51
|
Ishihara A. Defense mechanisms involving secondary metabolism in the grass family. JOURNAL OF PESTICIDE SCIENCE 2021; 46:382-392. [PMID: 34908899 PMCID: PMC8640679 DOI: 10.1584/jpestics.j21-05] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2021] [Indexed: 05/13/2023]
Abstract
Plants synthesize and accumulate a wide variety of compounds called secondary metabolites. Secondary metabolites serve as chemical barriers to protect plants from pathogens and herbivores. Antimicrobial secondary metabolites are accumulated to prevent pathogen infection. These metabolites are classified into phytoalexins (induced in response to pathogen attack) and phytoanticipins (present prior to pathogen infection). The antimicrobial compounds in the grass family (Poaceae) were studied from the viewpoint of evolution. The studies were performed at three hierarchies, families, genera, and species and include the following: 1) the distribution of benzoxazinoids (Bxs) in the grass family, 2) evolutionary replacement of phytoanticipins from Bxs to hydroxycinnamic acid amide dimers in the genus Hordeum, and 3) chemodiversity of flavonoid and diterpenoid phytoalexins in rice. These studies demonstrated dynamic changes in secondary metabolism during evolution, indicating the adaptation of plants to their environment by repeating scrap-and-build cycles.
Collapse
Affiliation(s)
- Atsushi Ishihara
- Department of Agricultural, Life and Environmental Sciences, Faculty of Agriculture, Tottori University, Tottori 680–8553, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
52
|
Impacts of Constitutive and Induced Benzoxazinoids Levels on Wheat Resistance to the Grain Aphid ( Sitobion avenae). Metabolites 2021; 11:metabo11110783. [PMID: 34822441 PMCID: PMC8620460 DOI: 10.3390/metabo11110783] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Benzoxazinoids are important secondary metabolites in gramineae plants and have inhibitory and toxic effects against a wide range of herbivore pests. However, the relationship between benzoxazinoid level and plant resistance to aphids remains controversial. In this study, we investigated the relationship between benzoxazinoids composition and concentration in wheat leaves and the resistance to the grain aphid Sitobion avenae. Overall, six benzoxazinoids were detected and identified by mass spectrometry based metabolites profiling, including three lactams, two hydroxamic acids, and one methyl derivative. The constitutive levels of these benzoxazinoids were significantly different among the wheat varieties/lines. However, none of these benzoxazinoids exhibited considerable correlation with aphid resistance. S. avenae feeding elevated the level of 2-O-β-D-glucopyranosyloxy-4,7-dimethoxy-(2H)-1,4-benzoxazin-3(4H)-one (HDMBOA-Glc) and reduced the level of 2-O-β-D-glucopyranosyloxy-4-hydroxy-7-(2H)-methoxy-1,4-benzoxazin-3(4H)-one (DIMBOA-Glc) in some of the wheat varieties/lines. Moreover, aphid-induced level of DIMBOA-Glc was positively related with callose deposition, which was closely associated with aphid resistance. Wheat leaves infiltrated with DIMBOA-Glc caused a noticeable increase of callose deposition and the effect was in a dose dependent manner. This study suggests that the constitutive level of benzoxazinoids has limited impact on S. avenae. Aphid feeding can affect the balance of benzoxazinoids metabolism and the dynamic level of benzoxazinoids can act as a signal of callose deposition for S. avenae resistance. This study will extend our understanding of aphid–wheat interaction and provides new insights in aphid-resistance wheat breeding.
Collapse
|
53
|
Lou YR, Anthony TM, Fiesel PD, Arking RE, Christensen EM, Jones AD, Last RL. It happened again: Convergent evolution of acylglucose specialized metabolism in black nightshade and wild tomato. SCIENCE ADVANCES 2021; 7:eabj8726. [PMID: 34757799 PMCID: PMC8580325 DOI: 10.1126/sciadv.abj8726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 05/09/2023]
Abstract
Plants synthesize myriad phylogenetically restricted specialized (aka “secondary”) metabolites with diverse structures. Metabolism of acylated sugar esters in epidermal glandular secreting trichomes across the Solanaceae (nightshade) family is ideal for investigating the mechanisms of evolutionary metabolic diversification. We developed methods to structurally analyze acylhexose mixtures by 2D NMR, which led to the insight that the Old World species black nightshade (Solanum nigrum) accumulates acylglucoses and acylinositols in the same tissue. Detailed in vitro biochemistry, cross-validated by in vivo virus-induced gene silencing, revealed two unique features of the four-step acylglucose biosynthetic pathway: A trichome-expressed, neofunctionalized invertase-like enzyme, SnASFF1, converts BAHD-produced acylsucroses to acylglucoses, which, in turn, are substrates for the acylglucose acyltransferase, SnAGAT1. This biosynthetic pathway evolved independently from that recently described in the wild tomato Solanum pennellii, reinforcing that acylsugar biosynthesis is evolutionarily dynamic with independent examples of primary metabolic enzyme cooption and additional variation in BAHD acyltransferases.
Collapse
Affiliation(s)
- Yann-Ru Lou
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Thilani M. Anthony
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Paul D. Fiesel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | | | | | - A. Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert L. Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
54
|
Desmet S, Morreel K, Dauwe R. Origin and Function of Structural Diversity in the Plant Specialized Metabolome. PLANTS (BASEL, SWITZERLAND) 2021; 10:2393. [PMID: 34834756 PMCID: PMC8621143 DOI: 10.3390/plants10112393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
The plant specialized metabolome consists of a multitude of structurally and functionally diverse metabolites, variable from species to species. The specialized metabolites play roles in the response to environmental changes and abiotic or biotic stresses, as well as in plant growth and development. At its basis, the specialized metabolism is built of four major pathways, each starting from a few distinct primary metabolism precursors, and leading to distinct basic carbon skeleton core structures: polyketides and fatty acid derivatives, terpenoids, alkaloids, and phenolics. Structural diversity in specialized metabolism, however, expands exponentially with each subsequent modification. We review here the major sources of structural variety and question if a specific role can be attributed to each distinct structure. We focus on the influences that various core structures and modifications have on flavonoid antioxidant activity and on the diversity generated by oxidative coupling reactions. We suggest that many oxidative coupling products, triggered by initial radical scavenging, may not have a function in se, but could potentially be enzymatically recycled to effective antioxidants. We further discuss the wide structural variety created by multiple decorations (glycosylations, acylations, prenylations), the formation of high-molecular weight conjugates and polyesters, and the plasticity of the specialized metabolism. We draw attention to the need for untargeted methods to identify the complex, multiply decorated and conjugated compounds, in order to study the functioning of the plant specialized metabolome.
Collapse
Affiliation(s)
- Sandrien Desmet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Kris Morreel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium; (S.D.); (K.M.)
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Rebecca Dauwe
- Unité de Recherche Biologie des Plantes et Innovation (BIOPI), UMR Transfrontalière BioEcoAgro, Université de Picardie Jules Verne, 80000 Amiens, France
| |
Collapse
|
55
|
Hu L, Wu Z, Robert CAM, Ouyang X, Züst T, Mestrot A, Xu J, Erb M. Soil chemistry determines whether defensive plant secondary metabolites promote or suppress herbivore growth. Proc Natl Acad Sci U S A 2021; 118:e2109602118. [PMID: 34675080 PMCID: PMC8639379 DOI: 10.1073/pnas.2109602118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 01/26/2023] Open
Abstract
Plant secondary (or specialized) metabolites mediate important interactions in both the rhizosphere and the phyllosphere. If and how such compartmentalized functions interact to determine plant-environment interactions is not well understood. Here, we investigated how the dual role of maize benzoxazinoids as leaf defenses and root siderophores shapes the interaction between maize and a major global insect pest, the fall armyworm. We find that benzoxazinoids suppress fall armyworm growth when plants are grown in soils with very low available iron but enhance growth in soils with higher available iron. Manipulation experiments confirm that benzoxazinoids suppress herbivore growth under iron-deficient conditions and in the presence of chelated iron but enhance herbivore growth in the presence of free iron in the growth medium. This reversal of the protective effect of benzoxazinoids is not associated with major changes in plant primary metabolism. Plant defense activation is modulated by the interplay between soil iron and benzoxazinoids but does not explain fall armyworm performance. Instead, increased iron supply to the fall armyworm by benzoxazinoids in the presence of free iron enhances larval performance. This work identifies soil chemistry as a decisive factor for the impact of plant secondary metabolites on herbivore growth. It also demonstrates how the multifunctionality of plant secondary metabolites drives interactions between abiotic and biotic factors, with potential consequences for plant resistance in variable environments.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Zhenwei Wu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | | | - Xiao Ouyang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Tobias Züst
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Adrien Mestrot
- Institute of Geography, University of Bern, 3012 Bern, Switzerland
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China;
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland;
| |
Collapse
|
56
|
Lei Y, Xu Y, Zhang J, Song J, Wu J. Herbivory-induced systemic signals are likely to be evolutionarily conserved in euphyllophytes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7274-7284. [PMID: 34293107 PMCID: PMC8547156 DOI: 10.1093/jxb/erab349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Herbivory-induced systemic signaling has been demonstrated in monocots and dicots, and is essential for plant defense against insects. However, the nature and evolution of herbivory-induced systemic signals remain unclear. Grafting is widely used for studying systemic signaling; however, grafting between dicot plants from different families is difficult, and grafting is impossible for monocots. In this study, we took advantage of dodder's extraordinary capability of parasitizing various plant species. Field dodder (Cuscuta campestris) was employed to connect pairs of species that are phylogenetically very distant, ranging from fern to monocot and dicot plants, and so determine whether interplant signaling occurs after simulated herbivory. It was found that simulated herbivory-induced systemic signals can be transferred by dodder between a monocot and a dicot plant and even between a fern and a dicot plant, and the plants that received the systemic signals all exhibited elevated defenses. Thus, we inferred that the herbivory-induced systemic signals are likely to be evolutionarily well conserved among vascular plants. Importantly, we also demonstrate that the jasmonate pathway is probably an ancient regulator of the biosynthesis and/or transport of systemic signals in vascular plants. These findings provide new insight into the nature and evolution of systemic signaling.
