51
|
Wang MX, Han J, Liu T, Wang RX, Li LT, Li ZD, Yang JC, Liu LL, Lu Y, Xie XB, Gong JY, Li SY, Zhang L, Ling V, Wang JS. Poly-hydroxylated bile acids and their prognostic roles in Alagille syndrome. World J Pediatr 2023; 19:652-662. [PMID: 36658452 DOI: 10.1007/s12519-022-00676-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND The liver manifestations of Alagille syndrome (ALGS) are highly variable, and factors affecting its prognosis are poorly understood. We asked whether the composition of bile acids in ALGS patients with good clinical outcomes differs from that in patients with poor outcomes and whether bile acids could be used as prognostic biomarkers. METHODS Blood for bile acid profiling was collected from genetically confirmed JAG1-associated ALGS patients before one year of age. A good prognosis was defined as survival with native liver and total bilirubin (TB) < 85.5 μmol/L, while a poor prognosis was defined as either liver transplantation, death from liver failure, or TB ≥ 85.5 μmol/L at the last follow-up. RESULTS We found that the concentrations of two poly-hydroxylated bile acids, tauro-2β,3α,7α,12α-tetrahydroxylated bile acid (THBA) and glyco-hyocholic acid (GHCA), were significantly increased in patients with good prognosis compared to those with poor prognosis [area under curve (AUC) = 0.836 and 0.782, respectively] in the discovery cohort. The same trend was also observed in the molar ratios of GHCA to glyco- chenodeoxycholic acid (GCDCA) and tetrahydroxylated bile acid (THCA) to tauro-chenodeoxycholic acid (TCDCA) (both AUC = 0.836). A validation cohort confirmed these findings. Notably, tauro-2β,3α,7α,12α-THBA achieved the highest prediction accuracy of 88.00% (92.31% sensitivity and 83.33% specificity); GHCA at > 607.69 nmol/L was associated with native liver survival [hazard ratio: 13.03, 95% confidence interval (CI): (2.662-63.753), P = 0.002]. CONCLUSIONS We identified two poly-hydroxylated bile acids as liver prognostic biomarkers of ALGS patients. Enhanced hydroxylation of bile acids may result in better clinical outcomes.
Collapse
Affiliation(s)
- Meng-Xuan Wang
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun Han
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Teng Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ren-Xue Wang
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Li-Ting Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Zhong-Die Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jun-Cong Yang
- University of Victoria-Genome BC Proteomics Centre and Division of Medical Sciences, Victoria, British Columbia, Canada
| | - Lang-Li Liu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Yi Lu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xin-Bao Xie
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Jing-Yu Gong
- Department of Pediatrics, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Shi-Yu Li
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 201199, China
| | - Victor Ling
- BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Jian-She Wang
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Birth Defect, Shanghai, 201102, China.
| |
Collapse
|
52
|
Liu C, Zhan S, Li N, Tu T, Lin J, Li M, Chen M, Zeng Z, Zhuang X. Bile acid alterations associated with indolent course of inflammatory bowel disease. Scand J Gastroenterol 2023; 58:988-997. [PMID: 37070769 DOI: 10.1080/00365521.2023.2200518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND The indolent course of treatment-naive patients with inflammatory bowel disease (IBD) is confirmed predictable based on clinical characteristics. Current evidences supported that bile acids (BAs) alteration might be promising biomarkers in the field of IBD. We aimed to analyze the alterations of BAs as the disease progresses and explore their predictive value for indolent course of IBD. METHODS The indolent course of IBD was defined as a disease course without need for strict interventions throughout the entire follow-up. A targeted metabolomics method was used to detect the concentration of 27 BAs from serum sample in treatment-naive patients with IBD (Crohn's disease [CD], n = 27; ulcerative colitis [UC], n = 50). Patients with CD and UC were individually divided into two groups for further study according to the median time of indolent course. The overall BAs profile and the clinical value of BAs in predicting indolent course of IBD were identified between different groups. RESULTS For CD, the levels of deoxycholic acid, glycodeoxycholic acid, taurodeoxycholic acid, glycolithocholic acid-3-sulfate disodium salt and iso-lithocholic acid were significantly increased in patients with indolent course > 18 M (p < 0.05). These five BAs owned 83.5% accuracy for predicting indolent course over 18 months in CD. For UC, the concentration of deoxycholic acid and glycodeoxycholic acid were significantly higher, while dehydrocholic acid were lower in patients with indolent course > 48 M (p < 0.05). These three BAs predicted indolent course over 48 months of 69.8% accuracy in UC. CONCLUSION The specific BAs alterations might be potential biomarkers in predicting disease course of IBD patients.
Collapse
Affiliation(s)
- Caiguang Liu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shukai Zhan
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Na Li
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tong Tu
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianming Lin
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Manying Li
- Department of Medical Ultrasonics, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minhu Chen
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhirong Zeng
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojun Zhuang
- Department of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
53
|
Ziegler F, Steuer A, Di Pizio A, Behrens M. Physiological activation of human and mouse bitter taste receptors by bile acids. Commun Biol 2023; 6:612. [PMID: 37286811 DOI: 10.1038/s42003-023-04971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
Beside the oral cavity, bitter taste receptors are expressed in several non-gustatory tissues. Whether extra-oral bitter taste receptors function as sensors for endogenous agonists is unknown. To address this question, we devised functional experiments combined with molecular modeling approaches to investigate human and mouse receptors using a variety of bile acids as candidate agonists. We show that five human and six mouse receptors are responsive to an array of bile acids. Moreover, their activation threshold concentrations match published data of bile acid concentrations in human body fluids, suggesting a putative physiological activation of non-gustatory bitter receptors. We conclude that these receptors could serve as sensors for endogenous bile acid levels. These results also indicate that bitter receptor evolution may not be driven solely by foodstuff or xenobiotic stimuli, but also depend on endogenous ligands. The determined bitter receptor activation profiles of bile acids now enable detailed physiological model studies.
Collapse
Affiliation(s)
- Florian Ziegler
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Alexandra Steuer
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Maik Behrens
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany.
| |
Collapse
|
54
|
Dai HD, Qiu F, Jackson K, Fruttiger M, Rizzo WB. Untargeted Metabolomic Analysis of Sjögren-Larsson Syndrome Reveals a Distinctive Pattern of Multiple Disrupted Biochemical Pathways. Metabolites 2023; 13:682. [PMID: 37367841 DOI: 10.3390/metabo13060682] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Sjögren-Larsson syndrome (SLS) is a rare inherited neurocutaneous disease characterized by ichthyosis, spastic diplegia or tetraplegia, intellectual disability and a distinctive retinopathy. SLS is caused by bi-allelic mutations in ALDH3A2, which codes for fatty aldehyde dehydrogenase (FALDH) and results in abnormal lipid metabolism. The biochemical abnormalities in SLS are not completely known, and the pathogenic mechanisms leading to symptoms are still unclear. To search for pathways that are perturbed in SLS, we performed untargeted metabolomic screening in 20 SLS subjects along with age- and sex-matched controls. Of 823 identified metabolites in plasma, 121 (14.7%) quantitatively differed in the overall SLS cohort from controls; 77 metabolites were decreased and 44 increased. Pathway analysis pointed to disrupted metabolism of sphingolipids, sterols, bile acids, glycogen, purines and certain amino acids such as tryptophan, aspartate and phenylalanine. Random forest analysis identified a unique metabolomic profile that had a predictive accuracy of 100% for discriminating SLS from controls. These results provide new insight into the abnormal biochemical pathways that likely contribute to disease in SLS and may constitute a biomarker panel for diagnosis and future therapeutic studies.
Collapse
Affiliation(s)
- Hongying Daisy Dai
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - William B Rizzo
- Department of Pediatrics and Child Health Research Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Children's Hospital & Medical Center, Omaha, NE 68114, USA
| |
Collapse
|
55
|
Duizer C, de Zoete MR. The Role of Microbiota-Derived Metabolites in Colorectal Cancer. Int J Mol Sci 2023; 24:8024. [PMID: 37175726 PMCID: PMC10178193 DOI: 10.3390/ijms24098024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The impact of bacterial members of the microbiota on the development of colorectal cancer (CRC) has become clear in recent years. However, exactly how bacteria contribute to the development of cancer is often still up for debate. The impact of bacteria-derived metabolites, which can influence the development of CRC either in a promoting or inhibiting manner, is undeniable. Here, we discuss the effects of the most well-studied bacteria-derived metabolites associated with CRC, including secondary bile acids, short-chain fatty acids, trimethylamine-N-oxide and indoles. We show that the effects of individual metabolites on CRC development are often nuanced and dose- and location-dependent. In the coming years, the array of metabolites involved in CRC development will undoubtedly increase further, which will emphasize the need to focus on causation and mechanisms and the clearly defined roles of bacterial species within the microbiota.
Collapse
Affiliation(s)
| | - Marcel R. de Zoete
- Department of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
56
|
Woo AYM, Aguilar Ramos MA, Narayan R, Richards-Corke KC, Wang ML, Sandoval-Espinola WJ, Balskus EP. Targeting the human gut microbiome with small-molecule inhibitors. NATURE REVIEWS. CHEMISTRY 2023; 7:319-339. [PMID: 37117817 DOI: 10.1038/s41570-023-00471-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/20/2023] [Indexed: 04/30/2023]
Abstract
The human gut microbiome is a complex microbial community that is strongly linked to both host health and disease. However, the detailed molecular mechanisms underlying the effects of these microorganisms on host biology remain largely uncharacterized. The development of non-lethal, small-molecule inhibitors that target specific gut microbial activities enables a powerful but underutilized approach to studying the gut microbiome and a promising therapeutic strategy. In this Review, we will discuss the challenges of studying this microbial community, the historic use of small-molecule inhibitors in microbial ecology, and recent applications of this strategy. We also discuss the evidence suggesting that host-targeted drugs can affect the growth and metabolism of gut microbes. Finally, we address the issues of developing and implementing microbiome-targeted small-molecule inhibitors and define important future directions for this research.
Collapse
Affiliation(s)
- Amelia Y M Woo
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Rohan Narayan
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | | | - Michelle L Wang
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
| | - Walter J Sandoval-Espinola
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA
- Universidad Nacional de Asunción, Facultad de Ciencias Exactas y Naturales, Departamento de Biotecnología, Laboratorio de Biotecnología Microbiana, San Lorenzo, Paraguay
| | - Emily P Balskus
- Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
57
|
Vitale G, Mattiaccio A, Conti A, Berardi S, Vero V, Turco L, Seri M, Morelli MC. Molecular and Clinical Links between Drug-Induced Cholestasis and Familial Intrahepatic Cholestasis. Int J Mol Sci 2023; 24:ijms24065823. [PMID: 36982896 PMCID: PMC10057459 DOI: 10.3390/ijms24065823] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Idiosyncratic Drug-Induced Liver Injury (iDILI) represents an actual health challenge, accounting for more than 40% of hepatitis cases in adults over 50 years and more than 50% of acute fulminant hepatic failure cases. In addition, approximately 30% of iDILI are cholestatic (drug-induced cholestasis (DIC)). The liver's metabolism and clearance of lipophilic drugs depend on their emission into the bile. Therefore, many medications cause cholestasis through their interaction with hepatic transporters. The main canalicular efflux transport proteins include: 1. the bile salt export pump (BSEP) protein (ABCB11); 2. the multidrug resistance protein-2 (MRP2, ABCC2) regulating the bile salts' independent flow by excretion of glutathione; 3. the multidrug resistance-1 protein (MDR1, ABCB1) that transports organic cations; 4. the multidrug resistance-3 protein (MDR3, ABCB4). Two of the most known proteins involved in bile acids' (BAs) metabolism and transport are BSEP and MDR3. BSEP inhibition by drugs leads to reduced BAs' secretion and their retention within hepatocytes, exiting in cholestasis, while mutations in the ABCB4 gene expose the biliary epithelium to the injurious detergent actions of BAs, thus increasing susceptibility to DIC. Herein, we review the leading molecular pathways behind the DIC, the links with the other clinical forms of familial intrahepatic cholestasis, and, finally, the main cholestasis-inducing drugs.
