51
|
Yang CF, Liu WW, Wang HQ, Zhang JL, Li K, Diao ZY, Yue QL, Yan GJ, Li CJ, Sun HX. Gonadal white adipose tissue is important for gametogenesis in mice through maintenance of local metabolic and immune niches. J Biol Chem 2022; 298:101818. [PMID: 35278432 PMCID: PMC9052151 DOI: 10.1016/j.jbc.2022.101818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/18/2022] Open
Abstract
Gonadal white adipose tissue (gWAT) can regulate gametogenesis via modulation of neuroendocrine signaling. However, the effect of gWAT on the local microenvironment of the gonad was largely unknown. Herein, we ruled out that gWAT had a neuroendocrine effect on gonad function through a unilateral lipectomy strategy, in which cutting off epididymal white adipose tissue could reduce seminiferous tubule thickness and decrease sperm counts only in the adjacent testis and epididymis of the affected gonad. Consistent with the results in males, in females, ovary mass was similarly decreased by lipectomy. We determined that the defects in spermatogenesis were mainly caused by augmented apoptosis and decreased proliferation of germ cells. Transcriptome analysis suggested that lipectomy could disrupt immune privilege and activate immune responses in both the testis and ovary on the side of the lipectomy. In addition, lipidomics analysis in the testis showed that the levels of lipid metabolites such as free carnitine were elevated, whereas the levels of glycerophospholipids such as phosphatidylcholines and phosphatidylethanolamines were decreased, which indicated that the metabolic niche was also altered. Finally, we show that supplementation of phosphatidylcholine and phosphatidylethanolamine could partially rescue the observed phenotype. Collectively, our findings suggest that gWAT is important for gonad function by not only affecting whole-body homeostasis but also via maintaining local metabolic and immune niches.
Collapse
Affiliation(s)
- Chao-Fan Yang
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Wen-Wen Liu
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Hai-Quan Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Jia-Le Zhang
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Kang Li
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhen-Yu Diao
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Qiu-Ling Yue
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Gui-Jun Yan
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| | - Chao-Jun Li
- State Key Laboratory of Reproductive Medicine and China International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| | - Hai-Xiang Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study and Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
52
|
Sun F, Wang X, Zhang P, Chen Z, Guo Z, Shang X. Reproductive toxicity investigation of silica nanoparticles in male pubertal mice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:36640-36654. [PMID: 35064498 DOI: 10.1007/s11356-021-18215-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Silica nanoparticles (SiNPs), one of the most produced nanoparticles (NPs) in the world, are used in all aspects of life. The increased application of SiNPs, especially in medicine, has raised considerable concern regarding their toxicological impact. Previous studies have shown that SiNPs can pass through the reproductive barrier and cause reproductive organ dysfunction by destroying Sertoli cells, Leydig cells, and germ cells. However, little is known about the mechanism of SiNPs-induced reproductive toxicity. In the present study, 5-week-old male mice were intraperitoneally administered SiNPs per day for 1 week at a dose of 0.2 mg per mouse. The results showed that SiNPs could cause damage to the structure of the testis and the epididymis and change the reproductive organ coefficients, leading to decreases of 56.1% and 55.3% in the rates of sperm concentration and motility and an increase of 168.8% in the rate of sperm abnormality. Moreover, the serum testosterone level obviously decreased from 18.77 to 5.23 µg/ml after exposure, and the transcription statuses of some key genes involved in the synthesis and transport of testosterone in the testis were also affected. Additional experiments showed that SiNPs exposure during puberty induced oxidative stress and an inflammatory response, as shown by the changed activity of superoxide dismutase (SOD), increased contents of malondialdehyde (MDA), and excess expression of proinflammatory factors, including TNF-α and IL-1β. Furthermore, the administration of SiNPs caused DNA damage and cell apoptosis, which were presented by the increased apoptotic cells in the sections of testis and epididymis and activation of the TNF-α/TNFR I-mediated pro-apoptotic pathway. In conclusion, these results indicate that SiNPs exposure during puberty significantly damaged the structure and function of the testis and epididymis by inducing oxidative stress and cell apoptosis. This study provides novel insight into SiNPs-induced reproductive toxicity during puberty, which warrants a more careful assessment of SiNPs before their application in juvenile supplies.
Collapse
Affiliation(s)
- Fanli Sun
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Xuying Wang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Pinzheng Zhang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Ziyun Chen
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Zhiyi Guo
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
- Hebei Key Laboratory for Chronic Diseases, Tangshan, People's Republic of China
| | - Xuan Shang
- School of Public Health, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China.
| |
Collapse
|
53
|
Zheng Y, Gao Q, Li T, Liu R, Cheng Z, Guo M, Xiao J, Wu D, Zeng W. Sertoli cell and spermatogonial development in pigs. J Anim Sci Biotechnol 2022; 13:45. [PMID: 35399096 PMCID: PMC8996595 DOI: 10.1186/s40104-022-00687-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Background Spermatogenesis is an intricate developmental process during which undifferentiated spermatogonia, containing spermatogonial stem cells (SSCs), undergo self-renewal and differentiation to generate eventually mature spermatozoa. Spermatogenesis occurs in seminiferous tubules within the testis, and the seminiferous tubules harbor Sertoli and germ cells. Sertoli cells are an essential somatic cell type within the microenvironment that support and steer male germ cell development, whereas spermatogonia are the primitive male germ cells at the onset of spermatogenesis. While the developmental progression of Sertoli cells and spermatogonia has been well established in mice, much less is known in other mammalian species including pigs. Results To acquire knowledge of Sertoli cell and spermatogonial development in pigs, here we collected as many as nine ages of Duroc porcine testes from the neonate to sexual maturity, i.e., testes from 7-, 30-, 50-, 70-, 90-, 110-, 130-, 150- and 210-day-old boars, and performed histological and immunohistochemical analyses on testis sections. We first examined the development of spermatogenic cells and seminiferous tubules in porcine testes. Then, by immunofluorescence staining for marker proteins (AMH, SOX9, DBA, UCHL1, VASA, KIT, Ki67 and/or PCNA), we delved into the proliferative activity and development of Sertoli cells and of spermatogonial subtypes (pro-, undifferentiated and differentiating spermatogonia). Besides, by immunostaining for β-catenin and ZO-1, we studied the establishment of the blood-testis barrier in porcine testes. Conclusions In this longitudinal study, we have systematically investigated the elaborate Sertoli cell and spermatogonial developmental patterns in pigs from the neonate to sexual maturity that have so far remained largely unknown. The findings not only extend the knowledge about spermatogenesis and testicular development in pigs, but also lay the theoretical groundwork for porcine breeding and rearing.
Collapse
|
54
|
Immune homeostasis and disorder in the testis —roles of Sertoli cells. J Reprod Immunol 2022; 152:103625. [DOI: 10.1016/j.jri.2022.103625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/05/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023]
|
55
|
Kim SW, Jeong YD, Lee GY, Lee J, Lee JY, Kim CL, Ko YG, Lee SS, Kim B. Differential expression and localization of tight junction proteins
in the goat epididymis. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:500-514. [PMID: 35709128 PMCID: PMC9184707 DOI: 10.5187/jast.2022.e13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 11/25/2022]
Abstract
The blood-epididymis barrier (BEB) forms a unique microenvironment that is
crucial for the maturation, protection, transport, and storage of spermatozoa in
the epididymis. To characterize the function of tight junctions (TJs), which are
constitutive components of the BEB, we determined the expression and
localization of TJ proteins such as zonula occludens (ZO)-1, 2, and 3, occludin,
and claudin3 (Cldn3) during postnatal development in the goat epididymis. To
assess the expression patterns of TJ proteins in immature (3 months of age) and
mature (14 months of age) goat epididymides, two different experimental methods
were used including immunofluorescence labeling and western blotting. We show
that, ZO-1, 2, and 3, and occludin, were strictly expressed and localized to the
TJs of the goat epididymis, whereas Cldn3 was present in basolateral membranes
as well as TJs. All TJ proteins examined were more highly expressed in the
immature epididymis compared to levels in mature tissue. In conclusion, our
study indicates that at least five TJ proteins, namely ZO-1, ZO-2, ZO-3,
occludin, and Cldn3, are present in TJs, and the expression strength and pattern
of TJ proteins tend to be age dependent in the goat epididymis. Together, these
data suggest that the distinct expression patterns of TJ proteins are essential
for regulating components of the luminal contents in the epididymal epithelium
and for forming adequate luminal conditions that are necessary for the
maturation, protection, transport, and storage of spermatozoa in the goat
epididymis.