Collapse
Affiliation(s)
- Yunting Lei
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Song
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
57
|
Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W, Brotman Y, Dai M. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol 2021; 22:260. [PMID: 34488839 PMCID: PMC8420056 DOI: 10.1186/s13059-021-02481-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Drought is a major environmental disaster that causes crop yield loss worldwide. Metabolites are involved in various environmental stress responses of plants. However, the genetic control of metabolomes underlying crop environmental stress adaptation remains elusive. Results Here, we perform non-targeted metabolic profiling of leaves for 385 maize natural inbred lines grown under well-watered as well as drought-stressed conditions. A total of 3890 metabolites are identified and 1035 of these are differentially produced between well-watered and drought-stressed conditions, representing effective indicators of maize drought response and tolerance. Genetic dissections reveal the associations between these metabolites and thousands of single-nucleotide polymorphisms (SNPs), which represented 3415 metabolite quantitative trait loci (mQTLs) and 2589 candidate genes. 78.6% of mQTLs (2684/3415) are novel drought-responsive QTLs. The regulatory variants that control the expression of the candidate genes are revealed by expression QTL (eQTL) analysis of the transcriptomes of leaves from 197 maize natural inbred lines. Integrated metabolic and transcriptomic assays identify dozens of environment-specific hub genes and their gene-metabolite regulatory networks. Comprehensive genetic and molecular studies reveal the roles and mechanisms of two hub genes, Bx12 and ZmGLK44, in regulating maize metabolite biosynthesis and drought tolerance. Conclusion Our studies reveal the first population-level metabolomes in crop drought response and uncover the natural variations and genetic control of these metabolomes underlying crop drought adaptation, demonstrating that multi-omics is a powerful strategy to dissect the genetic mechanisms of crop complex traits. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02481-1.
Collapse
Affiliation(s)
- Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Jinfeng Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Nir Sade
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Si Wu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Aiman Egbaria
- School of Plant Sciences and Food Security, The Institute for Cereal Crops Improvement, Tel-Aviv University, 69978, Tel Aviv, Israel
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.,Hubei Hongshan laboratory, Wuhan, 430070, China
| | - Feng Qin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam, Germany. .,Department of Life Sciences, Ben-Gurion University of the Negev, 8410501, Beersheba, Israel.
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China. .,Hubei Hongshan laboratory, Wuhan, 430070, China.
| |
Collapse
|
58
|
Panda S, Kazachkova Y, Aharoni A. Catch-22 in specialized metabolism: balancing defense and growth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6027-6041. [PMID: 34293097 DOI: 10.1093/jxb/erab348] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
Plants are unsurpassed biochemists that synthesize a plethora of molecules in response to an ever-changing environment. The majority of these molecules, considered as specialized metabolites, effectively protect the plant against pathogens and herbivores. However, this defense most probably comes at a great expense, leading to reduction of growth (known as the 'growth-defense trade-off'). Plants employ several strategies to reduce the high metabolic costs associated with chemical defense. Production of specialized metabolites is tightly regulated by a network of transcription factors facilitating its fine-tuning in time and space. Multifunctionality of specialized metabolites-their effective recycling system by re-using carbon, nitrogen, and sulfur, thus re-introducing them back to the primary metabolite pool-allows further cost reduction. Spatial separation of biosynthetic enzymes and their substrates, and sequestration of potentially toxic substances and conversion to less toxic metabolite forms are the plant's solutions to avoid the detrimental effects of metabolites they produce as well as to reduce production costs. Constant fitness pressure from herbivores, pathogens, and abiotic stressors leads to honing of specialized metabolite biosynthesis reactions to be timely, efficient, and metabolically cost-effective. In this review, we assess the costs of production of specialized metabolites for chemical defense and the different plant mechanisms to reduce the cost of such metabolic activity in terms of self-toxicity and growth.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
- Gilat Research Center, Agricultural Research Organization, Negev, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
59
|
Sng BJR, Mun B, Mohanty B, Kim M, Phua ZW, Yang H, Lee DY, Jang IC. Combination of red and blue light induces anthocyanin and other secondary metabolite biosynthesis pathways in an age-dependent manner in Batavia lettuce. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110977. [PMID: 34315593 DOI: 10.1016/j.plantsci.2021.110977] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/31/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Lettuce is commonly consumed around the world, spurring the cultivation of green- and red-leaf varieties in indoor farms. One common consideration for indoor cultivation is the light wavelengths/spectrum, which is an important factor for regulating growth, development, and the accumulation of metabolites. Here, we show that Batavia lettuce (Lactuca sativa cv. "Batavia") grown under a combination of red (R) and blue (B) light (RB, R:B = 3:1) displayed better growth and accumulated more anthocyanin than lettuce grown under fluorescent light (FL). Anthocyanin concentration was also higher in mature stage than early stage lettuce. By performing a comparative transcriptome analysis of early and mature stage lettuce grown under RB or FL (RB or FL-lettuce), we found that RB induced the expression of genes related to oxidation-reduction reaction and secondary metabolite biosynthesis. Furthermore, plant age affected the transcriptome response to RB, as mature RB-lettuce had six times more differentially expressed genes than early RB-lettuce. Also, genes related to the accumulation of secondary metabolites such as flavonoids and anthocyanins were more induced in mature RB-lettuce. A detailed analysis of the anthocyanin biosynthesis pathway revealed key genes that were up-regulated in mature RB-lettuce. Concurrently, branching pathways for flavonol and lignin precursors were down-regulated.
Collapse
Affiliation(s)
- Benny Jian Rong Sng
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Bonggyu Mun
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Bijayalaxmi Mohanty
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Mijung Kim
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Zhi Wei Phua
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Hyunsoo Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea
| | - In-Cheol Jang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
60
|
Allwood JW, Williams A, Uthe H, van Dam NM, Mur LAJ, Grant MR, Pétriacq P. Unravelling Plant Responses to Stress-The Importance of Targeted and Untargeted Metabolomics. Metabolites 2021; 11:558. [PMID: 34436499 PMCID: PMC8398504 DOI: 10.3390/metabo11080558] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/19/2022] Open
Abstract
Climate change and an increasing population, present a massive global challenge with respect to environmentally sustainable nutritious food production. Crop yield enhancements, through breeding, are decreasing, whilst agricultural intensification is constrained by emerging, re-emerging, and endemic pests and pathogens, accounting for ~30% of global crop losses, as well as mounting abiotic stress pressures, due to climate change. Metabolomics approaches have previously contributed to our knowledge within the fields of molecular plant pathology and plant-insect interactions. However, these remain incredibly challenging targets, due to the vast diversity in metabolite volatility and polarity, heterogeneous mixtures of pathogen and plant cells, as well as rapid rates of metabolite turn-over. Unravelling the systematic biochemical responses of plants to various individual and combined stresses, involves monitoring signaling compounds, secondary messengers, phytohormones, and defensive and protective chemicals. This demands both targeted and untargeted metabolomics approaches, as well as a range of enzymatic assays, protein assays, and proteomic and transcriptomic technologies. In this review, we focus upon the technical and biological challenges of measuring the metabolome associated with plant stress. We illustrate the challenges, with relevant examples from bacterial and fungal molecular pathologies, plant-insect interactions, and abiotic and combined stress in the environment. We also discuss future prospects from both the perspective of key innovative metabolomic technologies and their deployment in breeding for stress resistance.
Collapse
Affiliation(s)
- James William Allwood
- Environmental and Biochemical Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee DD2 5DA, UK
| | - Alex Williams
- School of Earth and Environmental Sciences, The University of Manchester, Oxford Road, Manchester M13 9PT, UK;
- Department of Animal and Plant Sciences, Biosciences, The University of Sheffield Western Bank, Sheffield S10 2TN, UK
| | - Henriette Uthe
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Molecular Interaction Ecology Group, Friedrich-Schiller University Jena, Puschstr. 4, 04103 Leipzig, Germany; (H.U.); (N.M.v.D.)
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences (IBERS), Edward Llwyd Building, Aberystwyth University, Aberystwyth SY23 3DA, UK;
| | - Murray R. Grant
- Gibbet Hill Campus, School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK;
| | - Pierre Pétriacq
- UMR 1332 Fruit Biology and Pathology, Centre INRAE de Nouvelle Aquitaine Bordeaux, University of Bordeaux, 33140 Villenave d’Ornon, France
- Bordeaux Metabolome, MetaboHUB, PHENOME-EMPHASIS, Centre INRAE de Nouvelle Aquitaine-Bordeaux, 33140 Villenave d’Ornon, France
| |
Collapse
|
61
|
Garagounis C, Delkis N, Papadopoulou KK. Unraveling the roles of plant specialized metabolites: using synthetic biology to design molecular biosensors. THE NEW PHYTOLOGIST 2021; 231:1338-1352. [PMID: 33997999 DOI: 10.1111/nph.17470] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 05/25/2023]
Abstract
Plants are a rich source of specialized metabolites with a broad range of bioactivities and many applications in human daily life. Over the past decades significant progress has been made in identifying many such metabolites in different plant species and in elucidating their biosynthetic pathways. However, the biological roles of plant specialized metabolites remain elusive and proposed functions lack an identified underlying molecular mechanism. Understanding the roles of specialized metabolites frequently is hampered by their dynamic production and their specific spatiotemporal accumulation within plant tissues and organs throughout a plant's life cycle. In this review, we propose the employment of strategies from the field of Synthetic Biology to construct and optimize genetically encoded biosensors that can detect individual specialized metabolites in a standardized and high-throughput manner. This will help determine the precise localization of specialized metabolites at the tissue and single-cell levels. Such information will be useful in developing complete system-level models of specialized plant metabolism, which ultimately will demonstrate how the biosynthesis of specialized metabolites is integrated with the core processes of plant growth and development.
