51
|
Urinary 1-hydroxypyrene and smoking are determinants of LINE-1 and AhRR promoter methylation in coke oven workers. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 826:33-40. [PMID: 29412867 DOI: 10.1016/j.mrgentox.2018.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 12/28/2017] [Accepted: 01/09/2018] [Indexed: 12/15/2022]
Abstract
Coke oven emissions (COE) containing polycyclic aromatic hydrocarbons (PAHs) are predominant toxic constituents of particulate air pollution that have been linked to increased risk of lung cancer. Aberrant DNA methylation is one of the best known epigenetic changes in human cancers and healthy subjects exposed to carcinogens. The purpose of this study is to explore the factors influencing the methylation of long interspersed nuclear element-1 (LINE-1) and aryl-hydrocarbon receptor repressor (AhRR) in coke oven workers. The study population is composed by coke oven workers (348) and water treatment workers (131). And their urinary PAH metabolites were analyzed by high performance liquid chromatography; DNA methylation were measured by pyrosequencing. The urinary PAHs metabolites were significantly elevated in coke oven workers (P < 0.01). The results from multivariate logistic regression analysis showed that a high level of urinary 1-hydroxypyrene was associated with a significantly increased risk of hypomethylation of LINE-1 (OR: 1.80; 95% CI: 1.25, 2.60), and heavy smoking was associated with a significantly increased risk of hypomethylation of AhRR (OR: 1.44; 95% CI: 1.04, 2.00). Our findings demonstrate that urinary 1-hydroxypyrene may be a useful biomarker for evaluating the role of PAHs exposure on hypomethylation of LINE-1 among coke oven workers and that smoking may be an important factor affecting hypomethylation of AhRR.
Collapse
|
52
|
Bukowska-Damska A, Reszka E, Kaluzny P, Wieczorek E, Przybek M, Zienolddiny S, Peplonska B. Sleep quality and methylation status of selected tumor suppressor genes among nurses and midwives. Chronobiol Int 2017; 35:122-131. [PMID: 29144154 DOI: 10.1080/07420528.2017.1376219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chronic sleep restriction may affect metabolism, hormone secretion patterns and inflammatory responses. Limited reports suggest also epigenetic effects, such as changes in DNA methylation profiles. The study aims to assess the potential association between poor sleep quality or sleep duration and the levels of 5-methylcytosine in the promoter regions of selected tumor suppressor genes. A cross-sectional study was conducted on 710 nurses and midwives aged 40-60 years. Data from interviews regarding sleep habits and potential confounders were used. The methylation status of tumor suppressor genes was determined via qMSP reactions using DNA samples derived from leucocytes. No significant findings were observed in the total study population or in the two subgroups of women stratified by the current system of work. A borderline significance association was observed between a shorter duration of sleep and an increased methylation level in CDKN2A among day working nurses and midwives. Further studies are warranted to explore this under-investigated topic.
Collapse
Affiliation(s)
- Agnieszka Bukowska-Damska
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Reszka
- b Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Pawel Kaluzny
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Edyta Wieczorek
- b Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | - Monika Przybek
- b Department of Molecular Genetics and Epigenetics , Nofer Institute of Occupational Medicine , Lodz , Poland
| | | | - Beata Peplonska
- a Department of Environmental Epidemiology , Nofer Institute of Occupational Medicine , Lodz , Poland
| |
Collapse
|
53
|
|
54
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|
55
|
Xiong J, Liu X, Cheng QY, Xiao S, Xia LX, Yuan BF, Feng YQ. Heavy Metals Induce Decline of Derivatives of 5-Methycytosine in Both DNA and RNA of Stem Cells. ACS Chem Biol 2017; 12:1636-1643. [PMID: 28448110 DOI: 10.1021/acschembio.7b00170] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Toxic heavy metals have been considered to be harmful environmental contaminations. The molecular mechanisms of heavy-metals-induced cytotoxicity and carcinogenicity are still not well elucidated. Previous reports showed exposures to toxic heavy metals can cause a change of DNA cytosine methylation (5-methylcytosine, 5-mC). However, it is still not clear whether heavy metals have effects on the recently identified new epigenetic marks in both DNA and RNA, i.e., 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-foC), and 5-carboxylcytosine (5-caC). Here, we established a chemical labeling strategy in combination with liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS) analysis for highly sensitive detection of eight modified cytidines in DNA and RNA. The developed method allowed simultaneous detection of all eight modified cytidines with improved detection sensitivities of 128-443-fold. Using this method, we demonstrated that the levels of 5-hmC, 5-foC, and 5-caC significantly decreased in both the DNA and RNA of mouse embryonic stem (ES) cells while exposed to arsenic (As), cadmium (Cd), chromium (Cr), and antimony (Sb). In addition, we found that treatments by heavy metals induced a decrease of the activities of 10-11 translocation (Tet) proteins. Furthermore, we revealed that a content change of metabolites occurring in the tricarboxylic acid cycle may be responsible for the decline of the derivatives of 5-mC. Our study shed light on the epigenetic effects of heavy metals, especially for the induced decline of the derivatives of 5-mC in both DNA and RNA.
Collapse
Affiliation(s)
- Jun Xiong
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Xiaona Liu
- School
of Life Sciences, University of Science and Technology of China, Hefei 230027, People’s Republic of China
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
- State Key
Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Qing-Yun Cheng
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Shan Xiao
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Lai-Xin Xia
- Department of Developmental Biology, School of Basic
Medical Sciences, Southern Medical University, Guangzhou 510515, People’s Republic of China
| | - Bi-Feng Yuan
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Yu-Qi Feng
- Key Laboratory of
Analytical Chemistry for Biology and Medicine (Ministry of Education),
Department of Chemistry, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
56
|
Gonzalez-Cortes T, Recio-Vega R, Lantz RC, Chau BT. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol 2017; 329:140-147. [PMID: 28579250 DOI: 10.1016/j.taap.2017.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 12/24/2022]
Abstract
Several novel mechanistic findings regarding to arsenic's pathogenesis has been reported and some of them suggest that the etiology of some arsenic induced diseases are due in part to heritable changes to the genome via epigenetic processes such as DNA methylation, histone maintenance, and mRNA expression. Recently, we reported that arsenic exposure during in utero and early life was associated with impairment in the lung function and abnormal receptor for advanced glycation endproducts (RAGE), matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) sputum levels. Based on our results and the reported arsenic impacts on DNA methylation, we designed this study in our cohort of children exposed in utero and early childhood to arsenic with the aim to associate DNA methylation of MMP9, TIMP1 and RAGE genes with its protein sputum levels and with urinary and toenail arsenic levels. The results disclosed hypermethylation in MMP9 promotor region in the most exposed children; and an increase in the RAGE sputum levels among children with the mid methylation level; there were also positive associations between MMP9 DNA methylation with arsenic toenail concentrations; RAGE DNA methylation with iAs, and %DMA; and finally between TIMP1 DNA methylation with the first arsenic methylation. A negative correlation between MMP9 sputum levels with its DNA methylation was registered. In conclusion, arsenic levels were positive associated with the DNA methylation of extracellular matrix remodeling genes;, which in turn could modifies the biological process in which they are involved causing or predisposing to lung diseases.
Collapse
Affiliation(s)
- Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico.
| | - Robert Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States; Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, United States
| | - Binh T Chau
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
57
|
Majumder M, Dasgupta UB, Guha Mazumder DN, Das N. Skin score correlates with global DNA methylation and GSTO1 A140D polymorphism in arsenic-affected population of Eastern India. Toxicol Mech Methods 2017; 27:467-475. [PMID: 28436716 DOI: 10.1080/15376516.2017.1323255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Arsenic is a potent environmental toxicant causing serious public health concerns in India, Bangladesh and other parts of the world. Gene- and promoter-specific hypermethylation has been reported in different arsenic-exposed cell lines, whereas whole genome DNA methylation study suggested genomic hypo- and hypermethylation after arsenic exposure in in vitro and in vivo studies. Along with other characteristic biomarkers, arsenic toxicity leads to typical skin lesions. The present study demonstrates significant correlation between severities of skin manifestations with their whole genome DNA methylation status as well as with a particular polymorphism (Ala 140 Asp) status in arsenic metabolizing enzyme Glutathione S-transferase Omega-1 (GSTO1) in arsenic-exposed population of the district of Nadia, West Bengal, India.
Collapse
Affiliation(s)
- Moumita Majumder
- a Department of Molecular Biology , Surendranath College , Kolkata , India
| | - Uma B Dasgupta
- b Department of Life Science & Biotechnology , Jadavpur University , Kolkata , India
| | | | - Nilansu Das
- a Department of Molecular Biology , Surendranath College , Kolkata , India
| |
Collapse
|
58
|
Salemi R, Marconi A, Di Salvatore V, Franco S, Rapisarda V, Libra M. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development. Mol Med Rep 2017; 15:3366-3371. [DOI: 10.3892/mmr.2017.6383] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/16/2017] [Indexed: 11/05/2022] Open
|
59
|
Eckstein M, Eleazer R, Rea M, Fondufe-Mittendorf Y. Epigenomic reprogramming in inorganic arsenic-mediated gene expression patterns during carcinogenesis. REVIEWS ON ENVIRONMENTAL HEALTH 2017; 32:93-103. [PMID: 27701139 DOI: 10.1515/reveh-2016-0025] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 08/08/2016] [Indexed: 05/22/2023]
Abstract
Arsenic is a ubiquitous metalloid that is not mutagenic but is carcinogenic. The mechanism(s) by which arsenic causes cancer remain unknown. To date, several mechanisms have been proposed, including the arsenic-induced generation of reactive oxygen species (ROS). However, it is also becoming evident that inorganic arsenic (iAs) may exert its carcinogenic effects by changing the epigenome, and thereby modifying chromatin structure and dynamics. These epigenetic changes alter the accessibility of gene regulatory factors to DNA, resulting in specific changes in gene expression both at the levels of transcription initiation and gene splicing. In this review, we discuss recent literature reports describing epigenetic changes induced by iAs exposure and the possible epigenetic mechanisms underlying these changes.