Collapse
Affiliation(s)
- Giovanni Vitale
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Alessandro Mattiaccio
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Amalia Conti
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Sonia Berardi
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Vittoria Vero
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Laura Turco
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| | - Marco Seri
- U.O. Genetica Medica, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum-University of Bologna, 40126 Bologna, Italy
| | - Maria Cristina Morelli
- Internal Medicine Unit for the Treatment of Severe Organ Failure, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- European Reference Network on Hepatological Diseases (ERN RARE-LIVER), 20246 Hamburg, Germany
| |
Collapse
|
58
|
Kastrinou Lampou V, Poller B, Huth F, Fischer A, Kullak-Ublick GA, Arand M, Schadt HS, Camenisch G. Novel insights into bile acid detoxification via CYP, UGT and SULT enzymes. Toxicol In Vitro 2023; 87:105533. [PMID: 36473578 DOI: 10.1016/j.tiv.2022.105533] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Bile acid (BA) homeostasis is a complex and precisely regulated process to prevent impaired BA flow and the development of cholestasis. Several reactions, namely hydroxylation, glucuronidation and sulfation are involved in BA detoxification. In the present study, we employed a comprehensive approach to identify the key enzymes involved in BA metabolism using human recombinant enzymes, human liver microsomes (HLM) and human liver cytosol (HLC). We showed that CYP3A4 was a crucial step for the metabolism of several BAs and their taurine and glycine conjugated forms and quantitatively described their metabolites. Glucuronidation and sulfation were also identified as important drivers of the BA detoxification process in humans. Moreover, lithocholic acid (LCA), the most hydrophobic BA with the highest toxicity potential, was a substrate for all investigated processes, demonstrating the importance of hepatic metabolism for its clearance. Collectively, this study identified CYP3A4, UGT1A3, UGT2B7 and SULT2A1 as the major contributing (metabolic) processes in the BA detoxification network. Inhibition of these enzymes by drug candidates is therefore considered as a critical mechanism in the manifestation of drug-induced cholestasis in humans and should be addressed during the pre-clinical development.
Collapse
Affiliation(s)
- Vlasia Kastrinou Lampou
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland; Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Birk Poller
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Felix Huth
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Audrey Fischer
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gerd A Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital Zurich, University of Zurich, Zurich, Switzerland; Mechanistic Safety, CMO & Patient Safety, Global Drug Development, Novartis, Basel, Switzerland
| | - Michael Arand
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Heiko S Schadt
- Department of Preclinical Safety, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Gian Camenisch
- Department of Pharmacokinetic Sciences, Novartis Institutes for BioMedical Research, Basel, Switzerland.
| |
Collapse
|
59
|
Zhao J, Yang Q, Liu Z, Xu P, Tian L, Yan J, Li K, Lin B, Bian L, Xi Z, Liu X. The impact of subchronic ozone exposure on serum metabolome and the mechanisms of abnormal bile acid and arachidonic acid metabolisms in the liver. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114573. [PMID: 36701875 DOI: 10.1016/j.ecoenv.2023.114573] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/22/2023] [Indexed: 06/17/2023]
Abstract
Ambient ozone (O3) pollution can induce respiratory and cardiovascular toxicity. However, its impact on the metabolome and the underlying mechanisms remain unclear. This study first investigated the serum metabolite changes in rats exposed to 0.5 ppm O3 for 3 months using untargeted metabolomic approach. Results showed chronic ozone exposure significantly altered the serum levels of 34 metabolites with potential increased risk of digestive, respiratory and cardiovascular disease. Moreover, bile acid synthesis and secretion, and arachidonic acid (AA) metabolism became the most prominent affected metabolic pathways after O3 exposure. Further studies on the mechanisms found that the elevated serum toxic bile acid was not due to the increased biosynthesis in the liver, but the reduced reuptake from the portal vein to hepatocytes owing to repressed Ntcp and Oatp1a1, and the decreased bile acid efflux in hepatocytes as a results of inhibited Bsep, Ostalpha and Ostbeta. Meanwhile, decreased expressions of detoxification enzyme of SULT2A1 and the important regulators of FXR, PXR and HNF4α also contributed to the abnormal bile acids. In addition, O3 promoted the conversion of AA into thromboxane A2 (TXA2) and 20-hydroxyarachidonic acid (20-HETE) in the liver by up-regulation of Fads2, Cyp4a and Tbxas1 which resulting in decreased AA and linoleic acid (LA), and increased thromboxane B2 (TXB2) and 20-HETE in the serum. Furthermore, apparent hepatic chronic inflammation, fibrosis and abnormal function were found in ozone-exposed rats. These results indicated chronic ozone exposure could alter serum metabolites by interfering their metabolism in the liver, and inducing liver injury to aggravate metabolic disorders.
Collapse
Affiliation(s)
- Jiao Zhao
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Qingcheng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Zhiyuan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Pengfei Xu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Liping Bian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Tianjin Sport University, Tianjin 301617, China.
| |
Collapse
|
60
|
Yan J, Nie Y, Chen Z, Yao J, Zhang S, Chen Z. The IDI1/SREBP2 axis drives intrahepatic cholestasis and is a treatment target of San-Huang-Cai-Zhu formula identified by sequencing and experiments. Front Pharmacol 2023; 14:1093934. [PMID: 36843951 PMCID: PMC9944032 DOI: 10.3389/fphar.2023.1093934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/20/2023] [Indexed: 02/11/2023] Open
Abstract
San-Huang-Chai-Zhu formula (SHCZF), originates from Da-Huang-Xiao-Shi decoction (DHXSD) for the treatment of jaundice as recorded in the Chinese traditional Chinese medicine book Jin Gui Yao Lue. In the clinic, SHCZF has been used to treat cholestasis-related liver disease by improving intrahepatic cholestasis, but the treatment mechanism has not been elucidated. In this study, 24 Sprague-Dawley (SD) rats were randomly assigned to the normal, acute intrahepatic cholestasis (AIC), SHCZF, and ursodeoxycholic acid (UDCA) groups. In addition, 36 SD rats were divided into dynamic groups, namely, normal 24 h, AIC 24 h, normal 48 h, AIC 48 h, normal 72 h, and AIC 72 h groups. Alpha-naphthylisothiocyanate (ANIT) was used to induce an AIC rat model. Serum biochemical indices and hepatic pathology were detected. Part of the hepatic tissues was used for sequencing, and others were used for subsequent experiments. Sequencing data combined with bioinformatics analysis were used to screen target genes and identify the mechanisms of SHCZF in treating AIC rats. Quantitative real-time PCR (qRT-PCR) and Western blotting (WB) were used to detect the RNA/Protein expression levels of screened genes. Rats in the dynamic group were used to determine the sequence of cholestasis and liver injury. High-performance liquid chromatography (HPLC) was used to determine the representative bioingredients of SHCZF. Sequencing and bioinformatics analysis suggested that IDI1 and SREBP2 are hub target genes of SHCZF to ameliorate ANTI-induced intrahepatic cholestasis in rats. The treatment mechanism is associated with the regulation of lipoprotein receptor (LDLr) to reduce cholesterol intake and 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR), and 3-Hydroxy-3-Methylglutaryl-CoA synthase 1 (HMGCS1) to decrease cholesterol synthesis. Animal experiments showed that SHCZF significantly reduced the expression levels of the above genes and proinflammatory cytokine lipocalin 2 (LCN2), inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), thereby improving intrahepatic cholestasis and inflammation and liver injury.
Collapse
Affiliation(s)
- Junbin Yan
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China,The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou, China
| | - Yunmeng Nie
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zheng Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China
| | - Jiaming Yao
- Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, The Xin Hua Hospital of Zhejiang Province, Hangzhou, China,*Correspondence: Shuo Zhang, ; Zhiyun Chen,
| | - Zhiyun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Provincial Hospital of Chinese Medicine, Hangzhou, China,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou, China,*Correspondence: Shuo Zhang, ; Zhiyun Chen,
| |
Collapse
|
61
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
62
|
Semi-Targeted Profiling of Bile Acids by High-Resolution Mass Spectrometry in a Rat Model of Drug-Induced Liver Injury. Int J Mol Sci 2023; 24:ijms24032489. [PMID: 36768813 PMCID: PMC9917070 DOI: 10.3390/ijms24032489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Using a semi-targeted approach, we have investigated the effect of acetaminophen on circulating bile acid profiles in rats, including many known bile acids and potential isomeric structures, as well as glucuronide and sulfate conjugates. The chromatographic separation was based on an optimized reverse-phase method exhibiting excellent resolution for a complex mix of bile acids using a solid-core C18 column, coupled to a high-resolution quadrupole time-of-flight system. The semi-targeted workflow consisted of first assigning all peaks detectable in samples from 46 known bile acids contained in a standard mix, as well as additional peaks for other bile acid isomers. The presence of glucuronide and sulfate conjugates was also examined based on their elemental formulae and detectable peaks with matching exact masses were added to the list of features for statistical analysis. In this study, rats were administered acetaminophen at four different doses, from 75 to 600 mg/kg, with the highest dose being a good model of drug-induced liver injury. Statistically significant changes were found by comparing bile acid profiles between dosing levels. Some tentatively assigned conjugates were further elucidated using in vitro metabolism incubations with rat liver fractions and standard bile acids. Overall, 13 identified bile acids, 23 tentatively assigned bile acid isomers, and 9 sulfate conjugates were found to increase significantly at the highest acetaminophen dose, and thus could be linked to drug-induced liver injury.
Collapse
|
63
|
Lenci I, Milana M, Signorello A, Grassi G, Baiocchi L. Secondary bile acids and the biliary epithelia: The good and the bad. World J Gastroenterol 2023; 29:357-366. [PMID: 36687129 PMCID: PMC9846939 DOI: 10.3748/wjg.v29.i2.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The biliary tract has been considered for several decades a passive system just leading the hepatic bile to the intestine. Nowadays several researches demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile formation. The study of biliary processes therefore maintains a continuous interest since the possible important implications regarding chronic cholestatic human diseases, such as primary biliary cholangitis or primary sclerosing cholangitis. Bile acids (BAs), produced by the liver, are the most represented organic molecules in bile. The physiologic importance of BAs was initially attributed to their behavior as natural detergents but several studies now demonstrate they are also important signaling molecules. In this minireview the effect of BAs on the biliary epithelia are reported focusing in particular on secondary (deriving by bacterial manipulation of primary molecules) ones. This class of BAs is demonstrated to have relevant biological effects, ranging from toxic to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the most interesting features. The molecular mechanisms linking ursodeoxycholic acid to its beneficial effects on the biliary tract are discussed in details as well as data on the processes leading to lithocholic damage. These findings suggest that expansion of research in the field of BAs/cholangiocytes interaction may increase our understanding of cholestatic diseases and should be helpful in designing more effective therapies for biliary disorders.
Collapse
Affiliation(s)
- Ilaria Lenci
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | - Martina Milana
- Hepatology Unit, Policlinico Tor Vergata, Rome 00133, Italy
| | | | | | | |
Collapse
|
64
|
Larabi AB, Masson HLP, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes 2023; 15:2172671. [PMID: 36740850 PMCID: PMC9904317 DOI: 10.1080/19490976.2023.2172671] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 02/07/2023] Open
Abstract
Changes in the composition of gut-associated microbial communities are associated with many human illnesses, but the factors driving dysbiosis remain incompletely understood. One factor governing the microbiota composition in the gut is bile. Bile acids shape the microbiota composition through their antimicrobial activity and by activating host signaling pathways that maintain gut homeostasis. Although bile acids are host-derived, their functions are integrally linked to bacterial metabolism, which shapes the composition of the intestinal bile acid pool. Conditions that change the size or composition of the bile acid pool can trigger alterations in the microbiota composition that exacerbate inflammation or favor infection with opportunistic pathogens. Therefore, manipulating the composition or size of the bile acid pool might be a promising strategy to remediate dysbiosis.