Collapse
Affiliation(s)
- Constantine Garagounis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Nikolaos Delkis
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, Plant and Environmental Biotechnology Laboratory, University of Thessaly, Larissa, 41500, Greece
| |
Collapse
|
62
|
Favela A, O Bohn M, D Kent A. Maize germplasm chronosequence shows crop breeding history impacts recruitment of the rhizosphere microbiome. THE ISME JOURNAL 2021; 15:2454-2464. [PMID: 33692487 PMCID: PMC8319409 DOI: 10.1038/s41396-021-00923-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Recruitment of microorganisms to the rhizosphere varies among plant genotypes, yet an understanding of whether the microbiome can be altered by selection on the host is relatively unknown. Here, we performed a common garden study to characterize recruitment of rhizosphere microbiome, functional groups, for 20 expired Plant Variety Protection Act maize lines spanning a chronosequence of development from 1949 to 1986. This time frame brackets a series of agronomic innovations, namely improvements in breeding and the application of synthetic nitrogenous fertilizers, technologies that define modern industrial agriculture. We assessed the impact of chronological agronomic improvements on recruitment of the rhizosphere microbiome in maize, with emphasis on nitrogen cycling functional groups. In addition, we quantified the microbial genes involved in nitrogen cycling and predicted functional pathways present in the microbiome of each genotype. Both genetic relatednesses of host plant and decade of germplasm development were significant factors in the recruitment of the rhizosphere microbiome. More recently developed germplasm recruited fewer microbial taxa with the genetic capability for sustainable nitrogen provisioning and larger populations of microorganisms that contribute to N losses. This study indicates that the development of high-yielding varieties and agronomic management approaches of industrial agriculture inadvertently modified interactions between maize and its microbiome.
Collapse
Affiliation(s)
- Alonso Favela
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Martin O Bohn
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Angela D Kent
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
63
|
Medeiros DB, Brotman Y, Fernie AR. The utility of metabolomics as a tool to inform maize biology. PLANT COMMUNICATIONS 2021; 2:100187. [PMID: 34327322 PMCID: PMC8299083 DOI: 10.1016/j.xplc.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
With the rise of high-throughput omics tools and the importance of maize and its products as food and bioethanol, maize metabolism has been extensively explored. Modern maize is still rich in genetic and phenotypic variation, yielding a wide range of structurally and functionally diverse metabolites. The maize metabolome is also incredibly dynamic in terms of topology and subcellular compartmentalization. In this review, we examine a broad range of studies that cover recent developments in maize metabolism. Particular attention is given to current methodologies and to the use of metabolomics as a tool to define biosynthetic pathways and address biological questions. We also touch upon the use of metabolomics to understand maize natural variation and evolution, with a special focus on research that has used metabolite-based genome-wide association studies (mGWASs).
Collapse
Affiliation(s)
- David B. Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | |
Collapse
|
64
|
Polturak G, Osbourn A. The emerging role of biosynthetic gene clusters in plant defense and plant interactions. PLoS Pathog 2021; 17:e1009698. [PMID: 34214143 PMCID: PMC8253395 DOI: 10.1371/journal.ppat.1009698] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich, United Kingdom
| |
Collapse
|
65
|
Singh A, Dilkes B, Sela H, Tzin V. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:667820. [PMID: 34262579 PMCID: PMC8273356 DOI: 10.3389/fpls.2021.667820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 05/15/2023]
Abstract
The bird cherry-oat aphid (Rhopalosiphum padi) is one of the most destructive insect pests in wheat production. To reduce aphid damage, wheat plants have evolved various chemical and physical defense mechanisms. Although these mechanisms have been frequently reported, much less is known about their effectiveness. The tetraploid wild emmer wheat (WEW; Triticum turgidum ssp. dicoccoides), one of the progenitors of domesticated wheat, possesses untapped resources from its numerous desirable traits, including insect resistance. The goal of this research was to determine the effectiveness of trichomes (physical defense) and benzoxazinoids (BXDs; chemical defense) in aphid resistance by exploiting the natural diversity of WEW. We integrated a large dataset composed of trichome density and BXD abundance across wheat genotypes, different leaf positions, conditions (constitutive and aphid-induced), and tissues (whole leaf and phloem sap). First, we evaluated aphid reproduction on 203 wheat accessions and found large variation in this trait. Then, we chose eight WEW genotypes and one domesticated durum wheat cultivar for detailed quantification of the defense mechanisms across three leaves. We discovered that these defense mechanisms are influenced by both leaf position and genotype, where aphid reproduction was the highest on leaf-1 (the oldest), and trichome density was the lowest. We compared the changes in trichome density and BXD levels upon aphid infestation and found only minor changes relative to untreated plants. This suggests that the defense mechanisms in the whole leaf are primarily anticipatory and unlikely to contribute to aphid-induced defense. Next, we quantified BXD levels in the phloem sap and detected a significant induction of two compounds upon aphid infestation. Moreover, evaluating aphid feeding patterns showed that aphids prefer to feed on the oldest leaf. These findings revealed the dynamic response at the whole leaf and phloem levels that altered aphid feeding and reproduction. Overall, they suggested that trichomes and the BXD 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) levels are the main factors determining aphid resistance, while trichomes are more effective than BXDs. Accessions from the WEW germplasm, rich with trichomes and BXDs, can be used as new genetic sources to improve the resistance of elite wheat cultivars.
Collapse
Affiliation(s)
- Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Hanan Sela
- The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
66
|
Mu X, Li J, Dai Z, Xu L, Fan T, Jing T, Chen M, Gou M. Commonly and Specifically Activated Defense Responses in Maize Disease Lesion Mimic Mutants Revealed by Integrated Transcriptomics and Metabolomics Analysis. FRONTIERS IN PLANT SCIENCE 2021; 12:638792. [PMID: 34079566 PMCID: PMC8165315 DOI: 10.3389/fpls.2021.638792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Disease lesion mimic (Les/les) mutants display disease-like spontaneous lesions in the absence of pathogen infection, implying the constitutive activation of defense responses. However, the genetic and biochemical bases underlying the activated defense responses in those mutants remain largely unknown. Here, we performed integrated transcriptomics and metabolomics analysis on three typical maize Les mutants Les4, Les10, and Les17 with large, medium, and small lesion size, respectively, thereby dissecting the activated defense responses at the transcriptional and metabolomic level. A total of 1,714, 4,887, and 1,625 differentially expressed genes (DEGs) were identified in Les4, Les10, and Les17, respectively. Among them, 570, 3,299, and 447 specific differentially expressed genes (SGs) were identified, implying a specific function of each LES gene. In addition, 480 common differentially expressed genes (CGs) and 42 common differentially accumulated metabolites (CMs) were identified in all Les mutants, suggesting the robust activation of shared signaling pathways. Intriguingly, substantial analysis of the CGs indicated that genes involved in the programmed cell death, defense responses, and phenylpropanoid and terpenoid biosynthesis were most commonly activated. Genes involved in photosynthetic biosynthesis, however, were generally repressed. Consistently, the dominant CMs identified were phenylpropanoids and flavonoids. In particular, lignin, the phenylpropanoid-based polymer, was significantly increased in all three mutants. These data collectively imply that transcriptional activation of defense-related gene expression; increase of phenylpropanoid, lignin, flavonoid, and terpenoid biosynthesis; and inhibition of photosynthesis are generalnatures associated with the lesion formation and constitutively activated defense responses in those mutants. Further studies on the identified SGs and CGs will shed new light on the function of each LES gene as well as the regulatory network of defense responses in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
67
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 DOI: 10.1101/2020.05.03.075135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
68
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 PMCID: PMC8106187 DOI: 10.1186/s40168-021-01049-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
69
|
Sikder MM, Vestergård M, Kyndt T, Fomsgaard IS, Kudjordjie EN, Nicolaisen M. Benzoxazinoids selectively affect maize root-associated nematode taxa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3835-3845. [PMID: 33712814 DOI: 10.1093/jxb/erab104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Although the effects of plant secondary metabolites on plant defence have been studied for decades, the exact roles of secondary metabolites in shaping plant-associated microbial and nematode communities remain elusive. We evaluated the effects of benzoxazinoids, a group of secondary metabolites present in several cereals, on root-associated nematodes. We employed 18S rRNA metabarcoding to compare maize root-associated nematode communities in a bx1 knockout maize line impaired in benzoxazinoid synthesis and in its parental wild type. Both genotype and plant age affected the composition of the nematode community in the roots, and the effects of benzoxazinoids on nematode communities were stronger in the roots than in the rhizosphere. Differential abundance analysis and quantitative PCR showed that the root lesion nematode Pratylenchus neglectus was enriched in the bx1 mutant line, while another root lesion nematode, Pratylenchus crenatus, was reduced. Correlation analysis showed that benzoxazinoid concentrations in maize roots mostly correlated negatively with the relative abundance of nematode sequence reads. However, positive correlations between benzoxazinoids and nematode taxa, including several plant-parasitic nematodes, were also identified. Our detailed nematode community analysis suggests differential and selective effects of benzoxazinoids on soil nematodes depending on both the nematode species and the benzoxazinoid compound.
