady Braidy
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales, Sydney, Australia
| |
Collapse
|
52
|
Ramírez-Delgado JP, Di Marco M, Watson JEM, Johnson CJ, Rondinini C, Corredor Llano X, Arias M, Venter O. Matrix condition mediates the effects of habitat fragmentation on species extinction risk. Nat Commun 2022; 13:595. [PMID: 35105881 PMCID: PMC8807630 DOI: 10.1038/s41467-022-28270-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 01/18/2022] [Indexed: 11/10/2022] Open
Abstract
Habitat loss is the leading cause of the global decline in biodiversity, but the influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. Here, we measure the relationship between fragmentation (the degree of fragmentation and the degree of patch isolation), matrix condition (measured as the extent of high human footprint levels), and the change in extinction risk of 4,426 terrestrial mammals. We find that the degree of fragmentation is strongly associated with changes in extinction risk, with higher predictive importance than life-history traits and human pressure variables. Importantly, we discover that fragmentation and the matrix condition are stronger predictors of risk than habitat loss and habitat amount. Moreover, the importance of fragmentation increases with an increasing deterioration of the matrix condition. These findings suggest that restoration of the habitat matrix may be an important conservation action for mitigating the negative effects of fragmentation on biodiversity. The influence of human pressure within the matrix surrounding habitat fragments remains poorly understood. This study measures the relationship between habitat fragmentation, matrix condition and the change in extinction risk of 4,426 terrestrial mammals, finding that fragmentation and matrix condition are stronger predictors of risk than habitat loss and habitat amount.
Collapse
Affiliation(s)
- Juan Pablo Ramírez-Delgado
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada.
| | - Moreno Di Marco
- Department of Biology and Biotechnologies, Sapienza University of Rome, 00185, Rome, Italy
| | - James E M Watson
- School of Earth and Environmental Sciences, University of Queensland, St Lucia, 4072, Australia.,Centre for Biodiversity and Conservation Science, School of Biological Sciences, The University of Queensland, Brisbane, 4072, QLD, Australia
| | - Chris J Johnson
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Carlo Rondinini
- Global Mammal Assessment Program, Department of Biology and Biotechnologies, Sapienza University of Rome, Rome, 00185, Italy
| | - Xavier Corredor Llano
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Miguel Arias
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, V2N 4Z9, Canada
| |
Collapse
|
53
|
Zhao Y, Seluanov A, Gorbunova V. Revelations About Aging and Disease from Unconventional Vertebrate Model Organisms. Annu Rev Genet 2021; 55:135-159. [PMID: 34416119 PMCID: PMC8903061 DOI: 10.1146/annurev-genet-071719-021009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Andrei Seluanov
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| | - Vera Gorbunova
- Department of Biology, University of Rochester, Rochester, New York 14627, USA; ,
| |
Collapse
|
54
|
Glutamine Homeostasis and Its Role in the Adaptive Strategies of the Blind Mole Rat, Spalax. Metabolites 2021; 11:metabo11110755. [PMID: 34822413 PMCID: PMC8620300 DOI: 10.3390/metabo11110755] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022] Open
Abstract
Oxidative metabolism is fine-tuned machinery that combines two tightly coupled fluxes of glucose and glutamine-derived carbons. Hypoxia interrupts the coordination between the metabolism of these two nutrients and leads to a decrease of the system efficacy and may eventually cause cell death. The subterranean blind mole rat, Spalax, is an underexplored, underground, hypoxia-tolerant mammalian group which spends its life under sharply fluctuating oxygen levels. Primary Spalax cells are an exceptional model to study the metabolic strategies that have evolved in mammals inhabiting low-oxygen niches. In this study we explored the metabolic frame of glutamine (Gln) homeostasis in Spalax skin cells under normoxic and hypoxic conditions and their impacts on the metabolism of rat cells. Targeted metabolomics employing liquid chromatography and mass spectrometry (LC-MS) was used to track the fate of heavy glutamine carbons (13C5 Gln) after 24 h under normoxia or hypoxia (1% O2). Our results indicated that large amounts of glutamine-originated carbons were detected as proline (Pro) and hydroxyproline (HPro) in normoxic Spalax cells with a further increase under hypoxia, suggesting a strategy for reduced Gln carbons storage in proteins. The intensity of the flux and the presence of HPro suggests collagen as a candidate protein that is most abundant in animals, and as the primary source of HPro. An increased conversion of αKG to 2 HG that was indicated in hypoxic Spalax cells prevents the degradation of hypoxia-inducible factor 1α (HIF-1α) and, consequently, maintains cytosolic and mitochondrial carbons fluxes that were uncoupled via inhibition of the pyruvate dehydrogenase complex. A strong antioxidant defense in Spalax cells can be attributed, at least in part, to the massive usage of glutamine-derived glutamate for glutathione (GSH) production. The present study uncovers additional strategies that have evolved in this unique mammal to support its hypoxia tolerance, and probably contribute to its cancer resistance, longevity, and healthy aging.
Collapse
|
55
|
Miskevich D, Chaban A, Dronina M, Abramovich I, Gottlieb E, Shams I. Comprehensive Analysis of 13C 6 Glucose Fate in the Hypoxia-Tolerant Blind Mole Rat Skin Fibroblasts. Metabolites 2021; 11:metabo11110734. [PMID: 34822392 PMCID: PMC8621580 DOI: 10.3390/metabo11110734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
The bioenergetics of the vast majority of terrestrial mammals evolved to consuming glucose (Glc) for energy production under regular atmosphere (about 21% oxygen). However, some vertebrate species, such as aquatic turtles, seals, naked mole rat, and blind mole rat, Spalax, have adjusted their homeostasis to continuous function under severe hypoxic environment. The exploration of hypoxia-tolerant species metabolic strategies provides a better understanding of the adaptation to hypoxia. In this study, we compared Glc homeostasis in primary Spalax and rat skin cells under normoxic and hypoxic conditions. We used the targeted-metabolomics approach, utilizing liquid chromatography and mass spectrometry (LC-MS) to track the fate of heavy Glc carbons (13C6 Glc), as well as other methodologies to assist the interpretation of the metabolic landscape, such as bioenergetics profiling, Western blotting, and gene expression analysis. The metabolic profile was recorded under steady-state (after 24 h) of the experiment. Glc-originated carbons were unequally distributed between the cytosolic and mitochondrial domains in Spalax cells compared to the rat. The cytosolic domain is dominant apparently due to the hypoxia-inducible factor-1 alpha (HIF-1α) mastering, since its level is higher under normoxia and hypoxia in Spalax cells. Consumed Glc in Spalax cells is utilized for the pentose phosphate pathway maintaining the NADPH pool, and is finally harbored as glutathione (GSH) and UDP-GlcNAc. The cytosolic domain in Spalax cells works in the semi-uncoupled mode that limits the consumed Glc-derived carbons flux to the tricarboxylic acid (TCA) cycle and reduces pyruvate delivery; however, it maintains the NAD+ pool via lactate dehydrogenase upregulation. Both normoxic and hypoxic mitochondrial homeostasis of Glc-originated carbons in Spalax are characterized by their massive cataplerotic flux along with the axis αKG→Glu→Pro→hydroxyproline (HPro). The product of collagen degradation, HPro, as well as free Pro are apparently involved in the bioenergetics of Spalax under both normoxia and hypoxia. The upregulation of 2-hydroxyglutarate production detected in Spalax cells may be involved in modulating the levels of HIF-1α. Collectively, these data suggest that Spalax cells utilize similar metabolic frame for both normoxia and hypoxia, where glucose metabolism is switched from oxidative pathways (conversion of pyruvate to Acetyl-CoA and further TCA cycle processes) to (i) pentose phosphate pathway, (ii) lactate production, and (iii) cataplerotic pathways leading to hexosamine, GSH, and HPro production.
Collapse
Affiliation(s)
- Dmitry Miskevich
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
- Correspondence: (D.M.); (I.S.)
| | - Anastasia Chaban
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
| | - Maria Dronina
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
| | - Ifat Abramovich
- Technion Faculty of Medicine, Haifa 3525433, Israel; (I.A.); (E.G.)
| | - Eyal Gottlieb
- Technion Faculty of Medicine, Haifa 3525433, Israel; (I.A.); (E.G.)
| | - Imad Shams
- Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of Haifa, Haifa 3498838, Israel;
- Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
- Correspondence: (D.M.); (I.S.)
| |
Collapse
|
56
|
Jia Q, Xie B, Zhao Z, Huang L, Wei G, Ni T. Lung cancer cells expressing a shortened CDK16 3'UTR escape senescence through impaired miR-485-5p targeting. Mol Oncol 2021; 16:1347-1364. [PMID: 34687270 PMCID: PMC8936527 DOI: 10.1002/1878-0261.13125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 09/27/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Inducing senescence in cancer cells is an emerging strategy for cancer therapy. The dysregulation and mutation of genes encoding cyclin‐dependent kinases (CDKs) have been implicated in various human cancers. However, whether CDK can induce cancer cell senescence remains poorly understood. We observed that CDK16 expression was high in multiple cancer types, including lung cancer, whereas various replicative senescence models displayed low CDK16 expression. CDK16 knockdown caused senescence‐associated phenotypes in lung cancer cell lines. Interestingly, the CDK16 3′ UTR was shortened in cancer and lengthened in senescence models, which was regulated by alternative polyadenylation (APA). The longer 3′UTR [using the distal polyA (pA) site] generated less protein than the shorter one (using the proximal pA site). Since microRNAs (miRNAs) usually bind to the 3′UTR of target genes to suppress their expression, we investigated whether miRNAs targeting the region between the shortened and longer 3′UTR are responsible for the reduced expression. We found that miR‐485‐5p targeted the 3′UTR between the distal and proximal pA site and caused senescence‐associated phenotypes by reducing protein production from the longer CDK16 transcript. Of note, CDK16 knockdown led to a reduced expression of MYC proto‐oncogene, bHLH transcription factor (MYC) and CD274 molecule (PD‐L1), which in turn enhanced the tumor‐suppressive effects of senescent cancer cells. The present study discovered that CDK16, whose expression is under the regulation of APA and miR‐485‐5p, is a potential target for prosenescence therapy for lung cancer.
Collapse
Affiliation(s)
- Qi Jia
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Baiyun Xie
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Leihuan Huang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Wei
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
57
|
Influence of Polymorphism on the NFkB1 Gene (rs28362491) on the Susceptibility to Sarcopenia in the Elderly of the Brazilian Amazon. J Pers Med 2021; 11:jpm11101045. [PMID: 34683186 PMCID: PMC8537608 DOI: 10.3390/jpm11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Sarcopenia is a disease characterized by progressive reduction in muscle mass and strength or function. Although it is known that sarcopenia may be associated with environmental factors, studies suggest the identification of genes related to skeletal muscle maintenance that explain the susceptibility to the disease. OBJECTIVE To analyze the influence of NFkB1 gene polymorphism on susceptibility to sarcopenia in the elderly. METHODS This is a case-control study, which included 219 elderly people, 74 elderly people with sarcopenia, and 145 without sarcopenia. Samples were analyzed for NFkB1 gene polymorphism (rs28362491), genotyped in PCR, and followed by fragment analysis. To avoid misinterpretation due to population substructure, we applied a previously developed set of 61 informative ancestral markers that were genotyped by multiplex PCR. We used logistic regression to identify differences in genotypic frequencies between elderly people with and without sarcopenia. RESULTS It was observed that the NFkB1 gene polymorphism presented frequencies of 24%, 50%, and 26% for the genotype DEL/DEL, DEL/INS, and INS/INS, respectively. Furthermore, elderly individuals with the INS/INS genotype had increased chances (p = 0.010; OR:2.943; 95%CI:1.301-6.654) for the development of sarcopenia. CONCLUSION The INDEL polymorphism of the NFkB1 gene (rs28362491) may influence the susceptibility to sarcopenia in the elderly in elderly people in the Amazon.