Collapse
Affiliation(s)
- Sung Woo Kim
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Yu-Da Jeong
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Ga-Yeong Lee
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
| | - Jinwook Lee
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Jae-Yeung Lee
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Chan-Lan Kim
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Yeoung-Gyu Ko
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Sung-Soo Lee
- Animal Genetic Resource Research Center,
National Institute of Animal Science, Rural Development
Administration, Hamyang 50000, Korea
| | - Bongki Kim
- Department of Animal Resources Science,
Kongju National University, Yesan 32439, Korea
- Corresponding author: Bongki Kim, Department of
Animal Resources Science, Kongju National University, Yesan 32439, Korea. Tel:
+82-41-330-1246, E-mail:
| |
Collapse
|
56
|
Shum W, Zhang BL, Cao AS, Zhou X, Shi SM, Zhang ZY, Gu LY, Shi S. Calcium Homeostasis in the Epididymal Microenvironment: Is Extracellular Calcium a Cofactor for Matrix Gla Protein-Dependent Scavenging Regulated by Vitamins. Front Cell Dev Biol 2022; 10:827940. [PMID: 35252193 PMCID: PMC8893953 DOI: 10.3389/fcell.2022.827940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 12/23/2022] Open
Abstract
In the male reproductive tract, the epididymis is an essential organ for sperm maturation, in which sperm cells acquire mobility and the ability to fertilize oocytes while being stored in a protective microenvironment. Epididymal function involves a specialized luminal microenvironment established by the epithelial cells of epididymal mucosa. Low-calcium concentration is a unique feature of this epididymal luminal microenvironment, its relevance and regulation are, however, incompletely understood. In the rat epididymis, the vitamin D-related calcium-dependent TRPV6-TMEM16A channel-coupler has been shown to be involved in fluid transport, and, in a spatially complementary manner, vitamin K2-related γ-glutamyl carboxylase (GGCX)-dependent carboxylation of matrix Gla protein (MGP) plays an essential role in promoting calcium-dependent protein aggregation. An SNP in the human GGCX gene has been associated with asthenozoospermia. In addition, bioinformatic analysis also suggests the involvement of a vitamin B6-axis in calcium-dependent MGP-mediated protein aggregation. These findings suggest that vitamins interact with calcium homeostasis in the epididymis to ensure proper sperm maturation and male fertility. This review article discusses the regulation mechanisms of calcium homeostasis in the epididymis, and the potential role of vitamin interactions on epididymal calcium homeostasis, especially the role of matrix calcium in the epididymal lumen as a cofactor for the carboxylated MGP-mediated scavenging function.
Collapse
Affiliation(s)
- Winnie Shum
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Winnie Shum,
| | - Bao Li Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Reproduction and Development Institution, Fudan University, Shanghai, China
| | - Albert Shang Cao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Su Meng Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ze Yang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lou Yi Gu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Shi
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
57
|
Changes in Expression of Specific mRNA Transcripts after Single- or Re-Irradiation in Mouse Testes. Genes (Basel) 2022; 13:genes13010151. [PMID: 35052491 PMCID: PMC8775240 DOI: 10.3390/genes13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/01/2023] Open
Abstract
Alkylating agents and irradiation induce testicular damage, which results in prolonged azoospermia. Even very low doses of radiation can significantly impair testis function. However, re-irradiation is an effective strategy for locally targeted treatments and the pain response and has seen important advances in the field of radiation oncology. At present, little is known about the relationship between the harmful effects and accumulated dose of irradiation derived from continuous low-dose radiation exposure. In this study, we examined the levels of mRNA transcripts encoding markers of 13 markers of germ cell differentiation and 28 Sertoli cell-specific products in single- and re-irradiated mice. Our results demonstrated that re-irradiation induced significantly decreased testicular weights with a significant decrease in germ cell differentiation mRNA species (Spo11, Tnp1, Gfra1, Oct4, Sycp3, Ddx4, Boll, Crem, Prm1, and Acrosin). In the 13 Sertoli cell-specific mRNA species decreased upon irradiation, six mRNA species (Claudin-11,Espn, Fshr, GATA1, Inhbb, and Wt1) showed significant differences between single- and re-irradiation. At the same time, different decreases in Sertoli cell-specific mRNA species were found in single-irradiation (Aqp8, Clu, Cst12, and Wnt5a) and re-irradiation (Tjp1, occludin,ZO-1, and ZO-2) mice. These results indicate that long-term aspermatogenesis may differ after single- and re-irradiated treatment.
Collapse
|
58
|
Kalada W, Cory TJ. The Importance of Tissue Sanctuaries and Cellular Reservoirs of HIV-1. Curr HIV Res 2021; 20:102-110. [PMID: 34961449 DOI: 10.2174/1570162x20666211227161237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 11/22/2022]
Abstract
Purpose of Review - There have been significant developments in the treatment of people living with HIV-1/AIDS with current antiretroviral therapies; however, these developments have not been able to achieve a functional or sterilizing cure for HIV-1. While there are multiple barriers, one such barrier is the existence of pharmacological sanctuaries and viral reservoirs where the concentration of antiretrovirals is suboptimal, which includes the gut-associated lymphoid tissue, central nervous system, lymph nodes, and myeloid cells. This review will focus on illustrating the significance of these sanctuaries, specific barriers to optimal antiretroviral concentrations in each of these sites, and potential strategies to overcome these barriers. Recent Findings - Research and studies have shown that a uniform antiretroviral distribution is not achieved with current therapies. This may allow for low-level replication associated with low antiretroviral concentrations in these sanctuaries/reservoirs. Many methods are being investigated to increase antiretroviral concentrations in these sites, such as blocking transporting enzymes functions, modulating transporter expression and nanoformulations of current antiretrovirals. While these methods have been shown to increase antiretroviral concentrations in the sanctuaries/reservoirs, no functional or sterilizing cure has been achieved due to these approaches. Summary - New methods of increasing antiretroviral concentrations at the specific sites of HIV-1 replication has the potential to target cellular reservoirs. In order to optimize antiretroviral distribution into viral sanctuaries/reservoirs, additional research is needed.
Collapse
Affiliation(s)
- William Kalada
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| | - Theodore James Cory
- Department of Clinical Pharmacy and Translational Science, University of Tennessee Health Science Center College of Pharmacy. 881 Madison Avenue, Memphis, TN, USA
| |
Collapse
|
59
|
Misiakiewicz-Has K, Pilutin A, Wiszniewska B. Influence of hormonal imbalance on the integrity of seminiferous epithelium in the testes of adult rats chronically exposed to letrozole and rats exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. Reprod Biol 2021; 21:100562. [PMID: 34555686 DOI: 10.1016/j.repbio.2021.100562] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 11/21/2022]
Abstract
The structural integrity of the germ cells in the seminiferous epithelium and the correct process of spermatogenesis are made possible by proteins that participate in the formation of different types of junctions. This study was performed on samples of the testes of 4 groups (2 experimental and 2 corresponding control) of male Wistar rats. In the first experimental group, the adult rats received letrozole - a nonsteroidal inhibitor of cytochrome P450 aromatase (P450arom). The second experimental group was exposed to soya isoflavones during the prenatal period, lactation, and up to sexual maturity. The aim of this study was to examine the immunoexpression of β-catenin, N-cadherin, occludin, connexin43, annexin V, and advanced glycation end products (AGE) in the seminiferous epithelium of rat testes with chronic estrogen deficiency and of rats exposed to soya isoflavones. Series of sections of the testes were stained using PAS and silver impregnation. Moreover, immunohistochemistry tests were performed. A semi-quantitative determination of protein immunoexpression was performed using Image J. The number of annexin V positive Sertoli cells per tubule were counted manually. Comparisons between the experimental and corresponding control groups were performed using a non-parametric Mann-Whitney U test. The most common alterations were prematurely sloughed germ cells in the lumen of the seminiferous tubules and invaginations of the seminiferous tubules. We observed a lower number of annexin V positive Sertoli cells and a lower expression of N-cadherin and occludin in the seminiferous epithelium of both groups of rats with hormonal imbalances. Moreover, a higher expression of AGE, a lower expression of connexin 43 and a lower amount of reticular fibers in the basal lamina of seminiferous tubules was present in rats treated with letrozole and a higher expression of β-catenin was found in rats exposed to soya isoflavones. The hormonal imbalance between androgens and estrogens resulted in a decreased number of annexin V positive Sertoli cells. This may be associated with a failed clearance of apoptotic germ cells that leads to disturbances in the blood-testis-barrier (BTB) by affecting the expression of junctional proteins in the seminiferous epithelium. Moreover, a decreased level of estrogens was also associated with an increased expression of AGEs and with a changed composition of basal lamina in the seminiferous tubules of rats. These changes could lead to germ cell sloughing and invaginations of the seminiferous tubules.