Collapse
Affiliation(s)
- Md Maniruzzaman Sikder
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
- Department of Botany, Faculty of Biological Sciences, Jahangirnagar University, 1342 Savar, Dhaka, Bangladesh
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Tina Kyndt
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Gent, Belgium
| | - Inge S Fomsgaard
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, 4200 Slagelse, Denmark
| |
Collapse
|
70
|
Mathesius U, Costa SR. Plant signals differentially affect rhizosphere nematode populations. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3496-3499. [PMID: 33948654 PMCID: PMC8096594 DOI: 10.1093/jxb/erab149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article comments on: Sikder MM, Vestergård M, Kyndt T, Fomsgaard IS, Kudjordjie EN, Nicolaisen M. 2021. Benzoxazinoids selectively affect maize root-associated nematode taxa. Journal of Experimental Botany 72,3835–3845.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
- Correspondence:
| | - Sofia R Costa
- CBMA – Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
71
|
Housh AB, Powell G, Scott S, Anstaett A, Gerheart A, Benoit M, Waller S, Powell A, Guthrie JM, Higgins B, Wilder SL, Schueller MJ, Ferrieri RA. Functional mutants of Azospirillum brasilense elicit beneficial physiological and metabolic responses in Zea mays contributing to increased host iron assimilation. THE ISME JOURNAL 2021; 15:1505-1522. [PMID: 33408368 PMCID: PMC8115672 DOI: 10.1038/s41396-020-00866-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/28/2020] [Accepted: 12/03/2020] [Indexed: 01/29/2023]
Abstract
Iron (Fe), an essential element for plant growth, is abundant in soil but with low bioavailability. Thus, plants developed specialized mechanisms to sequester the element. Beneficial microbes have recently become a favored method to promote plant growth through increased uptake of essential micronutrients, like Fe, yet little is known of their mechanisms of action. Functional mutants of the epiphytic bacterium Azospirillum brasilense, a prolific grass-root colonizer, were used to examine mechanisms for promoting iron uptake in Zea mays. Mutants included HM053, FP10, and ipdC, which have varying capacities for biological nitrogen fixation and production of the plant hormone auxin. Using radioactive iron-59 tracing and inductively coupled plasma mass spectrometry, we documented significant differences in host uptake of Fe2+/3+ correlating with mutant biological function. Radioactive carbon-11, administered to plants as 11CO2, provided insights into shifts in host usage of 'new' carbon resources in the presence of these beneficial microbes. Of the mutants examined, HM053 exhibited the greatest influence on host Fe uptake with increased plant allocation of 11C-resources to roots where they were transformed and exuded as 11C-acidic substrates to aid in Fe-chelation, and increased C-11 partitioning into citric acid, nicotianamine and histidine to aid in the in situ translocation of Fe once assimilated.
Collapse
Affiliation(s)
- A B Housh
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - G Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - S Scott
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - A Anstaett
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Department of Chemical Engineering, University of Missouri, Columbia, MO, 65211, USA
- Burns & McDonnell, Inc. 425 S, Woods Mill Rd., Chesterfield, MO, USA, 63017
| | - A Gerheart
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
- Idaho State Police 5255 S. 5th Ave, Pocatello, ID, 83204, USA
| | - M Benoit
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - S Waller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - A Powell
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- School of Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - J M Guthrie
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - B Higgins
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - S L Wilder
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
| | - M J Schueller
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - R A Ferrieri
- Missouri Research Reactor Center, University of Missouri, Columbia, MO, 65211, USA.
- Chemistry Department, University of Missouri, Columbia, MO, 65211, USA.
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Interdisciplinary Plant Group, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
72
|
Schweiger R, Padilla-Arizmendi F, Nogueira-López G, Rostás M, Lawry R, Brown C, Hampton J, Steyaert JM, Müller C, Mendoza-Mendoza A. Insights into Metabolic Changes Caused by the Trichoderma virens-Maize Root Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:524-537. [PMID: 33166203 DOI: 10.1094/mpmi-04-20-0081-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The interactions of crops with root-colonizing endophytic microorganisms are highly relevant to agriculture, because endophytes can modify plant resistance to pests and increase crop yields. We investigated the interactions between the host plant Zea mays and the endophytic fungus Trichoderma virens at 5 days postinoculation grown in a hydroponic system. Wild-type T. virens and two knockout mutants, with deletion of the genes tv2og1 or vir4 involved in specialized metabolism, were analyzed. Root colonization by the fungal mutants was lower than that by the wild type. All fungal genotypes suppressed root biomass. Metabolic fingerprinting of roots, mycelia, and fungal culture supernatants was performed using ultrahigh performance liquid chromatography coupled to diode array detection and quadrupole time-of-flight tandem mass spectrometry. The metabolic composition of T. virens-colonized roots differed profoundly from that of noncolonized roots, with the effects depending on the fungal genotype. In particular, the concentrations of several metabolites derived from the shikimate pathway, including an amino acid and several flavonoids, were modulated. The expression levels of some genes coding for enzymes involved in these pathways were affected if roots were colonized by the ∆vir4 genotype of T. virens. Furthermore, mycelia and fungal culture supernatants of the different T. virens genotypes showed distinct metabolomes. Our study highlights the fact that colonization by endophytic T. virens leads to far-reaching metabolic changes, partly related to two fungal genes. Both metabolites produced by the fungus and plant metabolites modulated by the interaction probably contribute to these metabolic patterns. The metabolic changes in plant tissues may be interlinked with systemic endophyte effects often observed in later plant developmental stages.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Rabea Schweiger
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | | | | - Michael Rostás
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Grisebachstr. 6, 37077 Göttingen, Germany
| | - Robert Lawry
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Chris Brown
- Department of Biochemistry, University of Otago, Dunedin 9054, New Zealand
| | - John Hampton
- Bio-Protection Research Centre, Lincoln University, Lincoln 7647, Canterbury, New Zealand
| | - Johanna M Steyaert
- Lincoln Agritech Ltd., PO Box 69133, Lincoln, Christchurch 7460, New Zealand
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany
| | | |
Collapse
|
73
|
Urrutia M, Blein‐Nicolas M, Prigent S, Bernillon S, Deborde C, Balliau T, Maucourt M, Jacob D, Ballias P, Bénard C, Sellier H, Gibon Y, Giauffret C, Zivy M, Moing A. Maize metabolome and proteome responses to controlled cold stress partly mimic early-sowing effects in the field and differ from those of Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:1504-1521. [PMID: 33410508 PMCID: PMC8248070 DOI: 10.1111/pce.13993] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/31/2020] [Indexed: 05/21/2023]
Abstract
In Northern Europe, sowing maize one-month earlier than current agricultural practices may lead to moderate chilling damage. However, studies of the metabolic responses to low, non-freezing, temperatures remain scarce. Here, genetically-diverse maize hybrids (Zea mays, dent inbred lines crossed with a flint inbred line) were cultivated in a growth chamber at optimal temperature and then three decreasing temperatures for 2 days each, as well as in the field. Leaf metabolomic and proteomic profiles were determined. In the growth chamber, 50% of metabolites and 18% of proteins changed between 20 and 16°C. These maize responses, partly differing from those of Arabidopsis to short-term chilling, were mapped on genome-wide metabolic maps. Several metabolites and proteins showed similar variation for all temperature decreases: seven MS-based metabolite signatures and two proteins involved in photosynthesis decreased continuously. Several increasing metabolites or proteins in the growth-chamber chilling conditions showed similar trends in the early-sowing field experiment, including trans-aconitate, three hydroxycinnamate derivatives, a benzoxazinoid, a sucrose synthase, lethal leaf-spot 1 protein, an allene oxide synthase, several glutathione transferases and peroxidases. Hybrid groups based on field biomass were used to search for the metabolite or protein responses differentiating them in growth-chamber conditions, which could be of interest for breeding.