Collapse
|
60
|
Devóz PP, Gomes WR, De Araújo ML, Ribeiro DL, Pedron T, Greggi Antunes LM, Batista BL, Barbosa F, Barcelos GRM. Lead (Pb) exposure induces disturbances in epigenetic status in workers exposed to this metal. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:1098-1105. [PMID: 28862539 DOI: 10.1080/15287394.2017.1357364] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Previous studies showed that lead (Pb) exposure may modulate gene expression by changes in the epigenetic status. However, little is known about the impact of Pb exposure and alterations on DNA methylation patterns in humans exposed to this metal. The aim of this study was to assess the consequences of exposure to Pb on DNA global methylation, in order to gain a better understanding of the interactions between Pb exposure and epigenetic effects. The study included 100 male workers employed in automotive battery factories from Paraná State, Brazil. Concentrations of Pb in blood (B-Pb) and plasma (P-Pb) were determined by ICP-MS, the percentage (%) of global DNA methylation was determined by quantification of 5-methylcytosine using indirect ELISA, and sociodemographic data collected by questionnaire by trained interviewers. The mean age was 37 ± 10 (18-67 years); 18% of participants were smokers, while 32% reported consumption of alcoholic beverages. The B-Pb and P-Pb levels were 20 ± 11 and 0.56 ± 0.64 µg/dl, respectively; % global DNA methylation was 2.8 ± 1.1% (ranging from 1.1 to 6.5%). B-Pb and P-Pb concentrations were significantly correlated. Furthermore, a marked association was noted between Pb biomarkers and DNA global methylation. Taken together, our data demonstrated that Pb exposure induced alterations on DNA global methylation in workers who were exposed to the metal and consequently may result in disturbances in the regulation of gene expression, leading to potentially several health adverse effect outcomes.
Collapse
Affiliation(s)
- Paula Pícoli Devóz
- a Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Willian Robert Gomes
- a Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Marília Ladeira De Araújo
- b Department of Biosciences , Institute of Health and Society, Federal University of São Paulo , Santos , Brazil
| | - Diego Luis Ribeiro
- c Departament of Genetics, School of Medicine of Ribeirão Preto, Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Tatiana Pedron
- d Center of Natural and Human Sciences , Federal University of ABC , Santo André , Brazil
| | - Lusânia Maria Greggi Antunes
- a Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | - Bruno Lemos Batista
- d Center of Natural and Human Sciences , Federal University of ABC , Santo André , Brazil
| | - Fernando Barbosa
- a Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto , University of São Paulo , Ribeirão Preto , Brazil
| | | |
Collapse
|
61
|
Dai L, Ma C, Zhang Z, Zeng S, Liu A, Tang S, Ren Q, Sun Y, Xu C. DAPK Promoter Methylation and Bladder Cancer Risk: A Systematic Review and Meta-Analysis. PLoS One 2016; 11:e0167228. [PMID: 27907054 PMCID: PMC5132202 DOI: 10.1371/journal.pone.0167228] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/10/2016] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Methylation of tumor suppressor gene promoter leads to transcription inactivation and is involved in tumorigenesis. Several studies demonstrate a potential association between the Death-Associated Protein Kinase (DAPK) gene promoter methylation and bladder cancer risk, tumor stage and histological grade. Due to inconsistent results of these studies, we performed this meta-analysis to ascertain the association. METHODS Studies were retrieved from the PubMed, Embase, Web of Science and the Cochrane Library databases. Study selection and data extraction were executed by two reviewers independently. Meta-analysis was performed using Stata 13.0 and Review Manager 5.3 software. RESULTS A total of 21 articles involving 15 case control and 8 case series studies were included in this meta-analysis. DAPK promoter methylation was associated with bladder cancer risk (OR: 5.81; 95%CI = 3.83-8.82, P<0.00001). The frequency of DAPK promoter methylation was equal in bladder cancer tissue and paired adjacent normal tissue (OR: 0.87; 95%CI = 0.31-2.48, P = 0.794). Furthermore, DAPK promoter methylation was associated with higher histological grade (OR: 1.52; 95%CI = 1.10-2.09, P = 0.011) but not associated with tumor stage (OR: 1.12; 95%CI = 0.67-1.87, P = 0.668). CONCLUSIONS The result suggests that DAPK promoter methylation is significantly increased in bladder cancer patients compared to normal controls. DAPK promoter methylation could serve as a biomarker for bladder cancer detection and management.
Collapse
Affiliation(s)
- Lihe Dai
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chong Ma
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhensheng Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Anwei Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Shijie Tang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qian Ren
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
62
|
Zhang A, Li H, Xiao Y, Chen L, Zhu X, Li J, Ma L, Pan X, Chen W, He Z. Aberrant methylation of nucleotide excision repair genes is associated with chronic arsenic poisoning. Biomarkers 2016; 22:429-438. [PMID: 27685703 DOI: 10.1080/1354750x.2016.1217933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE To define whether aberrant methylation of DNA repair genes is associated with chronic arsenic poisoning. METHODS Hundred and two endemic arsenicosis patients and 36 healthy subjects were recruited. Methylight and bisulfite sequencing (BSP) assays were used to examine the methylation status of ERCC1, ERCC2 and XPC genes in peripheral blood lymphocytes (PBLs) and skin lesions of arsenicosis patients and NaAsO2-treated HaCaT cells. RESULTS Hypermethylation of ERCC1 and ERCC2 and suppressed gene expression were found in PBLs and skin lesions of arsenicosis patients and was correlated with the level of arsenic exposure. Particularly, the expression of ERCC1 and ERCC2 was associated with the severity of skin lesions. In vitro studies revealed an induction of ERCC2 hypermethylation and decreased mRNA expression in response to NaAsO2 treatment. CONCLUSION Hypermethylation of ERCC1 and ERCC2 and concomitant suppression of gene expression might be served as the epigenetic marks associated with arsenic exposure and adverse health effects.
Collapse
Affiliation(s)
- Aihua Zhang
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Huiyao Li
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Yun Xiao
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Liping Chen
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Xiaonian Zhu
- c Department of Toxicology, School of Public Health , Guilin Medical University , Guilin , China
| | - Jun Li
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Lu Ma
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Xueli Pan
- a The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education Department of Toxicology , School of Public Health, Guizhou Medical University , Guiyang , China
| | - Wen Chen
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| | - Zhini He
- b Department of Toxicology, Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment , School of Public Health, Sun Yat-Sen University , Guangzhou , China
| |
Collapse
|
63
|
Zeng L, Ma H, Pan S, You J, Zhang G, Yu Z, Sheng G, Fu J. LINE-1 gene hypomethylation and p16 gene hypermethylation in HepG2 cells induced by low-dose and long-term triclosan exposure: The role of hydroxyl group. Toxicol In Vitro 2016; 34:35-44. [DOI: 10.1016/j.tiv.2016.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/20/2016] [Accepted: 03/06/2016] [Indexed: 12/18/2022]
|
64
|
Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. Associations between Blood and Urine Arsenic Concentrations and Global Levels of Post-Translational Histone Modifications in Bangladeshi Men and Women. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1234-40. [PMID: 26967670 PMCID: PMC4977054 DOI: 10.1289/ehp.1510412] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 10/21/2015] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
BACKGROUND Exposure to inorganic arsenic is associated with numerous adverse health outcomes, with susceptibility differing by sex. Although evidence from in vitro studies suggests that arsenic alters post-translational histone modifications (PTHMs), evidence in humans is limited. OBJECTIVES The objectives were to determine: a) if arsenic exposure is associated with global (percent) levels of PTHMs H3K36me2, H3K36me3, and H3K79me2 in a sex-dependent manner, and b) if %PTHMs are stable when arsenic exposure is reduced. METHODS We examined associations between arsenic, measured in blood and urine, and %PTHMs in peripheral blood mononuclear cells from 317 participants enrolled in the Bangladesh Folic Acid and Creatine Trial (FACT). We also examined the stability of %PTHMs after the use of arsenic-removal water filters (n = 60). RESULTS Associations between natural log-transformed (ln) urinary arsenic, adjusted for creatinine (uAsCr), and %H3K36me2 differed significantly between men and women (p = 0.01). ln(uAsCr) was positively associated with %H3K36me2 in men [β = 0.12; 95% confidence interval (CI): 0.01, 0.23, p = 0.03] but was negatively associated with %H3K36me2 in women (β = -0.05; 95% CI: -0.12, 0.02, p = 0.19). The patterns of associations with blood arsenic were similar. On average, water filter use was also associated with reductions in %H3K36me2 (p < 0.01), but this did not differ significantly by sex. Arsenic was not significantly associated with %H3K36me3 or %H3K79me2 in men or women. CONCLUSIONS Arsenic exposure was associated with %H3K36me2 in a sex-specific manner but was not associated with %H3K36me3 or %H3K79me2. Additional studies are needed to assess changes in %H3K36me2 after arsenic removal. CITATION Howe CG, Liu X, Hall MN, Slavkovich V, Ilievski V, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Costa M, Gamble MV. 2016. Associations between blood and urine arsenic concentrations and global levels of post-translational histone modifications in Bangladeshi men and women. Environ Health Perspect 124:1234-1240; http://dx.doi.org/10.1289/ehp.1510412.