Collapse
Affiliation(s)
- K Misiakiewicz-Has
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland.
| | - A Pilutin
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| | - B Wiszniewska
- Department of Histology and Embryology, Pomeranian Medical University in Szczecin, 70-111, Szczecin, Poland
| |
Collapse
|
60
|
Amelkina O, Silva AMD, Silva AR, Comizzoli P. Transcriptome dynamics in developing testes of domestic cats and impact of age on tissue resilience to cryopreservation. BMC Genomics 2021; 22:847. [PMID: 34814833 PMCID: PMC8611880 DOI: 10.1186/s12864-021-08099-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Fundamental knowledge of cellular and molecular mechanisms in developing testicular tissues is critical to better understand gonadal biology and responses to non-physiological conditions. The objective of our study was to (1) analyze transcriptome dynamics in developing testis of the domestic cat and (2) characterize age effects on the initial response of the tissue to vitrification. Tissues from adult and juvenile cats were processed for histology, DNA integrity, and RNA sequencing analyses before and after vitrification. RESULTS Transcriptomic findings enabled to further characterize juvenile period, distinguishing between early and late juvenile tissues. Changes in gene expression and functional pathways were extensive from early to late juvenile to adult development stages. Additionally, tissues from juvenile animals were more resilient to vitrification compared to adult counterparts, with early juvenile sample responding the least to vitrification and late juvenile sample response being closest to adult tissues. CONCLUSIONS This is the first study reporting comprehensive datasets on transcriptomic dynamic coupled with structural analysis of the cat testis according to the age and exposure to cryopreservation. It provides a comprehensive network of functional terms and pathways that are affected by age in the domestic cat and are either enriched in adult or juvenile testicular tissues.
Collapse
Affiliation(s)
- Olga Amelkina
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Andreia M da Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Alexandre R Silva
- Laboratory of Animal Germplasm Conservation, Federal Rural University of Semi-Arid - UFERSA, Mossoró, RN, Brazil
| | - Pierre Comizzoli
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA.
| |
Collapse
|
61
|
Dénes L, Ruedas-Torres I, Szilasi A, Balka G. Detection and localization of atypical porcine pestivirus in the testicles of naturally infected, congenital tremor affected piglets. Transbound Emerg Dis 2021; 69:e621-e629. [PMID: 34705340 PMCID: PMC9541069 DOI: 10.1111/tbed.14355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 11/27/2022]
Abstract
Atypical porcine pestivirus (APPV) belongs to the genus Pestivirus within the family Flaviviridae. Recently, APPV has been identified as the causative agent of congenital tremor (CT) type AII. The disease is a neurological disorder that affects newborn piglets and is characterized by generalized trembling of the animals and often splay legs. CT is well known worldwide, and the virus seems to be highly prevalent in major swine producing areas. However, little is known about the epidemiology of the infection, transmission and spread of the virus between herds. Here, we show the high prevalence of APPV in processing fluid samples collected from Hungarian pig herds which led us to investigate the cellular targets of the virus in the testicles of newborn piglets affected by CT. By the development of an RNA in situ hybridization assay and the use of immunohistochemistry on consecutive slides, we identified the target cells of APPV in the testicle: interstitial Leydig cells, peritubular myoid cells and smooth muscle cells of medium-sized arteries. Previous studies have shown that APPV can be found in the semen of sexually mature boars suggesting the role of infected boars and their semen in the transmission of the virus similar to many other members of the Flaviviridae family. As in our case, the virus has not been identified in cells beyond the Sertoli cell barrier, further studies on infected adult boars' testicles and other reproductive glands are needed to analyze the possible changes in the cell tropism of APPV that might contribute to its prolonged extraction by the semen beyond the period of viraemia.
Collapse
Affiliation(s)
- Lilla Dénes
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Inés Ruedas-Torres
- Department of Anatomy and Comparative Pathology and Toxicology, Faculty of Veterinary Medicine, University of Córdoba, Córdoba, Spain
| | - Anna Szilasi
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| | - Gyula Balka
- Department of Pathology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
62
|
Dutta S, Sandhu N, Sengupta P, Alves MG, Henkel R, Agarwal A. Somatic-Immune Cells Crosstalk In-The-Making of Testicular Immune Privilege. Reprod Sci 2021; 29:2707-2718. [PMID: 34580844 DOI: 10.1007/s43032-021-00721-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/22/2021] [Indexed: 11/27/2022]
Abstract
Immunological infertility contributes significantly to the etiology of idiopathic male infertility. Shielding the spermatogenic cells from systemic immune responses is fundamental to secure normal production of spermatozoa. The body's immune system is tuned with the host self-components since the early postnatal period, while sperm first develops during puberty, thus rendering spermatogenic proteins as 'non-self' or 'antigenic.' Development of antibodies to these antigens elicits autoimmune responses affecting sperm motility, functions, and fertility. Therefore, the testes need to establish a specialized immune-privileged microenvironment to protect the allogenic germ cells by orchestration of various testicular cells and resident immune cells. This is achieved through sequestration of antigenic germ cells by blood-testis barrier and actions of various endocrine, paracrine, immune-suppressive, and immunomodulatory mechanisms. The various mechanisms are very complex and need conceptual integration to disclose the exact physiological scenario, and to facilitate detection and management of immunogenic infertility caused by disruption of testicular immune regulation. The present review aims to (a) discuss the components of testicular immune privilege; (b) explain testicular somatic and immune cell interactions in establishing and maintaining the testicular immune micro-environment; and (c) illustrate the integration of multiple mechanisms involved in the control of immune privilege of the testis.
Collapse
Affiliation(s)
- Sulagna Dutta
- Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Narpal Sandhu
- Molecular and Cellular Biology, University of California, Berkeley, CA, USA
| | - Pallav Sengupta
- Department of Physiology, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor , Malaysia
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Mail Code X-11, 10681 Carnegie Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
63
|
Jiang S, Xu Y, Fan Y, Hu Y, Zhang Q, Su W. Busulfan impairs blood-testis barrier and spermatogenesis by increasing noncollagenous 1 domain peptide via matrix metalloproteinase 9. Andrology 2021; 10:377-391. [PMID: 34535976 DOI: 10.1111/andr.13112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUNDS Sterility induced by anti-cancer treatments has caused significant concern, yet the mechanism and treatment exploration are little for male infertility after cancer therapy. Busulfan, the antineoplastic that was widely applied before bone marrow transplantation, was known to induce male reproductive disorder. OBJECTIVES To investigate the effect of busulfan on blood-testis barrier function in adult rats and determine whether noncollagenous 1 domain peptide, the biologically active fragment proteolyzed from the collagen α3 chain (IV) by matrix metalloproteinase 9, was involved during this process. MATERIALS AND METHODS Adult male rats were treated with one-dose or double-dose of busulfan (10 mg/kg) before euthanized at day 35. Blood-testis barrier integrity assay, HE staining, immunofluorescence, and Western blot were used to validate the effect of busulfan on blood-testis barrier permeability and spermatogenesis. JNJ0966 was applied to specifically inhibit the matrix metalloproteinase 9 activity. The polymerization activity of F-actin/G-actin and microtubule/tubulin in the testis were assessed by using commercial kits. RESULTS A noteworthy blood-testis barrier injury and significant up-regulation of matrix metalloproteinase 9 activity and noncollagenous 1 level after a single-dose busulfan (10 mg/kg) treatment in adult rat testis were revealed. The application of JNJ0966 was found to decrease noncollagenous 1 level and rescue the busulfan-induced blood-testis barrier injury including the mis-localization of junction proteins across the seminiferous epithelium, by recovering the organization and polymerization of both F-actin and microtubule. The busulfan-induced spermatogenesis impairment was also improved by JNJ0966. CONCLUSION These findings thus demonstrate that the elevation in matrix metalloproteinase 9 and noncollagenous 1 might participate in busulfan-induced blood-testis barrier disruption in adult male rats. As such, busulfan-induced male infertility could possibly be managed through interventions on noncollagenous 1 production.