Collapse
Affiliation(s)
- Maria Urrutia
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- Present address:
Dtp. Biología Molecular y BioquímicaUniv. MálagaMálagaSpain
| | - Mélisande Blein‐Nicolas
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Sylvain Prigent
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
| | - Stéphane Bernillon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Deborde
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Thierry Balliau
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Mickaël Maucourt
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Daniel Jacob
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Patricia Ballias
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Camille Bénard
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | | | - Yves Gibon
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| | - Catherine Giauffret
- INRAE, Univ. Liège, Univ. Lille, Univ. Picardie Jules Verne, BioEcoAgroPeronneFrance
| | - Michel Zivy
- INRAE, CNRS, AgroParisTech, GQE‐Le MoulonUniv. Paris‐SaclayGif‐sur‐YvetteFrance
- PAPPSO, doi:10.15454/1.5572393176364355E12, GQE‐Le MoulonGif‐sur‐YvetteFrance
| | - Annick Moing
- Biologie du Fruit et Pathologie, UMR 1332, Centre INRAE de Nouvelle Aquitaine‐BordeauxINRAE, Univ.Villenave d'OrnonFrance
- PMB‐Metabolome, INRAE, 2018, Bordeaux Metabolome, doi:10.15454/1.5572412770331912E12, MetaboHUB, PHENOME, IBVM, Centre INRAE de Nouvelle Aquitaine‐BordeauxVillenave d'OrnonFrance
| |
Collapse
|
74
|
Righetti L, Bhandari DR, Rolli E, Tortorella S, Bruni R, Dall'Asta C, Spengler B. Unveiling the spatial distribution of aflatoxin B1 and plant defense metabolites in maize using AP-SMALDI mass spectrometry imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:185-199. [PMID: 33421236 DOI: 10.1111/tpj.15158] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/25/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
In order to cope with the presence of unfavorable compounds, plants can biotransform xenobiotics, translocate both parent compounds and metabolites, and perform compartmentation and segregation at the cellular or tissue level. Such a scenario also applies to mycotoxins, fungal secondary metabolites with a pre-eminent role in plant infection. In this work, we aimed to describe the effect of the interplay between Zea mays (maize) and aflatoxin B1 (AFB1) at the tissue and organ level. To address this challenge, we used atmospheric pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI) to investigate the biotransformation, localization and subsequent effects of AFB1 on primary and secondary metabolism of healthy maize plants, both in situ and from a metabolomics standpoint. High spatial resolution (5 µm) provided fine localization of AFB1, which was located within the root intercellular spaces, and co-localized with its phase-I metabolite aflatoxin M2. We provided a parallel visualization of maize metabolic changes, induced in different organs and tissues by an accumulation of AFB1. According to our untargeted metabolomics investigation, anthocyanin biosynthesis and chlorophyll metabolism in roots are most affected. The biosynthesis of these metabolites appears to be inhibited by AFB1 accumulation. On the other hand, metabolites found in above-ground organs suggest that the presence of AFB1 may also activate the biochemical response in the absence of an actual fungal infection; indeed, several plant secondary metabolites known for their antimicrobial or antioxidant activities were localized in the outer tissues, such as phenylpropanoids, benzoxazinoids, phytohormones and lipids.
Collapse
Affiliation(s)
- Laura Righetti
- Food and Drug Department, University of Parma, Viale delle Scienze 17/A, Parma, 43124, Italy
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
| | - Dhaka Ram Bhandari
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
| | - Enrico Rolli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Via G.P. Usberti 11/a, Parma, 43124, Italy
| | - Sara Tortorella
- Molecular Horizon Srl, Via Montelino 30, Bettona, Perugia, 06084, Italy
| | - Renato Bruni
- Food and Drug Department, University of Parma, Viale delle Scienze 17/A, Parma, 43124, Italy
| | - Chiara Dall'Asta
- Food and Drug Department, University of Parma, Viale delle Scienze 17/A, Parma, 43124, Italy
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, Giessen, 35392, Germany
| |
Collapse
|
75
|
Liu Y, Gong X, Zhou Q, Liu Y, Liu Z, Han J, Dong J, Gu S. Comparative proteomic analysis reveals insights into the dynamic responses of maize (Zea mays L.) to Setosphaeria turcica infection. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110811. [PMID: 33568308 DOI: 10.1016/j.plantsci.2020.110811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 06/12/2023]
Abstract
Maize (Zea mays L.) production is severely affected by northern corn leaf blight (NCLB), which is a destructive foliar disease caused by Setosphaeria turcica. In recent years, studies on the interaction between maize and S. turcica have been focused at the transcription level, with no research yet at the protein level. Here, we applied tandem mass tag labelling and liquid chromatography-tandem mass spectrometry to investigate the proteomes of maize leaves at 24 h and 72 h post-inoculation (hpi) with S. turcica. In total, 4740 proteins encoded by 4711 genes were quantified in this study. Clustering analyses provided an understanding of the dynamic reprogramming of leaves proteomes by revealing the functions of different proteins during S. turcica infection. Screening and classification of differentially expressed proteins (DEPs) revealed that numerous defense-related proteins, including defense marker proteins and proteins related to the phenylpropanoid lignin biosynthesis, benzoxazine biosynthesis and the jasmonic acid signalling pathway, participated in the defense responses of maize to S. turcica infection. Furthermore, the earlier induction of GST family proteins contributed to the resistance to S. turcica. In addition, the protein-protein interaction network of DEPs suggests that some defense-related proteins, for example, ZmGEB1, a hub node, play key roles in defense responses against S. turcica infection. Our study findings provide insight into the complex responses triggered by S. turcica at the protein level and lay the foundation for studying the interaction process between maize and S. turcica infection.
Collapse
Affiliation(s)
- Yuwei Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Xiaodong Gong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Qihui Zhou
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Yajie Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Zhenpan Liu
- Economic Forsetry Research Institute of Liaoning Province, China
| | - Jianmin Han
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China
| | - Jingao Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Shouqin Gu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding, China; College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, 071001, China; Key Laboratory of Hebei Province for Plant Physiology and Molecular Pathology, Hebei, 071001, China.
| |
Collapse
|
76
|
Xu D, Xie Y, Guo H, Zeng W, Xiong H, Zhao L, Gu J, Zhao S, Ding Y, Liu L. Transcriptome Analysis Reveals a Potential Role of Benzoxazinoid in Regulating Stem Elongation in the Wheat Mutant qd. Front Genet 2021; 12:623861. [PMID: 33633784 PMCID: PMC7900560 DOI: 10.3389/fgene.2021.623861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
The stems of cereal crops provide both mechanical support for lodging resistance and a nutrient supply for reproductive organs. Elongation, which is considered a critical phase for yield determination in winter wheat (Triticum aestivum L.), begins from the first node detectable to anthesis. Previously, we characterized a heavy ion beam triggered wheat mutant qd, which exhibited an altered stem elongation pattern without affecting mature plant height. In this study, we further analyzed mutant stem developmental characteristics by using transcriptome data. More than 40.87 Mb of clean reads including at least 36.61 Mb of unique mapped reads were obtained for each biological sample in this project. We utilized our transcriptome data to identify 124,971 genes. Among these genes, 4,340 differentially expressed genes (DEG) were identified between the qd and wild-type (WT) plants. Compared to their WT counterparts, qd plants expressed 2,462 DEGs with downregulated expression levels and 1878 DEGs with upregulated expression levels. Using DEXSeq, we identified 2,391 counting bins corresponding to 1,148 genes, and 289 of them were also found in the DEG analysis, demonstrating differences between qd and WT. The 5,199 differentially expressed genes between qd and WT were employed for GO and KEGG analyses. Biological processes, including protein-DNA complex subunit organization, protein-DNA complex assembly, nucleosome organization, nucleosome assembly, and chromatin assembly, were significantly enriched by GO analysis. However, only benzoxazinoid biosynthesis pathway-associated genes were enriched by KEGG analysis. Genes encoding the benzoxazinoid biosynthesis enzymes Bx1, Bx3, Bx4, Bx5, and Bx8_9 were confirmed to be differentially expressed between qd and WT. Our results suggest that benzoxazinoids could play critical roles in regulating the stem elongation phenotype of qd.
Collapse
Affiliation(s)
- Daxing Xu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yongdun Xie
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Huijun Guo
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Weiwei Zeng
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Hongchun Xiong
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Linshu Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Jiayu Gu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Shirong Zhao
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Yuping Ding
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| | - Luxiang Liu
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Center of Space Mutagenesis for Crop Improvement, Beijing, China
| |
Collapse
|
77
|
Meyer GW, Bahamon Naranjo MA, Widhalm JR. Convergent evolution of plant specialized 1,4-naphthoquinones: metabolism, trafficking, and resistance to their allelopathic effects. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:167-176. [PMID: 33258472 PMCID: PMC7853596 DOI: 10.1093/jxb/eraa462] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/03/2020] [Indexed: 05/08/2023]
Abstract
Plant 1,4-naphthoquinones encompass a class of specialized metabolites known to mediate numerous plant-biotic interactions. This class of compounds also presents a remarkable case of convergent evolution. The 1,4-naphthoquinones are synthesized by species belonging to nearly 20 disparate orders spread throughout vascular plants, and their production occurs via one of four known biochemically distinct pathways. Recent developments from large-scale biology and genetic studies corroborate the existence of multiple pathways to synthesize plant 1,4-naphthoquinones and indicate that extraordinary events of metabolic innovation and links to respiratory and photosynthetic quinone metabolism probably contributed to their independent evolution. Moreover, because many 1,4-naphthoquinones are excreted into the rhizosphere and they are highly reactive in biological systems, plants that synthesize these compounds also needed to independently evolve strategies to deploy them and to resist their effects. In this review, we highlight new progress made in understanding specialized 1,4-naphthoquinone biosynthesis and trafficking with a focus on how these discoveries have shed light on the convergent evolution and diversification of this class of compounds in plants. We also discuss how emerging themes in metabolism-based herbicide resistance may provide clues to mechanisms plants employ to tolerate allelopathic 1,4-naphthoquinones.