Collapse
Affiliation(s)
- Anaïs B. Larabi
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Hugo L. P. Masson
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, Davis, CA, USA
| |
Collapse
|
65
|
Jia B, Zou Y, Han X, Bae JW, Jeon CO. Gut microbiome-mediated mechanisms for reducing cholesterol levels: implications for ameliorating cardiovascular disease. Trends Microbiol 2023; 31:76-91. [PMID: 36008191 DOI: 10.1016/j.tim.2022.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/24/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease (CVD) is a health problem worldwide, and elevated cholesterol levels are a key risk factor for the disease. Dysbiotic gut microbiota has been shown to be associated with CVD development. However, the beneficial effects of healthy microbiota in decreasing cholesterol levels have not been summarized. Herein, we begin by discussing the potential mechanisms by which the gut microbiota reduces cholesterol levels. We further sketch the application of probiotics from the genera Lactobacillus and Bifidobacterium in reducing cholesterol levels in clinical studies. Finally, we present the cholesterol-lowering function of beneficial commensal microbes, such as Akkermansia and Bacteroides spp., as these microbes have potential to be the next-generation probiotics (NGPs). The information reviewed in this paper will help people to understand how the gut microbiome might alter cholesterol metabolism and enable the development of NGPs to prevent and treat CVD.
Collapse
Affiliation(s)
- Baolei Jia
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| | | | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul 06974, Republic of Korea.
| |
Collapse
|
66
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
67
|
Karl JP, Armstrong NJ, Player RA, Rood JC, Soares JW, McClung HL. The Fecal Metabolome Links Diet Composition, Foacidic positive ion conditions, chromatographicallyod Processing, and the Gut Microbiota to Gastrointestinal Health in a Randomized Trial of Adults Consuming a Processed Diet. J Nutr 2022; 152:2343-2357. [PMID: 36774101 DOI: 10.1093/jn/nxac161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/17/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Food processing alters diet digestibility and composition, thereby influencing interactions between host biology, diet, and the gut microbiota. The fecal metabolome offers insight into those relations by providing a readout of diet-microbiota interactions impacting host health. OBJECTIVES The aims were to determine the effects of consuming a processed diet on the fecal metabolome and to explore relations between changes in the fecal metabolome with fecal microbiota composition and gastrointestinal health markers. METHODS This was a secondary analysis of a randomized controlled trial wherein healthy adults [94% male; 18-61 y; BMI (kg/m2): 26 ± 3] consumed their usual diet [control (CON), n = 27] or a Meal, Ready-to-EatTM (Ameriqual Packaging) military ration diet composed of processed, shelf-stable, ready-to-eat items for 21 d (MRE; n = 27). Fecal metabolite profiles, fecal microbiota composition, biomarkers of intestinal barrier function, and gastrointestinal symptoms were measured before and after the intervention. Between-group differences and associations were assessed using nonparametric t tests, partial least-squares discriminant analysis, correlation, and redundancy analysis. RESULTS Fecal concentrations of multiple dipeptides [Mann-Whitney effect size (ES) = 0.27-0.50] and long-chain SFAs (ES = 0.35-0.58) increased, whereas plant-derived compounds (ES = 0.31-0.60) decreased in MRE versus CON (P < 0.05; q < 0.20). Changes in dipeptides correlated positively with changes in fecal concentrations of Maillard-reaction products (ρ = 0.29-0.70; P < 0.05) and inversely with changes in serum prealbumin (ρ = -0.30 to -0.48; P ≤ 0.03). Multiple bile acids, coffee and caffeine metabolites, and plant-derived compounds were associated with both fecal microbiota composition and gastrointestinal health markers, with changes in fecal microbiota composition explaining 26% of the variability within changes in gastrointestinal health-associated fecal metabolites (P = 0.001). CONCLUSIONS Changes in the fecal metabolomes of adults consuming a Meal, Ready-to-EatTM diet implicate interactions between diet composition, diet digestibility, and the gut microbiota as contributing to variability within gastrointestinal responses to the diet. Findings underscore the need to consider both food processing and nutrient composition when investigating the impact of diet-gut microbiota interactions on health outcomes. This trial was registered at www. CLINICALTRIALS gov as NCT02423551.
Collapse
Affiliation(s)
- J Philip Karl
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA.
| | - Nicholes J Armstrong
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Robert A Player
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | - Jason W Soares
- Soldier Effectiveness Directorate, US Army Combat Capabilities Development Command Soldier Center, Natick, MA, USA
| | - Holly L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
68
|
Diener C, Dai CL, Wilmanski T, Baloni P, Smith B, Rappaport N, Hood L, Magis AT, Gibbons SM. Genome-microbiome interplay provides insight into the determinants of the human blood metabolome. Nat Metab 2022; 4:1560-1572. [PMID: 36357685 PMCID: PMC9691620 DOI: 10.1038/s42255-022-00670-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/30/2022] [Indexed: 11/12/2022]
Abstract
Variation in the blood metabolome is intimately related to human health. However, few details are known about the interplay between genetics and the microbiome in explaining this variation on a metabolite-by-metabolite level. Here, we perform analyses of variance for each of 930 blood metabolites robustly detected across a cohort of 1,569 individuals with paired genomic and microbiome data while controlling for a number of relevant covariates. We find that 595 (64%) of these blood metabolites are significantly associated with either host genetics or the gut microbiome, with 69% of these associations driven solely by the microbiome, 15% driven solely by genetics and 16% under hybrid genome-microbiome control. Additionally, interaction effects, where a metabolite-microbe association is specific to a particular genetic background, are quite common, albeit with modest effect sizes. This knowledge will help to guide targeted interventions designed to alter the composition of the human blood metabolome.
Collapse
Affiliation(s)
| | | | | | | | - Brett Smith
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
- eScience Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
69
|
Guman MSS, Hoozemans JB, Haal S, de Jonge PA, Aydin Ö, Lappa D, Meijnikman AS, Westerink F, Acherman Y, Bäckhed F, de Brauw M, Nielsen J, Nieuwdorp M, Groen AK, Gerdes VEA. Adipose Tissue, Bile Acids, and Gut Microbiome Species Associated With Gallstones After Bariatric Surgery. J Lipid Res 2022; 63:100280. [PMID: 36115596 PMCID: PMC9672443 DOI: 10.1016/j.jlr.2022.100280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Several risk factors are associated with gallstone disease after bariatric surgery, but the underlying pathophysiological mechanisms of gallstone formation are unclear. We hypothesize that gallstone formation after bariatric surgery is induced by different pathways compared with gallstone formation in the general population, since postoperative formation occurs rapidly in patients who did not develop gallstones in preceding years. To identify both pathophysiological and potentially protective mechanisms against postoperative gallstone formation, we compared the preoperative fasting metabolome, fecal microbiome, and liver and adipose tissue transcriptome obtained before or during bariatric surgery of obese patients with and without postoperative gallstones. In total, 88 patients were selected from the BARIA longitudinal cohort study. Within this group, 32 patients had postoperative gallstones within 2 years. Gut microbiota metagenomic analyses showed group differences in abundance of 41 bacterial species, particularly abundance of Lactobacillaceae and Enterobacteriaceae in patients without gallstones. Subcutaneous adipose tissue transcriptomic analyses revealed four genes that were suppressed in gallstone patients compared with patients without gallstones. These baseline gene expression and gut microbiota composition differences might relate to protective mechanisms against gallstone formation after bariatric surgery. Moreover, baseline fasting blood samples of patients with postoperative gallstones showed increased levels of several bile acids. Overall, we revealed different genes and bacteria associated with gallstones than those previously reported in the general population, supporting the hypothesis that gallstone formation after bariatric surgery follows a different trajectory. Further research is necessary to confirm the involvement of the bile acids, adipose tissue activity, and microbial species observed here.
Collapse
Affiliation(s)
- M S S Guman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands.
| | - J B Hoozemans
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - S Haal
- Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands; Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Location AMC, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands
| | - P A de Jonge
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Ö Aydin
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - D Lappa
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - A S Meijnikman
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - F Westerink
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - Y Acherman
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - F Bäckhed
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Goteborg, Sweden; Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Kobenhavn, Denmark; Department of Clinical Physiology, Region Västtra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - M de Brauw
- Department of Surgery, Spaarne Gasthuis, Hoofddorp, the Netherlands
| | - J Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - M Nieuwdorp
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - A K Groen
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands
| | - V E A Gerdes
- Departments of Internal and Experimental Vascular Medicine, Amsterdam University Medical Centers, Location AMC, Amsterdam, the Netherlands; Department of Internal Medicine, Spaarne Gasthuis, Hoofddorp, the Netherlands
| |
Collapse
|
70
|
Davis EC, Castagna VP, Sela DA, Hillard MA, Lindberg S, Mantis NJ, Seppo AE, Järvinen KM. Gut microbiome and breast-feeding: Implications for early immune development. J Allergy Clin Immunol 2022; 150:523-534. [PMID: 36075638 PMCID: PMC9463492 DOI: 10.1016/j.jaci.2022.07.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Establishment of the gut microbiome during early life is a complex process with lasting implications for an individual's health. Several factors influence microbial assembly; however, breast-feeding is recognized as one of the most influential drivers of gut microbiome composition during infancy, with potential implications for function. Differences in gut microbial communities between breast-fed and formula-fed infants have been consistently observed and are hypothesized to partially mediate the relationships between breast-feeding and decreased risk for numerous communicable and noncommunicable diseases in early life. Despite decades of research on the gut microbiome of breast-fed infants, there are large scientific gaps in understanding how human milk has evolved to support microbial and immune development. This review will summarize the evidence on how breast-feeding broadly affects the composition and function of the early-life gut microbiome and discuss mechanisms by which specific human milk components shape intestinal bacterial colonization, succession, and function.
Collapse
Affiliation(s)
- Erin C Davis
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | | | - David A Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Margaret A Hillard
- Department of Food Science, University of Massachusetts Amherst, Amherst, Mass; Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, Mass
| | - Samantha Lindberg
- Department of Biomedical Sciences, University of Albany, Rensselaer, NY
| | - Nicholas J Mantis
- Division of Infectious Diseases, New York State Department of Health, Albany, NY
| | - Antti E Seppo
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY
| | - Kirsi M Järvinen
- Division of Allergy and Immunology, Center for Food Allergy, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Golisano Children's Hospital, Rochester, NY; Division of Allergy, Immunology, and Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY; Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY.
| |
Collapse
|
71
|
Cai J, Rimal B, Jiang C, Chiang JYL, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther 2022; 237:108238. [PMID: 35792223 DOI: 10.1016/j.pharmthera.2022.108238] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022]
Abstract
The diversity, composition, and function of the bacterial community inhabiting the human gastrointestinal tract contributes to host health through its role in producing energy or signaling molecules that regulate metabolic and immunologic functions. Bile acids are potent metabolic and immune signaling molecules synthesized from cholesterol in the liver and then transported to the intestine where they can undergo metabolism by gut bacteria. The combination of host- and microbiota-derived enzymatic activities contribute to the composition of the bile acid pool and thus there can be great diversity in bile acid composition that depends in part on the differences in the gut bacteria species. Bile acids can profoundly impact host metabolic and immunological functions by activating different bile acid receptors to regulate signaling pathways that control a broad range of complex symbiotic metabolic networks, including glucose, lipid, steroid and xenobiotic metabolism, and modulation of energy homeostasis. Disruption of bile acid signaling due to perturbation of the gut microbiota or dysregulation of the gut microbiota-host interaction is associated with the pathogenesis and progression of metabolic disorders. The metabolic and immunological roles of bile acids in human health have led to novel therapeutic approaches to manipulate the bile acid pool size, composition, and function by targeting one or multiple components of the microbiota-bile acid-bile acid receptor axis.