Collapse
|
58
|
Mercatelli D, Pedace E, Veltri P, Giorgi FM, Guzzi PH. Exploiting the molecular basis of age and gender differences in outcomes of SARS-CoV-2 infections. Comput Struct Biotechnol J 2021; 19:4092-4100. [PMID: 34306570 PMCID: PMC8271029 DOI: 10.1016/j.csbj.2021.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 12/15/2022] Open
Abstract
Motivation: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (coronavirus disease, 2019; COVID-19) is associated with adverse outcomes in patients. It has been observed that lethality seems to be related to the age of patients. While ageing has been extensively demonstrated to be accompanied by some modifications at the gene expression level, a possible link with COVID-19 manifestation still need to be investigated at the molecular level. Objectives: This study aims to shed out light on a possible link between the increased COVID-19 lethality and the molecular changes that occur in elderly people. Methods: We considered public datasets of ageing-related genes and their expression at the tissue level. We selected human proteins interacting with viral ones that are known to be related to the ageing process. Finally, we investigated changes in the expression level of coding genes at the tissue, gender and age level. Results: We observed a significant intersection between some SARS-CoV-2 interactors and ageing-related genes, suggesting that those genes are particularly affected by COVID-19 infection. Our analysis evidenced that virus infection particularly involves ageing molecular mechanisms centred around proteins EEF2, NPM1, HMGA1, HMGA2, APEX1, CHEK1, PRKDC, and GPX4. We found that HMGA1 and NPM1 have different expressions in the lung of males, while HMGA1, APEX1, CHEK1, EEF2, and NPM1 present changes in expression in males due to ageing effects. Conclusion: Our study generated a mechanistic framework to clarify the correlation between COVID-19 incidence in elderly patients and molecular mechanisms of ageing. We also provide testable hypotheses for future investigation and pharmacological solutions tailored to specific age ranges.
Collapse
Affiliation(s)
| | | | - Pierangelo Veltri
- University of Catanzaro, Department of Medical and Surgical Sciences, Italy
| | | | - Pietro Hiram Guzzi
- University of Catanzaro, Department of Medical and Surgical Sciences, Italy
| |
Collapse
|
59
|
Cornelius Ruhs E, Becker DJ, Oakey SJ, Ogunsina O, Fenton MB, Simmons NB, Martin LB, Downs CJ. Body size affects immune cell proportions in birds and non-volant mammals, but not bats. J Exp Biol 2021; 224:269058. [PMID: 34104965 DOI: 10.1242/jeb.241109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Powered flight has evolved several times in vertebrates and constrains morphology and physiology in ways that likely have shaped how organisms cope with infections. Some of these constraints probably have impacts on aspects of immunology, such that larger fliers might prioritize risk reduction and safety. Addressing how the evolution of flight may have driven relationships between body size and immunity could be particularly informative for understanding the propensity of some taxa to harbor many virulent and sometimes zoonotic pathogens without showing clinical disease. Here, we used a comparative framework to quantify scaling relationships between body mass and the proportions of two types of white blood cells - lymphocytes and granulocytes (neutrophils/heterophils) - across 63 bat species, 400 bird species and 251 non-volant mammal species. By using phylogenetically informed statistical models on field-collected data from wild Neotropical bats and from captive bats, non-volant mammals and birds, we show that lymphocyte and neutrophil proportions do not vary systematically with body mass among bats. In contrast, larger birds and non-volant mammals have disproportionately higher granulocyte proportions than expected for their body size. Our inability to distinguish bat lymphocyte scaling from birds and bat granulocyte scaling from all other taxa suggests there may be other ecological explanations (i.e. not flight related) for the cell proportion scaling patterns. Future comparative studies of wild bats, birds and non-volant mammals of similar body mass should aim to further differentiate evolutionary effects and other aspects of life history on immune defense and its role in the tolerance of (zoonotic) infections.
Collapse
Affiliation(s)
- Emily Cornelius Ruhs
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Daniel J Becker
- Department of Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Samantha J Oakey
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Ololade Ogunsina
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - M Brock Fenton
- Department of Biology, Western University, London, ON, Canada, N6A 5B7
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024-5102, USA
| | - Lynn B Martin
- Global Health and Infectious Disease Research, University of South Florida, Tampa, FL 33612, USA
| | - Cynthia J Downs
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, USA
| |
Collapse
|
60
|
Kapsiani S, Howlin BJ. Random forest classification for predicting lifespan-extending chemical compounds. Sci Rep 2021; 11:13812. [PMID: 34226569 PMCID: PMC8257600 DOI: 10.1038/s41598-021-93070-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Ageing is a major risk factor for many conditions including cancer, cardiovascular and neurodegenerative diseases. Pharmaceutical interventions that slow down ageing and delay the onset of age-related diseases are a growing research area. The aim of this study was to build a machine learning model based on the data of the DrugAge database to predict whether a chemical compound will extend the lifespan of Caenorhabditis elegans. Five predictive models were built using the random forest algorithm with molecular fingerprints and/or molecular descriptors as features. The best performing classifier, built using molecular descriptors, achieved an area under the curve score (AUC) of 0.815 for classifying the compounds in the test set. The features of the model were ranked using the Gini importance measure of the random forest algorithm. The top 30 features included descriptors related to atom and bond counts, topological and partial charge properties. The model was applied to predict the class of compounds in an external database, consisting of 1738 small-molecules. The chemical compounds of the screening database with a predictive probability of ≥ 0.80 for increasing the lifespan of Caenorhabditis elegans were broadly separated into (1) flavonoids, (2) fatty acids and conjugates, and (3) organooxygen compounds.
Collapse
Affiliation(s)
- Sofia Kapsiani
- Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Brendan J Howlin
- Department of Chemistry, FEPS, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
61
|
Latrille T, Lanore V, Lartillot N. Inferring long-term effective population size with Mutation-Selection Models. Mol Biol Evol 2021; 38:4573-4587. [PMID: 34191010 PMCID: PMC8476147 DOI: 10.1093/molbev/msab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutation–selection phylogenetic codon models are grounded on population genetics first principles and represent a principled approach for investigating the intricate interplay between mutation, selection, and drift. In their current form, mutation–selection codon models are entirely characterized by the collection of site-specific amino-acid fitness profiles. However, thus far, they have relied on the assumption of a constant genetic drift, translating into a unique effective population size (Ne) across the phylogeny, clearly an unrealistic assumption. This assumption can be alleviated by introducing variation in Ne between lineages. In addition to Ne, the mutation rate (μ) is susceptible to vary between lineages, and both should covary with life-history traits (LHTs). This suggests that the model should more globally account for the joint evolutionary process followed by all of these lineage-specific variables (Ne, μ, and LHTs). In this direction, we introduce an extended mutation–selection model jointly reconstructing in a Bayesian Monte Carlo framework the fitness landscape across sites and long-term trends in Ne, μ, and LHTs along the phylogeny, from an alignment of DNA coding sequences and a matrix of observed LHTs in extant species. The model was tested against simulated data and applied to empirical data in mammals, isopods, and primates. The reconstructed history of Ne in these groups appears to correlate with LHTs or ecological variables in a way that suggests that the reconstruction is reasonable, at least in its global trends. On the other hand, the range of variation in Ne inferred across species is surprisingly narrow. This last point suggests that some of the assumptions of the model, in particular concerning the assumed absence of epistatic interactions between sites, are potentially problematic.
Collapse
Affiliation(s)
- T Latrille
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France.,École Normale Supérieure de Lyon, Université de Lyon, Université Lyon 1, Lyon, France,
| | - V Lanore
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France
| | - N Lartillot
- Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Évolutive UMR, 5558, F-69622, Villeurbanne, France
| |
Collapse
|
62
|
Garay RP. Investigational drugs and nutrients for human longevity. Recent clinical trials registered in ClinicalTrials.gov and clinicaltrialsregister.eu. Expert Opin Investig Drugs 2021; 30:749-758. [PMID: 34081543 DOI: 10.1080/13543784.2021.1939306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction:Several pharmacological drugs have shown proof of concept for longevity in animal models. I aimed to identify and review those longevity drug candidates that are undergoing clinical trials.Areas covered:Recent (post-2017) longevity clinical trials were found in US and EU clinical trial registries. Longevity drug candidates are the antidiabetic drugs metformin and acarbose, and the immunosuppressant rapamycin. These medicinal drugs are tested on biochemical and clinical markers of aging. In addition, vitamin D supplementation is being investigated in two mega-trials (sample size> 5000) for its efficacy in reducing all-cause mortality.Expert opinion:Anti-aging effects of longevity drug candidates suggest, but do not demonstrate that they prolong life. The two megatrials with vitamin D supplementation make it possible to detect differences in life expectancy between vitamin D and placebo. Therefore, a protocol similar to that for vitamin D could be used to demonstrate pro-longevity effects of metformin, acarbose, and rapamycin.
Collapse
Affiliation(s)
- Ricardo P Garay
- Pharmacology and Therapeutics, Craven, Villemoisson-sur-Orge, France.,CNRS, National Centre of Scientific Research, Paris, France
| |
Collapse
|
63
|
Pabis K, Chiari Y, Sala C, Straka E, Giacconi R, Provinciali M, Li X, Brown-Borg H, Nowikovsky K, Valencak TG, Gundacker C, Garagnani P, Malavolta M. Elevated metallothionein expression in long-lived species mediates the influence of cadmium accumulation on aging. GeroScience 2021; 43:1975-1993. [PMID: 34117600 DOI: 10.1007/s11357-021-00393-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear. Specifically, we do not know if long-lived species evolved an efficient metal stress response by upregulating their MT levels to reduce the toxic effects of environmental pollutants, such as Cd, that accumulate over their longer life span. It is also unknown if the number of MT genes, their expression, or both protect the organisms from potentially damaging effects during aging. To address these questions, we reanalyzed several cross-species studies and obtained data on MT expression and Cd accumulation in long-lived mouse models. We confirmed a relationship between species maximum life span in captive mammals and their Cd content in liver and kidney. We found that although the number of MT genes does not affect longevity, gene expression and protein amount of specific MT paralogs are strongly related to life span in mammals. MT expression rather than gene number may influence the high Cd levels and longevity of some species. In support of this, we found that overexpression of MT-1 accelerated Cd accumulation in mice and that tissue Cd was higher in long-lived mouse strains with high MT expression. We conclude that long-lived species have evolved a more efficient stress response by upregulating the expression of MT genes in presence of Cd, which contributes to elevated tissue Cd levels.