Collapse
Affiliation(s)
- George W Meyer
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Maria A Bahamon Naranjo
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Joshua R Widhalm
- Department of Horticulture and Landscape Architecture, Purdue University, IN, USA
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- Correspondence:
| |
Collapse
|
78
|
Rieusset L, Rey M, Gerin F, Wisniewski-Dyé F, Prigent-Combaret C, Comte G. A Cross-Metabolomic Approach Shows that Wheat Interferes with Fluorescent Pseudomonas Physiology through Its Root Metabolites. Metabolites 2021; 11:84. [PMID: 33572622 PMCID: PMC7911646 DOI: 10.3390/metabo11020084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Roots contain a wide variety of secondary metabolites. Some of them are exudated in the rhizosphere, where they are able to attract and/or control a large diversity of microbial species. In return, the rhizomicrobiota can promote plant health and development. Some rhizobacteria belonging to the Pseudomonas genus are known to produce a wide diversity of secondary metabolites that can exert a biological activity on the host plant and on other soil microorganisms. Nevertheless, the impact of the host plant on the production of bioactive metabolites by Pseudomonas is still poorly understood. To characterize the impact of plants on the secondary metabolism of Pseudomonas, a cross-metabolomic approach has been developed. Five different fluorescent Pseudomonas strains were thus cultivated in the presence of a low concentration of wheat root extracts recovered from three wheat genotypes. Analysis of our metabolomic workflow revealed that the production of several Pseudomonas secondary metabolites was significantly modulated when bacteria were cultivated with root extracts, including metabolites involved in plant-beneficial properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Gilles Comte
- Ecologie Microbienne, Université Claude Bernard Lyon1, Université de Lyon, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, 43 Boulevard du 11 novembre 1918, 69622 Villeurbanne, France; (L.R.); (M.R.); (F.G.); (F.W.-D.); (C.P.-C.)
| |
Collapse
|
79
|
Israni B, Wouters FC, Luck K, Seibel E, Ahn SJ, Paetz C, Reinert M, Vogel H, Erb M, Heckel DG, Gershenzon J, Vassão DG. The Fall Armyworm Spodoptera frugiperda Utilizes Specific UDP-Glycosyltransferases to Inactivate Maize Defensive Benzoxazinoids. Front Physiol 2020; 11:604754. [PMID: 33408643 PMCID: PMC7781194 DOI: 10.3389/fphys.2020.604754] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
The relationship between plants and insects is continuously evolving, and many insects rely on biochemical strategies to mitigate the effects of toxic chemicals in their food plants, allowing them to feed on well-defended plants. Spodoptera frugiperda, the fall armyworm (FAW), accepts a number of plants as hosts, and has particular success on plants of the Poaceae family such as maize, despite their benzoxazinoid (BXD) defenses. BXDs stored as inert glucosides are converted into toxic aglucones by plant glucosidases upon herbivory. DIMBOA, the main BXD aglucone released by maize leaves, can be stereoselectively re-glucosylated by UDP-glycosyltransferases (UGTs) in the insect gut, rendering it non-toxic. Here, we identify UGTs involved in BXD detoxification by FAW larvae and examine how RNAi-mediated manipulation of the larval glucosylation capacity toward the major maize BXD, DIMBOA, affects larval growth. Our findings highlight the involvement of members of two major UGT families, UGT33 and UGT40, in the glycosylation of BXDs. Most of the BXD excretion in the frass occurs in the form of glucosylated products. Furthermore, the DIMBOA-associated activity was enriched in the gut tissue, with a single conserved UGT33 enzyme (SfUGT33F28) being dedicated to DIMBOA re-glucosylation in the FAW gut. The knock-down of its encoding gene reduces larval performance in a strain-specific manner. This study thus reveals that a single UGT enzyme is responsible for detoxification of the major maize-defensive BXD in this pest insect.
Collapse
Affiliation(s)
- Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Felipe C Wouters
- Max Planck Institute for Chemical Ecology, Jena, Germany.,Department of Chemistry, Federal University of São Carlos, São Carlos, Brazil
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Seung-Joon Ahn
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, United States
| | | | | | - Heiko Vogel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - David G Heckel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | | |
Collapse
|
80
|
McNinch C, Chen K, Dennison T, Lopez M, Yandeau-Nelson MD, Lauter N. A multigenotype maize silk expression atlas reveals how exposure-related stresses are mitigated following emergence from husk leaves. THE PLANT GENOME 2020; 13:e20040. [PMID: 33090730 DOI: 10.1002/tpg2.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The extraordinarily long stigmatic silks of corn (Zea mays L.) are critical for grain production but the biology of their growth and emergence from husk leaves has remained underexplored. Accordingly, gene expression was assayed for inbreds 'B73' and 'Mo17' across five contiguous silk sections. Half of the maize genes (∼20,000) are expressed in silks, mostly in spatiotemporally dynamic patterns. In particular, emergence triggers strong differential expression of ∼1,500 genes collectively enriched for gene ontology terms associated with abiotic and biotic stress responses, hormone signaling, cell-cell communication, and defense metabolism. Further, a meta-analysis of published maize transcriptomic studies on seedling stress showed that silk emergence elicits an upregulated transcriptomic response that overlaps strongly with both abiotic and biotic stress responses. Although the two inbreds revealed similar silk transcriptomic programs overall, genotypic expression differences were observed for 5,643 B73-Mo17 syntenic gene pairs and collectively account for >50% of genome-wide expression variance. Coexpression clusters, including many based on genotypic divergence, were identified and interrogated via ontology-term enrichment analyses to generate biological hypotheses for future research. Ultimately, dissecting how gene expression changes along the length of silks and between husk-encased and emerged states offers testable models for silk development and plant response to environmental stresses.
Collapse
Affiliation(s)
- Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Keting Chen
- Bioinformatics & Computational Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Tesia Dennison
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Miriam Lopez
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State Univ., Ames, IA, 50011, USA
| | - Marna D Yandeau-Nelson
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State Univ., Ames, IA, 50011, USA
| | - Nick Lauter
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
81
|
Greenbug (Schizaphis graminum) herbivory significantly impacts protein and phosphorylation abundance in switchgrass (Panicum virgatum). Sci Rep 2020; 10:14842. [PMID: 32908168 PMCID: PMC7481182 DOI: 10.1038/s41598-020-71828-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.
Collapse
|
82
|
Benzoxazinoids Biosynthesis in Rye (Secale cereale L.) Is Affected by Low Temperature. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzoxazinoids (BXs) are specialized metabolites with protective properties that are synthesized predominantly by Poaceae species, including rye (Secale cereale). Among factors known to influence BXs production, prolonged low temperature has not been studied previously. In this study, the influence of cultivation at 4 °C, which is essential for vernalization, on the concentration of BXs (HBOA, DIBOA, GDIBOA, DIMBOA, GDIMBOA, and MBOA) and the expression level of genes involved in the BX biosynthesis pathway (ScBx1–ScBx5 and ScIgl) in three rye inbred lines was investigated. After cultivation for seven weeks at 4 °C, the expression level of all analyzed genes and BX concentrations had decreased compared with those at the initiation of treatment (21 days after germination) in control and cold-treated plants. At this time point, the decrease in BX concentrations and gene expression was lower in cold-treated plants than in untreated plants. In contrast, at 77 days after germination, the gene expression levels and BX concentrations in untreated plants had generally increased. Investigation of the vernalization impact on rye BXs accumulation, as well as on Bx gene expression, may aid with determination of the most suitable winter lines and cultivars of rye for cultivation and breeding purposes.
Collapse
|
83
|
Genetic Basis of Maize Resistance to Multiple Insect Pests: Integrated Genome-Wide Comparative Mapping and Candidate Gene Prioritization. Genes (Basel) 2020; 11:genes11060689. [PMID: 32599710 PMCID: PMC7349181 DOI: 10.3390/genes11060689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023] Open
Abstract
Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology's single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.
Collapse
|
84
|
Guera OGM, Castrejón-Ayala F, Robledo N, Jiménez-Pérez A, Sánchez-Rivera G. Plant Selection for the Establishment of Push-Pull Strategies for Zea mays-Spodoptera frugiperda Pathosystem in Morelos, Mexico. INSECTS 2020; 11:E349. [PMID: 32512789 PMCID: PMC7349205 DOI: 10.3390/insects11060349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 11/30/2022]
Abstract
Regulations imposed on the use of chemical insecticides call for the development of environmental-friendly pest management strategies. One of the most effective strategies is the push-pull system, which takes advantage of the behavioral response of the insect to the integration of repellent stimuli; it expels the pest out of the main crop (push), while attracting stimuli (attractants) pull the pest to an alternative crop or trap (pull). The objective of this study was to design a push-pull system to control Spodoptera frugiperda in maize crops (Zea mays) in Morelos, Mexico. Data on reproductive potential, larvae development, food consumption and olfactometry were used to obtain a Trap Plant Selection Index (TRAPS) based on Principal Component Analysis. This TRAPS was used to select the most suitable plants. The degree of repellency of potential plants to be used as the trap crop was studied with four-way olfactometers. S. frugiperda females oviposited more eggs on Brachiaria hybrid cv. Mulato II, Panicum maximum cv. Mombasa and Panicum maximum cv. Tanzania than on Z. mays, regardless of the fact that these plants delayed the development of their offspring. Dysphania ambrosioides, Tagetes erecta and Crotalaria juncea were less attractive to S. frugiperda females. Therefore, the former plants could be used as crop traps, and the latter as intercropped repellent plants in a push-pull system.