Collapse
Affiliation(s)
| | | | - Megan N. Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | - Abu B. Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N. Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | - Max Costa
- Department of Environmental Medicine, Langone Medical Center, New York University, New York, New York, USA
| | - Mary V. Gamble
- Department of Environmental Health Sciences,
- Address correspondence to M.V. Gamble, Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 11th Floor, 722 W. 168th St., New York, NY 10032 USA. Telephone: (212) 305-7949. E-mail:
| |
Collapse
|
65
|
Specific histone modification responds to arsenic-induced oxidative stress. Toxicol Appl Pharmacol 2016; 302:52-61. [DOI: 10.1016/j.taap.2016.03.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 03/28/2016] [Accepted: 03/28/2016] [Indexed: 01/08/2023]
|
66
|
Kostka G, Urbanek-Olejnik K, Liszewska M, Winczura A. The effect of acute dichlorodiphenyltrichloroethane exposure on hypermethylation status and down-regulation of p53 and p16INK4a genes in rat liver. ENVIRONMENTAL TOXICOLOGY 2016; 31:584-592. [PMID: 25410620 DOI: 10.1002/tox.22071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The aim of the study was to investigate the early effect of acute dichlorodiphenyltrichloroethane (DDT) exposure on the methylation status of the promoter region of two tumor suppressor genes: p53 and p16(INK4a) (p16) in rat liver. We analyzed their transcript and protein expression profiles concurrently with the examination of transcriptional and protein expression levels of DNA (cytosine-5)-methyltransferase 1 (Dnmt1). Male Wistar rats were treated with a single dose of DDT (57 mg kg(-1) of body weight) and the methylation status of p53 and p16 genes was examined after 24 h using methylation-sensitive restriction analysis-MSRA. The obtained results indicate that DDT induced alternations in methylation of the promoter region in both p53 and p16 genes. In all the tested samples, the promoter CpG islands of p53 (-261, -179, and -450) were methylated within 100% as compared to control samples (0%). The methylation status of the p16 promoter (-11 and +77) was also altered due to exposure to DDT. Methylated cytosines were detectable in 75% of the tested DNA samples. The Real-time PCR and western blot analyses showed a decrease in mRNA and protein levels of p53, respectively, which was related to the increase in DNA synthesis. These relationships were also observed for mRNA and protein expressions of p16, although to a slighter extent. We also showed that hypermethylation in the promoter region of both tumor suppressor genes was consistent with an increased Dnmt1 mRNA level, and this relationship was further confirmed at the protein level of DNMT1. Concluding, our data suggests that epigenetically mediated changes in gene expression may play an important role in the mechanism of DDT toxicity, including carcinogenic action.
Collapse
Affiliation(s)
- Grażyna Kostka
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Katarzyna Urbanek-Olejnik
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Monika Liszewska
- Department of Toxicology and Risk Assessment, National Institute of Public Health-National Institute of Hygiene, Chocimska 24, 00-791, Warsaw, Poland
| | - Alicja Winczura
- Department of Molecular Biology, Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawińskiego 5a, Warsaw, Poland
| |
Collapse
|
67
|
Wang L, Wise JTF, Zhang Z, Shi X. Progress and prospects of reactive oxygen species in metal carcinogenesis. ACTA ACUST UNITED AC 2016; 2:178-186. [PMID: 27617186 DOI: 10.1007/s40495-016-0061-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Carcinogenesis induced by environmental metal exposure is a major public health concern. The exact mechanisms underlying metal carcinogenesis remain elusive. In the past few decades, the relationship between metal induced generation of reactive oxygen species (ROS) and the mechanism of metal carcinogenesis has been established. The carcinogenic process is a very complex one. In the early stage of metal carcinogenesis or cell transformation high levels of ROS are oncogenic by causing DNA damage, genetic instability, epigenetic alteration, and metabolic reprogramming, leading to malignant transformation. In the second stage of metal carcinogenesis or the cancer development of metal-transformed cells, low levels of ROS are carcinogenic by promoting apoptosis resistance. The metal-transformed cells have the property of autophagy deficiency, resulting in accumulation of p62 and constitutive activation of Nrf2, and leading to higher levels of antioxidants, decreased levels of ROS, apoptosis resistance, inflammation, and angiogenesis. This review summarizes the most recent development in the field of metal carcinogenesis with emphasis on the difference in cellular events between early (cell transformation) and late (after cell transformation) stages of metal carcinogenesis.
Collapse
Affiliation(s)
- Lei Wang
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - James T F Wise
- Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Zhuo Zhang
- Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
68
|
Tooker BC, Ozawa K, Newman LS. CpG promoter methylation status is not a prognostic indicator of gene expression in beryllium challenge. J Immunotoxicol 2015; 13:417-27. [PMID: 26673671 DOI: 10.3109/1547691x.2015.1115447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Individuals exposed to beryllium (Be) may develop Be sensitization (BeS) and progress to chronic beryllium disease (CBD). Recent studies with other metal antigens suggest epigenetic mechanisms may be involved in inflammatory disease processes, including granulomatous lung disorders and that a number of metal cations alter gene methylation. The objective of this study was to determine if Be can exert an epigenetic effect on gene expression by altering methylation in the promoter region of specific genes known to be involved in Be antigen-mediated gene expression. To investigate this objective, three macrophage tumor mouse cell lines known to differentially produce tumor necrosis factor (TNF)-α, but not interferon (IFN)-γ, in response to Be antigen were cultured with Be or controls. Following challenges, ELISA were performed to quantify induced TNFα and IFNγ expression. Bisulfate-converted DNA was evaluated by pyrosequencing to quantify CpG methylation within the promoters of TNFα and IFNγ. Be-challenged H36.12J cells expressed higher levels of TNFα compared to either H36.12E cells or P388D.1 cells. However, there were no variations in TNFα promoter CpG methylation levels between cell lines at the six CpG sites tested. H36.12J cell TNFα expression was shown to be metal-specific by the induction of significantly more TNFα when exposed to Be than when exposed to aluminum sulfate, or nickel (II) chloride, but not when exposed to cobalt (II) chloride. However, H36.12J cell methylation levels at the six CpG sites examined in the TNFα promoter did not correlate with cytokine expression differences. Nonetheless, all three cell lines had significantly more promoter methylation at the six CpG sites investigated within the IFNγ promoter (a gene that is not expressed) when compared to the six CpG sites investigated in the TNFα promoter, regardless of treatment condition (p < 1.17 × 10(-9)). These findings suggest that, in this cell system, promoter hypo-methylation may be necessary to allow expression of metal-induced TNFα and that promoter hyper-methylation in the IFNγ promoter may interfere with expression. Also, at the dozen CpG sites investigated in the promoter regions of both genes, beryllium had no impact on promoter methylation status, despite its ability to induce pro-inflammatory cytokine expression.
Collapse
Affiliation(s)
- Brian C Tooker
- a Division of Allergy and Clinical Immunology, Department of Medicine , School of Medicine , Aurora , CO , USA ;,b Center for Health, Work and Environment, Department of Environmental and Occupational Health , Colorado School of Public Health , Aurora , CO , USA
| | - Katherine Ozawa
- a Division of Allergy and Clinical Immunology, Department of Medicine , School of Medicine , Aurora , CO , USA
| | - Lee S Newman
- a Division of Allergy and Clinical Immunology, Department of Medicine , School of Medicine , Aurora , CO , USA ;,b Center for Health, Work and Environment, Department of Environmental and Occupational Health , Colorado School of Public Health , Aurora , CO , USA
| |
Collapse
|
69
|
Niedzwiecki MM, Liu X, Hall MN, Thomas T, Slavkovich V, Ilievski V, Levy D, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. Sex-specific associations of arsenic exposure with global DNA methylation and hydroxymethylation in leukocytes: results from two studies in Bangladesh. Cancer Epidemiol Biomarkers Prev 2015; 24:1748-57. [PMID: 26364164 DOI: 10.1158/1055-9965.epi-15-0432] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/20/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Depletion of global 5-hydroxymethylcytosine (5-hmC) is observed in human cancers and is strongly implicated in skin cancer development. Although arsenic (As)-a class I human carcinogen linked to skin lesion and cancer risk-is known to be associated with changes in global %5-methylcytosine (%5-mC), its influence on 5-hmC has not been widely studied. METHODS We evaluated associations of As in drinking water, urine, and blood with global %5-mC and %5-hmC in two studies of Bangladeshi adults: (i) leukocyte DNA in the Nutritional Influences on Arsenic Toxicity study (n = 196; 49% male, 19-66 years); and (ii) peripheral blood mononuclear cell DNA in the Folate and Oxidative Stress study (n = 375; 49% male, 30-63 years). RESULTS Overall, As was not associated with global %5-mC or %5-hmC. Sex-specific analyses showed that associations of As exposure with global %5-hmC were positive in males and negative in females (P for interaction < 0.01). Analyses examining interactions by elevated plasma total homocysteine (tHcys), an indicator of B-vitamin deficiency, found that tHcys also modified the association between As and global %5-hmC (P for interaction < 0.10). CONCLUSION In two samples, we observed associations between As exposure and global %5-hmC in blood DNA that were modified by sex and tHcys. IMPACT Our findings suggest that As induces sex-specific changes in 5-hmC, an epigenetic mark that has been associated with cancer. Future research should explore whether altered %5-hmC is a mechanism underlying the sex-specific influences of As on skin lesion and cancer outcomes.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Xinhua Liu
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Megan N Hall
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Vesna Slavkovich
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Vesna Ilievski
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Diane Levy
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Shafiul Alam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Faruque Parvez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Joseph H Graziano
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Mary V Gamble
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York.
| |
Collapse
|
70
|
Lillycrop KA, Burdge GC. Environmental challenge, epigenetic plasticity and the induction of altered phenotypes in mammals. Epigenomics 2015; 6:623-36. [PMID: 25531256 DOI: 10.2217/epi.14.51] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The level of transcriptional activity of a gene is regulated by epigenetic processes. There is compelling evidence that environmental challenges throughout the life course can induce phenotypic change. In this review, we summarize the current evidence, focusing specifically on the effects of nutrition and of environmental pollutants, that epigenetic processes underpin the induction by environmental change of altered phenotypic traits, emphasizing the implications for health outcomes. We also discuss whether epigenetic processes may be involved in the passage of induced traits between generations. Overall, current findings indicate that epigenetic processes may play an important role in determining disease risk, but there is a lack of studies that demonstrate causal links between epigenetic change and tissue function.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Faculty of Natural & Environmental Sciences, Southampton General Hospital, University of Southampton, SO16 6YD, UK
| | | |
Collapse
|
71
|
Environmental pollution and DNA methylation: carcinogenesis, clinical significance, and practical applications. Front Med 2015; 9:261-74. [PMID: 26290283 DOI: 10.1007/s11684-015-0406-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/12/2015] [Indexed: 01/25/2023]
Abstract
Environmental pollution is one of the main causes of human cancer. Exposures to environmental carcinogens result in genetic and epigenetic alterations which induce cell transformation. Epigenetic changes caused by environmental pollution play important roles in the development and progression of environmental pollution-related cancers. Studies on DNA methylation are among the earliest and most conducted epigenetic research linked to cancer. In this review, the roles of DNA methylation in carcinogenesis and their significance in clinical medicine were summarized, and the effects of environmental pollutants, particularly air pollutants, on DNA methylation were introduced. Furthermore, prospective applications of DNA methylation to environmental pollution detection and cancer prevention were discussed.