Collapse
Affiliation(s)
- Shuyi Jiang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China.,Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Yunxia Fan
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Ying Hu
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Qiang Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| | - Wenhui Su
- Department of Biochemistry and Molecular Biology, College of Life Science, China Medical University, Shenyang, China
| |
Collapse
|
64
|
Bryan ER, Redgrove KA, Mooney AR, Mihalas BP, Sutherland JM, Carey AJ, Armitage CW, Trim LK, Kollipara A, Mulvey PBM, Palframan E, Trollope G, Bogoevski K, McLachlan R, McLaughlin EA, Beagley KW. Chronic testicular Chlamydia muridarum infection impairs mouse fertility and offspring development†. Biol Reprod 2021; 102:888-901. [PMID: 31965142 PMCID: PMC7124966 DOI: 10.1093/biolre/ioz229] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 11/28/2019] [Accepted: 01/12/2020] [Indexed: 12/26/2022] Open
Abstract
With approximately 131 million new genital tract infections occurring each year, Chlamydia is the most common sexually transmitted bacterial pathogen worldwide. Male and female infections occur at similar rates and both cause serious pathological sequelae. Despite this, the impact of chlamydial infection on male fertility has long been debated, and the effects of paternal chlamydial infection on offspring development are unknown. Using a male mouse chronic infection model, we show that chlamydial infection persists in the testes, adversely affecting the testicular environment. Infection increased leukocyte infiltration, disrupted the blood:testis barrier and reduced spermiogenic cell numbers and seminiferous tubule volume. Sperm from infected mice had decreased motility, increased abnormal morphology, decreased zona-binding capacity, and increased DNA damage. Serum anti-sperm antibodies were also increased. When both acutely and chronically infected male mice were bred with healthy female mice, 16.7% of pups displayed developmental abnormalities. Female offspring of chronically infected sires had smaller reproductive tracts than offspring of noninfected sires. The male pups of infected sires displayed delayed testicular development, with abnormalities in sperm vitality, motility, and sperm-oocyte binding evident at sexual maturity. These data suggest that chronic testicular Chlamydia infection can contribute to male infertility, which may have an intergenerational impact on sperm quality.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison R Mooney
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Bettina P Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Jessie M Sutherland
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia.,Peter Goher Department of Immunobiology, King's College London, London, United Kingdom
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Peter B M Mulvey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Ella Palframan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Gemma Trollope
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| | - Kristofor Bogoevski
- Scientific Services, Histology Services, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Robert McLachlan
- Department of Obstetrics and Gynaecology, Hudson Institute of Medical Research, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, University Drive, Callaghan, New South Wales, Australia.,School of Science, Western Sydney University, Richmond, New South Wales, Australia.,School of Life Sciences, The University of Auckland, Auckland, New Zealand
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, Queensland, Australia
| |
Collapse
|
65
|
Pollari M, Leivonen SK, Leppä S. Testicular Diffuse Large B-Cell Lymphoma-Clinical, Molecular, and Immunological Features. Cancers (Basel) 2021; 13:cancers13164049. [PMID: 34439203 PMCID: PMC8392512 DOI: 10.3390/cancers13164049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Testicular diffuse large B-cell lymphoma (T-DLBCL) is a rare and aggressive lymphoma entity that mainly affects elderly men. It has a high relapse rate with especially the relapses of the central nervous system associating with dismal outcome. T-DLBCL has a unique biology with distinct genetic characteristics and clinical presentation, and the increasing knowledge on the tumor microenvironment of T-DLBCL highlights the significance of the host immunity and immune escape in this rare lymphoma, presenting in an immune-privileged site of the testis. This review provides an update on the latest progress made in T-DLBCL research and summarizes the clinical perspectives in T-DLBCL. Abstract Primary testicular lymphoma is a rare lymphoma entity, yet it is the most common testicular malignancy among elderly men. The majority of the cases represent non-germinal center B-cell-like (non-GCB) diffuse large B-cell lymphoma (DLBCL) with aggressive clinical behavior and a relatively high relapse rate. Due to the rareness of the disease, no randomized clinical trials have been conducted and the currently recognized standard of care is based on retrospective analyses and few phase II trials. During recent years, the tumor microenvironment (TME) and tumor-related immunity have been the focus of many tumor biology studies, and the emergence of targeted therapies and checkpoint inhibitors has significantly modulated the field of cancer therapies. Testicular DLBCL (T-DLBCL) is presented in an immune-privileged site of the testis, and the roles of NF-κB pathway signaling, 9p24.1 aberrations, and tumor-infiltrating immune cells, especially immune checkpoint expressing lymphocytes and macrophages, seem to be unique compared to other lymphoma entities. Preliminary data on the use of immune checkpoint inhibitors in the treatment of T-DLBCL are promising and more studies are ongoing.
Collapse
Affiliation(s)
- Marjukka Pollari
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Tays Cancer Center, Tampere University Hospital, 33521 Tampere, Finland
- Correspondence:
| | - Suvi-Katri Leivonen
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Sirpa Leppä
- Research Program Unit, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland; (S.-K.L.); (S.L.)
- Department of Oncology, Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| |
Collapse
|
66
|
Miller SR, Jilek JL, McGrath ME, Hau RK, Jennings EQ, Galligan JJ, Wright SH, Cherrington NJ. Testicular disposition of clofarabine in rats is dependent on equilibrative nucleoside transporters. Pharmacol Res Perspect 2021; 9:e00831. [PMID: 34288585 PMCID: PMC8292784 DOI: 10.1002/prp2.831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/18/2021] [Indexed: 01/13/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer in children and adolescents. Although the 5-year survival rate is high, some patients respond poorly to chemotherapy or have recurrence in locations such as the testis. The blood-testis barrier (BTB) can prevent complete eradication by limiting chemotherapeutic access and lead to testicular relapse unless a chemotherapeutic is a substrate of drug transporters present at this barrier. Equilibrative nucleoside transporter (ENT) 1 and ENT2 facilitate the movement of substrates across the BTB. Clofarabine is a nucleoside analog used to treat relapsed or refractory ALL. This study investigated the role of ENTs in the testicular disposition of clofarabine. Pharmacological inhibition of the ENTs by 6-nitrobenzylthioinosine (NBMPR) was used to determine ENT contribution to clofarabine transport in primary rat Sertoli cells, in human Sertoli cells, and across the rat BTB. The presence of NBMPR decreased clofarabine uptake by 40% in primary rat Sertoli cells (p = .0329) and by 53% in a human Sertoli cell line (p = .0899). Rats treated with 10 mg/kg intraperitoneal (IP) injection of the NBMPR prodrug, 6-nitrobenzylthioinosine 5'-monophosphate (NBMPR-P), or vehicle, followed by an intravenous (IV) bolus 10 mg/kg dose of clofarabine, showed a trend toward a lower testis concentration of clofarabine than vehicle (1.81 ± 0.59 vs. 2.65 ± 0.92 ng/mg tissue; p = .1160). This suggests that ENTs could be important for clofarabine disposition. Clofarabine may be capable of crossing the human BTB, and its potential use as a first-line treatment to avoid testicular relapse should be considered.
Collapse
Affiliation(s)
- Siennah R. Miller
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Joseph L. Jilek
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Meghan E. McGrath
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Raymond K. Hau
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Erin Q. Jennings
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - James J. Galligan
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| | - Stephen H. Wright
- College of MedicineDepartment of PhysiologyUniversity of ArizonaTucsonAZUSA
| | - Nathan J. Cherrington
- College of PharmacyDepartment of Pharmacology & ToxicologyUniversity of ArizonaTucsonAZUSA
| |
Collapse
|
67
|
Figueiredo AFA, Wnuk NT, Vieira CP, Gonçalves MFF, Brener MRG, Diniz AB, Antunes MM, Castro-Oliveira HM, Menezes GB, Costa GMJ. Activation of C-C motif chemokine receptor 2 modulates testicular macrophages number, steroidogenesis, and spermatogenesis progression. Cell Tissue Res 2021; 386:173-190. [PMID: 34296344 DOI: 10.1007/s00441-021-03504-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/02/2021] [Indexed: 01/13/2023]
Abstract
The monocyte chemoattractant protein 1 (MCP-1) belongs to the CC chemokine family and acts in the recruitment of C-C motif chemokine receptor 2 (CCR2)-positive immune cell types to inflammation sites. In testis, the MCP-1/CCR2 axis has been associated with the macrophage population's functional regulation, which presents significant functions supporting germ cell development. In this context, herein, we aimed to investigate the role of the chemokine receptor CCR2 in mice testicular environment and its impact on male sperm production. Using adult transgenic mice strain that had the CCR2 gene replaced by a red fluorescent protein gene, we showed a stage-dependent expression of CCR2 in type B spermatogonia and early primary spermatocytes. Several parameters related to sperm production were reduced in the absence of CCR2 protein, such as Sertoli cell efficiency, meiotic index, and overall yield of spermatogenesis. Daily sperm production decreased by almost 40%, and several damages in the seminiferous tubules were observed. Significant reduction in the expression of important genes related to the Sertoli cell function (Cnx43, Vim, Ocln, Spna2) and meiosis initiation (Stra8, Pcna, Prdm9, Msh5) occurred in comparison to controls. Also, the number of macrophages significantly decreased in the absence of CCR2 protein, along with a disturbance in Leydig cell steroidogenic activity. In summary, our results show that the non-activation of the MCP-1/CCR2 axis disturbs the testicular homeostasis, interfering in macrophage population, meiosis initiation, blood-testis barrier function, and androgen synthesis, leading to the malfunction of seminiferous tubules, decreased testosterone levels, defective sperm production, and lower fertility index.