Collapse
Affiliation(s)
- Jingwei Cai
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Bipin Rimal
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, PR China
| | - John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
72
|
Le HH, Lee MT, Besler KR, Comrie JMC, Johnson EL. Characterization of interactions of dietary cholesterol with the murine and human gut microbiome. Nat Microbiol 2022; 7:1390-1403. [PMID: 35982311 PMCID: PMC9417993 DOI: 10.1038/s41564-022-01195-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 07/04/2022] [Indexed: 12/18/2022]
Abstract
Consumption of dietary lipids, such as cholesterol, modulates the gut microbiome with consequences for host health through the production of microbiome-derived metabolites. Despite the implications for host metabolism, a limited number of specific interactions of the gut microbiome with diet-derived lipids have been characterized. This is partially because obtaining species-level resolution of the responsible taxa can be challenging and additional approaches are needed to identify health-relevant metabolites produced from cholesterol-microbiome interactions. Here we performed bio-orthogonal labelling sort sequence spectrometry, a click chemistry based workflow, to profile cholesterol-specific host-microbe interactions. Mice were exposed to an alkyne-functionalized variant of cholesterol and 16S ribosomal RNA gene amplicon sequencing of faecal samples identified diet-derived cholesterol-interacting microbes from the genera Bacteroides, Bifidobacterium, Enterococcus and Parabacteroides. Shotgun metagenomic analysis provided species-level resolution of diet-derived cholesterol-interacting microbes with enrichment of bile acid-like and sulfotransferase-like activities. Using untargeted metabolomics, we identify that cholesterol is converted to cholesterol sulfate in a Bacteroides-specific manner via the enzyme BT_0416. Mice monocolonized with Bacteroides thetaiotaomicron lacking Bt_0416 showed altered host cholesterol and cholesterol sulfate compared with wild-type mice, identifying a previously uncharacterized microbiome-transformation of cholesterol and a mechanism for microbiome-dependent contributions to host phenotype. Moreover, identification of a cholesterol-responsive sulfotransferase in Bacteroides suggests diet-dependent mechanisms for altering microbiome-specific cholesterol metabolism. Overall, our work identifies numerous cholesterol-interacting microbes with implications for more precise microbiome-conscious regulation of host cholesterol homeostasis.
Collapse
Affiliation(s)
- Henry H Le
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Min-Ting Lee
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Kevin R Besler
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | - Janine M C Comrie
- Division of Nutritional Sciences, Cornell Univesity, Ithaca, NY, USA
| | | |
Collapse
|
73
|
Saran C, Fu D, Ho H, Klein A, Fallon JK, Honkakoski P, Brouwer KLR. A novel differentiated HuH-7 cell model to examine bile acid metabolism, transport and cholestatic hepatotoxicity. Sci Rep 2022; 12:14333. [PMID: 35995956 PMCID: PMC9395349 DOI: 10.1038/s41598-022-18174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022] Open
Abstract
Hepatic cell lines serve as economical and reproducible alternatives for primary human hepatocytes. However, the utility of hepatic cell lines to examine bile acid homeostasis and cholestatic toxicity is limited due to abnormal expression and function of bile acid-metabolizing enzymes, transporters, and the absence of canalicular formation. We discovered that culturing HuH-7 human hepatoma cells with dexamethasone (DEX) and 0.5% dimethyl sulfoxide (DMSO) for two weeks, with Matrigel overlay after one week, resulted in a shorter and improved differentiation process. These culture conditions increased the expression and function of the major bile acid uptake and efflux transporters, sodium taurocholate co-transporting polypeptide (NTCP) and the bile salt export pump (BSEP), respectively, in two-week cultures of HuH-7 cells. This in vitro model was further characterized for expression and function of bile acid-metabolizing enzymes, transporters, and cellular bile acids. Differentiated HuH-7 cells displayed a marked shift in bile acid composition and induction of cytochrome P450 (CYP) 7A1, CYP8B1, CYP3A4, and bile acid-CoA: amino acid N-acyltransferase (BAAT) mRNAs compared to control. Inhibition of taurocholate uptake and excretion after a 24-h treatment with prototypical cholestatic drugs suggests that differentiated HuH-7 cells are a suitable model to examine cholestatic hepatotoxicity.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Dong Fu
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Henry Ho
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Abigail Klein
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - John K Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Paavo Honkakoski
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
74
|
Cerra B, Venturoni F, Souma M, Ceccarelli G, Lozza AM, Passeri D, De Franco F, Baxendale IR, Pellicciari R, Macchiarulo A, Gioiello A. Development of 3α,7α-dihydroxy-6α-ethyl-24-nor-5β-cholan-23-sulfate sodium salt (INT-767): Process optimization, synthesis and characterization of metabolites. Eur J Med Chem 2022; 242:114652. [PMID: 36049273 DOI: 10.1016/j.ejmech.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.
Collapse
Affiliation(s)
- Bruno Cerra
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Francesco Venturoni
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Maria Souma
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Giada Ceccarelli
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Anna Maria Lozza
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Daniela Passeri
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Francesca De Franco
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham, United Kingdom
| | - Roberto Pellicciari
- TES Pharma, Via Palmiro Togliatti 20, 06073, Taverne di Corciano, Perugia, Italy
| | - Antonio Macchiarulo
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy
| | - Antimo Gioiello
- Laboratory of Medicinal and Advanced Synthetic Chemistry, Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06122, Perugia, Italy.
| |
Collapse
|
75
|
Yao L, D'Agostino GD, Park J, Hang S, Adhikari AA, Zhang Y, Li W, Avila-Pacheco J, Bae S, Clish CB, Franzosa EA, Huttenhower C, Huh JR, Devlin AS. A biosynthetic pathway for the selective sulfonation of steroidal metabolites by human gut bacteria. Nat Microbiol 2022; 7:1404-1418. [PMID: 35982310 DOI: 10.1038/s41564-022-01176-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 06/20/2022] [Indexed: 12/13/2022]
Abstract
Members of the human gut microbiome enzymatically process many bioactive molecules in the gastrointestinal tract. Most gut bacterial modifications characterized so far are hydrolytic or reductive in nature. Here we report that abundant human gut bacteria from the phylum Bacteroidetes perform conjugative modifications by selectively sulfonating steroidal metabolites. While sulfonation is a ubiquitous biochemical modification, this activity has not yet been characterized in gut microbes. Using genetic and biochemical approaches, we identify a widespread biosynthetic gene cluster that encodes both a sulfotransferase (BtSULT, BT0416) and enzymes that synthesize the sulfonate donor adenosine 3'-phosphate-5'-phosphosulfate (PAPS), including an APS kinase (CysC, BT0413) and an ATP sulfurylase (CysD and CysN, BT0414-BT0415). BtSULT selectively sulfonates steroidal metabolites with a flat A/B ring fusion, including cholesterol. Germ-free mice monocolonized with Bacteroides thetaiotaomicron ΔBT0416 exhibited reduced gastrointestinal levels of cholesterol sulfate (Ch-S) compared with wild-type B. thetaiotaomicron-colonized mice. The presence of BtSULT and BtSULT homologues in bacteria inhibited leucocyte migration in vitro and in vivo, and abundances of cluster genes were significantly reduced in patients with inflammatory bowel disease. Together, these data provide a mechanism by which gut bacteria sulfonate steroidal metabolites and suggest that these compounds can modulate immune cell trafficking in the host.
Collapse
Affiliation(s)
- Lina Yao
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jinseok Park
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Saiyu Hang
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Arijit A Adhikari
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yancong Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Wei Li
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sena Bae
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eric A Franzosa
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - A Sloan Devlin
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
76
|
Kwek E, Zhu H, Ding H, He Z, Hao W, Liu J, Ma KY, Chen ZY. Peony seed oil decreases plasma cholesterol and favorably modulates gut microbiota in hypercholesterolemic hamsters. Eur J Nutr 2022; 61:2341-2356. [PMID: 35107625 DOI: 10.1007/s00394-021-02785-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Peony (Paeonia spp.) seed oil (PSO) contains a high amount of α-linolenic acid. The effects of PSO on hypercholesterolemia and gut microbiota remains unclear. The present study was to investigate effects of PSO supplementation on cholesterol metabolism and modulation of the gut microbiota. METHODS Male Golden Syrian hamsters (n = 40) were randomly divided into five groups (n = 8, each) fed one of the following diets namely low-cholesterol diet (LCD); high cholesterol diet (HCD); HCD with PSO substituting 50% lard (LPSO), PSO substituting 100% lard (HPSO) and HCD with addition of 0.5% cholestyramine (PCD), respectively, for 6 weeks. RESULTS PSO supplementation dose-dependently reduced plasma total cholesterol (TC) by 9-14%, non-high-density lipoprotein cholesterol (non-HDL-C) by 7-18% and triacylglycerols (TG) by 14-34% (p < 0.05). In addition, feeding PSO diets reduced the formation of plaque lesions by 49-61% and hepatic lipids by 9-19% compared with feeding HCD diet (p < 0.01). PSO also altered relative genus abundance of unclassified_f__Coriobacteriaceae, unclassified_f__Erysipelotrichaceae, Peptococcus, unclassified_f__Ruminococcaceae, norank_o__Mollicutes_RF9 and Christensenellaceae_R-7_group. CONCLUSIONS It was concluded that PSO was effective in reducing plasma cholesterol and hepatic lipids and favorably modulating gut microbiota associated with cholesterol metabolism.
Collapse
Affiliation(s)
- Erika Kwek
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hanyue Zhu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Food Science and Engineering/South China Food Safety Research Center, Foshan University, Foshan, Guangdong, China
| | - Huafang Ding
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zouyan He
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Wangjun Hao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jianhui Liu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, China
| | - Ka Ying Ma
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
77
|
Rodrigues AD. Reimagining the Framework Supporting the Static Analysis of Transporter Drug Interaction Risk; Integrated Use of Biomarkers to Generate
Pan‐Transporter
Inhibition Signatures. Clin Pharmacol Ther 2022; 113:986-1002. [PMID: 35869864 DOI: 10.1002/cpt.2713] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 11/11/2022]
Abstract
Solute carrier (SLC) transporters present as the loci of important drug-drug interactions (DDIs). Therefore, sponsors generate in vitro half-maximal inhibitory concentration (IC50 ) data and apply regulatory agency-guided "static" methods to assess DDI risk and the need for a formal clinical DDI study. Because such methods are conservative and high false-positive rates are likely (e.g., DDI study triggered when liver SLC R value ≥ 1.04 and renal SLC maximal unbound plasma (Cmax,u )/IC50 ratio ≥ 0.02), investigators have attempted to deploy plasma- and urine-based SLC biomarkers in phase I studies to de-risk DDI and obviate the need for drug probe-based studies. In this regard, it was possible to generate in-house in vitro SLC IC50 data for various clinically (biomarker)-qualified perpetrator drugs, under standard assay conditions, and then estimate "% inhibition" for each SLC and relate it empirically to published clinical biomarker data (area under the plasma concentration vs. time curve (AUC) ratio (AUCR, AUCinhibitor /AUCreference ) and % decrease in renal clearance (ΔCLrenal )). After such a "calibration" exercise, it was determined that only compounds with high R values (> 1.5) and Cmax,u /IC50 ratios (> 0.5) are likely to significantly modulate liver (AUCR > 1.25) and renal (ΔCLrenal > 25%) biomarkers and evoke DDI risk. The % inhibition approach supports integration of liver and renal SLC data and allows one to generate pan-SLC inhibition signatures for different test perpetrators (e.g., SLC % inhibition ranking). In turn, such signatures can guide the selection of the most appropriate individual (or combinations of) biomarkers for testing in phase I studies.