Collapse
|
72
|
Environmental Impact on DNA Methylation in the Germline: State of the Art and Gaps of Knowledge. BIOMED RESEARCH INTERNATIONAL 2015; 2015:123484. [PMID: 26339587 PMCID: PMC4538313 DOI: 10.1155/2015/123484] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/03/2015] [Indexed: 12/19/2022]
Abstract
The epigenome consists of chemical changes in DNA and chromatin that without modifying the DNA sequence modulate gene expression and cellular phenotype. The epigenome is highly plastic and reacts to changing external conditions with modifications that can be inherited to daughter cells and across generations. Whereas this innate plasticity allows for adaptation to a changing environment, it also implies the potential of epigenetic derailment leading to so-called epimutations. DNA methylation is the most studied epigenetic mark. DNA methylation changes have been associated with cancer, infertility, cardiovascular, respiratory, metabolic, immunologic, and neurodegenerative pathologies. Experiments in rodents demonstrate that exposure to a variety of chemical stressors, occurring during the prenatal or the adult life, may induce DNA methylation changes in germ cells, which may be transmitted across generations with phenotypic consequences. An increasing number of human biomonitoring studies show environmentally related DNA methylation changes mainly in blood leukocytes, whereas very few data have been so far collected on possible epigenetic changes induced in the germline, even by the analysis of easily accessible sperm. In this paper, we review the state of the art on factors impinging on DNA methylation in the germline, highlight gaps of knowledge, and propose priorities for future studies.
Collapse
|
73
|
Paul S, Giri AK. Epimutagenesis: A prospective mechanism to remediate arsenic-induced toxicity. ENVIRONMENT INTERNATIONAL 2015; 81:8-17. [PMID: 25898228 DOI: 10.1016/j.envint.2015.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/30/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Arsenic toxicity is a global issue, addressed by the World Health Organization as one of the major natural calamities faced by humans. More than 137 million individuals in 70 nations are affected by arsenic mainly through drinking water and also through diet. Chronic arsenic exposure leads to various types of patho-physiological end points in humans including cancers. Arsenic, a xenobiotic substance, is biotransformed in the body to its methylated species by using the physiological S-adenosyl methionine (SAM). SAM dictates methylation status of the genome and arsenic metabolism leads to depletion of SAM leading to an epigenetic disequilibrium. Since epigenetics is one of the major phenomenon at the interface between the environment and human health impact, its disequilibrium by arsenic inflicts upon the chromatin compaction, gene expression, genomic stability and a host of biomolecular interactions, the interactome within the cell. Since arsenic is not mutagenic but is carcinogenic in nature, arsenic induced epimutagenesis has come to the forefront since it determines the transcriptional and genomic integrity of the cell. Arsenic toxicity brings forth several pathophysiological manifestations like dermatological non-cancerous, pre-cancerous and cancerous lesions, peripheral neuropathy, DNA damage, respiratory disorders and cancers of several internal organs. Recently, several diseases of similar manifestations have been explained with the relevant epigenetic perspectives regarding the possible molecular mechanism for their onset. Hence, in the current review, we comprehensively try to intercalate the information on arsenic-induced epigenetic alterations of DNA, histones and microRNA so as to understand whether the arsenic-induced toxic manifestations are brought about by the epigenetic changes. We highlight the need to understand the aspect of epimutagenesis and subsequent alterations in the cellular interactome due to arsenic-induced molecular changes, which may be utilized to develop putative therapeutic strategies targeting both oxidative potential and epimutagenesis in humans.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ashok K Giri
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.
| |
Collapse
|
74
|
Argos M. Arsenic Exposure and Epigenetic Alterations: Recent Findings Based on the Illumina 450K DNA Methylation Array. Curr Environ Health Rep 2015; 2:137-44. [PMID: 26231363 PMCID: PMC4522705 DOI: 10.1007/s40572-015-0052-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Arsenic is a major public health concern worldwide. While it is an established carcinogen and associated with a number of other adverse health outcomes, the molecular mechanisms underlying arsenic toxicity are not completely clarified. There is mounting evidence from human studies suggesting that arsenic exposure is associated with epigenetic alterations, including DNA methylation. In this review, we summarize several recent human studies that have evaluated arsenic exposure using the Illumina HumanMethylation 450K BeadChip, which interrogates more than 485,000 methylation sites across the genome. Many of these studies have observed novel regions of the genome associated with arsenic exposure. However, few studies have evaluated the biological and functional relevance of these DNA methylation changes, which are still needed. We emphasize the need for future studies to replicate the identified DNA methylation signals as well as assess whether these markers are associated with risk of arsenic-related diseases.
Collapse
Affiliation(s)
- Maria Argos
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, 1603 West Taylor Street, MC923, Chicago, IL, 60612, USA,
| |
Collapse
|
75
|
Rahman S, Housein Z, Dabrowska A, Mayán MD, Boobis AR, Hajji N. E2F1-mediated FOS induction in arsenic trioxide-induced cellular transformation: effects of global H3K9 hypoacetylation and promoter-specific hyperacetylation in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:484-92. [PMID: 25574600 PMCID: PMC4421767 DOI: 10.1289/ehp.1408302] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 01/06/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Aberrant histone acetylation has been observed in carcinogenesis and cellular transformation associated with arsenic exposure; however, the molecular mechanisms and cellular outcomes of such changes are poorly understood. OBJECTIVE We investigated the impact of tolerated and toxic arsenic trioxide (As2O3) exposure in human embryonic kidney (HEK293T) and urothelial (UROtsa) cells to characterize the alterations in histone acetylation and gene expression as well as the implications for cellular transformation. METHODS Tolerated and toxic exposures of As2O3 were identified by measurement of cell death, mitochondrial function, cellular proliferation, and anchorage-independent growth. Histone extraction, the MNase sensitivity assay, and immunoblotting were used to assess global histone acetylation levels, and gene promoter-specific interactions were measured by chromatin immunoprecipitation followed by reverse-transcriptase polymerase chain reaction. RESULTS Tolerated and toxic dosages, respectively, were defined as 0.5 μM and 2.5 μM As2O3 in HEK293T cells and 1 μM and 5 μM As2O3 in UROtsa cells. Global hypoacetylation of H3K9 at 72 hr was observed in UROtsa cells following tolerated and toxic exposure. In both cell lines, tolerated exposure alone led to H3K9 hyperacetylation and E2F1 binding at the FOS promoter, which remained elevated after 72 hr, contrary to global H3K9 hypoacetylation. Thus, promoter-specific H3K9 acetylation is a better predictor of cellular transformation than are global histone acetylation patterns. Tolerated exposure resulted in an increased expression of the proto-oncogenes FOS and JUN in both cell lines at 72 hr. CONCLUSION Global H3K9 hypoacetylation and promoter-specific hyperacetylation facilitate E2F1-mediated FOS induction in As2O3-induced cellular transformation.
Collapse
Affiliation(s)
- Sunniyat Rahman
- Centre for Pharmacology and Therapeutics, Department of Medicine, Imperial College London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
76
|
Maceda-Veiga A, Figuerola J, Martínez-Silvestre A, Viscor G, Ferrari N, Pacheco M. Inside the Redbox: applications of haematology in wildlife monitoring and ecosystem health assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 514:322-332. [PMID: 25668285 DOI: 10.1016/j.scitotenv.2015.02.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/31/2015] [Accepted: 02/01/2015] [Indexed: 06/04/2023]
Abstract
Blood analyses have great potential in studies of ecology, ecotoxicology and veterinary science in wild vertebrates based on advances in human and domestic animal medicine. The major caveat for field researchers, however, is that the 'rules' for human or domestic animal haematology do not always apply to wildlife. The present overview shows the strengths and limitations of blood analyses in wild vertebrates, and proposes a standardisation of pre-analytical procedures plus some suggestions for a more systematic examination of blood smears to increase the diagnostic value of blood data. By discussing the common problems that field researchers face with blood variables, we also aim to highlight common ground enabling new researchers in the field to accurately collect blood samples and interpret and place their haematological findings into the overall picture of an ecological or eco-toxicological study. Besides showing the practicality and ecological relevance of simple blood variables, this study illustrates the suitability of blood samples for the application of cutting-edge analytical procedures for expanding the current repertoire of diagnostic tools in wildlife monitoring and ecosystem health assessment.