Collapse
Affiliation(s)
- A F A Figueiredo
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - N T Wnuk
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - C P Vieira
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M F F Gonçalves
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M R G Brener
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - A B Diniz
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - M M Antunes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - H M Castro-Oliveira
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G B Menezes
- Center for Gastrointestinal Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - G M J Costa
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
68
|
Borges E, Setti AS, Iaconelli A, Braga DPDAF. Current status of the COVID-19 and male reproduction: A review of the literature. Andrology 2021; 9:1066-1075. [PMID: 33998143 PMCID: PMC8222884 DOI: 10.1111/andr.13037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/09/2021] [Accepted: 05/11/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19), which causes serious respiratory illnesses such as pneumonia and lung failure, was first reported in mid-December 2019 in China and has spread around the world. In addition to causing serious respiratory illnesses such as pneumonia and lung failure, there have been conflicting reports about the presence of SARS-CoV-2 in the semen of patients who were previously diagnosed with COVID-19 and possible implications for the male reproductive tract. OBJECTIVE The goal for the present study was to review the current status of the literature concerning COVID-19 and male reproduction. MATERIAL AND METHODS An electronic literature search was done by using PubMed and Google Scholar databases. Relevant papers, concerning SARS-COV-2 and COVID-19 and male reproduction, published between January 2020 and December 2020 were selected, analyzed and eventually included in the present literature review. RESULTS SARS-CoV-2 may infect any cell type expressing angiotensin-converting enzyme 2 (ACE2), including reproductive cells. Besides the presence of the SARS-CoV-2 receptor, the expression of host proteases, such as transmembrane serine protease 2 (TMPRSS2), is needed to cleave the viral S protein, allowing permanent fusion of the viral and host cell membranes. Here, we aimed to review the current status of the literature concerning COVID-19 and male reproduction. The lack of co-expression of ACE2 and TMPRSS2 in the testis suggests that sperm cells may not be at increased risk of viral entry and spread. However, the presence of orchitis in COVID-19-confirmed patients and compromised sex-related hormonal balance among these patients intrigues reproductive medicine. DISCUSSION SARS-CoV-2 may use alternate receptors to enter certain cell types, or the expression of ACE2 and TMPRSS2 may not be detected in healthy individuals. CONCLUSION COVID-19 challenges all medical areas, including reproductive medicine. It is not yet clear what effects, if any, the COVID-19 pandemic will have on male reproduction. Further research is needed to understand the long-term impact of SARS-CoV-2 on male reproductive function.
Collapse
Affiliation(s)
- Edson Borges
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Amanda Souza Setti
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Assumpto Iaconelli
- Fertility Medical GroupSão PauloBrazil
- Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | | |
Collapse
|
69
|
The G-Protein-Coupled Membrane Estrogen Receptor Is Present in Horse Cryptorchid Testes and Mediates Downstream Pathways. Int J Mol Sci 2021; 22:ijms22137131. [PMID: 34281183 PMCID: PMC8269005 DOI: 10.3390/ijms22137131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/22/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022] Open
Abstract
Cryptorchidism in horses is a commonly occurring malformation. The molecular basis of this pathology is not fully known. In addition, the origins of high intratesticular estrogen levels in horses remain obscure. In order to investigate the role of the G-protein-coupled membrane estrogen receptor (GPER) and establish histological and biochemical cryptorchid testis status, healthy and cryptorchid horse testes were subjected to scanning electron microscopy analysis, histochemical staining for total protein (with naphthol blue black; NBB), acid content (with toluidine blue O; TBO), and polysaccharide content (with periodic acid-Schiff; PAS). The expression of GPER was analyzed by immunohistochemistry and Western blot. GPER-mediated intracellular cAMP and calcium (Ca2+) signaling were measured immunoenzymatically or colorimetrically. Our data revealed changes in the distribution of polysaccharide content but not the protein and acid content in the cryptorchid testis. Polysaccharides seemed to be partially translocated from the interstitial compartment to the seminiferous tubule compartment. Moreover, the markedly decreased expression of GPER and GPER downstream molecules, cAMP and Ca2+, suggests their potential role in testis pathology. Increased estrogen levels in cryptorchid conditions may be linked to disturbed GPER signaling. We postulate that GPER is a prominent key player in testis development and function and may be used as a new biomarker of horse testis in health and disease.
Collapse
|
70
|
Horvatits T, Wißmann JE, Johne R, Groschup MH, Gadicherla AK, Schulze Zur Wiesch J, Eiden M, Todt D, Reimer R, Dähnert L, Schöbel A, Horvatits K, Lübke R, Wolschke C, Ayuk F, Rybczynski M, Lohse AW, Addo MM, Herker E, Lütgehetmann M, Steinmann E, Pischke S. Hepatitis E virus persists in the ejaculate of chronically infected men. J Hepatol 2021; 75:55-63. [PMID: 33484776 DOI: 10.1016/j.jhep.2020.12.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/07/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Hepatitis E virus (HEV) infections are prevalent worldwide. Various viruses have been detected in the ejaculate and can outlast the duration of viremia, indicating replication beyond the blood-testis barrier. HEV replication in diverse organs, however, is still widely misunderstood. We aimed to determine the occurrence, features and morphology of HEV in the ejaculate. METHODS The presence of HEV in testis was assessed in 12 experimentally HEV-genotype 3-infected pigs. We further tested ejaculate, urine, stool and blood from 3 chronically HEV genotype 3-infected patients and 6 immunocompetent patients with acute HEV infection by HEV-PCR. Morphology and genomic characterization of HEV particles from various human compartments were determined by HEV-PCR, density gradient measurement, immune-electron microscopy and genomic sequencing. RESULTS In 2 of the 3 chronically HEV-infected patients, we observed HEV-RNA (genotype 3c) in seminal plasma and semen with viral loads >2 logs higher than in the serum. Genomic sequencing showed significant differences between viral strains in the ejaculate compared to stool. Under ribavirin-treatment, HEV shedding in the ejaculate continued for >9 months following the end of viremia. Density gradient measurement and immune-electron microscopy characterized (enveloped) HEV particles in the ejaculate as intact. CONCLUSIONS The male reproductive system was shown to be a niche of HEV persistence in chronic HEV infection. Surprisingly, sequence analysis revealed distinct genetic HEV variants in the stool and serum, originating from the liver, compared to variants in the ejaculate originating from the male reproductive system. Enveloped HEV particles in the ejaculate did not morphologically differ from serum-derived HEV particles. LAY SUMMARY Enveloped hepatitis E virus particles could be identified by PCR and electron microscopy in the ejaculate of immunosuppressed chronically infected patients, but not in immunocompetent experimentally infected pigs or in patients with acute self-limiting hepatitis E.
Collapse
Affiliation(s)
- Thomas Horvatits
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany.
| | - Jan-Erik Wißmann
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Reimar Johne
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Martin H Groschup
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Ashish K Gadicherla
- German Federal Institute for Risk Assessment, Department Biological Safety, Berlin, Germany
| | - Julian Schulze Zur Wiesch
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Martin Eiden
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Daniel Todt
- Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany; European Virus Bioinformatics Center (EVBC), Jena, Germany
| | - Rudolph Reimer
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Lisa Dähnert
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institute, Greifswald-Isle of Riems, Germany
| | - Anja Schöbel
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Karoline Horvatits
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rabea Lübke
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Wolschke
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Meike Rybczynski
- University Heart Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ansgar W Lohse
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Marylyn M Addo
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| | - Eva Herker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eike Steinmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany; Ruhr University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Sven Pischke
- I. Department of Medicine, Gastroenterology and Hepatology, with the Sections Infectious Diseases and Tropical Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems and Heidelberg Partner sites, Germany
| |
Collapse
|
71
|
Pinel L, Cyr DG. Self-renewal and differentiation of rat Epididymal basal cells using a novel in vitro organoid model. Biol Reprod 2021; 105:987-1001. [PMID: 34104939 DOI: 10.1093/biolre/ioab113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/29/2020] [Accepted: 05/29/2021] [Indexed: 12/14/2022] Open
Abstract
The epididymis is composed of a pseudostratified epithelium comprised of various cell types. Studies have shown that rat basal cells share common properties with adult stem cells and begin to differentiate in vitro in response to fibroblast growth factor and 5α-dihydrotestosterone. The characterization of rat basal cells is therefore necessary to fully understand the role of these cells. The objectives of this study were to assess the ability of single basal cells to develop organoids and to assess their ability to self-renew and differentiate in vitro. We isolated basal cells from the rat epididymis and established 3-dimensional cell cultures from the basal and non-basal cell fractions. Organoids were formed by single adult epididymal basal cells. Organoids were dissociated into single basal cells which were able to reform new organoids, and were maintained over 10 generations. Long-term culture of organoids revealed that these cells could differentiated into cells expressing the principal cell markers aquaporin 9 and cystic fibrosis transmembrane conductance regulator. Electron microscopy demonstrated that organoids were comprised of several polarized cell types displaying microvilli and the ability to form tight junctions. Additionally, organoids could be formed by basal cells from either the proximal or distal region of the epididymis, and are able to secrete clusterin, a protein implicated in the maturation of spermatozoa. These data indicate that rat basal cells can be used to derive epididymal organoids, and further supports that notion that these may represent a stem cell population in the epididymis.