Collapse
Affiliation(s)
- A. David Rodrigues
- Pharmacokinetics & Drug Metabolism, Medicine Design, Worldwide Research & Development, Pfizer Inc Groton CT USA
| |
Collapse
|
78
|
MahmoudianDehkordi S, Bhattacharyya S, Brydges CR, Jia W, Fiehn O, Rush AJ, Dunlop BW, Kaddurah-Daouk R. Gut Microbiome-Linked Metabolites in the Pathobiology of Major Depression With or Without Anxiety—A Role for Bile Acids. Front Neurosci 2022; 16:937906. [PMID: 35937867 PMCID: PMC9350527 DOI: 10.3389/fnins.2022.937906] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background The gut microbiome may play a role in the pathogenesis of neuropsychiatric diseases including major depressive disorder (MDD). Bile acids (BAs) are steroid acids that are synthesized in the liver from cholesterol and further processed by gut-bacterial enzymes, thus requiring both human and gut microbiome enzymatic processes in their metabolism. BAs participate in a range of important host functions such as lipid transport and metabolism, cellular signaling and regulation of energy homeostasis. BAs have recently been implicated in the pathophysiology of Alzheimer's and several other neuropsychiatric diseases, but the biochemical underpinnings of these gut microbiome-linked metabolites in the pathophysiology of depression and anxiety remains largely unknown. Method Using targeted metabolomics, we profiled primary and secondary BAs in the baseline serum samples of 208 untreated outpatients with MDD. We assessed the relationship of BA concentrations and the severity of depressive and anxiety symptoms as defined by the 17-item Hamilton Depression Rating Scale (HRSD17) and the 14-item Hamilton Anxiety Rating Scale (HRSA-Total), respectively. We also evaluated whether the baseline metabolic profile of BA informs about treatment outcomes. Results The concentration of the primary BA chenodeoxycholic acid (CDCA) was significantly lower at baseline in both severely depressed (log2 fold difference (LFD) = −0.48; p = 0.021) and highly anxious (LFD = −0.43; p = 0.021) participants compared to participants with less severe symptoms. The gut bacteria-derived secondary BAs produced from CDCA such as lithocholic acid (LCA) and several of its metabolites, and their ratios to primary BAs, were significantly higher in the more anxious participants (LFD's range = [0.23, 1.36]; p's range = [6.85E-6, 1.86E-2]). The interaction analysis of HRSD17 and HRSA-Total suggested that the BA concentration differences were more strongly correlated to the symptoms of anxiety than depression. Significant differences in baseline CDCA (LFD = −0.87, p = 0.0009), isoLCA (LFD = −1.08, p = 0.016) and several BA ratios (LFD's range [0.46, 1.66], p's range [0.0003, 0.049]) differentiated treatment failures from remitters. Conclusion In patients with MDD, BA profiles representing changes in gut microbiome compositions are associated with higher levels of anxiety and increased probability of first-line treatment failure. If confirmed, these findings suggest the possibility of developing gut microbiome-directed therapies for MDD characterized by gut dysbiosis.
Collapse
Affiliation(s)
- Siamak MahmoudianDehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Sudeepa Bhattacharyya
- Department of Biological Sciences, Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR, United States
| | - Christopher R. Brydges
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - Wei Jia
- HKBU Phenome Research Centre, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, United States
| | - A. John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Psychiatry, Health Sciences Center, Texas Tech University, Odessa, Ukraine
- Duke-National University of Singapore, Singapore, Singapore
| | - Boadie W. Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Boadie W. Dunlop
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
- Department of Medicine, Duke University, Durham, NC, United States
- Duke Institute of Brain Sciences, Duke University, Durham, NC, United States
- Rima Kaddurah-Daouk
| |
Collapse
|
79
|
Quantitative Profiling of Bile Acids in Feces of Humans and Rodents by Ultra-High-Performance Liquid Chromatography–Quadrupole Time-of-Flight Mass Spectrometry. Metabolites 2022; 12:metabo12070633. [PMID: 35888757 PMCID: PMC9323729 DOI: 10.3390/metabo12070633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/10/2022] Open
Abstract
A simple, sensitive, and reliable quantification and identification method was developed and validated for simultaneous analysis of 58 bile acids (BAs) in human and rodent (mouse and rat) fecal samples. The method involves an extraction step with a 5% ammonium–ethanol aqueous solution; the BAs were quantified by high-resolution mass spectrometry (ultra-high-performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry, UPLC–Q-TOF). The recoveries were 80.05–120.83%, with coefficient variations (CVs) of 0.01–9.82% for three biological species. The limits of detection (LODs) were in the range of 0.01–0.24 μg/kg, and the limits of quantification (LOQs) ranged from 0.03 to 0.81 μg/kg. In addition, the analytical method was used to identify and quantify BAs in end-stage renal disease (ESRD) patients, C57BL/6 mice, and Sprague-Dawley (SD) rats. The fecal BA profile and analysis of BA indices in these samples provide valuable information for further BA metabolic disorder research.
Collapse
|
80
|
Pushie MJ, Sylvain NJ, Hou H, Hackett MJ, Kelly ME, Webb SM. X-ray fluorescence microscopy methods for biological tissues. Metallomics 2022; 14:mfac032. [PMID: 35512669 PMCID: PMC9226457 DOI: 10.1093/mtomcs/mfac032] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022]
Abstract
Synchrotron-based X-ray fluorescence microscopy is a flexible tool for identifying the distribution of trace elements in biological specimens across a broad range of sample sizes. The technique is not particularly limited by sample type and can be performed on ancient fossils, fixed or fresh tissue specimens, and in some cases even live tissue and live cells can be studied. The technique can also be expanded to provide chemical specificity to elemental maps, either at individual points of interest in a map or across a large field of view. While virtually any sample type can be characterized with X-ray fluorescence microscopy, common biological sample preparation methods (often borrowed from other fields, such as histology) can lead to unforeseen pitfalls, resulting in altered element distributions and concentrations. A general overview of sample preparation and data-acquisition methods for X-ray fluorescence microscopy is presented, along with outlining the general approach for applying this technique to a new field of investigation for prospective new users. Considerations for improving data acquisition and quality are reviewed as well as the effects of sample preparation, with a particular focus on soft tissues. The effects of common sample pretreatment steps as well as the underlying factors that govern which, and to what extent, specific elements are likely to be altered are reviewed along with common artifacts observed in X-ray fluorescence microscopy data.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Nicole J Sylvain
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
- Clinical Trial Support Unit, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0W8 Canada
| | - Huishu Hou
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Mark J Hackett
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Austrailia 6102, Australia
- School of Molecular and Life Sciences, Curtin University, Perth, Western Austrailia 6845, Australia
| | - Michael E Kelly
- Department of Surgery, Division of Neurosurgery, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E5 Canada
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
81
|
Yao N, Yang Y, Li X, Wang Y, Guo R, Wang X, Li J, Xie Z, Li B, Cui W. Effects of Dietary Nutrients on Fatty Liver Disease Associated With Metabolic Dysfunction (MAFLD): Based on the Intestinal-Hepatic Axis. Front Nutr 2022; 9:906511. [PMID: 35782947 PMCID: PMC9247350 DOI: 10.3389/fnut.2022.906511] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has recently become the most common liver disease with a global prevalence of over 25% and is expected to increase. Recently, experts have reached a consensus that “fatty liver disease associated with metabolic dysfunction or MAFLD” may be a more appropriate and inclusive definition than NAFLD. Like the former name NAFLD, MAFLD, as a manifestation of multiple system metabolic disorders involving the liver, has certain heterogeneity in its pathogenesis, clinical manifestations, pathological changes and natural outcomes. We found that there is a delicate dynamic balance among intestinal microflora, metabolites and host immune system to maintain a healthy intestinal environment and host health. On the contrary, this imbalance is related to diseases such as MAFLD. However, there are no clear studies on how dietary nutrients affect the intestinal environment and participate in the pathogenesis of MAFLD. This review summarizes the interactions among dietary nutrients, intestinal microbiota and MAFLD in an attempt to provide evidence for the use of dietary supplements to regulate liver function in patients with MAFLD. These dietary nutrients influence the development and progression of MAFLD mainly through the hepatic-intestinal axis by altering dietary energy absorption, regulating bile acid metabolism, changing intestinal permeability and producing ethanol. Meanwhile, the nutrients have the ability to combat MAFLD in terms of enriching abundance of intestinal microbiota, reducing Firmicutes/Bacteroidetes ratio and promoting abundance of beneficial gut microbes. Therefore, family therapy with MAFLD using a reasonable diet could be considered.
Collapse
Affiliation(s)
- Nan Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yixue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xiaotong Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Yuxiang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ruirui Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Xuhan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Zechun Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Bo Li
| | - Weiwei Cui
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
- Weiwei Cui
| |
Collapse
|
82
|
Caldwell A, Grundy L, Harrington AM, Garcia-Caraballo S, Castro J, Bunnett NW, Brierley SM. TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Sci Rep 2022; 12:9920. [PMID: 35705684 PMCID: PMC9200837 DOI: 10.1038/s41598-022-14195-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/02/2022] [Indexed: 11/30/2022] Open
Abstract
The mechanisms underlying chronic bladder conditions such as interstitial cystitis/bladder pain syndrome (IC/BPS) and overactive bladder syndrome (OAB) are incompletely understood. However, targeting specific receptors mediating neuronal sensitivity to specific stimuli is an emerging treatment strategy. Recently, irritant-sensing receptors including the bile acid receptor TGR5, have been identified within the viscera and are thought to play a key role in neuronal hypersensitivity. Here, in mice, we identify mRNA expression of TGR5 (Gpbar1) in all layers of the bladder as well as in the lumbosacral dorsal root ganglia (DRG) and in isolated bladder-innervating DRG neurons. In bladder-innervating DRG neurons Gpbar1 mRNA was 100% co-expressed with Trpv1 and 30% co-expressed with Trpa1. In vitro live-cell calcium imaging of bladder-innervating DRG neurons showed direct activation of a sub-population of bladder-innervating DRG neurons with the synthetic TGR5 agonist CCDC, which was diminished in Trpv1-/- but not Trpa1-/- DRG neurons. CCDC also activated a small percentage of non-neuronal cells. Using an ex vivo mouse bladder afferent recording preparation we show intravesical application of endogenous (5α-pregnan-3β-ol-20-one sulphate, Pg5α) and synthetic (CCDC) TGR5 agonists enhanced afferent mechanosensitivity to bladder distension. Correspondingly, in vivo intravesical administration of CCDC increased the number of spinal dorsal horn neurons that were activated by bladder distension. The enhanced mechanosensitivity induced by CCDC ex vivo and in vivo was absent using Gpbar1-/- mice. Together, these results indicate a role for the TGR5 receptor in mediating bladder afferent hypersensitivity to distension and thus may be important to the symptoms associated with IC/BPS and OAB.
Collapse
Affiliation(s)
- Ashlee Caldwell
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
- Discipline of Medicine, University of Adelaide, Level 7, SAHMRI, North Terrace, Adelaide, South Australia, 5000, Australia
| | - Luke Grundy
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Joel Castro
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, Department of Neuroscience and Physiology, Neuroscience Institute, New York University, New York, NY, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute (FHMRI), Flinders University, Bedford Park, South Australia, 5042, Australia.
- Hopwood Centre for Neurobiology, Lifelong Health Theme, Level 7, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia, 5000, Australia.