Collapse
Affiliation(s)
- Alberto Maceda-Veiga
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK; Institute of Research in Biodiversity (IRBio), Facultat de Biologia, Universitat de Barcelona, ES-08028 Barcelona, Spain.
| | - Jordi Figuerola
- Department of Wetland Ecology, Estación Biológica de Doñana-CSIC, ES-41092 Sevilla, Spain
| | | | - Ginés Viscor
- Department of Animal Physiology (Biology), Universitat de Barcelona, ES-08028 Barcelona, Spain
| | - Nicola Ferrari
- Department of Veterinary Sciences and Public Health, Università degli Studi di Milano, IT-16 20133 Milan, Italy
| | - Mário Pacheco
- Department of Biology, Centre for Environmental and Marine Studies-CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
77
|
Jiang Y, Zhang P, Li LP, He YC, Gao RJ, Gao YF. Identification of novel thyroid cancer-related genes and chemicals using shortest path algorithm. BIOMED RESEARCH INTERNATIONAL 2015; 2015:964795. [PMID: 25874234 PMCID: PMC4385622 DOI: 10.1155/2015/964795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Thyroid cancer is a typical endocrine malignancy. In the past three decades, the continued growth of its incidence has made it urgent to design effective treatments to treat this disease. To this end, it is necessary to uncover the mechanism underlying this disease. Identification of thyroid cancer-related genes and chemicals is helpful to understand the mechanism of thyroid cancer. In this study, we generalized some previous methods to discover both disease genes and chemicals. The method was based on shortest path algorithm and applied to discover novel thyroid cancer-related genes and chemicals. The analysis of the final obtained genes and chemicals suggests that some of them are crucial to the formation and development of thyroid cancer. It is indicated that the proposed method is effective for the discovery of novel disease genes and chemicals.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Peiwei Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Li-Peng Li
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yi-Chun He
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Ru-jian Gao
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Yu-Fei Gao
- Department of Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
78
|
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015; 16:212. [PMID: 25879800 PMCID: PMC4371809 DOI: 10.1186/s12864-015-1295-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. Results In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. Conclusions Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ye Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Steven Grason Godfrey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Zhou Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
79
|
Li Z, Wang Z, Li S. Gene chip analysis of Arabidopsis thaliana genomic DNA methylation and gene expression in response to carbendazim. Biotechnol Lett 2015; 37:1297-307. [PMID: 25700823 DOI: 10.1007/s10529-015-1789-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To examine the effects of carbendazim on Arabidopsis genomic DNA methylation and gene expression. RESULTS Carbendazim caused widespread changes in gene loci methylation and gene expression. With 0.1 mM (D2) and 0.2 mM (D3) carbendazim, there were, respectively, 1522 and 2278 demethylated sites and 1541 and 2790 methylated sites. A total of 279 and 505 genes were up-regulated by more than 300 % and 175 and 609 genes were down-regulated by 67 % in D2 and D3 treatments, respectively, compared with the control. Conjoint analysis showed that 20 and 39 demethylated genes were up-regulated >300 % and 21 and 24 methylated genes were down-regulated <67 % in D2 and D3, respectively. CONCLUSIONS Carbendazim causes methylation or demethylation of certain genes and changes the expression of these genes. These findings provide a theoretical basis for novel epigenetics-based methods to detect organic food and a new interpretation for the degradation of crop varieties.
Collapse
Affiliation(s)
- Zhongai Li
- Plant Germplasm Resources and Genetic Laboratory, College of Life Science, Henan University, Jinming Road, Kaifeng, 475004, Henan, China
| | | | | |
Collapse
|
80
|
Caffo M, Caruso G, Fata GL, Barresi V, Visalli M, Venza M, Venza I. Heavy metals and epigenetic alterations in brain tumors. Curr Genomics 2015; 15:457-63. [PMID: 25646073 PMCID: PMC4311389 DOI: 10.2174/138920291506150106151847] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 02/08/2023] Open
Abstract
Heavy metals and their derivatives can cause various diseases. Numerous studies have evaluated the possible link between exposure to heavy metals and various cancers. Recent data show a correlation between heavy metals and aberration of genetic and epigenetic patterns. From a literature search we noticed few experimental and epidemiological studies that evaluate a possible correlation between heavy metals and brain tumors. Gliomas arise due to genetic and epigenetic alterations of glial cells. Changes in gene expression result in the alteration of the cellular division process. Epigenetic alterations in brain tumors include the hypermethylation of CpG group, hypomethylation of specific genes, aberrant activation of genes, and changes in the position of various histones. Heavy metals are capable of generating reactive oxygen assumes that key functions in various pathological mechanisms. Alteration of homeostasis of metals could cause the overproduction of reactive oxygen species and induce DNA damage, lipid peroxidation, and alteration of proteins. In this study we summarize the possible correlation between heavy metals, epigenetic alterations and brain tumors. We report, moreover, the review of relevant literature.
Collapse
Affiliation(s)
- Maria Caffo
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Gerardo Caruso
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Giuseppe La Fata
- Neurosurgical Clinic, Department of Neuroscience, University of Messina, Messina, Italy
| | - Valeria Barresi
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Maria Visalli
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mario Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| | - Isabella Venza
- Department of Experimental Specialized Medical and Surgical and Odontostomatology Sciences, University of Messina, Messina, Italy
| |
Collapse
|
81
|
Arsenic responsive microRNAs in vivo and their potential involvement in arsenic-induced oxidative stress. Toxicol Appl Pharmacol 2015; 283:198-209. [PMID: 25625412 DOI: 10.1016/j.taap.2015.01.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/14/2015] [Accepted: 01/17/2015] [Indexed: 12/18/2022]
Abstract
Arsenic exposure is postulated to modify microRNA (miRNA) expression, leading to changes of gene expression and toxicities, but studies relating the responses of miRNAs to arsenic exposure are lacking, especially with respect to in vivo studies. We utilized high-throughput sequencing technology and generated miRNA expression profiles of liver tissues from Sprague Dawley (SD) rats exposed to various concentrations of sodium arsenite (0, 0.1, 1, 10 and 100mg/L) for 60days. Unsupervised hierarchical clustering analysis of the miRNA expression profiles clustered the SD rats into different groups based on the arsenic exposure status, indicating a highly significant association between arsenic exposure and cluster membership (p-value of 0.0012). Multiple miRNA expressions were altered by arsenic in an exposure concentration-dependent manner. Among the identified arsenic-responsive miRNAs, several are predicted to target Nfe2l2-regulated antioxidant genes, including glutamate-cysteine ligase (GCL) catalytic subunit (GCLC) and modifier subunit (GCLM) which are involved in glutathione (GSH) synthesis. Exposure to low concentrations of arsenic increased mRNA expression for Gclc and Gclm, while high concentrations significantly reduced their expression, which were correlated to changes in hepatic GCL activity and GSH level. Moreover, our data suggested that other mechanisms, e.g., miRNAs, rather than Nfe2l2-signaling pathway, could be involved in the regulation of mRNA expression of Gclc and Gclm post-arsenic exposure in vivo. Together, our findings show that arsenic exposure disrupts the genome-wide expression of miRNAs in vivo, which could lead to the biological consequence, such as an altered balance of antioxidant defense and oxidative stress.
Collapse
|
82
|
Argos M, Chen L, Jasmine F, Tong L, Pierce BL, Roy S, Paul-Brutus R, Gamble MV, Harper KN, Parvez F, Rahman M, Rakibuz-Zaman M, Slavkovich V, Baron JA, Graziano JH, Kibriya MG, Ahsan H. Gene-specific differential DNA methylation and chronic arsenic exposure in an epigenome-wide association study of adults in Bangladesh. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:64-71. [PMID: 25325195 PMCID: PMC4286273 DOI: 10.1289/ehp.1307884] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 10/15/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Inorganic arsenic is one of the most common naturally occurring contaminants found in the environment. Arsenic is associated with a number of health outcomes, with epigenetic modification suggested as a potential mechanism of toxicity. OBJECTIVE Among a sample of 400 adult participants, we evaluated the association between arsenic exposure, as measured by blood and urinary total arsenic concentrations, and epigenome-wide white blood cell DNA methylation. METHODS We used linear regression models to examine the associations between arsenic exposure and methylation at each CpG site, adjusted for sex, age, and batch. Differentially methylated loci were subsequently examined in relation to corresponding gene expression for functional evidence of gene regulation. RESULTS In adjusted analyses, we observed four differentially methylated CpG sites with urinary total arsenic concentration and three differentially methylated CpG sites with blood arsenic concentration, based on the Bonferroni-corrected significance threshold of p < 1 × 10(-7). Methylation of PLA2G2C (probe cg04605617) was the most significantly associated locus in relation to both urinary (p = 3.40 × 10(-11)) and blood arsenic concentrations (p = 1.48 × 10(-11)). Three additional novel methylation loci-SQSTM1 (cg01225779), SLC4A4 (cg06121226), and IGH (cg13651690)--were also significantly associated with arsenic exposure. Further, there was evidence of methylation-related gene regulation based on gene expression for a subset of differentially methylated loci. CONCLUSIONS We observed significant associations between arsenic exposure and gene-specific differential white blood cell DNA methylation, suggesting that epigenetic modifications may be an important pathway underlying arsenic toxicity. The specific differentially methylated loci identified may inform potential pathways for future interventions.
Collapse
Affiliation(s)
- Maria Argos
- Department of Public Health Sciences, The University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Rojas D, Rager JE, Smeester L, Bailey KA, Drobná Z, Rubio-Andrade M, Stýblo M, García-Vargas G, Fry RC. Prenatal arsenic exposure and the epigenome: identifying sites of 5-methylcytosine alterations that predict functional changes in gene expression in newborn cord blood and subsequent birth outcomes. Toxicol Sci 2015; 143:97-106. [PMID: 25304211 PMCID: PMC4274382 DOI: 10.1093/toxsci/kfu210] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Prenatal exposure to inorganic arsenic (iAs) is detrimental to the health of newborns and increases the risk of disease development later in life. Here we examined a subset of newborn cord blood leukocyte samples collected from subjects enrolled in the Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in Gómez Palacio, Mexico, who were exposed to a range of drinking water arsenic concentrations (0.456-236 µg/l). Changes in iAs-associated DNA 5-methylcytosine methylation were assessed across 424,935 CpG sites representing 18,761 genes and compared with corresponding mRNA expression levels and birth outcomes. In the context of arsenic exposure, a total of 2919 genes were identified with iAs-associated differences in DNA methylation. Site-specific analyses identified DNA methylation changes that were most predictive of gene expression levels where CpG methylation within CpG islands positioned within the first exon, the 5' untranslated region and 200 bp upstream of the transcription start site yielded the most significant association with gene expression levels. A set of 16 genes was identified with correlated iAs-associated changes in DNA methylation and mRNA expression and all were highly enriched for binding sites of the early growth response (EGR) and CCCTC-binding factor (CTCF) transcription factors. Furthermore, DNA methylation levels of 7 of these genes were associated with differences in birth outcomes including gestational age and head circumference.These data highlight the complex interplay between DNA methylation, functional changes in gene expression and health outcomes and underscore the need for functional analyses coupled to epigenetic assessments.