Collapse
Affiliation(s)
- Laurie Pinel
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| | - Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, University of Quebec, 531 boul. des Prairies, Laval, QC, H7V 1B7, Canada
| |
Collapse
|
72
|
Polypyrimidine tract-binding protein 1 regulates the Sertoli cell blood-testis barrier by promoting the expression of tight junction proteins. Exp Ther Med 2021; 22:847. [PMID: 34149893 DOI: 10.3892/etm.2021.10279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 04/20/2021] [Indexed: 11/05/2022] Open
Abstract
Sertoli cells (SCs) are an important component of spermatogenic tubules. The blood-testis barrier (BTB) is composed of SCs and is necessary for the development and maturity of spermatogenic cells. When the tight connection between SCs is destroyed, the BTB loses its integrity, leading to impaired spermatogenesis. Polypyrimidine tract-binding protein 1 (PTBP1) is a key protein involved in precursor mRNA splicing and selective splicing events, which directly affects tumor cell proliferation and influences the formation of the blood-tumor barrier by regulating the expression levels of tight junction-associated proteins. The present study revealed that the expression of PTBP1 was downregulated following a decrease in spermatogenic activity at the phase of senescence. TM4 cells were transfected with lentivirus-short hairpinRNA-PTBP1 to evaluate the effect of silencing PTBP1 on the expression levels of tight junction proteins and the integrity of tight junctions between adjacent SCs. Western blot analysis indicated that the expression levels of Zonula occludens 1, occludin and claudin-5 decreased significantly due to silencing of PTBP1 in SCs. Through detecting trans-epithelial electrical resistance, it was revealed that silencing of PTBP1 broke the integrity of tight junctions between adjacent SCs. The results suggested that PTBP1 maintained the integrity of the BTB by promoting the expression levels of tight junction-associated proteins and revealed the possible mechanism of PTBP1 in regulating spermatogenesis.
Collapse
|
73
|
Matos B, Publicover SJ, Castro LFC, Esteves PJ, Fardilha M. Brain and testis: more alike than previously thought? Open Biol 2021; 11:200322. [PMID: 34062096 PMCID: PMC8169208 DOI: 10.1098/rsob.200322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Several strands of evidence indicate the presence of marked similarities between human brain and testis. Understanding these similarities and their implications has become a topic of interest among the scientific community. Indeed, an association of intelligence with some semen quality parameters has been reported and a relation between dysfunctions of the human brain and testis has also been evident. Numerous common molecular features are evident when these tissues are compared, which is reflected in the huge number of common proteins. At the functional level, human neurons and sperm share a number of characteristics, including the importance of the exocytotic process and the presence of similar receptors and signalling pathways. The common proteins are mainly involved in exocytosis, tissue development and neuron/brain-associated biological processes. With this analysis, we conclude that human brain and testis share several biochemical characteristics which, in addition to their involvement in the speciation process, could, at least in part, be responsible for the expression of a huge number of common proteins. Nonetheless, this is an underexplored topic, and the connection between these tissues needs to be clarified, which could help to understand the dysfunctions affecting brain and testis, as well as to develop improved therapeutic strategies.
Collapse
Affiliation(s)
- Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Stephen J Publicover
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Luis Filipe C Castro
- CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal.,Department of Biology, FCUP-Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro J Esteves
- Department of Biology, FCUP-Faculty of Sciences, University of Porto, Porto, Portugal.,CIBIO-InBIO, Research Centre in Biodiversity and Genetic Resources, Campus Agrico de Vairão, University of Porto, 4485-661 Vairão, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine-iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
74
|
Li T, Wang X, Luo R, An X, Zhang Y, Zhao X, Ma Y. Integrating miRNA and mRNA Profiling to Assess the Potential miRNA-mRNA Modules Linked With Testicular Immune Homeostasis in Sheep. Front Vet Sci 2021; 8:647153. [PMID: 34113669 PMCID: PMC8185144 DOI: 10.3389/fvets.2021.647153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/07/2021] [Indexed: 12/05/2022] Open
Abstract
Beyond its well-known role in spermatogenesis and androgen production, mammalian testes are increasingly recognized as an immune-privileged organ for protecting autoantigenic germ cells, especially meiotic and postmeiotic germ cells, from systemic immune responses. Despite its importance, the molecular mechanisms underlying this regulation in mammals, including sheep, are far from known. In this study, we searched for the genes associated with testicular immune privilege and assessed their possible modulating mechanisms by analyzing systematic profiling of mRNAs and miRNAs on testicular tissues derived from prepubertal and postpubertal Tibetan sheep acquired by RNA sequencing. We identified 1,118 differentially expressed (DE) mRNAs associated with immunity (245 increased mRNAs and 873 decreased mRNAs) and 715 DE miRNAs (561 increased miRNAs and 154 decreased miRNAs) in postpubertal testes compared with prepuberty. qPCR validations for 20 DE mRNAs and 16 miRNAs showed that the RNA-seq results are reliable. By using Western blot, the postpubertal testes exhibited decreased protein abundance of CD19 and TGFBR2 (two proteins encoded by DE mRNAs) when compared with prepuberty, consistent with mRNA levels. The subsequent immunofluorescent staining showed that the positive signals for the CD19 protein were observed mainly in Sertoli cells and the basement membrane of pre- and postpubertal testes, as well as the prepubertal testicular vascular endothelium. The TGFBR2 protein was found mostly in interstitial cells and germ cells of pre- and postpubertal testes. Functional enrichment analysis indicated that DE mRNAs were mainly enriched in biological processes or pathways strongly associated with the blood–testis barrier (BTB) function. Many decreased mRNAs with low expression abundance were significantly enriched in pathways related to immune response. Also, multiple key miRNA-target negative correlation regulatory networks were subsequently established. Furthermore, we verified the target associations between either oar-miR-29b or oar-miR-1185-3p and ITGB1 by dual-luciferase reporter assay. Finally, a putative schematic model of the miRNA-mRNA-pathway network mediated by immune homeostasis-related genes was proposed to show their potential regulatory roles in sheep testicular privilege. Taken together, we conclude that many immune-related genes identified in this study are negatively regulated by potential miRNAs to participate in the homeostatic regulation of testicular immune privilege of sheep by sustaining BTB function and inhibiting immune responses under normal physiological conditions. This work offers the first global view of the expression profiles of miRNAs/mRNAs involved in sheep testicular immune privilege and how the genes potentially contribute to immune-homeostatic maintenance.
Collapse
Affiliation(s)
- Taotao Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin, China
| | - Xia Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Luo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xuejiao An
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Youji Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China.,Sheep Breeding Biotechnology Engineering Laboratory of Gansu Province, Minqin, China
| |
Collapse
|
75
|
Vogt MB, Frere F, Hawks SA, Perez CE, Coutermarsh-Ott S, Duggal NK. Persistence of Zika virus RNA in the epididymis of the murine male reproductive tract. Virology 2021; 560:43-53. [PMID: 34023724 DOI: 10.1016/j.virol.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 05/03/2021] [Indexed: 11/28/2022]
Abstract
Zika virus (ZIKV) can infect developing fetuses in utero and cause severe congenital defects independent of route of maternal infection. Infected men can shed ZIKV RNA in semen for over six months. Whether prolonged viral RNA shedding in semen indicates a persistent infection in the male reproductive tract is unknown. We hypothesized that if ZIKV establishes a persistent infection in the male reproductive tract (MRT), then immunosuppressant treatment should stimulate ZIKV replication and seminal shedding. Male mice were infected with ZIKV and immunosuppressed when they shed viral RNA but not infectious virus in ejaculates. Following immunosuppression, we did not detect infectious virus in ejaculates. However, we did detect ZIKV positive and negative sense RNA in the epididymal lumens of mice treated with cyclophosphamide, suggesting that ZIKV persists in the epididymis. This study provides insight into the mechanisms behind ZIKV sexual transmission, which may inform public health decisions regarding ZIKV risks.