Collapse
Affiliation(s)
- Kamil Pabis
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Ylenia Chiari
- Department of Biology, George Mason University, Fairfax, VA, 22030, USA
| | - Claudia Sala
- Department of Physics and Astronomy, University of Bologna, 40126, Bologna, Italy
| | - Elisabeth Straka
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Xinna Li
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Holly Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA
| | - Karin Nowikovsky
- Department of Internal Medicine I and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Teresa G Valencak
- Department of Animal Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Claudia Gundacker
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, Währinger Strasse 10, 1090, Wien, Vienna, Austria
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), and Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, Bologna, Italy.,Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
64
|
Valenzuela N. Podocnemis expansa Turtles Hint to a Unifying Explanation for the Evolution of Temperature-Dependent Sex Determination in Long-Lived and Short-Lived Vertebrates. Sex Dev 2021; 15:23-37. [PMID: 34004596 DOI: 10.1159/000515208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/07/2021] [Indexed: 11/19/2022] Open
Abstract
The adaptive significance of temperature-dependent sex determination (TSD) remains elusive for many long-lived reptiles. Various hypotheses proposed potential ecological drivers of TSD. The Charnov-Bull'77 model remains the most robust and explains the maintenance of TSD in short-lived vertebrates, where sex ratios correlate with seasonal temperatures within years that confer sex-specific fitness (colder springs produce females who grow larger and gain in fecundity, whereas warmer summers produce males who mature at smaller size). Yet, evidence of fitness differentials correlated with incubation temperature is scarce for long-lived taxa. Here, it is proposed that the Charnov-Bull'77 model applies similarly to long-lived taxa, but at a longer temporal scale, by revisiting ecological and genetic data from the long-lived turtle Podocnemis expansa. After ruling out multiple alternatives, it is hypothesized that warmer-drier years overproduce females and correlate with optimal resource availability in the flood plains, benefitting daughters more than sons, whereas resources are scarcer (due to reduced flowering/fruiting) during colder-rainier years that overproduce males, whose fitness is less impacted by slower growth rates. New technical advances and collaborative interdisciplinary efforts are delineated that should facilitate testing this hypothesis directly, illuminating the understanding of TSD evolution in P. expansa and other long-lived TSD reptiles.
Collapse
Affiliation(s)
- Nicole Valenzuela
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
65
|
Smits MAJ, Janssens GE, Goddijn M, Hamer G, Houtkooper RH, Mastenbroek S. Longevity pathways are associated with human ovarian ageing. Hum Reprod Open 2021; 2021:hoab020. [PMID: 34027130 PMCID: PMC8126403 DOI: 10.1093/hropen/hoab020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
STUDY QUESTION Are genes known to be involved in somatic cell ageing, particularly related to longevity pathways, associated with the accelerated ageing process of the ovary? SUMMARY ANSWER Growth, metabolism, and cell-cycle progression-related pathways that are involved in somatic cell ageing are also associated with ovarian ageing. WHAT IS KNOWN ALREADY Ovarian ageing is characterized by a gradual decline in ovarian follicle quantity, a decline in oocyte quality, and lower chances of pregnancy. Genetic pathways modulating the rate of somatic cell ageing have been researched intensively. Ovarian ageing does not follow the same timeline as somatic cell ageing, as signs of ovarian ageing occur at a younger female age, while the somatic cells are still relatively young. It is not known whether the generally recognized somatic cell longevity genes also play a role during ovarian ageing. Looking at somatic cell longevity genes can lead to new hypotheses and possible treatment options for subfertility caused by ovarian ageing. STUDY DESIGN, SIZE, DURATION In this observational study, we analysed a dataset of individual gene expression profiles of 38 germinal vesicle (GV) oocytes from 38 women aged between 25 and 43 years. We correlated female age (calendar age in years) and biological age (factors known to be associated with ovarian ageing such as dosage of FSH needed for ovarian hyperstimulation, and antral follicle count (AFC)) with gene expression signatures of longevity pathways. PARTICIPANTS/MATERIALS, SETTING, METHODS Transcripts of 38 GV oocytes were used for individual gene expression analysis. R version 3.5.1 was used to process and analyse data. The GeneAge database (build 19) was used to obtain mouse ageing-related genes. Human to mouse orthologues were obtained using the R package biomaRt. Correlations and significance between gene expression data and age were tested for using Pearson's product moment correlation coefficient using ranked expression data. Distributions were compared with an ANOVA, and the Tukey Honest Significant Difference method was used to control for the Type I error rate across multiple comparisons. MAIN RESULTS AND THE ROLE OF CHANCE Of the 136 genes in the GeneAge database, the expression of 15 anti-longevity genes identified in oocytes showed a positive correlation with female calendar age and FSH dosage administered during ICSI treatment, and a negative correlation with AFC. Expression of 32 pro-longevity genes was negatively correlated with calendar age and FSH dosage, and positively correlated with AFC. In general, anti- and pro-longevity genes changed in opposing directions with advancing maternal age in oocytes. Notably, the anti-longevity genes include many ‘growth’-related genes involved in the mechanistic target of rapamycin (mTOR) Complex 1 pathway, such as EIF5A2, EIF3H, EIF4E, and mTOR. The pro-longevity genes include many cell-cycle progression-related genes involved in DNA damage repair (e.g. XRCC6, ERCC2, and MSH2) or cell-cycle checkpoint regulation genes (e.g. ATM, BRCA1, TP53, TP63, TP73, and BUB1B). LIMITATIONS, REASONS FOR CAUTION Using mature oocytes instead of GV-stage oocytes discarded from ICSI treatments may provide different results. No correction for multiple testing was carried out on individual genes because a small set of longevity-related genes was selected a priori for the analysis. The global trend was corrected for multiple testing and remained significant. This work was an observational study and, as no additional experimental work was performed, the associations described do not directly demonstrate the involvement of such genes in oocyte ageing. WIDER IMPLICATIONS OF THE FINDINGS Growth, metabolism, and cell-cycle progression-related pathways that are known to be involved in somatic cell ageing were associated with ovarian ageing. If experimental data are obtained to support these associations, we suggest that interventions known to modulate these processes could benefit women suffering from ovarian ageing. STUDY FUNDING/COMPETING INTEREST(S) G.E.J. is supported by a VENI grant from ZonMw (https://www.zonmw.nl). Work in the Houtkooper group is financially supported by an ERC Starting grant (No. 638290), a VIDI grant from ZonMw (No. 91715305), and the Velux Stiftung (No. 1063). M.G. declares several research and educational grants from Guerbet, Merck and Ferring (all location VUmc), outside the scope of the submitted work. The other authors report no competing interest TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Myrthe A J Smits
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëtte Goddijn
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Geert Hamer
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sebastiaan Mastenbroek
- Amsterdam UMC, University of Amsterdam, Center for Reproductive Medicine, Reproductive Biology Laboratory, Amsterdam Reproduction & Development research institute, Amsterdam, The Netherlands
| |
Collapse
|
66
|
Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. How to Make a Rodent Giant: Genomic Basis and Tradeoffs of Gigantism in the Capybara, the World's Largest Rodent. Mol Biol Evol 2021; 38:1715-1730. [PMID: 33169792 PMCID: PMC8097284 DOI: 10.1093/molbev/msaa285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Collapse
Affiliation(s)
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
67
|
Dougherty LR. Meta-analysis reveals that animal sexual signalling behaviour is honest and resource based. Nat Ecol Evol 2021; 5:688-699. [PMID: 33723423 DOI: 10.1038/s41559-021-01409-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/05/2021] [Indexed: 01/31/2023]
Abstract
Animals often need to signal to attract mates and behavioural signalling may impose substantial energetic and fitness costs to signallers. Consequently, individuals often strategically adjust signalling effort to maximize the fitness payoffs of signalling. An important determinant of these payoffs is individual state, which can influence the resources available to signallers, their likelihood of mating and their motivation to mate. However, empirical studies often find contradictory patterns of state-based signalling behaviour. For example, individuals in poor condition may signal less than those in good condition to conserve resources (ability-based signalling) or signal more to maximize short-term reproductive success (needs-based signalling). To clarify this relationship, I systematically searched for published studies examining animal sexual signalling behaviour in relation to six aspects of individual state: age, mated status, attractiveness, body size, condition and parasite load. Across 228 studies and 147 species, individuals (who were predominantly male) invested more into behavioural signalling when in good condition. Overall, this suggests that animal sexual signalling behaviour is generally honest and ability-based. However, the magnitude of state-dependent plasticity was small and there was a large amount of between-study heterogeneity that remains unexplained.
Collapse
Affiliation(s)
- Liam R Dougherty
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK.
| |
Collapse
|
68
|
Xia C, Møller AP. Linking the maximum reported life span to the aging rate in wild birds. Ecol Evol 2021; 11:5682-5689. [PMID: 34026039 PMCID: PMC8131785 DOI: 10.1002/ece3.7471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/27/2021] [Accepted: 03/03/2021] [Indexed: 11/11/2022] Open
Abstract
Dozens of surrogates have been used to reflect the rate of aging in comparative biology. For wild organisms, the maximum reported life span is often considered a key metric. However, the connection between the maximum reported life span for a single individual and the aging rate of that species is far from clear. Our objective was to identify a pragmatic solution to calculate the aging rate from the maximum reported life span of wild birds. We explicitly linked the maximum reported life span to the aging process by employing a Weibull distribution and calculating the shape parameter in this model, which reflects the change in mortality across ages and be used as a surrogate for the aging rate. From simulated data, we demonstrated that the percentile estimator is suitable for calculating the aging rate based on the maximum reported life span. We also calculated the aging rate in 246 bird species based on published information from EURING and tested its relationship with body mass. Our study constitutes a new approach for using maximum reported life span in aging research. The aging rate calculated in the study is based on numerous assumptions/prerequisites and can be improved as more is learned about these assumptions/prerequisites.
Collapse
Affiliation(s)
- Canwei Xia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
| | - Anders Pape Møller
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological EngineeringCollege of Life SciencesBeijing Normal UniversityBeijingChina
- Ecologie Systématique EvolutionUniversité Paris‐SudCNRSAgroParisTechUniversité Paris‐SaclayOrsay CedexFrance
| |
Collapse
|
69
|
Amson E, Bibi F. Differing effects of size and lifestyle on bone structure in mammals. BMC Biol 2021; 19:87. [PMID: 33926429 PMCID: PMC8086358 DOI: 10.1186/s12915-021-01016-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mammals are a highly diverse group, with body mass ranging from 2 g to 170 t, and encompassing species with terrestrial, aquatic, aerial, and subterranean lifestyles. The skeleton is involved in most aspects of vertebrate life history, but while previous macroevolutionary analyses have shown that structural, phylogenetic, and functional factors influence the gross morphology of skeletal elements, their inner structure has received comparatively little attention. Here we analysed bone structure of the humerus and mid-lumbar vertebrae across mammals and their correlations with different lifestyles and body size. RESULTS We acquired bone structure parameters in appendicular and axial elements (humerus and mid-lumbar vertebra) from 190 species across therian mammals (placentals + marsupials). Our sample captures all transitions to aerial, fully aquatic, and subterranean lifestyles in extant therian clades. We found that mammalian bone structure is highly disparate and we show that the investigated vertebral structure parameters mostly correlate with body size, but not lifestyle, while the opposite is true for humeral parameters. The latter also show a high degree of convergence among the clades that have acquired specialised (non-terrestrial) lifestyles. CONCLUSIONS In light of phylogenetic, size, and functional factors, the distribution of each investigated structural parameter reveals patterns explaining the construction of appendicular and axial skeletal elements in mammalian species spanning most of the extant diversity of the clade in terms of body size and lifestyle. These patterns should be further investigated with analyses focused on specific lifestyle transitions that would ideally include key fossils.