Collapse
Affiliation(s)
- Ouorou Ganni Mariel Guera
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CeProBi No. 8, San Isidro, 62739 Yautepec, Mexico; (N.R.); (A.J.-P.); (G.S.-R.)
| | - Federico Castrejón-Ayala
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional, Calle CeProBi No. 8, San Isidro, 62739 Yautepec, Mexico; (N.R.); (A.J.-P.); (G.S.-R.)
| | | | | | | |
Collapse
|
85
|
Święcicka M, Dmochowska-Boguta M, Orczyk W, Grądzielewska A, Stochmal A, Kowalczyk M, Bolibok L, Rakoczy-Trojanowska M. Changes in benzoxazinoid contents and the expression of the associated genes in rye (Secale cereale L.) due to brown rust and the inoculation procedure. PLoS One 2020; 15:e0233807. [PMID: 32470009 PMCID: PMC7259783 DOI: 10.1371/journal.pone.0233807] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 05/12/2020] [Indexed: 12/19/2022] Open
Abstract
Benzoxazinoids (BXs) are secondary metabolites with diverse functions, but are primarily involved in protecting plants, mainly from the family Poaceae, against insects and fungal pathogens. Rye is a cereal crop that is highly resistant to biotic stresses. However, its susceptibility to brown rust caused by Puccinia recondita f. sp. secalis (Prs) is still a major problem affecting its commercial production. Additionally, the genetic and metabolic factors related to this disease remain poorly characterized. In this study, we investigated whether and to what extent the brown rust infection and the inoculation procedure affect the contents of specific BXs (HBOA, GDIBOA, DIBOA, GDIMBOA, DIMBOA, and MBOA) and the expression of genes related to BX (ScBx1-5, ScIgl, and Scglu). We revealed that treatments with water and a urediniospore suspension usually downregulate gene expression levels. Moreover, HBOA and DIBOA contents decreased, whereas the contents of the remaining metabolites increased. Specifically, the MBOA content increased more after the mock treatment than after the Prs treatment, whereas the increase in GDIBOA and GDIMBOA levels was usually due to the Prs infection, especially at two of the most critical time-points, 17 and 24 h post-treatment. Therefore, GDIBOA and GDIMBOA are glucosides that are important components of rye defence responses to brown rust. Furthermore, along with MBOA, they protect rye against the stress associated with the inoculation procedure used in this study.
Collapse
Affiliation(s)
- Magdalena Święcicka
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Marta Dmochowska-Boguta
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, Błonie, Poland
| | - Wacław Orczyk
- Department of Genetic Engineering, Plant Breeding and Acclimatization Institute–National Research Institute, Radzików, Błonie, Poland
| | - Agnieszka Grądzielewska
- Department of Horticultural Plant Genetics and Breeding, Institute of Plant Genetics, Breeding and Biotechnology, University of Life Sciences in Lublin, Lublin, Poland
| | - Anna Stochmal
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation—State Research Institute, Puławy, Poland
| | - Leszek Bolibok
- Department of Forest Silviculture, Institute of Forest Sciences, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Monika Rakoczy-Trojanowska
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
86
|
Kang SH, Kim B, Choi BS, Lee HO, Kim NH, Lee SJ, Kim HS, Shin MJ, Kim HW, Nam K, Kang KD, Kwon SJ, Oh TJ, Lee SC, Kim CK. Genome Assembly and Annotation of Soft-Shelled Adlay ( Coix lacryma-jobi Variety ma-yuen), a Cereal and Medicinal Crop in the Poaceae Family. FRONTIERS IN PLANT SCIENCE 2020; 11:630. [PMID: 32528499 PMCID: PMC7247446 DOI: 10.3389/fpls.2020.00630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/23/2020] [Indexed: 05/21/2023]
Abstract
Coix lacryma-jobi, also called adlay or Job's tears, is an annual herbal plant belonging to the Poaceae family that has been cultivated as a cereal and medicinal crop in Asia. Despite its importance, however, genomic resources for better understanding this plant species at the molecular level and informing improved breeding strategies remain limited. To address this, we generated a draft genome of the C. lacryma-jobi variety ma-yuen (soft-shelled adlay) Korean cultivar, Johyun, by de novo assembly, using PacBio and Illumina sequencing data. A total of 3,362 scaffold sequences, 1.28 Gb in length, were assembled, representing 82.1% of the estimated genome size (1.56 Gb). Genome completeness was confirmed by the presence of 91.4% of the BUSCO angiosperm genes and mapping ratio of 98.3% of Illumina paired-end reads. We found that approximately 77.0% of the genome is occupied by repeat sequences, most of which are Gypsy and Copia-type retrotransposons, and evidence-based genome annotation predicts 39,574 protein-coding genes, 85.5% of which were functionally annotated. We further predict that soft-shelled adlay diverged from a common ancestor with sorghum 9.0-11.2 MYA. Transcriptome profiling revealed 3,988 genes that are differentially expressed in seeds relative to other tissues, of which 1,470 genes were strongly up-regulated in seeds and the most enriched Gene Ontology terms were assigned to carbohydrate and protein metabolism. In addition, we identified 76 storage protein genes including 18 seed-specific coixin genes and 13 candidate genes involved in biosynthesis of benzoxazinoids (BXs) including coixol, a unique BX compound found in C. lacryma-jobi species. The characterization of those genes can further our understanding of unique traits of soft-shelled adlay, such as high seed protein content and medicinal compound biosynthesis. Taken together, our genome sequence data will provide a valuable resource for molecular breeding and pharmacological study of this plant species.
Collapse
Affiliation(s)
- Sang-Ho Kang
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Byeollee Kim
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, South Korea
| | | | | | | | | | | | | | | | | | | | - Soo-Jin Kwon
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Graduate School, Sun Moon University, Asan, South Korea
| | - Sang-Choon Lee
- Phyzen Co., Seongnam, South Korea
- *Correspondence: Sang-Choon Lee,
| | - Chang-Kug Kim
- Genomics Division, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, South Korea
- Chang-Kug Kim,
| |
Collapse
|
87
|
|
88
|
Madina MH, Rahman MS, Zheng H, Germain H. Vacuolar membrane structures and their roles in plant-pathogen interactions. PLANT MOLECULAR BIOLOGY 2019; 101:343-354. [PMID: 31621005 DOI: 10.1007/s11103-019-00921-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Short review focussing on the role and targeting of vacuolar substructure in plant immunity and pathogenesis. Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogens. A typical plant defense strategy is the hypersensitive response that results in host cell death at the site of infection, a process largely regulated by the vacuole. In plant cells, the vacuole is a vital organelle that plays a central role in numerous fundamental processes, such as development, reproduction, and cellular responses to biotic and abiotic stimuli. It shows divergent membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging have significantly altered our view of the vacuolar structures and their dynamics. Understanding the active nature of the vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant-pathogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internal structures, as well as their role in plant-microbe interactions. There is so far limited information on the modulation of the vacuolar structures by pathogens, but recent research has identified the vacuole as a possible target of microbial interference.
Collapse
Affiliation(s)
- Mst Hur Madina
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Md Saifur Rahman
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, QC, H3A 1B1, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, 3351 boulevard des Forges, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
89
|
Sato Y, Tezuka A, Kashima M, Deguchi A, Shimizu-Inatsugi R, Yamazaki M, Shimizu KK, Nagano AJ. Transcriptional Variation in Glucosinolate Biosynthetic Genes and Inducible Responses to Aphid Herbivory on Field-Grown Arabidopsis thaliana. Front Genet 2019; 10:787. [PMID: 31572432 PMCID: PMC6749069 DOI: 10.3389/fgene.2019.00787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022] Open
Abstract
Recently, increasing attempts have been made to understand how plant genes function in natura. In this context, transcriptional profiles represent plant physiological status in response to environmental stimuli. Herein, we combined high-throughput RNA-Seq with insect survey data on 19 accessions of Arabidopsis thaliana grown at a field site in Switzerland. We found that genes with the gene ontology (GO) annotations of "glucosinolate biosynthetic process" and "response to insects" were most significantly enriched, and the expression of these genes was highly variable among plant accessions. Nearly half of the total expression variation in the glucosinolate biosynthetic genes (AOPs, ESM1, ESP, and TGG1) was explained by among-accession variation. Of these genes, the expression level of AOP3 differed among Col-0 accession individuals depending on the abundance of the mustard aphid (Lipaphis erysimi). We also found that the expression of the major cis-jasmone activated gene CYP81D11 was positively correlated with the number of flea beetles (Phyllotreta striolata and Phyllotreta atra). Combined with the field RNA-Seq data, bioassays confirmed that AOP3 was up-regulated in response to attack by mustard aphids. The combined results from RNA-Seq and our ecological survey illustrate the feasibility of using field transcriptomics to detect an inducible defense, providing a first step towards an in natura understanding of biotic interactions involving phenotypic plasticity.
Collapse
Affiliation(s)
- Yasuhiro Sato
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Ayumi Tezuka
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Makoto Kashima
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
| | - Ayumi Deguchi
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Japan
- Graduate School of Horticulture, Chiba University, Matsudo, Japan
| | - Rie Shimizu-Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Misako Yamazaki
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Kentaro K. Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Atsushi J. Nagano
- Department of Plant Life Sciences, Faculty of Agriculture, Ryukoku University, Otsu, Japan
| |
Collapse
|
90
|
Salehi B, Armstrong L, Rescigno A, Yeskaliyeva B, Seitimova G, Beyatli A, Sharmeen J, Mahomoodally MF, Sharopov F, Durazzo A, Lucarini M, Santini A, Abenavoli L, Capasso R, Sharifi-Rad J. Lamium Plants-A Comprehensive Review on Health Benefits and Biological Activities. Molecules 2019; 24:molecules24101913. [PMID: 31109023 PMCID: PMC6571824 DOI: 10.3390/molecules24101913] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
This work is an updated snapshot of Lamium plants and their biological activities. The main features of the plant are described and the components of its essential oils are summarized. The traditional medicinal uses of Lamium plants has been reported. The presence of these chemicals i.e., hydroxycinnamic acids, iridoids, secoiridoids, flavonoids, anthocyanins, phenylpropanoids, phytoecdysteroids, benzoxazinoids, betaine can provide biological activities. After the discussion of antioxidant properties documented for Lamium plants, the biological activities, studied using in vitro models, antimicrobial, antiviral, anti-inflammatory, anti-nociceptive activity, and pain therapy and cytotoxicity and cytoprotective activity are here described and discussed. Finally, targeted examples of in vivo studies are reported.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Lorene Armstrong
- Department of Pharmaceutical Sciences, State University of Ponta Grossa, Ponta Grossa, Paraná 84030900, Brasil.
| | - Antonio Rescigno
- Department of Biomedical Sciences, University of Cagliari, s.s. 554 bivio Sestu, I-09042 Monserrato, CA, Italy.