Collapse
Affiliation(s)
- Megan B Vogt
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Francesca Frere
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Seth A Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Claudia E Perez
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Nisha K Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
76
|
Li H, Liu S, Wu S, Li L, Ge R, Cheng CY. Bioactive fragments of laminin and collagen chains: lesson from the testis. Reproduction 2021; 159:R111-R123. [PMID: 31581125 DOI: 10.1530/rep-19-0288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that the testis is producing several biologically active peptides, namely the F5- and the NC1-peptides from laminin-γ3 and collagen α3 (IV) chain, respectively, that promotes blood-testis barrier (BTB) remodeling and also elongated spermatid release at spermiation. Also the LG3/4/5 peptide from laminin-α2 chain promotes BTB integrity which is likely being used for the assembly of a 'new' BTB behind preleptotene spermatocytes under transport at the immunological barrier. These findings thus provide a new opportunity for investigators to better understand the biology of spermatogenesis. Herein, we briefly summarize the recent findings and provide a critical update. We also present a hypothetical model which could serve as the framework for studies in the years to come.
Collapse
Affiliation(s)
- Huitao Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Shiwen Liu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Siwen Wu
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Linxi Li
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| | - Renshan Ge
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - C Yan Cheng
- The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
77
|
Saleem TH, Okasha M, Ibrahim HM, Abu El-Hamd M, Fayed HM, Hassan MH. Biochemical Assessments of Seminal Plasma Zinc, Testis-Expressed Sequence 101 and Free Amino Acids and Their Correlations with Reproductive Hormones in Male Infertility. Biol Trace Elem Res 2021; 199:1729-1742. [PMID: 32767245 DOI: 10.1007/s12011-020-02310-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022]
Abstract
The role of the male factors in the couple's infertility has been significantly increased in recent years due to a sententious assessment of male reproductive functions and enhanced diagnostic tools. We investigated the correlations among the seminal plasma (SP) levels of each of zinc, testis-expressed sequence 101 (TEX101), and free amino acids levels with reproductive hormones in adult fertile and infertile men. The study included 100 infertile men categorized into 50 non-obstructive azoospermic patients and 50 patients with idiopathic oligoasthenoteratozoospermia (iOAT), in addition to 50 fertile controls. Semen analyses, serum ELISA assays for male reproductive hormones (follicle-stimulating hormone (FSH), luteinizing hormone (LH), total testosterone, and prolactin), colorimetric assays of SP zinc and total proteins, SP free amino acids using high-performance liquid chromatography (HPLC), and ELISA assays of SP TEX101 were performed for all subjects. Infertile men with azoospermia had significantly lower SP median levels of zinc, TEX101, and many SP free amino acids compared to both men with iOAT and fertile controls (P ˂ 0.05 for all). There were lower SP levels of zinc and some free amino acids among men with iOAT compared to the fertile controls (P ˂ 0.05 for all) with non-significant difference regarding to SP TEX101 (P ˃ 0.05). Azoospermic men exhibited negative correlations between FSH, LH, and prolactin with some SP free amino acids (P ˂ 0.05 for all), and a positive correlation between glycine with total testosterone (P ˂ 0.05). Among iOAT patients, LH and FSH were positively correlated with SP zinc, TEX101, and some measured free amino acids (P ˂ 0.05 for all). Total testosterone was positively correlated with some amino acids, while prolactin was negatively correlated with glycine (P ˂ 0.05 for all). iOAT and azoospermic men exhibited low SP zinc and some free amino acids levels that were more pronounced in azoospermic men and were significantly associated with the reproductive hormones. TEX101 could be a helpful confirmatory test for azoospermia.
Collapse
Affiliation(s)
- Tahia H Saleem
- Faculty of Medicine, Department of Medical Biochemistry, Assiut University, Assiut, Egypt
| | - Marwa Okasha
- Faculty of Medicine, Department of Medical Biochemistry, South Valley University, Qena, 83523, Egypt
| | - Hassan M Ibrahim
- Dermatology, Venereology & Andrology, South Valley University, Qena, Egypt
| | | | - Hanan M Fayed
- Clinical Pathology, South Valley University, Qena, Egypt
| | - Mohammed H Hassan
- Faculty of Medicine, Department of Medical Biochemistry, South Valley University, Qena, 83523, Egypt.
| |
Collapse
|
78
|
Naidu ECS, Olojede SO, Lawal SK, Rennie CO, Azu OO. Nanoparticle delivery system, highly active antiretroviral therapy, and testicular morphology: The role of stereology. Pharmacol Res Perspect 2021; 9:e00776. [PMID: 34107163 PMCID: PMC8189564 DOI: 10.1002/prp2.776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
The conjugation of nanoparticles (NPs) with antiretroviral drugs is a drug delivery approach with great potential for managing HIV infections. Despite their promise, recent studies have highlighted the toxic effects of nanoparticles on testicular tissue and their impact on sperm morphology. This review explores the role of stereological techniques in assessing the testicular morphology in highly active antiretroviral therapy (HAART) when a nanoparticle drug delivery system is used. Also, NPs penetration and pharmacokinetics concerning the testicular tissue and blood-testis barrier form the vital part of this review. More so, various classes of NPs employed in biomedical and clinical research to deliver antiretroviral drugs were thoroughly discussed. In addition, considerations for minimizing nanoparticle-drugs toxicity, ensuring enhanced permeability of nanoparticles, maximizing drug efficacy, ensuring adequate bioavailability, and formulation of HAART-NPs fabrication are well discussed.
Collapse
Affiliation(s)
- Edwin Coleridge S. Naidu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Samuel Oluwaseun Olojede
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sodiq Kolawole Lawal
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Carmen Olivia Rennie
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Onyemaechi Okpara Azu
- Discipline of Clinical AnatomySchool of Laboratory Medicine & Medical SciencesNelson R Mandela School of MedicineUniversity of KwaZulu‐NatalDurbanSouth Africa
- Department of AnatomySchool of MedicineUniversity of NamibiaWindhoekNamibia
| |
Collapse
|
79
|
Sheng Z, Gao N, Fan D, Wu N, Zhang Y, Han D, Zhang Y, Tan W, Wang P, An J. Zika virus disrupts the barrier structure and Absorption/Secretion functions of the epididymis in mice. PLoS Negl Trop Dis 2021; 15:e0009211. [PMID: 33667230 PMCID: PMC7968736 DOI: 10.1371/journal.pntd.0009211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 03/17/2021] [Accepted: 02/07/2021] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that Zika virus (ZIKV) damages testis and leads to infertility in mice; however, the infection in the epididymis, another important organ of male reproductive health, has gained less attention. Previously, we detected lesions in the epididymis in interferon type I and II receptor knockout male mice during ZIKV infection. Herein, the pathogenesis of ZIKV in the epididymis was further assessed in the infected mice after footpad inoculation. ZIKV efficiently replicated in the epididymis, and principal cells were susceptible to ZIKV. ZIKV infection disrupted the histomorphology of the epididymis, and the effects were characterized by a decrease in the thickness of the epithelial layer and an increase in the luminal diameter, especially at the proximal end. Significant inflammatory cell infiltration was observed in the epididymis accompanied by an increase in the levels of interleukin (IL)-6 and IL-28. The expression of tight junction proteins was downregulated and associated with disordered arrangement of the junctions. Importantly, the expression levels of aquaporin 1 and lipocalin 8, indicators of the absorption and secretion functions of the epididymis, were markedly reduced, and the proteins were redistributed. These events synergistically altered the microenvironment for sperm maturation, disturbed sperm transport downstream, and may impact male reproductive health. Overall, these results provide new insights into the pathogenesis of the male reproductive damage caused by ZIKV infection and the possible contribution of epididymal injury into this process. Therefore, male fertility of the population in areas of ZIKV epidemic requires additional attention. Unlike other mosquito-transmitted flaviviruses, ZIKV can persistently replicate in the male reproductive system and is sexually transmitted. ZIKV infection was reported to damage testis. However, ZIKV-induced epididymal injury was not investigated in detail. Clinically, epididymitis is closely associated with male infertility. In this study, a mouse model was used to demonstrate that ZIKV causes histomorphological and functional changes in the epididymis, which may alter the microenvironment of sperm maturation and movement and finally lead to male infertility. Therefore, long-term investigation of male reproductive health may be needed in the areas of ZIKV epidemic.