- Discipline of Medicine, University of Adelaide, Level 7, SAHMRI, North Terrace, Adelaide, South Australia, 5000, Australia.
| |
Collapse
|
83
|
Cheng H, Liu J, Zhang D, Tan Y, Feng W, Peng C. Gut microbiota, bile acids, and nature compounds. Phytother Res 2022; 36:3102-3119. [PMID: 35701855 DOI: 10.1002/ptr.7517] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Natural compounds (NPs) have historically made a major contribution to pharmacotherapy in various diseases and drug discovery. In the past decades, studies on gut microbiota have shown that the efficacy of NPs can be affected by the interactions between gut microbiota and NPs. On one hand, gut microbiota can metabolize NPs. On the other hand, NPs can influence the metabolism and composition of gut microbiota. Among gut microbiota metabolites, bile acids (BAs) have attracted widespread attention due to their effects on the body homeostasis and the development of diseases. Studies have also confirmed that NPs can regulate the metabolism of BAs and ultimately regulate the physiological function of the body and disease progresses. In this review, we comprehensively summarize the interactions among NPs, gut microbiota, and BAs. In addition, we also discuss the role of microbial BAs metabolism in understanding the toxicity and efficacy of NPs. Furthermore, we present personal insights into the future research directions of NPs and BAs.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
84
|
Kang L, Li D, Jiang X, Zhang Y, Pan M, Hu Y, Si L, Zhang Y, Huang J. Hepatotoxicity of the Major Anthraquinones Derived From Polygoni Multiflori Radix Based on Bile Acid Homeostasis. Front Pharmacol 2022; 13:878817. [PMID: 35662717 PMCID: PMC9157432 DOI: 10.3389/fphar.2022.878817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/15/2022] [Indexed: 01/22/2023] Open
Abstract
Polygoni Multiflori Radix (PMR), the dried root of Polygonum Multiflorum Thunb., has been widely used as traditional Chinese medicines in clinical practice for centuries. However, the frequently reported hepatotoxic adverse effects hindered its safe use in clinical practice. This study aims to explore the hepatotoxic effect of PMR extract and the major PMR derived anthraquinones including emodin, chrysophanol, and physcion in mice and the underlying mechanisms based on bile acid homeostasis. After consecutively treating the ICR mice with PMR extract or individual anthraquinones for 14 or 28 days, the liver function was evaluated by measuring serum enzymes levels and liver histological examination. The compositions of bile acids (BAs) in the bile, liver, and plasma were measured by LC-MS/MS, followed by Principal Component Analysis (PCA) and Partial Least Squares Discriminate Analysis (PLS-DA). Additionally, gene and protein expressions of BA efflux transporters, bile salt export pump (Bsep) and multidrug resistance-associated protein 2 (Mrp2), were examined to investigate the underlying mechanisms. After 14-day administration, mild inflammatory cell infiltration in the liver was observed in the physcion- and PMR-treated groups, while it was found in all the treated groups after 28-day treatment. Physcion and PMR extract induced hepatic BA accumulation after 14-day treatment, but such accumulation was attenuated after 28-day treatment. Based on the PLS-DA results, physcion- and PMR-treated groups were partially overlapping and both groups showed a clear separation with the control group in the mouse liver. The expression of Bsep and Mrp2 in the physcion- and PMR-treated mouse liver was decreased after 14-day treatment, while the downregulation was abrogated after 28-day treatment. Our study, for the first time, demonstrated that both PMR extract and tested anthraquinones could alter the disposition of either the total or individual BAs in the mouse bile, liver, and plasma via regulating the BA efflux transporters and induce liver injury, which provide a theoretical basis for the quality control and safe use of PMR in practice.
Collapse
Affiliation(s)
- Li Kang
- School of Pharmaceutical Science, South-Central MinZu University, Wuhan, China.,School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,National Demonstration Center for Experimental Ethnopharmacology Education, South-Central MinZu University, Wuhan, China
| | - Dan Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Xin Jiang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yao Zhang
- College of Pharmacy, Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi University, Shihezi, China
| | - Minhong Pan
- Department of Pharmacy, Shenzhen University General Hospital, Shenzhen, China
| | - Yixin Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Luqin Si
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjun Zhang
- The Third Affiliated Hospital of School of Medicine, Shihezi University, Shihezi, China
| | - Jiangeng Huang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
85
|
Muthiah MD, Smirnova E, Puri P, Chalasani N, Shah VH, Kiani C, Taylor S, Mirshahi F, Sanyal AJ. Development of Alcohol-Associated Hepatitis Is Associated With Specific Changes in Gut-Modified Bile Acids. Hepatol Commun 2022; 6:1073-1089. [PMID: 34984859 PMCID: PMC9035568 DOI: 10.1002/hep4.1885] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/24/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
The perturbations in bile acids (BAs) in alcohol-associated hepatitis (AH) and its relationship to disease severity is not well defined. The aims of this study were to define (1) the effects of heavy alcohol consumption on BAs and related microbiome, (2) the additional changes with AH, and (3) the relationship of these changes to disease severity. In this multicenter study, plasma and fecal BAs and related microbiome were interrogated in healthy individuals, heavy drinking controls (HDCs) without overt liver disease, and AH. Compared to healthy controls, HDCs had increased glycine-conjugated 7α and 27α primary BAs and increased secondary BA glycocholenic sulfate (multiple-comparison adjusted P < 0.05 for all). Plasma-conjugated cholic and chenodeoxycholic acid increased in AH along with the secondary BAs ursodeoxycholic and lithocholic acid (P < 0.001 for all), whereas deoxycholic acid decreased; however fecal concentrations of both deoxycholic acid and lithocholic acid were decreased. Glycocholenic acid further increased significantly from HDCs to AH. HDCs and AH had distinct plasma and fecal BA profiles (area under the curve, 0.99 and 0.93, respectively). Plasma taurochenodeoxycholic acid and tauroursodeoxycholic acid were directly related to disease severity, whereas fecal ursodeoxycholic acid was inversely related. The fecal abundance of multiple taxa involved in formation of secondary BAs, especially deoxycholic acid (Clostridium cluster XIVa) was decreased in AH. Multiple genera containing taxa expressing 3α, 3β, 7α, and 7β epimerases were decreased with concordant changes in fecal BAs that required these functions for formation. Conclusion: There are distinct changes in BA-transforming microbiota and corresponding BAs in AH that are related to disease severity.
Collapse
Affiliation(s)
- Mark D. Muthiah
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Division of Gastroenterology and HepatologyNational University HospitalSingapore
| | - Ekaterina Smirnova
- Department of BiostatisticsVirginia Commonwealth UniversityRichmondVAUSA
| | - Puneet Puri
- Division of Gastroenterology, Hepatology, and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Naga Chalasani
- Division of GastroenterologyDepartment of Internal MedicineIndiana UniversityIndianapolisINUSA
| | - Vijay H. Shah
- Division of GastroenterologyDepartment of Internal MedicineMayo ClinicRochesterMNUSA
| | - Calvin Kiani
- Division of Gastroenterology, Hepatology, and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Stephanie Taylor
- Division of Gastroenterology, Hepatology, and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Faridoddin Mirshahi
- Division of Gastroenterology, Hepatology, and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| | - Arun J. Sanyal
- Division of Gastroenterology, Hepatology, and NutritionDepartment of Internal MedicineVirginia Commonwealth UniversityRichmondVAUSA
| |
Collapse
|
86
|
Wolf PG, Cowley ES, Breister A, Matatov S, Lucio L, Polak P, Ridlon JM, Gaskins HR, Anantharaman K. Diversity and distribution of sulfur metabolic genes in the human gut microbiome and their association with colorectal cancer. MICROBIOME 2022; 10:64. [PMID: 35440042 PMCID: PMC9016944 DOI: 10.1186/s40168-022-01242-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Recent evidence implicates microbial sulfidogenesis as a potential trigger of colorectal cancer (CRC), highlighting the need for comprehensive knowledge of sulfur metabolism within the human gut. Microbial sulfidogenesis produces genotoxic hydrogen sulfide (H2S) in the human colon using inorganic (sulfate) and organic (taurine/cysteine/methionine) substrates; however, the majority of studies have focused on sulfate reduction using dissimilatory sulfite reductases (Dsr). RESULTS Here, we show that genes for microbial sulfur metabolism are more abundant and diverse than previously observed and are statistically associated with CRC. Using ~ 17,000 bacterial genomes from publicly available stool metagenomes, we studied the diversity of sulfur metabolic genes in 667 participants across different health statuses: healthy, adenoma, and carcinoma. Sulfidogenic genes were harbored by 142 bacterial genera and both organic and inorganic sulfidogenic genes were associated with carcinoma. Significantly, the anaerobic sulfite reductase (asr) genes were twice as abundant as dsr, demonstrating that Asr is likely a more important contributor to sulfate reduction in the human gut than Dsr. We identified twelve potential pathways for reductive taurine metabolism and discovered novel genera harboring these pathways. Finally, the prevalence of metabolic genes for organic sulfur indicates that these understudied substrates may be the most abundant source of microbially derived H2S. CONCLUSIONS Our findings significantly expand knowledge of microbial sulfur metabolism in the human gut. We show that genes for microbial sulfur metabolism in the human gut are more prevalent than previously known, irrespective of health status (i.e., in both healthy and diseased states). Our results significantly increase the diversity of pathways and bacteria that are associated with microbial sulfur metabolism in the human gut. Overall, our results have implications for understanding the role of the human gut microbiome and its potential contributions to the pathogenesis of CRC. Video abstract.
Collapse
Affiliation(s)
- Patricia G Wolf
- Institute for Health Research and Policy, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Elise S Cowley
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Adam Breister
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Sarah Matatov
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Luke Lucio
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Paige Polak
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Jason M Ridlon
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - H Rex Gaskins
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | | |
Collapse
|
87
|
A Non-Hazardous Deparaffinization Protocol Enables Quantitative Proteomics of Core Needle Biopsy-Sized Formalin-Fixed and Paraffin-Embedded (FFPE) Tissue Specimens. Int J Mol Sci 2022; 23:ijms23084443. [PMID: 35457260 PMCID: PMC9031572 DOI: 10.3390/ijms23084443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Most human tumor tissues that are obtained for pathology and diagnostic purposes are formalin-fixed and paraffin-embedded (FFPE). To perform quantitative proteomics of FFPE samples, paraffin has to be removed and formalin-induced crosslinks have to be reversed prior to proteolytic digestion. A central component of almost all deparaffinization protocols is xylene, a toxic and highly flammable solvent that has been reported to negatively affect protein extraction and quantitative proteome analysis. Here, we present a 'green' xylene-free protocol for accelerated sample preparation of FFPE tissues based on paraffin-removal with hot water. Combined with tissue homogenization using disposable micropestles and a modified protein aggregation capture (PAC) digestion protocol, our workflow enables streamlined and reproducible quantitative proteomic profiling of FFPE tissue. Label-free quantitation of FFPE cores from human ductal breast carcinoma in situ (DCIS) xenografts with a volume of only 0.79 mm3 showed a high correlation between replicates (r2 = 0.992) with a median %CV of 16.9%. Importantly, this small volume is already compatible with tissue micro array (TMA) cores and core needle biopsies, while our results and its ease-of-use indicate that further downsizing is feasible. Finally, our FFPE workflow does not require costly equipment and can be established in every standard clinical laboratory.