Collapse
Affiliation(s)
- Daniel Rojas
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Julia E Rager
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Lisa Smeester
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Kathryn A Bailey
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Zuzana Drobná
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Marisela Rubio-Andrade
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Miroslav Stýblo
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Gonzalo García-Vargas
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| | - Rebecca C Fry
- *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico *Curriculum in Toxicology, Department of Environmental Sciences and Engineering, Department of Nutrition and Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina and Facultad de Medicina, Universidad Juárez del Estado de Durango, Gómez Palacio, Durango, Mexico
| |
Collapse
|
84
|
Lu G, Xu H, Chang D, Wu Z, Yao X, Zhang S, Li Z, Bai J, Cai Q, Zhang W. Arsenic exposure is associated with DNA hypermethylation of the tumor suppressor gene p16. J Occup Med Toxicol 2014; 9:42. [PMID: 25598836 PMCID: PMC4297462 DOI: 10.1186/s12995-014-0042-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 12/09/2014] [Indexed: 11/16/2022] Open
Abstract
Background Occupational and environmental exposure to inorganic arsenic leads to development of cancer and represents a significant health hazard in more than 70 countries. The underlying mechanism for arsenic-induced carcinogenesis remains unclear. Laboratory studies suggest that arsenic is a poor mutagen but may cause epigenetic silencing of key tumor suppressor genes such as p16 through DNA hypermethylation. However, the evidence for an association between human arsenic exposure and abnormal DNA methylation of tumor suppressor genes is lacking. Findings Paired case–control studies were conducted involving 40 individuals with high arsenic exposure and arsenicosis, 40 individuals with similarly high exposure to arsenic but without arsenicosis, and 40 individuals with normal exposure to arsenic. DNA methylation status of p16 was determined using methylation-specific PCR. Conditional logistic regression analysis showed that DNA hypermethylation of p16 gene was significantly associated with high arsenic exposure (Odds Ratio = 10.0, P = 0.0019) independently of the development of arsenicosis (Odds Ratio = 2.0, P = 0.1343). Conclusions High exposure of arsenic in human is positively linked to DNA hypermethylation of p16 gene, suggesting that epigenetic silencing of key tumor suppressor may be an important mechanism by which arsenic promotes cancer initiation. Electronic supplementary material The online version of this article (doi:10.1186/s12995-014-0042-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangming Lu
- Institute of Health Management, Chinese PLA General Hospital, Beijing, 100853 China
| | - Huiwen Xu
- Institute for Medical Device Standardization Administration, National Institute for Food and Drug Control, Beijing, 100050 China
| | - De Chang
- Department of Respiratory Medicine, General Hospital of Chinese People's Armed Police Forces, Beijing, 100039 China
| | - Zhenglai Wu
- School of Basic Medicine, Peking Union Medical College, Beijing, 100005 China
| | - Xiaoyuan Yao
- Institute of Environmental Health Monitoring, Chinese Center for Disease Control and Prevention, Beijing, 100021 China
| | - Shiying Zhang
- Bameng Hygiene and Epidemic Prevention Station, Inner Mongolia, 015000 China
| | - Zhenlong Li
- Hangjinhouqi Hygiene and Epidemic Prevention Station, Inner Mongolia, 015400 China
| | - Jieben Bai
- Hangjinhouqi Hygiene and Epidemic Prevention Station, Inner Mongolia, 015400 China
| | - Qing Cai
- Key Laboratory of Molecular Biology, Chinese PLA Air Force General Hospital, Beijing, 100036 China
| | - Wen Zhang
- Key Laboratory of Molecular Biology, Chinese PLA Air Force General Hospital, Beijing, 100036 China
| |
Collapse
|
85
|
Rozek LS, Dolinoy DC, Sartor MA, Omenn GS. Epigenetics: relevance and implications for public health. Annu Rev Public Health 2014; 35:105-22. [PMID: 24641556 DOI: 10.1146/annurev-publhealth-032013-182513] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Improved understanding of the multilayer regulation of the human genome has led to a greater appreciation of environmental, nutritional, and epigenetic risk factors for human disease. Chromatin remodeling, histone tail modifications, and DNA methylation are dynamic epigenetic changes responsive to external stimuli. Careful interpretation can provide insights for actionable public health through collaboration between population and basic scientists and through integration of multiple data sources. We review key findings in environmental epigenetics both in human population studies and in animal models, and discuss the implications of these results for risk assessment and public health protection. To ultimately succeed in identifying epigenetic mechanisms leading to complex phenotypes and disease, researchers must integrate the various animal models, human clinical approaches, and human population approaches while paying attention to life-stage sensitivity, to generate effective prescriptions for human health evaluation and disease prevention.
Collapse
|
86
|
Paul S, Banerjee N, Chatterjee A, Sau TJ, Das JK, Mishra PK, Chakrabarti P, Bandyopadhyay A, Giri AK. Arsenic-induced promoter hypomethylation and over-expression of ERCC2 reduces DNA repair capacity in humans by non-disjunction of the ERCC2-Cdk7 complex. Metallomics 2014; 6:864-73. [PMID: 24473091 DOI: 10.1039/c3mt00328k] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Arsenic in drinking water is of critical concern in West Bengal, India, as it results in several physiological symptoms including dermatological lesions and cancers. Impairment of the DNA repair mechanism has been associated with arsenic-induced genetic damage as well as with several cancers. ERCC2 (Excision Repair Cross-Complementing rodent repair, complementation group 2), mediates DNA-repair by interacting with Cdk-activating kinase (CAK) complex, which helps in DNA proof-reading during transcription. Arsenic metabolism alters epigenetic regulation; we tried to elucidate the regulation of ERCC2 in arsenic-exposed humans. Water, urine, nails, hair and blood samples from one hundred and fifty seven exposed and eighty eight unexposed individuals were collected. Dose dependent validation was done in vitro using HepG2 and HEK-293. Arsenic content in the biological samples was higher in the exposed individuals compared with the content in unexposed individuals (p < 0.001). Bisulfite-modified methylation specific PCR showed a significant (p < 0.0001) hypomethylation of the ERCC2 promoter in the arsenic-exposed individuals. Densitometric analysis of immunoblots showed a nearly two-fold increase in expression of ERCC2 in exposed individuals, but there was an enhanced genotoxic insult as measured by micronuclei frequency. Immuno-precipitation and western blotting revealed an increased (p < 0.001) association of Cdk7 with ERCC2 in highly arsenic exposed individuals. The decrease in CAK activity was determined by observing the intensity of Ser(392) phosphorylation in p53, in vitro, which decreased with an increase in arsenic dose. Thus we infer that arsenic biotransformation leads to promoter hypomethylation of ERCC2, which in turn inhibits the normal functioning of the CAK-complex, thus affecting DNA-repair; this effect was highest among the arsenic exposed individuals with dermatological lesions.
Collapse
Affiliation(s)
- Somnath Paul
- Molecular and Human Genetics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Olden K, Lin YS, Gruber D, Sonawane B. Epigenome: biosensor of cumulative exposure to chemical and nonchemical stressors related to environmental justice. Am J Public Health 2014; 104:1816-21. [PMID: 25122010 DOI: 10.2105/ajph.2014.302130] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding differential disease susceptibility requires new tools to quantify the cumulative effects of environmental stress. Evidence suggests that social, physical, and chemical stressors can influence disease through the accumulation of epigenetic modifications. Geographically stable epigenetic alterations could identify plausible mechanisms for health disparities among the disadvantaged and poor. Relations between neighborhood-specific epigenetic markers and disease would identify the most appropriate targets for medical and environmental intervention. Complex interactions among genes, the environment, and disease require the examination of how epigenetic changes regulate susceptibility to environmental stressors. Progress in understanding disparities in disease susceptibility may depend on assessing the cumulative effect of environmental stressors on genetic substrates. We highlight key concepts regarding the interface between environmental stress, epigenetics, and chronic disease.
Collapse
Affiliation(s)
- Kenneth Olden
- Kenneth Olden, Yu-Sheng Lin, and Babasaheb Sonawane are with National Center for Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Washington, DC. David Gruber is with Department of Natural Sciences, Baruch College, City University of New York, New York, NY
| | | | | | | |
Collapse
|
88
|
Ray PD, Yosim A, Fry RC. Incorporating epigenetic data into the risk assessment process for the toxic metals arsenic, cadmium, chromium, lead, and mercury: strategies and challenges. Front Genet 2014; 5:201. [PMID: 25076963 PMCID: PMC4100550 DOI: 10.3389/fgene.2014.00201] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 06/16/2014] [Indexed: 12/24/2022] Open
Abstract
Exposure to toxic metals poses a serious human health hazard based on ubiquitous environmental presence, the extent of exposure, and the toxicity and disease states associated with exposure. This global health issue warrants accurate and reliable models derived from the risk assessment process to predict disease risk in populations. There has been considerable interest recently in the impact of environmental toxicants such as toxic metals on the epigenome. Epigenetic modifications are alterations to an individual's genome without a change in the DNA sequence, and include, but are not limited to, three commonly studied alterations: DNA methylation, histone modification, and non-coding RNA expression. Given the role of epigenetic alterations in regulating gene and thus protein expression, there is the potential for the integration of toxic metal-induced epigenetic alterations as informative factors in the risk assessment process. In the present review, epigenetic alterations induced by five high priority toxic metals/metalloids are prioritized for analysis and their possible inclusion into the risk assessment process is discussed.