Collapse
Affiliation(s)
- Eli Amson
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany.
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191, Stuttgart, Germany.
| | - Faysal Bibi
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| |
Collapse
|
70
|
Xu D, Lin Q, Wu W, Wu Y, Liang Y. Revealing the antiaging effects of cereal- and food oil-derived active substances by a Caenorhabditis elegans model. Food Funct 2021; 12:3296-3306. [PMID: 33900310 DOI: 10.1039/d0fo02240c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cereal grains and oils contain various functional ingredients, such as amino acids, peptides, polyphenols, dietary fiber, linoleic acid, and natural pigments. Their biological activities are of great significance. Benefiting from its robust genetic function and simple cultivation, Caenorhabditis elegans, as one of the most important model organisms has been widely used to screen antiaging substances and investigate the underlying molecular mechanisms. In this paper, the recent advances in the use of C. elegans in antiaging research into active substances from cereals and oils will be assessed, and their potential signal transduction mechanisms will be systematically reviewed. This research aims to provide a theoretical reference for the use of active substances from cereals and oils to prevent and delay aging and aging-associated diseases.
Collapse
Affiliation(s)
- Danling Xu
- Molecular Nutrition Branch, National Engineering Laboratory for Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | | | | | | | | |
Collapse
|
71
|
Gueugneau M, Coudy-Gandilhon C, Chambon C, Verney J, Taillandier D, Combaret L, Polge C, Walrand S, Roche F, Barthélémy JC, Féasson L, Béchet D. Muscle Proteomic and Transcriptomic Profiling of Healthy Aging and Metabolic Syndrome in Men. Int J Mol Sci 2021; 22:4205. [PMID: 33921590 PMCID: PMC8074053 DOI: 10.3390/ijms22084205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Aging is associated with a progressive decline in muscle mass and function. Aging is also a primary risk factor for metabolic syndrome, which further alters muscle metabolism. However, the molecular mechanisms involved remain to be clarified. Herein we performed omic profiling to decipher in muscle which dominating processes are associated with healthy aging and metabolic syndrome in old men. (2) Methods: This study included 15 healthy young, 15 healthy old, and 9 old men with metabolic syndrome. Old men were selected from a well-characterized cohort, and each vastus lateralis biopsy was used to combine global transcriptomic and proteomic analyses. (3) Results: Over-representation analysis of differentially expressed genes (ORA) and functional class scoring of pathways (FCS) indicated that healthy aging was mainly associated with upregulations of apoptosis and immune function and downregulations of glycolysis and protein catabolism. ORA and FCS indicated that with metabolic syndrome the dominating biological processes were upregulation of proteolysis and downregulation of oxidative phosphorylation. Proteomic profiling matched 586 muscle proteins between individuals. The proteome of healthy aging revealed modifications consistent with a fast-to-slow transition and downregulation of glycolysis. These transitions were reduced with metabolic syndrome, which was more associated with alterations in NADH/NAD+ shuttle and β-oxidation. Proteomic profiling further showed that all old muscles overexpressed protein chaperones to preserve proteostasis and myofiber integrity. There was also evidence of aging-related increases in reactive oxygen species but better detoxifications of cytotoxic aldehydes and membrane protection in healthy than in metabolic syndrome muscles. (4) Conclusions: Most candidate proteins and mRNAs identified herein constitute putative muscle biomarkers of healthy aging and metabolic syndrome in old men.
Collapse
Affiliation(s)
- Marine Gueugneau
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Coudy-Gandilhon
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Christophe Chambon
- Metabolomic and Proteomic Exploration Facility, Université Clermont Auvergne, INRAE, 63000 Clermont-Ferrand, France;
| | - Julien Verney
- Laboratoire AME2P, Université Clermont Auvergne, 3533 Clermont-Ferrand, France;
| | - Daniel Taillandier
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Lydie Combaret
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Cécile Polge
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Stéphane Walrand
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| | - Frédéric Roche
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Jean-Claude Barthélémy
- Service de Physiologie Clinique et de l’Exercice, CHU Saint Etienne, 42055 Saint Etienne, France; (F.R.); (J.-C.B.)
- INSERM, SAINBIOSE, U1059, Dysfonction Vasculaire et Hémostase, Université Jean-Monnet, 42055 Saint-Etienne, France
| | - Léonard Féasson
- Unité de Myologie, Service de Physiologie Clinique et de l’Exercice, Centre Référent Maladies Neuromusculaires Euro-NmD, 42000 CHU de Saint-Etienne, France;
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université de Lyon, Université Jean Monnet Saint-Etienne, 69000 Lyon, France
| | - Daniel Béchet
- Université Clermont Auvergne, INRAE, UNH, Unité de Nutrition Humaine, CRNH Auvergne, 63000 Clermont-Ferrand, France; (M.G.); (C.C.-G.); (D.T.); (L.C.); (C.P.); (S.W.)
| |
Collapse
|
72
|
Genetic variation between long-lived versus short-lived bats illuminates the molecular signatures of longevity. Aging (Albany NY) 2021; 12:15962-15977. [PMID: 32674072 PMCID: PMC7485743 DOI: 10.18632/aging.103725] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/06/2020] [Indexed: 12/05/2022]
Abstract
Bats are the longest-lived mammals given their body size with majority of species exhibiting exceptional longevity. However, there are some short-lived species that do not exhibit extended lifespans. Here we conducted a comparative genomic and transcriptomic study on long-lived Myotis myotis (maximum lifespan = 37.1 years) and short-lived Molossus molossus (maximum lifespan = 5.6 years) to ascertain the genetic difference underlying their divergent longevities. Genome-wide selection tests on 12,467 single-copy genes between M. myotis and M. molossus revealed only three genes (CCDC175, FATE1 and MLKL) that exhibited significant positive selection. Although 97.96% of 12,467 genes underwent purifying selection, we observed a significant heterogeneity in their expression patterns. Using a linear mixed model, we obtained expression of 2,086 genes that may truly represent the genetic difference between M. myotis and M. molossus. Expression analysis indicated that long-lived M. myotis exhibited a transcriptomic profile of enhanced DNA repair and autophagy pathways, compared to M. molossus. Further investigation of the longevity-associated genes suggested that long-lived M. myotis have naturally evolved a diminished anti-longevity transcriptomic profile. Together with observations from other long-lived species, our results suggest that heightened DNA repair and autophagy activity may represent a universal mechanism to achieve longevity in long-lived mammals.
Collapse
|
73
|
Sahm A, Platzer M, Koch P, Henning Y, Bens M, Groth M, Burda H, Begall S, Ting S, Goetz M, Van Daele P, Staniszewska M, Klose JM, Costa PF, Hoffmann S, Szafranski K, Dammann P. Increased longevity due to sexual activity in mole-rats is associated with transcriptional changes in the HPA stress axis. eLife 2021; 10:57843. [PMID: 33724179 PMCID: PMC8012063 DOI: 10.7554/elife.57843] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Sexual activity and/or reproduction are associated with a doubling of life expectancy in the long-lived rodent genus Fukomys. To investigate the molecular mechanisms underlying this phenomenon, we analyzed 636 RNA-seq samples across 15 tissues. This analysis suggests that changes in the regulation of the hypothalamic–pituitary–adrenal stress axis play a key role regarding the extended life expectancy of reproductive vs. non-reproductive mole-rats. This is substantiated by a corpus of independent evidence. In accordance with previous studies, the up-regulation of the proteasome and so-called ‘anti-aging molecules’, for example, dehydroepiandrosterone, is linked with enhanced lifespan. On the other hand, several of our results are not consistent with knowledge about aging of short-lived model organisms. For example, we found the up-regulation of the insulin-like growth factor 1/growth hormone axis and several other anabolic processes to be compatible with a considerable lifespan prolongation. These contradictions question the extent to which findings from short-lived species can be transferred to longer-lived ones.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Platzer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philipp Koch
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Yoshiyuki Henning
- Institute of Physiology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Martin Bens
- Core Facility Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Marco Groth
- Core Facility Sequencing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Hynek Burda
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Department of Game Management and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | - Sabine Begall
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Saskia Ting
- Institute of Pathology and Neuropathology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Moritz Goetz
- Institute of Pathology and Neuropathology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Paul Van Daele
- Department of Zoology, University of South Bohemia, České Budějovice, Czech Republic
| | - Magdalena Staniszewska
- Department of Nuclear Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jasmin Mona Klose
- Department of Nuclear Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Pedro Fragoso Costa
- Department of Nuclear Medicine, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Karol Szafranski
- Core Facility Life Science Computing, Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Central Animal Laboratory, University Hospital, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
74
|
Mortz M, Levivier A, Lartillot N, Dufresne F, Blier PU. Long-Lived Species of Bivalves Exhibit Low MT-DNA Substitution Rates. Front Mol Biosci 2021; 8:626042. [PMID: 33791336 PMCID: PMC8005583 DOI: 10.3389/fmolb.2021.626042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/28/2021] [Indexed: 01/21/2023] Open
Abstract
Bivalves represent valuable taxonomic group for aging studies given their wide variation in longevity (from 1–2 to >500 years). It is well known that aging is associated to the maintenance of Reactive Oxygen Species homeostasis and that mitochondria phenotype and genotype dysfunctions accumulation is a hallmark of these processes. Previous studies have shown that mitochondrial DNA mutation rates are linked to lifespan in vertebrate species, but no study has explored this in invertebrates. To this end, we performed a Bayesian Phylogenetic Covariance model of evolution analysis using 12 mitochondrial protein-coding genes of 76 bivalve species. Three life history traits (maximum longevity, generation time and mean temperature tolerance) were tested against 1) synonymous substitution rates (dS), 2) conservative amino acid replacement rates (Kc) and 3) ratios of radical over conservative amino acid replacement rates (Kr/Kc). Our results confirm the already known correlation between longevity and generation time and show, for the first time in an invertebrate class, a significant negative correlation between dS and longevity. This correlation was not as strong when generation time and mean temperature tolerance variations were also considered in our model (marginal correlation), suggesting a confounding effect of these traits on the relationship between longevity and mtDNA substitution rate. By confirming the negative correlation between dS and longevity previously documented in birds and mammals, our results provide support for a general pattern in substitution rates.