Collapse
|
88
|
Fan HM, Mitchell AL, Bellafante E, McIlvride S, Primicheru LI, Giorgi M, Eberini I, Syngelaki A, Lövgren-Sandblom A, Jones P, McCance D, Sukumar N, Periyathambi N, Weldeselassie Y, Hunt KF, Nicolaides KH, Andersson D, Bevan S, Seed PT, Bewick GA, Bowe JE, Fraternali F, Saravanan P, Marschall HU, Williamson C. Sulfated Progesterone Metabolites That Enhance Insulin Secretion via TRPM3 Are Reduced in Serum From Women With Gestational Diabetes Mellitus. Diabetes 2022; 71:837-852. [PMID: 35073578 PMCID: PMC8965673 DOI: 10.2337/db21-0702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022]
Abstract
Serum progesterone sulfates were evaluated in the etiology of gestational diabetes mellitus (GDM). Serum progesterone sulfates were measured using ultra-performance liquid chromatography-tandem mass spectrometry in four patient cohorts: 1) the Hyperglycemia and Adverse Pregnancy Outcomes study; 2) London-based women of mixed ancestry and 3) U.K.-based women of European ancestry with or without GDM; and 4) 11-13 weeks pregnant women with BMI ≤25 or BMI ≥35 kg/m2 with subsequent uncomplicated pregnancies or GDM. Glucose-stimulated insulin secretion (GSIS) was evaluated in response to progesterone sulfates in mouse islets and human islets. Calcium fluorescence was measured in HEK293 cells expressing transient receptor potential cation channel subfamily M member 3 (TRPM3). Computer modeling using Molecular Operating Environment generated three-dimensional structures of TRPM3. Epiallopregnanolone sulfate (PM5S) concentrations were reduced in GDM (P < 0.05), in women with higher fasting plasma glucose (P < 0.010), and in early pregnancy samples from women who subsequently developed GDM with BMI ≥35 kg/m2 (P < 0.05). In islets, 50 µmol/L PM5S increased GSIS by at least twofold (P < 0.001); isosakuranetin (TRPM3 inhibitor) abolished this effect. PM5S increased calcium influx in TRPM3-expressing HEK293 cells. Computer modeling and docking showed identical positioning of PM5S to the natural ligand in TRPM3. PM5S increases GSIS and is reduced in GDM serum. The activation of GSIS by PM5S is mediated by TRPM3 in both mouse and human islets.
Collapse
Affiliation(s)
- Hei Man Fan
- School of Life Course Sciences, King’s College London, London, U.K
| | | | - Elena Bellafante
- School of Life Course Sciences, King’s College London, London, U.K
| | - Saraid McIlvride
- School of Life Course Sciences, King’s College London, London, U.K
| | - Laura I. Primicheru
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Mirko Giorgi
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, U.K
| | - Ivano Eberini
- Department of Pharmacological and Biomolecular Sciences, University of Milan La Statale, Milan, Italy
| | - Argyro Syngelaki
- School of Life Course Sciences, King’s College London, London, U.K
| | | | - Peter Jones
- School of Life Course Sciences, King’s College London, London, U.K
| | - David McCance
- Regional Centre for Endocrinology and Diabetes, Royal Victoria Hospital, Belfast, U.K
| | - Nithya Sukumar
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Nishanthi Periyathambi
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Yonas Weldeselassie
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | | | | | - David Andersson
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Stuart Bevan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, U.K
| | - Paul T. Seed
- School of Life Course Sciences, King’s College London, London, U.K
| | - Gavin A. Bewick
- School of Life Course Sciences, King’s College London, London, U.K
| | - James E. Bowe
- School of Life Course Sciences, King’s College London, London, U.K
| | - Franca Fraternali
- Randall Division of Cell and Molecular Biophysics, King’s College London, London, U.K
| | - Ponnusamy Saravanan
- Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, U.K
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, U.K
| | - Hanns-Ulrich Marschall
- Department of Molecular and Clinical Medicine/Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Catherine Williamson
- School of Life Course Sciences, King’s College London, London, U.K
- Corresponding author: Catherine Williamson,
| |
Collapse
|
89
|
Sangaraju D, Katavolos P, Liang X, Chou C, Zabka TS, Dean B, Maher J. Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: A comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicol Appl Pharmacol 2022; 443:116008. [DOI: 10.1016/j.taap.2022.116008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
90
|
Ishimwe JA, Dola T, Ertuglu LA, Kirabo A. Bile acids and salt-sensitive hypertension: a role of the gut-liver axis. Am J Physiol Heart Circ Physiol 2022; 322:H636-H646. [PMID: 35245132 PMCID: PMC8957326 DOI: 10.1152/ajpheart.00027.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/22/2022]
Abstract
Salt-sensitivity of blood pressure (SSBP) affects 50% of the hypertensive and 25% of the normotensive populations. Importantly, SSBP is associated with increased risk for mortality in both populations independent of blood pressure. Despite its deleterious effects, the pathogenesis of SSBP is not fully understood. Emerging evidence suggests a novel role of bile acids in salt-sensitive hypertension and that they may play a crucial role in regulating inflammation and fluid volume homeostasis. Mechanistic evidence implicates alterations in the gut microbiome, the epithelial sodium channel (ENaC), the farnesoid X receptor, and the G protein-coupled bile acid receptor TGR5 in bile acid-mediated effects on cardiovascular function. The mechanistic interplay between excess dietary sodium-induced alterations in the gut microbiome and immune cell activation, bile acid signaling, and whether such interplay may contribute to the etiology of SSBP is still yet to be defined. The main goal of this review is to discuss the potential role of bile acids in the pathogenesis of cardiovascular disease with a focus on salt-sensitive hypertension.
Collapse
Affiliation(s)
- Jeanne A Ishimwe
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thanvi Dola
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lale A Ertuglu
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Annet Kirabo
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
91
|
Harnisch LO, Mihaylov D, Bein T, Apfelbacher C, Kiehntopf M, Bauer M, Moerer O, Quintel M. Determination of individual bile acids in acute respiratory distress syndrome reveals a specific pattern of primary and secondary bile acids and a shift to the acidic pathway as an adaptive response to the critical condition. Clin Chem Lab Med 2022; 60:891-900. [PMID: 35313097 DOI: 10.1515/cclm-2021-1176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Cholestasis and elevated serum bile1 acid levels are common in critically ill patients. This study aims to define the specific pattern of bile acids associated with acute respiratory distress syndrome (ARDS) and the changes in pattern over time. METHODS Prospective observational study. Serum samples of 70 ARDS patients were analyzed for primary bile acids (cholic acid, chenodeoxycholic acid) and secondary bile acids (deoxycholic acid, litocholic acid, and ursodeoxycholic acid) as well as their glycine and taurine glycation products. RESULTS Primary bile acid levels increased from day zero to day five by almost 50% (p<0.05). This change bases on a statistically significant increase in all primary bile acids between day 0 and day 5 (cholic acid [CA] p=0.001, taurocholic acid [TCA] p=0.004, glycocholic acid [GCA] p<0.001, chenodeoxycholic acid [CDCA] p=0.036, taurochenodeoxycholic acid [TCDCA] p<0.001, glycochenodeoxycholic acid [GCDCA] p<0.001). Secondary bile acids showed predominantly decreased levels on day 0 compared to the control group and remained stable throughout the study period; the differences between day zero and day five were not statistically significant. Non-survivors exhibited significantly higher levels of TCDCA on day 5 (p<0.05) than survivors. This value was also independently associated with survival in a logistic regression model with an odds ratio of 2.24 (95% CI 0.53-9.46). CONCLUSIONS The individual bile acid profile of this ARDS patient cohort is unique compared to other disease states. The combination of changes in individual bile acids reflects a shift toward the acidic pathway of bile acid synthesis. Our results support the concept of ARDS-specific plasma levels of bile acids in a specific pattern as an adaptive response mechanism.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Germany
| | - Diana Mihaylov
- Institute of Clinical Chemistry and Laboratory Medicine of the University Hospital Jena, Jena, Germany
| | - Thomas Bein
- University of Regensburg Regensburg, Germany
| | - Christian Apfelbacher
- Institute for Social Medicine and Health Economics, University of Magdeburg Magdeburg, Germany
| | - Michael Kiehntopf
- Institute of Clinical Chemistry and Laboratory Medicine of the University Hospital Jena, Jena, Germany
| | - Michael Bauer
- Department of Anaesthesiology, University Hospital Jena, Jena, Germany
| | - Onnen Moerer
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Germany
| | - Michael Quintel
- Department of Anaesthesiology, University of Göttingen Medical Center, Göttingen, Germany
| |
Collapse
|
92
|
DHEA Protects Human Cholangiocytes and Hepatocytes against Apoptosis and Oxidative Stress. Cells 2022; 11:cells11061038. [PMID: 35326489 PMCID: PMC8947473 DOI: 10.3390/cells11061038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 02/07/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a rare chronic cholestatic and immune-mediated liver disease of unknown aetiology that targets intrahepatic bile duct cells (cholangiocytes) and primarily affects postmenopausal women, when their estrogen levels sharply decrease. An impaired cholangiocyte response to estrogen characterizes the terminal stage of the disease, as this is when an inefficiency of cholangiocyte proliferation, in balancing the loss of intrahepatic bile ducts, is observed. Here, we report that the estrogen precursor dehydroepiandrosterone (DHEA) and its sulfate metabolites, DHEA-S and 17 β-estradiol, enhance the proliferation of cholangiocytes and hepatocytes in vitro. Flow cytometry analysis showed that DHEA and DHEA-S decreased glyco-chenodeoxycholic acid (GCDC)-driven apoptosis in cholangiocytes. Cell viability assay (MTT) indicated that ER-α, -β, and the G-protein-coupled estrogen receptor, are involved in the protection of DHEA against oxidative stress in cholangiocytes. Finally, immunoblot analysis showed an elevated level of steroid sulfatase and a reduced level of sulfotransferase 1E1 enzymes, involved in the desulfation/sulfation process of estrogens in cirrhotic PBC, and primary sclerosis cholangitis (PSC) liver tissues, another type of chronic cholestatic and immune-mediated liver disease. Taken together, these results suggest that DHEA can prevent the deleterious effects of certain potentially toxic bile acids and reactive oxygen species, delaying the onset of liver disease.
Collapse
|
93
|
Greenbaum J, Lin X, Su KJ, Gong R, Shen H, Shen J, Xiao HM, Deng HW. Integration of the Human Gut Microbiome and Serum Metabolome Reveals Novel Biological Factors Involved in the Regulation of Bone Mineral Density. Front Cell Infect Microbiol 2022; 12:853499. [PMID: 35372129 PMCID: PMC8966780 DOI: 10.3389/fcimb.2022.853499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022] Open
Abstract
While the gut microbiome has been reported to play a role in bone metabolism, the individual species and underlying functional mechanisms have not yet been characterized. We conducted a systematic multi-omics analysis using paired metagenomic and untargeted serum metabolomic profiles from a large sample of 499 peri- and early post-menopausal women to identify the potential crosstalk between these biological factors which may be involved in the regulation of bone mineral density (BMD). Single omics association analyses identified 22 bacteria species and 17 serum metabolites for putative association with BMD. Among the identified bacteria, Bacteroidetes and Fusobacteria were negatively associated, while Firmicutes were positively associated. Several of the identified serum metabolites including 3-phenylpropanoic acid, mainly derived from dietary polyphenols, and glycolithocholic acid, a secondary bile acid, are metabolic byproducts of the microbiota. We further conducted a supervised integrative feature selection with respect to BMD and constructed the inter-omics partial correlation network. Although still requiring replication and validation in future studies, the findings from this exploratory analysis provide novel insights into the interrelationships between the gut microbiome and serum metabolome that may potentially play a role in skeletal remodeling processes.