Collapse
Affiliation(s)
- Paul D. Ray
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| | - Andrew Yosim
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
| | - Rebecca C. Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North CarolinaChapel Hill, NC, USA
- Curriculum in Toxicology, School of Medicine, University of North CarolinaChapel Hill, NC, USA
| |
Collapse
|
89
|
Bariar B, Vestal CG, Richardson C. Long-term effects of chromatin remodeling and DNA damage in stem cells induced by environmental and dietary agents. J Environ Pathol Toxicol Oncol 2014; 32:307-27. [PMID: 24579784 DOI: 10.1615/jenvironpatholtoxicoloncol.2013007980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The presence of histones acts as a barrier to protein access; thus chromatin remodeling must occur for essential processes such as transcription and replication. In conjunction with histone modifications, DNA methylation plays critical roles in gene silencing through chromatin remodeling. Chromatin remodeling is also interconnected with the DNA damage response, maintenance of stem cell properties, and cell differentiation programs. Chromatin modifications have increasingly been shown to produce long-lasting alterations in chromatin structure and transcription. Recent studies have shown environmental exposures in utero have the potential to alter normal developmental signaling networks, physiologic responses, and disease susceptibility later in life during a process known as developmental reprogramming. In this review we discuss the long-term impact of exposure to environmental compounds, the chromatin modifications that they induce, and the differentiation and developmental programs of multiple stem and progenitor cell types altered by exposure. The main focus is to highlight agents present in the human lifestyle that have the potential to promote epigenetic changes that impact developmental programs of specific cell types, may promote tumorigenesis through altering epigenetic marks, and may be transgenerational, for example, those able to be transmitted through multiple cell divisions.
Collapse
Affiliation(s)
- Bhawana Bariar
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | - C Greer Vestal
- Department of Biology, University of North Carolina at Charlotte, Charlotte, NC
| | | |
Collapse
|
90
|
Bustaffa E, Stoccoro A, Bianchi F, Migliore L. Genotoxic and epigenetic mechanisms in arsenic carcinogenicity. Arch Toxicol 2014; 88:1043-67. [PMID: 24691704 DOI: 10.1007/s00204-014-1233-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Arsenic is a human carcinogen with weak mutagenic properties that induces tumors through mechanisms not yet completely understood. People worldwide are exposed to arsenic-contaminated drinking water, and epidemiological studies showed a high percentage of lung, bladder, liver, and kidney cancer in these populations. Several mechanisms by which arsenical compounds induce tumorigenesis were proposed including genotoxic damage and chromosomal abnormalities. Over the past decade, a growing body of evidence indicated that epigenetic modifications have a role in arsenic-inducing adverse effects on human health. The main epigenetic mechanisms are DNA methylation in gene promoter regions that regulate gene expression, histone tail modifications that regulate the accessibility of transcriptional machinery to genes, and microRNA activity (noncoding RNA able to modulate mRNA translation). The "double capacity" of arsenic to induce mutations and epimutations could be the main cause of arsenic-induced carcinogenesis. The aim of this review is to better clarify the mechanisms of the initiation and/or the promotion of arsenic-induced carcinogenesis in order to understand the best way to perform an early diagnosis and a prompt prevention that is the key point for protecting arsenic-exposed population. Studies on arsenic-exposed population should be designed in order to examine more comprehensively the presence and consequences of these genetic/epigenetic alterations.
Collapse
Affiliation(s)
- Elisa Bustaffa
- Unit of Environmental Epidemiology and Diseases Registries, Institute of Clinical Physiology, National Council of Research, Via Moruzzi 1, 56123, Pisa, Italy
| | | | | | | |
Collapse
|
91
|
Liu X, Zheng Y, Zhang W, Zhang X, Ning H, Liu K, LIoyd-Jones DM, Fornage M, He K, Hou L. Blood methylomics in response to arsenic exposure in a low-exposed US population. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2014; 24:145-9. [PMID: 24368509 PMCID: PMC4167014 DOI: 10.1038/jes.2013.89] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 10/04/2013] [Accepted: 10/05/2013] [Indexed: 05/14/2023]
Abstract
Exposure to arsenic (As) has been associated with a number of diseases such as cancers, cardiovascular diseases (CVD), and neurological disorders. To explore the possible underlying epigenetic mechanisms, a nested case-control study was conducted within the Coronary Artery Risk Development in Young Adults (CARDIA) study by randomly selecting 46 non-smoker and non-diabetic White participants with low (N=23) and high (N=23) As exposure based on toenail total As measures at examination year 2. We conducted methylomic profiling of white blood cell (WBC) DNA collected at examination year 15 using the Illumina HumanMethylation450 BeadChip, and performed association tests using multiple linear regression models adjusting for age, sex, and estimated WBC proportions. We observed 22 CpG sites with methylation levels associated with high As exposure at a nominal significance level of 10(-4). However, the statistical significance disappeared after correction for multiple testing. Some genes annotated by these 22 CpG sites are known to be involved in As-associated diseases. Replication in larger samples of individuals with low levels of As exposure will be required.
Collapse
Affiliation(s)
- Xin Liu
- Mary Ann and J. Milburn Smith Child Health Research Program, Ann & Robert H. Lurie Children's Hospital of Chicago Research Center, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yinan Zheng
- Driskill Graduate Program (DGP) in Life Sciences, Northwestern University Biomedical Informatics Center (NUBIC), NUCATS, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wei Zhang
- Department of Pediatrics, University of Illinois, Chicago, IL, USA
| | - Xiao Zhang
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hongyan Ning
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kiang Liu
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Donald M LIoyd-Jones
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Myriam Fornage
- Institute of Molecular Medicine and Division of Epidemiology, School of Public Health, University of Texas Sciences Center, Houston, TX, USA
| | - Ka He
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Correspondence and reprint requests should be addressed to: Lifang Hou MD, PhD, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, 680 N Lake Shore Drive, Suite 1400, Chicago, IL 60611 USA, Telephone: 312-503-4798, Fax: (312) 908-9588,
| |
Collapse
|
92
|
Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation. Arch Toxicol 2014; 88:1549-59. [PMID: 24570342 DOI: 10.1007/s00204-014-1214-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/11/2014] [Indexed: 01/18/2023]
Abstract
We previously reported that the sustained exposure of human urothelial cells (HUCs) to low-dose sodium arsenite induces changes in the gene expression profile and neoplastic transformation. In this study, we used the HumanMethylation27 BeadChip to analyze genome-wide methylation profiles and 5-aza-2'-deoxycytidine to examine the involvement of promoter methylation in gene expression. Because the expression of lipocalin-2 (LCN2) was highly enhanced by promoter hypomethylation in inorganic arsenic (iAs)-HUCs cells as well as bladder cancer tissues, we further showed that mutations at the binding sequences for NF-κB and C/EBP-α significantly reduced LCN2 promoter activity. By chromatin immunoprecipitation assay, we demonstrated the significantly increased binding of RelA (p65) and NF-κB1 (p50) to the hypomethylated promoter of LCN2 in the iAs-HUCs. Furthermore, we also demonstrated that LCN2 overexpression was crucial for the neoplastic characteristics of the iAs-HUCs, such as enhanced anchorage-independent growth, resistance to serum deprivation and activation of NF-κB signaling. In addition, our results indicated that enhanced NF-κB activity in iAs-HUCs was via LCN2-mediated increase in intracellular iron and reactive oxygen species levels. Taken together, our results show that sustained low-dose arsenic exposure results in epigenetic changes and enhanced oncogenic potential via LCN2 overexpression.
Collapse
|
93
|
Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, Cardenas A, Wright RO, Christiani DC. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics 2014; 9:774-82. [PMID: 24525453 DOI: 10.4161/epi.28153] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Prenatal arsenic exposure is associated with increased risk of disease in adulthood. This has led to considerable interest in arsenic's ability to disrupt fetal programming. Many studies report that arsenic exposure alters DNA methylation in whole blood but these studies did not adjust for cell mixture. In this study, we examined the relationship between arsenic in maternal drinking water collected ≤ 16 weeks gestational age and DNA methylation in cord blood (n = 44) adjusting for leukocyte-tagged differentially methylated regions. DNA methylation was quantified using the Infinium HumanMethylation 450 BeadChip array. Recursively partitioned mixture modeling examined the relationship between arsenic and methylation at 473,844 CpG sites. Median arsenic concentration in water was 12 µg/L (range<1- 510 µg/L). Log 10 arsenic was associated with altered DNA methylation across the epigenome (P = 0.002); however, adjusting for leukocyte distributions attenuated this association (P = 0.013). We also observed that arsenic had a strong effect on the distribution of leukocytes in cord blood. In adjusted models, every log 10 increase in maternal drinking water arsenic exposure was estimated to increase CD8+ T cells by 7.4% (P = 0.0004) and decrease in CD4+ T cells by 9.2% (P = 0.0002). These results show that prenatal exposure to arsenic had an exposure-dependent effect on specific T cell subpopulations in cord blood and altered DNA methylation in cord blood. Future research is needed to determine if these small changes in DNA methylation alter gene expression or are associated with adverse health effects.