Collapse
Affiliation(s)
- Mathieu Mortz
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Aurore Levivier
- Institut Des Sciences De La Mer De Rimouski, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Nicolas Lartillot
- Laboratoire De Biométrie et Biologie Evolutive, UMR CNRS, Université Lyon 1, Villeurbanne, France
| | - France Dufresne
- Laboratoire D'écologie Moléculaire, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada.,Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| | - Pierre U Blier
- Laboratoire De Physiologie Intégrative Et Evolutive, Département De Biologie, Université Du Québec à Rimouski, Rimouski, QC, Canada
| |
Collapse
|
75
|
Romero-Muñoz A, Fandos G, Benítez-López A, Kuemmerle T. Habitat destruction and overexploitation drive widespread declines in all facets of mammalian diversity in the Gran Chaco. GLOBAL CHANGE BIOLOGY 2021; 27:755-767. [PMID: 33258510 DOI: 10.1111/gcb.15418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/14/2020] [Indexed: 06/12/2023]
Abstract
Global biodiversity is under high and rising anthropogenic pressure. Yet, how the taxonomic, phylogenetic, and functional facets of biodiversity are affected by different threats over time is unclear. This is particularly true for the two main drivers of the current biodiversity crisis: habitat destruction and overexploitation. We provide the first long-term assessment of multifaceted biodiversity changes caused by these threats for any tropical region. Focussing on larger mammals in South America's 1.1 million km2 Gran Chaco region, we assessed changes in multiple biodiversity facets between 1985 and 2015, determined which threats drive those changes, and identified remaining key areas for all biodiversity facets. Using habitat and threat maps, we found, first, that between 1985 and 2015 taxonomic (TD), phylogenetic (PD) and functional (FD) diversity all declined drastically across over half of the area assessed. FD declined about 50% faster than TD and PD, and these declines were mainly driven by species loss, rather than species turnover. Second, habitat destruction, hunting, and both threats together contributed ~57%, ~37%, and ~6% to overall facet declines, respectively. However, hunting pressure increased where TD and PD declined most strongly, whereas habitat destruction disproportionally contributed to FD declines. Third, just 23% of the Chaco would have to be protected to safeguard the top 17% of all three facets. Our findings uncover a widespread impoverishment of mammal species richness, evolutionary history, and ecological functions across broad areas of the Chaco due to increasing habitat destruction and hunting. Moreover, our results pinpoint key areas that should be preserved and managed to maintain all facets of mammalian diversity across the Chaco. More generally, our work highlights how long-term changes in biodiversity facets can be assessed and attributed to specific threats, to better understand human impacts on biodiversity and to guide conservation planning to mitigate them.
Collapse
Affiliation(s)
- Alfredo Romero-Muñoz
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Fundación Cohabitar, Sucre, Bolivia
| | - Guillermo Fandos
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Ana Benítez-López
- Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Sevilla, Spain
| | - Tobias Kuemmerle
- Geography Department, Humboldt-University Berlin, Berlin, Germany
- Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Berlin, Germany
| |
Collapse
|
76
|
Vazquez JM, Lynch VJ. Pervasive duplication of tumor suppressors in Afrotherians during the evolution of large bodies and reduced cancer risk. eLife 2021; 10:e65041. [PMID: 33513090 PMCID: PMC7952090 DOI: 10.7554/elife.65041] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.
Collapse
Affiliation(s)
- Juan M Vazquez
- Department of Human Genetics, The University of ChicagoChicagoUnited States
| | - Vincent J Lynch
- Department of Biological Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
77
|
Jimenez AG. Plasma Concentration of Advanced Glycation End-Products From Wild Canids and Domestic Dogs Does Not Change With Age or Across Body Masses. Front Vet Sci 2021; 8:637132. [PMID: 33575284 PMCID: PMC7870499 DOI: 10.3389/fvets.2021.637132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Dogs provide a physiological paradox: In domestic dogs, small breeds live longer lives than large breed dogs. Comparatively, a wild canid can be a similar size than many large breed dogs and outlive their domestic cousin. We have previously shown that oxidative stress patterns between domestic and wild canids differ, so that wild canids invest in a robust antioxidant system across their lives; whereas domestic dogs tend to accumulate lipid damage with age. There is a close association between oxidative stress and the production of a carbohydrate based-damage, Advanced Glycation End-products (AGEs). AGEs can bind to their receptor (RAGE), which can lead to increases in reactive oxygen species (ROS) production, and decreases in antioxidant capacity. Here, I used plasma from wild and domestic canids to address whether blood plasma AGE-BSA concentration associated with body mass and age in domestic dogs; And whether AGE-BSA concentration patterns in blood plasma from wild canids are similar to those found in domestic dogs. I found no correlation between circulating AGE-BSA concentration and body size or age in either domestic dogs and wild canids. These data suggest that AGEs formation may be a conserved trait across the evolution of domesticated dogs from wild ancestors, in opposition to oxidative stress patterns between these two groups. And, that, in domestic dogs, lipid metabolism, rather than carbohydrate metabolism, may be upregulated to yield the previously found differences in circulating lipid damage across lifespan and body sizes.
Collapse
|
78
|
Amson E. Humeral diaphysis structure across mammals. Evolution 2021; 75:748-755. [PMID: 33433007 DOI: 10.1111/evo.14170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 01/06/2021] [Indexed: 01/07/2023]
Abstract
Long bones comprise articular ends (epiphyses) joined by transitional metaphyses and a diaphysis (shaft). The structure of the latter is often viewed as regularly tubular across tetrapods (limbed vertebrates). However, assessments of the bone structure along the whole diaphysis are rare. Here, I assess whole-diaphysis profiles of global compactness (bone fraction) of 164 species of extant and extinct therian mammals (marsupials + placentals) in a phylogenetically informed context. Generally terrestrial, mammals have acquired multiple times the highly specialized aerial, fully aquatic, and subterranean lifestyles, allowing to potentially associate specific traits with these lifestyles. I show that there is a consistent increase in global compactness along the diaphysis in most mammals. This pattern is modified in a limited number of specialized species: all aerial clades (gliders and bats) have rather uniform and low values, while cetaceans' humeral diaphysis is marked by a slightly more compact mid-diaphyseal region. Among subterranean clades, structure alterations are most obvious in fossorial talpids (true moles) and their highly modified humerus. These results call for the investigation of bone structure in whole skeletal elements of key fossils in order to reconstruct the patterns of evolutionary modifications associated with lifestyle transitions.
Collapse
Affiliation(s)
- Eli Amson
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstraße 43, Berlin, 10115, Germany
| |
Collapse
|
79
|
Virulence mismatches in index hosts shape the outcomes of cross-species transmission. Proc Natl Acad Sci U S A 2020; 117:28859-28866. [PMID: 33122433 PMCID: PMC7682402 DOI: 10.1073/pnas.2006778117] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Emerging disease epidemics often result from a pathogen establishing transmission in a novel host species. However, for reasons that remain poorly understood, most cross-species transmissions fail to establish in the newly infected species. Examining experimental cross-species inoculations of rabies virus, we show that host and viral factors predict differences in disease progression in ways that are expected to impact the likelihood of onward transmission. Disease progression was accelerated and virus excretion decreased when the reservoir and novel host were physiologically or genetically more dissimilar. These insights may help to explain and predict host shifts in rabies and other zoonotic viruses and highlight meta-analyses of experimental inoculation data as a powerful and generalizable approach for understanding the dynamics of index infections. Whether a pathogen entering a new host species results in a single infection or in onward transmission, and potentially an outbreak, depends upon the progression of infection in the index case. Although index infections are rarely observable in nature, experimental inoculations of pathogens into novel host species provide a rich and largely unexploited data source for meta-analyses to identify the host and pathogen determinants of variability in infection outcomes. We analyzed the progressions of 514 experimental cross-species inoculations of rabies virus, a widespread zoonosis which in nature exhibits both dead-end infections and varying levels of sustained transmission in novel hosts. Inoculations originating from bats rather than carnivores, and from warmer- to cooler-bodied species caused infections with shorter incubation periods that were associated with diminished virus excretion. Inoculations between distantly related hosts tended to result in shorter clinical disease periods, which are also expected to impede onward transmission. All effects were modulated by infection dose. Taken together, these results suggest that as host species become more dissimilar, increased virulence might act as a limiting factor preventing onward transmission. These results can explain observed constraints on rabies virus host shifts, describe a previously unrecognized role of host body temperature, and provide a potential explanation for host shifts being less likely between genetically distant species. More generally, our study highlights meta-analyses of experimental infections as a tractable approach to quantify the complex interactions between virus, reservoir, and novel host that shape the outcome of cross-species transmission.
Collapse
|
80
|
Jiménez-Ortega D, Kolm N, Immler S, Maklakov AA, Gonzalez-Voyer A. Long life evolves in large-brained bird lineages. Evolution 2020; 74:2617-2628. [PMID: 32840865 DOI: 10.1111/evo.14087] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 01/05/2023]
Abstract
The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The "cognitive buffer" hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the "cognitive buffer" hypothesis.
Collapse
Affiliation(s)
- Dante Jiménez-Ortega
- Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, 04510, México
| | - Niclas Kolm
- Zoology Department, Stockholm University, Stockholm, Sweden
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Alexei A Maklakov
- School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | | |
Collapse
|
81
|
Network Pharmacology-Based Strategy to Investigate the Pharmacological Mechanisms of Ginkgo biloba Extract for Aging. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8508491. [PMID: 32802136 PMCID: PMC7403930 DOI: 10.1155/2020/8508491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022]
Abstract
Aging is a main risk factor for a number of debilitating diseases and contributes to an increase in mortality. Previous studies have shown that Ginkgo biloba extract (EGb) can prevent and treat aging-related diseases, but its pharmacological effects need to be further clarified. This study aimed to propose a network pharmacology-based method to identify the therapeutic pathways of EGb for aging. The active components of EGb and targets of sample chemicals were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. Information on aging-related genes was obtained from the Human Ageing Genomic Resources database and JenAge Ageing Factor Database. Subsequently, a network containing the interactions between the putative targets of EGb and known therapeutic targets of aging was established, which was used to investigate the pharmacological mechanisms of EGb for aging. A total of 24 active components, 154 targets of active components of EGb, and 308 targets of aging were obtained. Network construction and pathway enrichment were conducted after data integration. The study found that flavonoids (quercetin, luteolin, and kaempferol) and beta-sitosterol may be the main active components of EGb. The top eight candidate targets, namely, PTGS2, PPARG, DPP4, GSK3B, CCNA2, AR, MAPK14, and ESR1, were selected as the main therapeutic targets of EGb. Pathway enrichment results in various pathways were associated with inhibition of oxidative stress, inhibition of inflammation, amelioration of insulin resistance, and regulation of cellular biological processes. Molecular docking results showed that PPARG had better binding capacity with beta-sitosterol, and PTGS2 had better binding capacity with kaempferol and quercetin. The main components of EGb may act on multiple targets, such as PTGS2, PPARG, DPP4, and GSK3B, to regulate multiple pathways, and play an antiaging role by inhibiting oxidative stress, inhibiting inflammation, and ameliorating insulin resistance.