Collapse
Affiliation(s)
- Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Kuan-Jui Su
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Rui Gong
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Hong-Mei Xiao
- Center of Systems Biology, Data Information and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, China
| | - Hong-Wen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, United States
| |
Collapse
|
94
|
Xiao R, Lei K, Kuok H, Deng W, Zhuang Y, Tang Y, Guo Z, Qin H, Bai L, Li T. Synthesis and identification of lithocholic acid 3‐sulfate as RORγt ligand to inhibit Th17 cell differentiation. J Leukoc Biol 2022; 112:835-843. [DOI: 10.1002/jlb.1ma0122-513r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/27/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Affiliation(s)
- Riping Xiao
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Kawai Lei
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Hioha Kuok
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Wende Deng
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Yuxin Zhuang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Yanqing Tang
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Zhengyang Guo
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
| | - Hongyan Qin
- Department of Pharmacy First Hospital of Lanzhou University Lanzhou China
| | - Li‐Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease Macau University of Science and Technology Macau China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health Macau University of Science and Technology Macau China
- Guangdong‐Hong Kong‐Macao Joint Laboratory of Respiratory Infectious Disease Macau University of Science and Technology Macau China
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China Macau University of Science and Technology Macau China
| |
Collapse
|
95
|
Pérez-Pineda SI, Baylón-Pacheco L, Espíritu-Gordillo P, Tsutsumi V, Rosales-Encina JL. Effect of bile acids on the expression of MRP3 and MRP4: An In vitro study in HepG2 cell line. Ann Hepatol 2022; 24:100325. [PMID: 33582321 DOI: 10.1016/j.aohep.2021.100325] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Free and conjugated bile acids (BA's) cannot cross cell membranes; therefore, a particular transport system is required by the cell. Members of the family of ABC (ATP-binding proteins) transporters transfer bile acids in and out of the cell, preventing their accumulation. High intracellular concentrations of bile acids, such as those observed in cholestasis, have been related to oxidative stress and apoptosis, which in many cases are the leading causes of hepatocyte damage. MRP3 and MRP4 (multidrug resistance-associated protein 3 and 4) proteins belong to the ABC subfamily C, and are transporters of the hepatocyte's basolateral membrane with a compensatory role. Both transporters' increased expression constitutes an essential role in the protective and adaptive responses of bile acid overload, such as cholestasis. This work aimed to analyze both transporters' mRNA and protein expression in an in vitro model of cholestasis using HepG2 cell line treated with main bile acids. METHODS The expression of transporters was investigated through confocal microscopy immunofluorescence, Western Blot, and RT-qPCR after the main bile acids in HepG2 line cells. RESULTS The results showed the relation between confluence and expression of both transporters in the plasma membrane. MRP3 showed atypical and heterogeneous distribution in this cell line. CDCA (chenodeoxycholic acid) at low concentrations induced the expression of mRNA of both transporters. In contrast, protein expression was induced by CA (cholic acid) at high concentrations. CONCLUSION Primary bile acids (CDCA and CA) induce overexpression of the MRP4 and MRP3 transporters in the HepG2 cell line.
Collapse
Affiliation(s)
- Suilma Ivette Pérez-Pineda
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| | - Lidia Baylón-Pacheco
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| | - Patricia Espíritu-Gordillo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| | - Victor Tsutsumi
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| | - José Luis Rosales-Encina
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico.
| |
Collapse
|
96
|
Saran C, Sundqvist L, Ho H, Niskanen J, Honkakoski P, Brouwer KLR. Novel Bile Acid-Dependent Mechanisms of Hepatotoxicity Associated with Tyrosine Kinase Inhibitors. J Pharmacol Exp Ther 2022; 380:114-125. [PMID: 34794962 PMCID: PMC9109172 DOI: 10.1124/jpet.121.000828] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023] Open
Abstract
Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.
Collapse
Affiliation(s)
- Chitra Saran
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Louise Sundqvist
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Henry Ho
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Jonna Niskanen
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Paavo Honkakoski
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| | - Kim L R Brouwer
- Department of Pharmacology, UNC School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S.); Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (C.S., L.S., H.H., P.H., K.L.R.B.); Department of Pharmacy, Uppsala University, Uppsala, Sweden (L.S.); and School of Pharmacy, University of Eastern Finland, Kuopio, Finland (J.N., P.H.)
| |
Collapse
|
97
|
van der Lugt B, Vos MC, Grootte Bromhaar M, Ijssennagger N, Vrieling F, Meijerink J, Steegenga WT. The effects of sulfated secondary bile acids on intestinal barrier function and immune response in an inflammatory in vitro human intestinal model. Heliyon 2022; 8:e08883. [PMID: 35169646 PMCID: PMC8829581 DOI: 10.1016/j.heliyon.2022.e08883] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/08/2021] [Accepted: 01/29/2022] [Indexed: 02/06/2023] Open
Abstract
Dysbiosis-related perturbations in bile acid (BA) metabolism were observed in inflammatory bowel disease (IBD) patients, which was characterized by increased levels of sulfated BAs at the expense of secondary BAs. However, the exact effects of sulfated BAs on the etiology of IBD are not investigated yet. Therefore, we aimed to investigate the effects of sulfated deoxycholic acid (DCA), sulfated lithocholic acid (LCA) and their unsulfated forms on intestinal barrier function and immune response. To this end, we first established a novel in vitro human intestinal model to mimic chronic intestinal inflammation as seen during IBD. This model consisted of a co-culture of Caco-2 and HT29-MTX-E12 cells grown on a semi-wet interface with mechanical stimulation to represent the mucus layer. A pro-inflammatory environment was created by combining the co-culture with LPS-activated dendritic cells (DCs) in the basolateral compartment. The presence of activated DCs caused a decrease in transepithelial electrical resistance (TEER), which was slightly restored by LCA and sulfated DCA. The expression of genes related to intestinal epithelial integrity and the mucus layer were slightly, but not significantly increased. These results imply that sulfated BAs have a minor effect on intestinal barrier function in Caco-2 and HT29-MTX-E12 cells. When exposed directly to DCs, our results point towards anti-inflammatory effects of secondary BAs, but to a minor extent for sulfated secondary BAs. Future research should focus on the importance of proper transformation of BAs by bacterial enzymes and the potential involvement of BA dysmetabolism in IBD progression.
Collapse
|
98
|
He Y, Zhang X, Shao Y, Xu B, Cui Y, Chen X, Chen H, Luo C, Ding M. Recognition of asymptomatic hypercholanemia of pregnancy: Different clinical features, fetal outcomes and bile acids metabolism from intrahepatic cholestasis of pregnancy. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166269. [PMID: 34537368 DOI: 10.1016/j.bbadis.2021.166269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To explore the clinical features, fetal outcomes and serum bile acids (BAs) metabolism in asymptomatic hypercholanemia of pregnancy (AHP), as well as the comparison with those in intrahepatic cholestasis of pregnancy (ICP) and normal pregnancies. METHODS A study containing 676 pregnant women was performed to investigate the clinical informations, routine biochemical features and obstetric outcomes of AHP by the comparison with ICP and normal pregnancies. Within the study subjects, 203 pregnant women received prospective determination for 55 serum individual BAs based on a validated UPLC-QTOF-MS/MS method. The differences in clinical features and serum BAs metabolism among the three groups were then investigated. RESULTS The risk of adverse fetal outcomes in AHP (28.3%) was significantly higher than that in normal pregnancies (8.9%, p < 0.001), but lower than that in ICP group (52.1%, p < 0.001). Multivariate statistics analysis indicated a distinctive serum BAs metabolic profiling among the three groups (PLS-DA, R2Y = 0.580, Q2 = 0.537). Levels of serum BAs especially for deoxycholic acid species were found remarkably elevated in AHP as compared to those in ICP. CONCLUSIONS AHP group had distinguished clinical features and serum BAs metabolism as compared to ICP group and normal pregnancies.
Collapse
Affiliation(s)
- Yifan He
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Xiaoqing Zhang
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Yong Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, China; Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, China
| | - Biao Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, China
| | - Yue Cui
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Xiao Chen
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Hong Chen
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Can Luo
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China
| | - Min Ding
- Key Laboratory of Laboratory Medical Diagnosis, Ministry of Education, School of Laboratory Medicine, Chongqing Medical University, China.
| |
Collapse
|
99
|
Heintze T, Wilhelm D, Schmidlin T, Hofmann U, Zanger UM, Schwab M, Klein K. Effects of Diminished NADPH:cytochrome P450 Reductase in Human Hepatocytes on Lipid and Bile Acid Homeostasis. Front Pharmacol 2021; 12:769703. [PMID: 34867397 PMCID: PMC8634102 DOI: 10.3389/fphar.2021.769703] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
NADPH:cytochrome P450 oxidoreductase (POR) is the obligate electron donor for microsomal cytochrome P450 (CYP) enzymes involved in the biosynthesis of endogenous substances like bile acids and other steroids as well as in the oxidative metabolism of xenobiotics. P450 oxidoreductase also supports other redox enzymes in fatty acid and cholesterol pathways. Recently, we have established CRISPR/Cas9-mediated POR knockdown in a human hepatic cell model, HepaRG, and demonstrated the differential effects of limited POR expression on CYP activity. The aim of the present work was to systematically investigate the impact of POR knockdown with a focus on the expression of ADME (absorption, distribution, metabolism, and excretion) genes and related regulators. Functional consequences have been assessed using quantitative mass spectrometry for targeted metabolomics covering bile acids, and cholesterol and its precursors, and for untargeted proteomics. In addition to the previously described alteration of RNA expression of CYP genes, we showed significant downregulation of transcriptional regulators of drug metabolism and transport, including NR1I3 (CAR), NR1I2 (PXR), NR1H4 (FXR), and NR1H3 (LXRα) in cells with POR gene disruption. Furthermore, POR knockdown resulted in deregulated bile acid and cholesterol biosynthesis demonstrated by low levels of cholic acid derivates and increased concentrations of chenodeoxycholic acid derivates, respectively. Systemic effects of POR knockdown on global protein expression were indicated by downregulation of several metabolic pathways including lipid metabolism and biological oxidation reactions. The deduced protein network map corroborates CYP enzymes as direct interaction partners, whereas changes in lipid metabolism and homeostasis are the result of indirect effects. In summary, our results emphasize a widespread role of POR in various metabolic pathways and provide the first human data on the effects of diminished POR expression on drug and endogenous metabolism in a genomeedited HepaRG cell model.
Collapse
Affiliation(s)
- Tamara Heintze
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Denise Wilhelm
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Thierry Schmidlin
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ute Hofmann
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Ulrich M Zanger
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| | - Matthias Schwab
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Departments of Clinical Pharmacology and Biochemistry and Pharmacy, University of Tuebingen, Tübingen, Germany.,Cluster of Excellence IFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", University of Tübingen, Tübingen, Germany
| | - Kathrin Klein
- Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.,Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
100
|
Habler K, Koeppl B, Bracher F, Vogeser M. Targeted profiling of 24 sulfated and non-sulfated bile acids in urine using two-dimensional isotope dilution UHPLC-MS/MS. Clin Chem Lab Med 2021; 60:220-228. [PMID: 34798689 DOI: 10.1515/cclm-2021-1111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Bile acids serve as biomarkers for liver function and are indicators for cholestatic and hepatobiliary diseases like hepatitis, cirrhosis, and intrahepatic cholestasis of pregnancy (ICP). Sulfation and renal excretion of bile acids are important elimination steps. The power of ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) allows specific profiling of primary and secondary bile acids as well as their sulfated counterparts. METHODS Twenty-four sulfated and non-sulfated primary and secondary bile acids were quantified in urine with 15 corresponding stable isotope labeled internal standards by using two-dimensional UHPLC-MS/MS. The sample preparation was based on a simple dilution with a methanolic zinc sulfate solution followed by an automated online solid phase extraction clean up. RESULTS The validation results of the method fulfilled the criteria of the European Medicine Agency (EMA) "Guideline on bioanalytical method validation". To verify fitness for purpose, 40 urine samples were analyzed which showed an average of 86% sulfation, 9.1% taurine-conjugation, 14% non-conjugation, and 77% glycine-conjugation rates. CONCLUSIONS Lossless one-pot sample preparation, automated sample purification, and high number of internal standards are major innovations of the presented profiling method, which may allow diagnostic application of BA profiling in the future.
Collapse
Affiliation(s)
- Katharina Habler
- Institute of Laboratory Medicine, University Hospital, LMU, Munich, Germany
| | - Bernhard Koeppl
- Institute of Laboratory Medicine, University Hospital, LMU, Munich, Germany
- Department of Pharmacy, Center for Drug Research, LMU, Munich, Germany
| | - Franz Bracher
- Department of Pharmacy, Center for Drug Research, LMU, Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University Hospital, LMU, Munich, Germany
| |
Collapse
|