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 480012, Kazakhstan.
| | - Gulnaz Seitimova
- Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 480012, Kazakhstan.
| | - Ahmet Beyatli
- Department of Medicinal and Aromatic Plants, University of Health Sciences, 34668 Istanbul, Turkey.
| | - Jugreet Sharmeen
- Department of Health Sciences; Faculty of Science, University of Mauritius, Réduit 80837, Mauritius.
| | | | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan.
| | - Alessandra Durazzo
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | - Massimo Lucarini
- CREA-Research Centre for Food and Nutrition, Via Ardeatina 546, 00178 Rome, Italy.
| | - Antonello Santini
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano, 49-80131 Napoli, Italy.
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia, viale Europa-Germaneto, 88100 Catanzaro, Italy.
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy.
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| |
Collapse
|
91
|
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. MICROBIOME 2019; 7:59. [PMID: 30975184 PMCID: PMC6460791 DOI: 10.1186/s40168-019-0677-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. RESULTS Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. CONCLUSIONS This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Rumakanta Sapkota
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Stine K. Steffensen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Inge S. Fomsgaard
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
92
|
Díaz ML, Soresi DS, Basualdo J, Cuppari SJ, Carrera A. Transcriptomic response of durum wheat to cold stress at reproductive stage. Mol Biol Rep 2019; 46:2427-2445. [PMID: 30798485 DOI: 10.1007/s11033-019-04704-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022]
Abstract
Understanding the genetic basis of cold tolerance is a key step towards obtaining new and improved crop varieties. Current geographical distribution of durum wheat in Argentina exposes the plants to frost damage when spikes have already emerged. Biochemical pathways involved in cold tolerance are known to be early activated at above freezing temperatures. In this study we reported the transcriptome of CBW0101 spring durum wheat by merging data from untreated control and cold (5 °C) treated plant samples at reproductive stage. A total of 128,804 unigenes were predicted. Near 62% of the unigenes were annotated in at least one database. In total 876 unigenes were differentially expressed (DEGs), 562 were up-regulated and 314 down-regulated in treated samples. DEGs are involved in many critical processes including, photosynthetic activity, lipid and carbohydrate synthesis and accumulation of amino acids and seed proteins. Twenty-eight transcription factors (TFs) belonging to 14 families resulted differentially expressed from which eight families comprised of only TFs induced by cold. We also found 31 differentially expressed Long non-coding RNAs (lncRNAs), most of them up-regulated in treated plants. Two of these lncRNAs could operate via microRNAs (miRNAs) target mimic. Our results suggest a reprogramming of expression patterns in CBW0101 that affects a number of genes that is closer to the number reported in winter genotypes. These observations could partially explain its moderate tolerance (low proportion of frost-damaged spikes) when exposed to freezing days in the field.
Collapse
Affiliation(s)
- Marina L Díaz
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Comisión de Investigaciones Científicas (CIC), Bahía Blanca, Buenos Aires, Argentina.
| | - Daniela S Soresi
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Jessica Basualdo
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Selva J Cuppari
- Centro de Recursos Naturales Renovables de la Zona Semiárida (CERZOS), Universidad Nacional del Sur (UNS)-CONICET, Bahía Blanca, Argentina
| | - Alicia Carrera
- Departamento de Agronomía, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
93
|
Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, Li J, Wang L, Malook SU, Wu J. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. PLANT METHODS 2019; 15:144. [PMID: 31798670 PMCID: PMC6882228 DOI: 10.1186/s13007-019-0529-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Insect herbivory poses a major threat to maize. Benzoxazinoids are important anti-insect secondary metabolites in maize, whose biosynthetic pathway has been extensively studied. However, yet little is known about how benzoxazinoids are regulated in maize, partly due to lack of mutant resources and recalcitrance to genetic transformation. Transient systems based on mesophyll- or cultured cell-derived protoplasts have been exploited in several plant species and have become a powerful tool for rapid or high-throughput assays of gene functions. Nevertheless, these systems have not been exploited to study the regulation of secondary metabolites. RESULTS A protocol for isolation of protoplasts from etiolated maize seedlings and efficient transfection was optimized. Furthermore, a 10-min-run-time and highly sensitive HPLC-MS method was established to rapidly detect and quantify maize benzoxazinoids. Coupling maize protoplast transfection and HPLC-MS, we screened a few genes potentially regulating benzoxazinoid biosynthesis using overexpression or silencing by artificial microRNA technology. CONCLUSIONS Combining the power of maize protoplast transfection and HPLC-MS analysis, this method allows rapid screening for the regulatory and biosynthetic genes of maize benzoxazinoids in protoplasts, before the candidates are selected for in planta functional analyses. This method can also be applied to study the biosynthesis and regulation of other secondary metabolites in maize and secondary metabolites in other plant species, including those not amenable to transformation.
Collapse
Affiliation(s)
- Lei Gao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- School of Biological Science, Yunnan University, Kunming, 650091 China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lingdan Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Saif Ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
94
|
Shavit R, Batyrshina ZS, Dotan N, Tzin V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS One 2018; 13:e0208103. [PMID: 30507950 PMCID: PMC6277073 DOI: 10.1371/journal.pone.0208103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Aphids are major pests in cereal crops that cause direct and indirect damage leading to yield reduction. Despite the fact that wheat provides 20% of the world’s caloric and protein diet, its metabolic responses to aphid attack, in general, and specifically its production of benzoxazinoid defense compounds are poorly understood. The objective of this study was to compare the metabolic diversity of durum wheat seedlings (Triticum turgidum ssp. durum) under attack by three different cereal aphids: i) the English grain aphid (Sitobion avenae Fabricius), ii) the bird cherry-oat aphid (Rhopalosiphum padi L.), and iii) the greenbug aphid (Schizaphis graminum Rondani), which are some of the most destructive aphid species to wheat. Insect progeny bioassays and metabolic analyses using chromatography/Q-Exactive/mass spectrometry non-targeted metabolomics and a targeted benzoxazinoid profile were performed on infested leaves. The insect bioassays revealed that the plants were susceptible to S. graminum, resistant to S. avenae, and mildly resistant to R. padi. The metabolic analyses of benzoxazinoids suggested that the predominant metabolites DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin- 3-one) and its glycosylated form DIMBOA-glucoside (Glc) were significantly induced upon both S. avenae, and R. padi aphid feeding. However, the levels of the benzoxazinoid metabolite HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside) were enhanced due to the feeding of S. avenae and S. graminum aphids, to which Svevo was the most resistant and the most susceptible, respectively. The results showed a partial correlation between the induction of benzoxazinoids and aphid reproduction. Overall, our observations revealed diverse metabolic responses of wheat seedlings to cereal aphid feeding.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhaniya S. Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nitsan Dotan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
95
|
Hu L, Mateo P, Ye M, Zhang X, Berset JD, Handrick V, Radisch D, Grabe V, Köllner TG, Gershenzon J, Robert CAM, Erb M. Plant iron acquisition strategy exploited by an insect herbivore. Science 2018; 361:694-697. [PMID: 30115808 DOI: 10.1126/science.aat4082] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 06/19/2018] [Indexed: 12/24/2022]
Abstract
Insect herbivores depend on their host plants to acquire macro- and micronutrients. Here we asked how a specialist herbivore and damaging maize pest, the western corn rootworm, finds and accesses plant-derived micronutrients. We show that the root-feeding larvae use complexes between iron and benzoxazinoid secondary metabolites to identify maize as a host, to forage within the maize root system, and to increase their growth. Maize plants use these same benzoxazinoids for protection against generalist herbivores and, as shown here, for iron uptake. We identify an iron transporter that allows the corn rootworm to benefit from complexes between iron and benzoxazinoids. Thus, foraging for an essential plant-derived complex between a micronutrient and a secondary metabolite shapes the interaction between maize and a specialist herbivore.
Collapse
Affiliation(s)
- L Hu
- Institute of Plant Sciences, University of Bern, Switzerland
| | - P Mateo
- Institute of Plant Sciences, University of Bern, Switzerland.,Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Switzerland
| | - M Ye
- Institute of Plant Sciences, University of Bern, Switzerland
| | - X Zhang
- Institute of Plant Sciences, University of Bern, Switzerland
| | - J D Berset
- Institute of Plant Sciences, University of Bern, Switzerland
| | - V Handrick
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - D Radisch
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - V Grabe
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - T G Köllner
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - J Gershenzon
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - C A M Robert
- Institute of Plant Sciences, University of Bern, Switzerland.
| | - M Erb
- Institute of Plant Sciences, University of Bern, Switzerland.
| |
Collapse
|
96
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
97
|
Kinoshita T, McCourt P, Asami T, Torii KU. Plant Chemical Biology. PLANT & CELL PHYSIOLOGY 2018; 59:1483-1486. [PMID: 30032233 DOI: 10.1093/pcp/pcy142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
| | - Peter McCourt
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada
| | - Tadao Asami
- Cell and Systems Biology, University of Toronto, 25 Willcocks Street, Toronto, Canada
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Keiko U Torii
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa, Nagoya, Japan
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|