Collapse
Affiliation(s)
- Molly L Kile
- Oregon State University; College of Public Health and Human Sciences; Corvallis, OR USA
| | - E Andres Houseman
- Oregon State University; College of Public Health and Human Sciences; Corvallis, OR USA
| | | | | | | | | | - Andres Cardenas
- Oregon State University; College of Public Health and Human Sciences; Corvallis, OR USA
| | - Robert O Wright
- Preventative Medicine and Pediatrics; Mt Sinai School of Medicine; New York, NY USA
| | | |
Collapse
|
94
|
Yang TY, Hsu LI, Chiu AW, Pu YS, Wang SH, Liao YT, Wu MM, Wang YH, Chang CH, Lee TC, Chen CJ. Comparison of genome-wide DNA methylation in urothelial carcinomas of patients with and without arsenic exposure. ENVIRONMENTAL RESEARCH 2014; 128:57-63. [PMID: 24268366 DOI: 10.1016/j.envres.2013.10.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 09/28/2013] [Accepted: 10/29/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Arsenic is a well-documented carcinogen of human urothelial carcinoma (UC) with incompletely understood mechanisms. OBJECTIVES This study aimed to compare the genome-wide DNA methylation profiles of arsenic-induced UC (AsUC) and non-arsenic-induced UC (Non-AsUC), and to assess associations between site-specific methylation levels and cumulative arsenic exposure. METHODS Genome-wide DNA methylation profiles in 14 AsUC and 14 non-AsUC were analyzed by Illumina Infinium methylation27 BeadChip and validated by bisulfite pyrosequencing. Mean methylation levels (β¯) in AsUC and non-AsUC were compared by their ratio (β¯ ratio) and difference (Δβ¯). Associations between site-specific methylation levels in UC and cumulative arsenic exposure were examined. RESULTS Among 27,578 methylation sites analyzed, 231 sites had β¯ ratio >2 or <0.5 and 45 sites had Δβ¯ >0.2 or <-0.2. There were 13 sites showing statistically significant (q<0.05) differences in β¯ between AsUC and non-AsUC including 12 hypermethylation sites in AsUC and only one hypermethylation site in non-AsUC. Significant associations between cumulative arsenic exposure and DNA methylation levels of 28 patients were observed in nine CpG sites of nine gens including PDGFD (Spearman rank correlation, 0.54), CTNNA2 (0.48), KCNK17 (0.52), PCDHB2 (0.57), ZNF132 (0.48), DCDC2 (0.48), KLK7 (0.48), FBXO39 (0.49), and NPY2R (0.45). These associations remained statistically significant for CpG sites in CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 in 20 non-smoking women after adjustment for tumor stage and age. CONCLUSIONS Significant associations between cumulative arsenic exposure and methylation level of CTNNA2, KLK7, NPY2R, ZNF132 and KCNK17 were found in smoking-unrelated urothelial carcinoma. Arsenic exposure may cause urothelial carcinomas through the hypermethylation of genes involved in cell adhesion, proteolysis, transcriptional regulation, neuronal pathway, and ion transport. The findings of this study, which are limited by its small sample size and moderate dose-response relation, remain to be validated by further studies with large sample sizes.
Collapse
Affiliation(s)
- Tse-Yen Yang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Molecular and Genomic Epidemiology Center, China Medical University Hospital, Taichung, Taiwan; China Medical University, Taichung, Taiwan
| | - Ling-I Hsu
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Allen W Chiu
- College of Medicine, National Yang-Ming University Hospital, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sheng-Hsin Wang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Tang Liao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Meei-Maan Wu
- Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Hung Wang
- Division of General Surgery, Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chin-Hao Chang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Te-Chang Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Jen Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan; Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
95
|
Fernández AF, Toraño EG, Urdinguio RG, Lana AG, Fernández IA, Fraga MF. The Epigenetic Basis of Adaptation and Responses to Environmental Change: Perspective on Human Reproduction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 753:97-117. [DOI: 10.1007/978-1-4939-0820-2_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
96
|
Environmental chemical stressors as epigenome modifiers: a new horizon in assessment of toxicological effects. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-0007-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
97
|
Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, Slavkovich V, Ilievski V, Levy D, van Geen A, Mey JL, Alam S, Siddique AB, Parvez F, Graziano JH, Gamble MV. A dose-response study of arsenic exposure and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:1306-12. [PMID: 24013868 PMCID: PMC3855504 DOI: 10.1289/ehp.1206421] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 09/04/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND Several studies employing cell culture and animal models have suggested that arsenic (As) exposure induces global DNA hypomethylation. However, As has been associated with global DNA hypermethylation in human study populations. We hypothesized that this discrepancy may reflect a nonlinear relationship between As dose and DNA methylation. OBJECTIVE The objective of this study was to examine the dose-response relationship between As and global methylation of peripheral blood mononuclear cell (PBMC) DNA in apparently healthy Bangladeshi adults chronically exposed to a wide range of As concentrations in drinking water. METHODS Global PBMC DNA methylation, plasma folate, blood S-adenosylmethionine (SAM), and concentrations of As in drinking water, blood, and urine were measured in 320 adults. DNA methylation was measured using the [3H]-methyl incorporation assay, which provides disintegration-per-minute (DPM) values that are negatively associated with global DNA methylation. RESULTS Water, blood, and urinary As were positively correlated with global PBMC DNA methylation (p < 0.05). In multivariable-adjusted models, 1-μg/L increases in water and urinary As were associated with 27.6-unit (95% CI: 6.3, 49.0) and 22.1-unit (95% CI: 0.5, 43.8) decreases in DPM per microgram DNA, respectively. Categorical models indicated that estimated mean levels of PBMC DNA methylation were highest in participants with the highest As exposures. CONCLUSIONS These results suggest that As is positively associated with global methylation of PBMC DNA over a wide range of drinking water As concentrations. Further research is necessary to elucidate underlying mechanisms and physiologic implications.
Collapse
Affiliation(s)
- Megan M Niedzwiecki
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Chanda S, Dasgupta UB, Mazumder DG, Saha J, Gupta B. Human GMDS gene fragment hypermethylation in chronic high level of arsenic exposure with and without arsenic induced cancer. SPRINGERPLUS 2013; 2:557. [PMID: 24255851 PMCID: PMC3825097 DOI: 10.1186/2193-1801-2-557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/26/2013] [Indexed: 12/31/2022]
Abstract
Arsenic, though a poor mutagen, is an accepted environmental carcinogen. Perturbation of DNA methylation pattern leading to aberrant gene expression has been hypothesized as the mechanism for arsenic induced carcinogenesis. We had earlier demonstrated the hypermethylation of promoter region of p53 and p16 genes in persons exposed to different doses of arsenic. Till now no genomic hot spot has been identified which is frequently hypermethylated or hypomethylated in persons chronically exposed to environmental arsenic. In the present work, we have identified one hypermethylated sequence by methyl-sensitive arbitrarily primed polymerase chain reaction in the peripheral blood leukocyte DNA of chronically arsenic exposed persons with and without arsenic induced skin cancer. The sequence is from GMDS gene responsible for fucose metabolism. Southern hybridization of the sequence to the amplification products of methyl sensitive restriction enzyme digested genome of persons exposed to different doses of arsenic indicated that methylation increased in a dose dependent manner.
Collapse
Affiliation(s)
- Sarmishtha Chanda
- Department of Biophysics, Molecular biology & Genetics, University of Calcutta, Kolkata, West Bengal 700092 India ; Department of Physiology, Presidency University, Kolkata, West Bengal 700073 India
| | | | | | | | | |
Collapse
|
99
|
Moore LE, Karami S, Steinmaus C, Cantor KP. Use of OMIC technologies to study arsenic exposure in human populations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:589-595. [PMID: 23893652 DOI: 10.1002/em.21792] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Exposure to arsenic (As) in drinking water is a major health concern. More than 100 million individuals are exposed to levels over the current World Health Organization standard of 10 µg/L worldwide. Arsenic is one of the few agents established as a human carcinogen prior to understanding its mechanism of carcinogenicity. OMIC technologies have enabled researchers to utilize agnostic approaches to explore new, unknown mechanisms through which As causes disease in exposed human populations. In this article, we present recent studies in which OMIC technologies have been used to explore differences in human biological samples to identify markers of exposure, disease susceptibility, and effect in As-exposed and/or diseased tissues.
Collapse
Affiliation(s)
- Lee E Moore
- Division of Cancer Epidemiology and Genetics (DCEG), US National Cancer Institute, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.
| | | | | | | |
Collapse
|
100
|
Koestler DC, Avissar-Whiting M, Houseman EA, Karagas MR, Marsit CJ. Differential DNA methylation in umbilical cord blood of infants exposed to low levels of arsenic in utero. ENVIRONMENTAL HEALTH PERSPECTIVES 2013; 121:971-7. [PMID: 23757598 PMCID: PMC3733676 DOI: 10.1289/ehp.1205925] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 06/07/2013] [Indexed: 05/21/2023]
Abstract
BACKGROUND There is increasing epidemiologic evidence that arsenic exposure in utero, even at low levels found throughout much of the world, is associated with adverse reproductive outcomes and may contribute to long-term health effects. Animal models, in vitro studies, and human cancer data suggest that arsenic may induce epigenetic alterations, specifically by altering patterns of DNA methylation. OBJECTIVES In this study we aimed to identify differences in DNA methylation in cord blood samples of infants with in utero, low-level arsenic exposure. METHODS DNA methylation of cord-blood derived DNA from 134 infants involved in a prospective birth cohort in New Hampshire was profiled using the Illumina Infinium Methylation450K array. In utero arsenic exposure was estimated using maternal urine samples collected at 24-28 weeks gestation. We used a novel cell mixture deconvolution methodology for examining the association between inferred white blood cell mixtures in infant cord blood and in utero arsenic exposure; we also examined the association between methylation at individual CpG loci and arsenic exposure levels. RESULTS We found an association between urinary inorganic arsenic concentration and the estimated proportion of CD8+ T lymphocytes (1.18; 95% CI: 0.12, 2.23). Among the top 100 CpG loci with the lowest p-values based on their association with urinary arsenic levels, there was a statistically significant enrichment of these loci in CpG islands (p = 0.009). Of those in CpG islands (n = 44), most (75%) exhibited higher methylation levels in the highest exposed group compared with the lowest exposed group. Also, several CpG loci exhibited a linear dose-dependent relationship between methylation and arsenic exposure. CONCLUSIONS Our findings suggest that in utero exposure to low levels of arsenic may affect the epigenome. Long-term follow-up is planned to determine whether the observed changes are associated with health outcomes.
Collapse
Affiliation(s)
- Devin C Koestler
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | | | | | | | | |
Collapse
|