Collapse
|
82
|
Pitrez PR, Estronca L, Monteiro LM, Colell G, Vazão H, Santinha D, Harhouri K, Thornton D, Navarro C, Egesipe AL, Carvalho T, Dos Santos RL, Lévy N, Smith JC, de Magalhães JP, Ori A, Bernardo A, De Sandre-Giovannoli A, Nissan X, Rosell A, Ferreira L. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13. Nat Commun 2020; 11:4110. [PMID: 32807790 PMCID: PMC7431909 DOI: 10.1038/s41467-020-17901-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disease in children that leads to early death. Smooth muscle cells (SMCs) are the most affected cells in HGPS individuals, although the reason for such vulnerability remains poorly understood. In this work, we develop a microfluidic chip formed by HGPS-SMCs generated from induced pluripotent stem cells (iPSCs), to study their vulnerability to flow shear stress. HGPS-iPSC SMCs cultured under arterial flow conditions detach from the chip after a few days of culture; this process is mediated by the upregulation of metalloprotease 13 (MMP13). Importantly, double-mutant LmnaG609G/G609GMmp13-/- mice or LmnaG609G/G609GMmp13+/+ mice treated with a MMP inhibitor show lower SMC loss in the aortic arch than controls. MMP13 upregulation appears to be mediated, at least in part, by the upregulation of glycocalyx. Our HGPS-SMCs chip represents a platform for developing treatments for HGPS individuals that may complement previous pre-clinical and clinical treatments.
Collapse
Affiliation(s)
- Patricia R Pitrez
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Estronca
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Luís Miguel Monteiro
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Guillem Colell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Helena Vazão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Deolinda Santinha
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | | | - Daniel Thornton
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Claire Navarro
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Progelife, Marseille, France
| | - Anne-Laure Egesipe
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Tânia Carvalho
- IMM, Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | | | - Nicolas Lévy
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Molecular Genetics Laboratory, Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - James C Smith
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - João Pedro de Magalhães
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute, 07745, Jena, Germany
| | - Andreia Bernardo
- Developmental Biology Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Annachiara De Sandre-Giovannoli
- Aix Marseille Univ, INSERM, MMG, Marseille, France
- Molecular Genetics Laboratory, Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
- CRB Assistance Publique des Hôpitaux de Marseille (CRB AP-HM, TAC), Marseille, France
| | - Xavier Nissan
- CECS, I-STEM, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry Cedex, France
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | - Lino Ferreira
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
83
|
Doherty A, Lopes I, Ford CT, Monaco G, Guest P, de Magalhães JP. A scan for genes associated with cancer mortality and longevity in pedigree dog breeds. Mamm Genome 2020; 31:215-227. [PMID: 32661568 PMCID: PMC7496057 DOI: 10.1007/s00335-020-09845-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022]
Abstract
Selective breeding of the domestic dog (Canis lupus familiaris) rigidly retains desirable features, and could inadvertently fix disease-causing variants within a breed. We combine phenotypic data from > 72,000 dogs with a large genotypic dataset to search for genes associated with cancer mortality and longevity in pedigree dog breeds. We validated previous findings that breeds with higher average body weight have higher cancer mortality rates and lower life expectancy. We identified a significant positive correlation between life span and cancer mortality residuals corrected for body weight, implying that long-lived breeds die more frequently from cancer compared to short-lived breeds. We replicated a number of known genetic associations with body weight (IGF1, GHR, CD36, SMAD2 and IGF2BP2). Subsequently, we identified five genetic variants in known cancer-related genes (located within SIPA1, ADCY7 and ARNT2) that could be associated with cancer mortality residuals corrected for confounding factors. One putative genetic variant was marginally significantly associated with longevity residuals that had been corrected for the effects of body weight; this genetic variant is located within PRDX1, a peroxiredoxin that belongs to an emerging class of pro-longevity associated genes. This research should be considered as an exploratory analysis to uncover associations between genes and longevity/cancer mortality.
Collapse
Affiliation(s)
- Aoife Doherty
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Inês Lopes
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Christopher T Ford
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Gianni Monaco
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK
| | - Patrick Guest
- School of Biology, Medical and Biological Sciences Building, University of St. Andrews, North Haugh, St. Andrews, KY16 9TF, UK
| | - João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8TX, UK.
| |
Collapse
|
84
|
Wu FL, Strand AI, Cox LA, Ober C, Wall JD, Moorjani P, Przeworski M. A comparison of humans and baboons suggests germline mutation rates do not track cell divisions. PLoS Biol 2020; 18:e3000838. [PMID: 32804933 PMCID: PMC7467331 DOI: 10.1371/journal.pbio.3000838] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 09/02/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.
Collapse
Affiliation(s)
- Felix L. Wu
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York, United States of America
| | - Alva I. Strand
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Laura A. Cox
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina, United States of America
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Carole Ober
- Department of Human Genetics, The University of Chicago, Chicago, Illinois, United States of America
| | - Jeffrey D. Wall
- Institute for Human Genetics, Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Priya Moorjani
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Molly Przeworski
- Department of Systems Biology, Columbia University, New York, New York, United States of America
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
85
|
Cooper LN, Ball HC, Vinyard CJ, Safadi FF, George JC, Thewissen JGM. Linking gene expression and phenotypic changes in the developmental and evolutionary origins of osteosclerosis in the ribs of bowhead whales (Balaena mysticetus). JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:339-349. [PMID: 32729176 DOI: 10.1002/jez.b.22990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/04/2020] [Accepted: 06/18/2020] [Indexed: 12/22/2022]
Abstract
Bowhead whales are among the longest-lived mammals with an extreme lifespan of about 211 years. During the first 25 years of their lives, rib bones increase in mineral density and the medulla transitions from compact to trabecular bone. Molecular drivers associated with these phenotypic changes in bone remain unknown. This study assessed expression levels of osteogenic genes from samples of rib bones of bowheads. Samples were harvested from prenatal to 86-year-old whales, representing the first third of the bowhead lifespan. Fetal to 2-year-old bowheads showed expression levels consistent with the rapid deposition of the bone extracellular matrix. Sexually mature animals showed expression levels associated with low rates of osteogenesis and increased osteoclastogenesis. After the first 25 years of life, declines in osteogenesis corresponded with increased expression of EZH2, an epigenetic regulator of osteogenesis. These findings suggest EZH2 may be at least one epigenetic modifier that contributes to the age-related changes in the rib bone phenotype along with the transition from compact to trabecular bone. Ancient cetaceans and their fossil relatives also display these phenotypes, suggesting EZH2 may have shaped the skeleton of whales in evolutionary history.
Collapse
Affiliation(s)
- Lisa N Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Anatomy and Neurobiology, Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Hope C Ball
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Anatomy and Neurobiology, Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Christopher J Vinyard
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Anatomy and Neurobiology, Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Fayez F Safadi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Anatomy and Neurobiology, Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Orthopedics, Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio, USA
| | - John C George
- Department of Wildlife Management, The North Slope Borough, Utqiagvik, Alaska, USA
| | - Johannes G M Thewissen
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA.,Department of Anatomy and Neurobiology, Musculoskeletal Research Group, Northeast Ohio Medical University, Rootstown, Ohio, USA
| |
Collapse
|
86
|
Jimenez AG, Downs CJ. Untangling life span and body mass discrepancies in canids: phylogenetic comparison of oxidative stress in blood from domestic dogs and wild canids. Am J Physiol Regul Integr Comp Physiol 2020; 319:R203-R210. [PMID: 32609535 DOI: 10.1152/ajpregu.00067.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Canids are a morphological and physiological diverse group of animals, with the most diversity found within one species, the domestic dog. Underlying observed morphological differences, there must also be differences at other levels of organization that could lead to elucidating aging rates and life span disparities between wild and domestic canids. Furthermore, small-breed dogs live significantly longer lives than large-breed dogs, while having higher mass-specific metabolic rates and faster growth rates. At the cellular level, a clear mechanism underlying whole animal traits has not been fully elucidated, although oxidative stress has been implicated as a potential culprit of the disparate life spans of domestic dogs. We used plasma and red blood cells from known aged domestic dogs and wild canids, and measured several oxidative stress variables: total antioxidant capacity (TAC), lipid damage, and enzymatic activities of catalase, superoxide dismutase, and glutathione peroxidase (GPx). We used phylogenetically informed general linear mixed models and nonphylogenetically corrected linear regression analysis. We found that lipid damage increases with age in domestic dogs, whereas TAC increases with age and TAC and GPx activity increases as a function of age/maximum life span in wild canids, which may partly explain longer potential life spans in wolves. As body mass increases, TAC and GPx activity increase in wild canids, but not domestic dogs, highlighting that artificial selection may have decreased antioxidant capacity in domestic dogs. We found that small-breed dogs have significantly higher circulating lipid damage compared with large-breed dogs, concomitant to their high mass-specific metabolism and higher growth rates, but in opposition to their long life spans.
Collapse
Affiliation(s)
- Ana G Jimenez
- Colgate University, Department of Biology, Hamilton, New York
| | - Cynthia J Downs
- State University of New York College of Environmental Science and Forestry, Department of Environmental Science and Forestry, Syracuse, New York
| |
Collapse
|
87
|
Dues DJ, Andrews EK, Senchuk MM, Van Raamsdonk JM. Resistance to Stress Can Be Experimentally Dissociated From Longevity. J Gerontol A Biol Sci Med Sci 2020; 74:1206-1214. [PMID: 30247515 PMCID: PMC6625593 DOI: 10.1093/gerona/gly213] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Indexed: 11/30/2022] Open
Abstract
On the basis of multiple experiments demonstrating that high resistance to stress is associated with long lifespan, it has been proposed that stress resistance is a key determinant of longevity. However, the extent to which high resistance to stress is necessary or sufficient for long life is currently unclear. In this work, we use a genetic approach to disrupt different stress response pathways and examine the resulting effect on the longevity of the long-lived insulin-like growth factor 1 (IGF1) receptor mutant daf-2. Although mutation of the heat shock factor gene hsf-1, deletion of sod genes, deletion of the p38 MAPK kinase gene pmk-1, or deletion of the transcription factor gene egl-27 all resulted in decreased resistance to at least one form of stress and decreased lifespan, the magnitude of change in stress resistance did not correspond to the magnitude of change in lifespan. In addition, we found that deletion of the glycerol-3-phosphate dehydrogenase genes gpdh-1 and gpdh-2 or deletion of the DAF-16 cofactor gene nhl-1 also results in decreased resistance to at least one form of stress but increases lifespan. Overall, our results suggest that while increased stress resistance is associated with longevity, stress resistance, and lifespan can be experimentally dissociated.
Collapse
Affiliation(s)
- Dylan J Dues
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Emily K Andrews
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Megan M Senchuk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Jeremy M Van Raamsdonk
- Laboratory of Aging and Neurodegenerative Disease, Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec.,Metabolic Disorders and Complications Program.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
88
|
Pacifici M, Rondinini C, Rhodes JR, Burbidge AA, Cristiano A, Watson JEM, Woinarski JCZ, Di Marco M. Global correlates of range contractions and expansions in terrestrial mammals. Nat Commun 2020; 11:2840. [PMID: 32504033 PMCID: PMC7275054 DOI: 10.1038/s41467-020-16684-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Understanding changes in species distributions is essential to disentangle the mechanisms that drive their responses to anthropogenic habitat modification. Here we analyse the past (1970s) and current (2017) distribution of 204 species of terrestrial non-volant mammals to identify drivers of recent contraction and expansion in their range. We find 106 species lost part of their past range, and 40 of them declined by >50%. The key correlates of this contraction are large body mass, increase in air temperature, loss of natural land, and high human population density. At the same time, 44 species have some expansion in their range, which correlates with small body size, generalist diet, and high reproductive rates. Our findings clearly show that human activity and life history interact to influence range changes in mammals. While the former plays a major role in determining contraction in species’ distribution, the latter is important for both contraction and expansion. Understanding why many species ranges are contracting while others are stable or expanding is important to inform conservation in an increasingly human-modified world. Here, Pacifici and colleagues investigate changes in the ranges of 204 mammals, showing that human factors mostly explain range contractions while life history explains both contraction and expansion.
Collapse
Affiliation(s)
- Michela Pacifici
- Global Mammal Assessment programme, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Viale dell'Università 32, I-00185, Rome, Italy.
| | - Carlo Rondinini
- Global Mammal Assessment programme, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Viale dell'Università 32, I-00185, Rome, Italy
| | - Jonathan R Rhodes
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Andrea Cristiano
- Global Mammal Assessment programme, Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Viale dell'Università 32, I-00185, Rome, Italy
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Wildlife Conservation Society, Global Conservation Program, Bronx, New York, NY, USA
| | - John C Z Woinarski
- Threatened Species Recovery Hub of the National Environment Science Program, Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT, 0909, Australia
| | - Moreno Di Marco
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.,Dipartimento di Biologia e Biotecnologie "Charles Darwin", Sapienza Università di Roma, Rome, I-00185, Italy.,CSIRO Land and Water, EcoSciences Precinct, 4102, Brisbane, Australia
| |
Collapse
|
89
|
Tidière M, Gaillard J, Garel M, Lemaître J, Toïgo C, Pélabon C. Variation in the ontogenetic allometry of horn length in bovids along a body mass continuum. Ecol Evol 2020; 10:4104-4114. [PMID: 32489634 PMCID: PMC7244813 DOI: 10.1002/ece3.6181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/04/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
Allometric relationships describe the proportional covariation between morphological, physiological, or life-history traits and the size of the organisms. Evolutionary allometries estimated among species are expected to result from species differences in ontogenetic allometry, but it remains uncertain whether ontogenetic allometric parameters and particularly the ontogenetic slope can evolve. In bovids, the nonlinear evolutionary allometry between horn length and body mass in males suggests systematic changes in ontogenetic allometry with increasing species body mass. To test this hypothesis, we estimated ontogenetic allometry between horn length and body mass in males and females of 19 bovid species ranging from ca. 5 to 700 kg. Ontogenetic allometry changed systematically with species body mass from steep ontogenetic allometries over a short period of horn growth in small species to shallow allometry with the growth period of horns matching the period of body mass increase in the largest species. Intermediate species displayed steep allometry over long period of horn growth. Females tended to display shallower ontogenetic allometry with longer horn growth compared to males, but these differences were weak and highly variable. These findings show that ontogenetic allometric slope evolved across species possibly as a response to size-related changes in the selection pressures acting on horn length and body mass.
Collapse
Affiliation(s)
- Morgane Tidière
- Department of BiologyCentre for Biodiversity DynamicsNTNUNorwegian University of Science and TechnologyTrondheimNorway
| | - Jean‐Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive - UMR5558 - CNRSUniversité Claude Bernard Lyon 1Université de LyonVilleurbanneFrance
| | | | - Jean‐François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive - UMR5558 - CNRSUniversité Claude Bernard Lyon 1Université de LyonVilleurbanneFrance
| | - Carole Toïgo
- Office Français pour la BiodiversitéGièresFrance
| | - Christophe Pélabon
- Department of BiologyCentre for Biodiversity DynamicsNTNUNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
90
|
Amstislavsky SY, Brusentsev EY, Petrova OM, Naprimerov VA, Levinson AL. Development and Aging of the Mammalian Reproductive System. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
91
|
Abstract
Blood oxygen-carrying capacity is one of the important determinants of the amount of oxygen supplied to the tissue per unit time and plays a key role in oxidative metabolism. In wild vertebrates, blood oxygen-carrying capacity is most commonly measured with the total blood hemoglobin concentration (Hb) and hematocrit (Hct), which is the volume percentage of red blood cells in blood. Here, I used published estimates of avian Hb and Hct (nearly 1,000 estimates from 300 species) to examine macroevolutionary patterns in the oxygen-carrying capacity of blood in birds. Phylogenetically informed comparative analysis indicated that blood oxygen-carrying capacity was primarily determined by species distribution (latitude and elevation) and morphological constraints (body mass). I found little support for the effect of life-history components on blood oxygen-carrying capacity except for a positive association of Hct with clutch size. Hb was also positively associated with diving behavior, but I found no effect of migratoriness on either Hb or Hct. Fluctuating selection was identified as the major force shaping the evolution of blood oxygen-carrying capacity. The results offer novel insights into the evolution of Hb and Hct in birds, and they provide a general, phylogenetically robust support for some long-standing hypotheses in avian ecophysiology.
Collapse
|
92
|
Jimenez AG, O'Connor ES, Tobin KJ, Anderson KN, Winward JD, Fleming A, Winner C, Chinchilli E, Maya A, Carlson K, Downs CJ. Does Cellular Metabolism from Primary Fibroblasts and Oxidative Stress in Blood Differ between Mammals and Birds? The (Lack-thereof) Scaling of Oxidative Stress. Integr Comp Biol 2020; 59:953-969. [PMID: 30924869 DOI: 10.1093/icb/icz017] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As part of mitonuclear communication, retrograde and anterograde signaling helps maintain homeostasis under basal conditions. Basal conditions, however, vary across phylogeny. At the cell-level, some mitonuclear retrograde responses can be quantified by measuring the constitutive components of oxidative stress, the balance between reactive oxygen species (ROS) and antioxidants. ROS are metabolic by-products produced by the mitochondria that can damage macromolecules by structurally altering proteins and inducing mutations in DNA, among other processes. To combat accumulating damage, organisms have evolved endogenous antioxidants and can consume exogenous antioxidants to sequester ROS before they cause cellular damage. ROS are also considered to be regulated through a retrograde signaling cascade from the mitochondria to the nucleus. These cellular pathways may have implications at the whole-animal level as well. For example, birds have higher basal metabolic rates, higher blood glucose concentration, and longer lifespans than similar sized mammals, however, the literature is divergent on whether oxidative stress is higher in birds compared with mammals. Herein, we collected literature values for whole-animal metabolism of birds and mammals. Then, we collected cellular metabolic rate data from primary fibroblast cells isolated from birds and mammals and we collected blood from a phylogenetically diverse group of birds and mammals housed at zoos and measured several parameters of oxidative stress. Additionally, we reviewed the literature on basal-level oxidative stress parameters between mammals and birds. We found that mass-specific metabolic rates were higher in birds compared with mammals. Our laboratory results suggest that cellular basal metabolism, total antioxidant capacity, circulating lipid damage, and catalase activity were significantly lower in birds compared with mammals. We found no body-size correlation on cellular metabolism or oxidative stress. We also found that most oxidative stress parameters significantly correlate with increasing age in mammals, but not in birds; and that correlations with reported maximum lifespans show different results compared with correlations with known aged birds. Our literature review revealed that basal levels of oxidative stress measurements for birds were rare, which made it difficult to draw conclusions.
Collapse
Affiliation(s)
- A G Jimenez
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - E S O'Connor
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K J Tobin
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - K N Anderson
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - J D Winward
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - A Fleming
- Department of Biology, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - C Winner
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - E Chinchilli
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - A Maya
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - K Carlson
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - C J Downs
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
93
|
Hallmann K, Griebeler EM. An identification of invariants in life history traits of amphibians and reptiles. Ecol Evol 2020; 10:1233-1251. [PMID: 32076510 PMCID: PMC7029084 DOI: 10.1002/ece3.5978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 12/01/2019] [Accepted: 12/06/2019] [Indexed: 11/11/2022] Open
Abstract
While many morphological, physiological, and ecological characteristics of organisms scale with body size, some do not change under size transformation. They are called invariant. A recent study recommended five criteria for identifying invariant traits. These are based on that a trait exhibits a unimodal central tendency and varies over a limited range with body mass (type I), or that it does not vary systematically with body mass (type II). We methodologically improved these criteria and then applied them to life history traits of amphibians, Anura, Caudata (eleven traits), and reptiles (eight traits). The numbers of invariant traits identified by criteria differed across amphibian orders and between amphibians and reptiles. Reproductive output (maximum number of reproductive events per year), incubation time, length of larval period, and metamorphosis size were type I and II invariant across amphibians. In both amphibian orders, reproductive output and metamorphosis size were type I and II invariant. In Anura, incubation time and length of larval period and in Caudata, incubation time were further type II invariant. In reptiles, however, only number of clutches per year was invariant (type II). All these differences could reflect that in reptiles body size and in amphibians, Anura, and Caudata metamorphosis (neotenic species go not through it) and the trend toward independence of egg and larval development from water additionally constrained life history evolution. We further demonstrate that all invariance criteria worked for amphibian and reptilian life history traits, although we corroborated some known and identified new limitations to their application.
Collapse
Affiliation(s)
- Konstantin Hallmann
- Institute of Organismic and Molecular Evolution – Evolutionary EcologyJohannes Gutenberg‐University MainzMainzGermany
| | - Eva Maria Griebeler
- Institute of Organismic and Molecular Evolution – Evolutionary EcologyJohannes Gutenberg‐University MainzMainzGermany
| |
Collapse
|
94
|
Yang J, Peng S, Zhang B, Houten S, Schadt E, Zhu J, Suh Y, Tu Z. Human geroprotector discovery by targeting the converging subnetworks of aging and age-related diseases. GeroScience 2020; 42:353-372. [PMID: 31637571 PMCID: PMC7031474 DOI: 10.1007/s11357-019-00106-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/13/2019] [Indexed: 12/15/2022] Open
Abstract
A key goal of geroscience research is to identify effective interventions to extend human healthspan, the years of healthy life. Currently, majority of the geroprotectors are found by screening compounds in model organisms; whether they will be effective in humans is largely unknown. Here we present a new strategy called ANDRU (aging network based drug discovery) to help the discovery of human geroprotectors. It first identifies human aging subnetworks that putatively function at the interface between aging and age-related diseases; it then screens for pharmacological interventions that may "reverse" the age-associated transcriptional changes occurred in these subnetworks. We applied ANDRU to human adipose gene expression data from the Genotype Tissue Expression (GTEx) project. For the top 31 identified compounds, 19 of them showed at least some evidence supporting their function in improving metabolic traits or lifespan, which include type 2 diabetes drugs such as pioglitazone. As the query aging genes were refined to the ones with more intimate links to diseases, ANDRU identified more meaningful drug hits than the general approach without considering the underlying network structures. In summary, ANDRU represents a promising human data-driven strategy that may speed up the discovery of interventions to extend human healthspan.
Collapse
Affiliation(s)
- Jialiang Yang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Shouneng Peng
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Bin Zhang
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Sander Houten
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Eric Schadt
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Jun Zhu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, New York, New York City, USA
- Department of Medicine Endocrinology, Albert Einstein College of Medicine, New York, New York City, USA
| | - Zhidong Tu
- Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York City, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, IMI 3-70F, New York City, NY, 10029, USA.
| |
Collapse
|
95
|
Lee H, Kim J, Weber JA, Chung O, Cho YS, Jho S, Jun J, Kim HM, Lim J, Choi JP, Jeon S, Blazyte A, Edwards JS, Paek WK, Bhak J. Whole Genome Analysis of the Red-Crowned Crane Provides Insight into Avian Longevity. Mol Cells 2020; 43:86-95. [PMID: 31940721 PMCID: PMC6999708 DOI: 10.14348/molcells.2019.0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 11/29/2022] Open
Abstract
The red-crowned crane (Grus japonensis) is an endangered, large-bodied crane native to East Asia. It is a traditional symbol of longevity and its long lifespan has been confirmed both in captivity and in the wild. Lifespan in birds is known to be positively correlated with body size and negatively correlated with metabolic rate, though the genetic mechanisms for the red-crowned crane's long lifespan have not previously been investigated. Using whole genome sequencing and comparative evolutionary analyses against the grey-crowned crane and other avian genomes, including the long-lived common ostrich, we identified redcrowned crane candidate genes with known associations with longevity. Among these are positively selected genes in metabolism and immunity pathways (NDUFA5, NDUFA8, NUDT12, SOD3, CTH , RPA1, PHAX, HNMT , HS2ST1 , PPCDC , PSTK CD8B, GP9, IL-9R, and PTPRC). Our analyses provide genetic evidence for low metabolic rate and longevity, accompanied by possible convergent adaptation signatures among distantly related large and long-lived birds. Finally, we identified low genetic diversity in the red-crowned crane, consistent with its listing as an endangered species, and this genome should provide a useful genetic resource for future conservation studies of this rare and iconic species.
Collapse
Affiliation(s)
- HyeJin Lee
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Jungeun Kim
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Jessica A. Weber
- Department of Genetics, Harvard Medical School, Boston, MA 02115,
USA
| | | | | | - Sungwoong Jho
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | | | - Hak-Min Kim
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Jeongheui Lim
- National Science Museum, Ministry of Science and ICT, Daejeon 34143,
Korea
| | - Jae-Pil Choi
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
| | - Sungwon Jeon
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Asta Blazyte
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| | - Jeremy S. Edwards
- Chemistry and Chemical Biology, UNM Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM 87131,
USA
| | - Woon Kee Paek
- National Science Museum, Ministry of Science and ICT, Daejeon 34143,
Korea
| | - Jong Bhak
- Personal Genomics Institute, Genome Research Foundation, Cheongju 28160,
Korea
- Clinomics, Ulsan 44919,
Korea
- KOGIC, Ulsan National Institute of Science and Technology, Ulsan 44919,
Korea
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919,
Korea
| |
Collapse
|
96
|
Zhao T, Li Z. Growth rate and locomotor performance tradeoff is not universal in birds. PeerJ 2020; 8:e8423. [PMID: 32002334 PMCID: PMC6983296 DOI: 10.7717/peerj.8423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/17/2019] [Indexed: 11/20/2022] Open
Abstract
Though a tradeoff between growth rate and locomotor performance has been proposed, empirical data on this relationship are still limited. Here we statistically analyze the associations of growth rate and flight ability in birds by assessing how growth rate is correlated with three wing parameters of birds: flight muscle ratio, wing aspect ratio, and wing loading. We find that fast-growing birds tended to have higher flight muscle ratios and higher wing loadings than slow-growing birds, which suggests that fast-growing birds may have better takeoff performance, but lower efficiency in maneuvering flight. Accordingly, our findings suggest that the relationship between growth rate and flight ability is more complex than a simple tradeoff. Since the hindlimbs also contribute greatly to the locomotion of birds, future investigations on the relationship between growth rate and hindlimb performance will provide more insights into the evolution of birds.
Collapse
Affiliation(s)
- Tao Zhao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Zhiheng Li
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
97
|
Downs CJ, Dochtermann NA, Ball R, Klasing KC, Martin LB. The Effects of Body Mass on Immune Cell Concentrations of Mammals. Am Nat 2020; 195:107-114. [DOI: 10.1086/706235] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
98
|
Sahm A, Bens M, Henning Y, Vole C, Groth M, Schwab M, Hoffmann S, Platzer M, Szafranski K, Dammann P. Higher gene expression stability during aging in long-lived giant mole-rats than in short-lived rats. Aging (Albany NY) 2019; 10:3938-3956. [PMID: 30557854 PMCID: PMC6326690 DOI: 10.18632/aging.101683] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/22/2018] [Indexed: 01/07/2023]
Abstract
Many aging-associated physiological changes are known to occur in short- and long-lived species with different trajectories. Emerging evidence suggests that numerous life history trait differences between species are based on interspecies variations in gene expression. Little information is available, however, about differences in transcriptome changes during aging between mammals with diverging lifespans. For this reason, we studied the transcriptomes of five tissue types and two age cohorts of two similarly sized rodent species with very different lifespans: laboratory rats (Rattus norvegicus) and giant mole-rats (Fukomys mechowii), with maximum lifespans of 3.8 and more than 20 years, respectively. Our findings show that giant mole-rats exhibit higher gene expression stability during aging than rats. Although well-known aging signatures were detected in all tissue types of rats, they were found in only one tissue type of giant mole-rats. Furthermore, many differentially expressed genes that were found in both species were regulated in opposite directions during aging. This suggests that expression changes which cause aging in short-lived species are counteracted in long-lived species. Taken together, we conclude that expression stability in giant mole rats (and potentially in African mole-rats in general) may be one key factor for their long and healthy life.
Collapse
Affiliation(s)
- Arne Sahm
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Martin Bens
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Yoshiyuki Henning
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,Institute of Physiology, University of Duisburg-Essen, Essen, 45147, Germany
| | - Christiane Vole
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Schwab
- Department of Neurology, Jena University Hospital-Friedrich Schiller University, Jena, Germany
| | - Steve Hoffmann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Matthias Platzer
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Philip Dammann
- Department of General Zoology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany.,University Hospital, Central Animal Laboratory, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
99
|
Hoedjes KM, van den Heuvel J, Kapun M, Keller L, Flatt T, Zwaan BJ. Distinct genomic signals of lifespan and life history evolution in response to postponed reproduction and larval diet in Drosophila. Evol Lett 2019; 3:598-609. [PMID: 31867121 PMCID: PMC6906992 DOI: 10.1002/evl3.143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/08/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022] Open
Abstract
Reproduction and diet are two major factors controlling the physiology of aging and life history, but how they interact to affect the evolution of longevity is unknown. Moreover, although studies of large-effect mutants suggest an important role of nutrient sensing pathways in regulating aging, the genetic basis of evolutionary changes in lifespan remains poorly understood. To address these questions, we analyzed the genomes of experimentally evolved Drosophila melanogaster populations subjected to a factorial combination of two selection regimes: reproductive age (early versus postponed), and diet during the larval stage ("low," "control," "high"), resulting in six treatment combinations with four replicate populations each. Selection on reproductive age consistently affected lifespan, with flies from the postponed reproduction regime having evolved a longer lifespan. In contrast, larval diet affected lifespan only in early-reproducing populations: flies adapted to the "low" diet lived longer than those adapted to control diet. Here, we find genomic evidence for strong independent evolutionary responses to either selection regime, as well as loci that diverged in response to both regimes, thus representing genomic interactions between the two. Overall, we find that the genomic basis of longevity is largely independent of dietary adaptation. Differentiated loci were not enriched for "canonical" longevity genes, suggesting that naturally occurring genic targets of selection for longevity differ qualitatively from variants found in mutant screens. Comparing our candidate loci to those from other "evolve and resequence" studies of longevity demonstrated significant overlap among independent experiments. This suggests that the evolution of longevity, despite its presumed complex and polygenic nature, might be to some extent convergent and predictable.
Collapse
Affiliation(s)
- Katja M. Hoedjes
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Joost van den Heuvel
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
- Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle Upon TyneUnited Kingdom
| | - Martin Kapun
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
- Current Address: Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZurichSwitzerland
| | - Laurent Keller
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Thomas Flatt
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Bas J. Zwaan
- Laboratory of Genetics, Plant Sciences GroupWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
100
|
Ohashi H, Hasegawa T, Hirata A, Fujimori S, Takahashi K, Tsuyama I, Nakao K, Kominami Y, Tanaka N, Hijioka Y, Matsui T. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat Commun 2019; 10:5240. [PMID: 31748549 PMCID: PMC6868141 DOI: 10.1038/s41467-019-13241-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 10/30/2019] [Indexed: 11/09/2022] Open
Abstract
Limiting the magnitude of climate change via stringent greenhouse gas (GHG) mitigation is necessary to prevent further biodiversity loss. However, some strategies to mitigate GHG emission involve greater land-based mitigation efforts, which may cause biodiversity loss from land-use changes. Here we estimate how climate and land-based mitigation efforts interact with global biodiversity by using an integrated assessment model framework to project potential habitat for five major taxonomic groups. We find that stringent GHG mitigation can generally bring a net benefit to global biodiversity even if land-based mitigation is adopted. This trend is strengthened in the latter half of this century. In contrast, some regions projected to experience much growth in land-based mitigation efforts (i.e., Europe and Oceania) are expected to suffer biodiversity loss. Our results support the enactment of stringent GHG mitigation policies in terms of biodiversity. To conserve local biodiversity, however, these policies must be carefully designed in conjunction with land-use regulations and societal transformation in order to minimize the conversion of natural habitats. Greenhouse gas mitigation can involve land-use changes that alter the habitat available for wildlife. Here, Ohashi et al. perform an integrated assessment showing that climate mitigation can be beneficial for global biodiversity but may entail local biodiversity losses where land-based mitigation is implemented.
Collapse
Affiliation(s)
- Haruka Ohashi
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
| | - Tomoko Hasegawa
- Department of Civil and Environmental Engineering, College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.,Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Akiko Hirata
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.,Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Shinichiro Fujimori
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan.,Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, 361, C1-3, Nishikyo, Kyoto, Kyoto, 615-8540, Japan.,Energy Program, International Institute for Applied System Analysis, Schlossplatz 1, A-2361, Laxenburg, Austria
| | - Kiyoshi Takahashi
- Center for Social and Environmental Systems Research, National Institute for Environmental Studies, Japan, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ikutaro Tsuyama
- Hokkaido Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitsujigaoka 7, Toyohira, Sapporo, Hokkaido, 062-8516, Japan
| | - Katsuhiro Nakao
- Kansai Research Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Nagai-kyutaro 68, Momoyama, Fushimi, Kyoto, Kyoto, 612-0855, Japan
| | - Yuji Kominami
- Department of Disaster Prevention, Meteorology and Hydrology, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| | - Nobuyuki Tanaka
- Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502, Japan
| | - Yasuaki Hijioka
- Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tetsuya Matsui
- Center for International Partnerships and Research on Climate Change, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan
| |
Collapse
|