Collapse
Affiliation(s)
- Ziyang Sheng
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Wu
- Laboratory Animal Center, Capital Medical University, Beijing, China
| | - Yingying Zhang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yun Zhang
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Weilong Tan
- Huadong Research Institute for Medicine and Biotechnics, Nanjing, Jiangsu, China
| | - Peigang Wang
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- * E-mail: (PW); (JA)
| | - Jing An
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
- * E-mail: (PW); (JA)
| |
Collapse
|
80
|
Rokade S, Upadhya M, Bhat DS, Subhedar N, Yajnik CS, Ghose A, Rath S, Bal V. Transient systemic inflammation in adult male mice results in underweight progeny. Am J Reprod Immunol 2021; 86:e13401. [PMID: 33576153 DOI: 10.1111/aji.13401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
PROBLEM While the testes represent an immune-privileged organ, there is evidence that systemic inflammation is accompanied by local inflammatory responses. We therefore examined whether transient systemic inflammation caused any inflammatory and functional consequences in murine testes. METHOD OF STUDY Using a single systemic administration of Toll-like receptor (TLR) agonists [lipopolysaccharide (LPS) or peptidoglycan (PG) or polyinosinic-polycytidylic acid (polyIC)] in young adult male mice, we assessed testicular immune-inflammatory landscape and reproductive functionality. RESULTS Our findings demonstrated a significant induction of testicular TNF-α, IL-1β and IL-6 transcripts within 24 h of TLR agonist injection. By day 6, these cytokine levels returned to baseline. While there was no change in caudal sperm counts at early time points, eight weeks later, twofold decrease in sperm count and reduced testicular testosterone levels were evident. When these mice were subjected to mating studies, no differences in mating efficiencies or litter sizes were observed compared with controls. Nonetheless, the neonatal weights of progeny from LPS/PG/polyIC-treated sires were significantly lower than controls. Postnatal weight gain up to three weeks was also slower in the progeny of LPS/polyIC-treated sires. Placental weights at 17.5 days post-coitum were significantly lower in females mated to LPS- and polyIC-treated males. Given this likelihood of an epigenetic effect, we found lower testicular levels of histone methyltransferase enzyme, mixed-lineage leukaemia-1, in mice given LPS/PG/polyIC 8 weeks earlier. CONCLUSION Exposure to transient systemic inflammation leads to transient local inflammation in the testes, with persistent sperm-mediated consequences for foetal development.
Collapse
Affiliation(s)
- Sushama Rokade
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Manoj Upadhya
- Indian Institute of Science Education and Research (IISER), Pune, India
| | | | | | | | - Aurnab Ghose
- Indian Institute of Science Education and Research (IISER), Pune, India
| | - Satyajit Rath
- Indian Institute of Science Education and Research (IISER), Pune, India.,KEM Hospital Research Centre, Pune, India
| | - Vineeta Bal
- Indian Institute of Science Education and Research (IISER), Pune, India
| |
Collapse
|
81
|
Extreme temperatures compromise male and female fertility in a large desert bird. Nat Commun 2021; 12:666. [PMID: 33531493 PMCID: PMC7854745 DOI: 10.1038/s41467-021-20937-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Temperature has a crucial influence on the places where species can survive and reproduce. Past research has primarily focused on survival, making it unclear if temperature fluctuations constrain reproductive success, and if so whether populations harbour the potential to respond to climatic shifts. Here, using two decades of data from a large experimental breeding programme of the iconic ostrich (Struthio camelus) in South Africa, we show that the number of eggs females laid and the number of sperm males produced were highly sensitive to natural temperature extremes (ranging from -5 °C to 45 °C). This resulted in reductions in reproductive success of up to 44% with 5 °C deviations from their thermal optimum. In contrast, gamete quality was largely unaffected by temperature. Extreme temperatures also did not expose trade-offs between gametic traits. Instead, some females appeared to invest more in reproducing at high temperatures, which may facilitate responses to climate change. These results show that the robustness of fertility to temperature fluctuations, and not just temperature increases, is a critical aspect of species persistence in regions predicted to undergo the greatest change in climate volatility.
Collapse
|
82
|
Roychoudhury S, Das A, Jha NK, Kesari KK, Roychoudhury S, Jha SK, Kosgi R, Choudhury AP, Lukac N, Madhu NR, Kumar D, Slama P. Viral pathogenesis of SARS-CoV-2 infection and male reproductive health. Open Biol 2021; 11:200347. [PMID: 33465325 PMCID: PMC7881178 DOI: 10.1098/rsob.200347] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has emerged as a new public health crisis, threatening almost all aspects of human life. Originating in bats, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted to humans through unknown intermediate hosts, where it is primarily known to cause pneumonia-like complications in the respiratory system. Organ-to-organ transmission has not been ruled out, thereby raising the possibility of the impact of SARS-CoV-2 infection on multiple organ systems. The male reproductive system has been hypothesized to be a potential target of SARS-CoV-2 infection, which is supported by some preliminary evidence. This may pose a global threat to male fertility potential, as men are more prone to SARS-CoV-2 infection than women, especially those of reproductive age. Preliminary reports have also indicated the possibility of sexual transmission of SARS-CoV-2. It may cause severe complications in infected couples. This review focuses on the pathophysiology of potential SARS-CoV-2 infection in the reproductive organs of males along with their invasion mechanisms. The risks of COVID-19 on male fertility as well as the differences in vulnerability to SARS-CoV-2 infection compared with females have also been highlighted.
Collapse
Affiliation(s)
| | - Anandan Das
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP, India
| | | | - Shatabhisha Roychoudhury
- Department of Microbiology, R. G. Kar Medical College and Hospital, Kolkata, India.,Health Centre, Assam University, Silchar, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, UP, India
| | - Raghavender Kosgi
- Department of Urology and Andrology, AIG Hospitals, Gachibowli, Hyderabad, India
| | - Arun Paul Choudhury
- Department of Obstetrics and Gynecology, Silchar Medical College and Hospital, Silchar, India
| | - Norbert Lukac
- Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovak Republic
| | - Nithar Ranjan Madhu
- Department of Zoology, Acharya Prafulla Chandra College, New Barrackpore, North 24 Parganas, West Bengal, India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, India
| | - Petr Slama
- Department of Animal Morphology, Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
83
|
Park YJ, Pang WK, Ryu DY, Adegoke EO, Rahman MS, Pang MG. Bisphenol A exposure increases epididymal susceptibility to infection in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111476. [PMID: 33091778 DOI: 10.1016/j.ecoenv.2020.111476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis. CD-1 male mice (5 weeks old) were treated daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks by oral gavage. Following BPA exposure, we observed decreased intraepithelial projection of basal cells, indicative of changes to the luminal environment. We also observed decreased projection of macrophages and protrusion of apoptotic cells into the lumen induced by incomplete phagocytosis of apoptotic cells in the caput epididymis. Exposure to BPA also reduced the anti- and pro-inflammatory cytokines IL-10, IL-6, IFN-γ, and IL-7 in the epididymis, while the chemotaxis-associated cytokines CCL12, CCL17, CXCL16, and MCP-1 increased. This study suggests two possible mechanisms for BPA induction of male infertility. First, exposure to BPA may induce an imbalance of immune homeostasis by disrupting the ability of basal cells to perceive environmental changes. Second, exposure to BPA may lead to collapse of macrophage phagocytosis via downregulation of intraepithelial projection and inflammatory-related cytokines. In conclusion, the observed potential pathways can lead to autoimmune disorders such epididymitis and orchitis.
Collapse
Affiliation(s)
- Yoo-Jin Park
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Won-Ki Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Do-Yeal Ryu
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Elikanah Olusayo Adegoke
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Md Saidur Rahman
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Myung-Geol Pang
- Department of Animal Science & Technology and BET Research Institute, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
84
|
Park YJ, Pang MG. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants (Basel) 2021; 10:antiox10010098. [PMID: 33445610 PMCID: PMC7826524 DOI: 10.3390/antiox10010098] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are structurally and functionally distinct organelles that produce adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS), to provide energy to spermatozoa. They can also produce reactive oxidation species (ROS). While a moderate concentration of ROS is critical for tyrosine phosphorylation in cholesterol efflux, sperm–egg interaction, and fertilization, excessive ROS generation is associated with male infertility. Moreover, mitochondria participate in diverse processes ranging from spermatogenesis to fertilization to regulate male fertility. This review aimed to summarize the roles of mitochondria in male fertility depending on the sperm developmental stage (from male reproductive tract to female reproductive tract). Moreover, mitochondria are also involved in testosterone production, regulation of proton secretion into the lumen to maintain an acidic condition in the epididymis, and sperm DNA condensation during epididymal maturation. We also established the new signaling pathway using previous proteomic data associated with male fertility, to understand the overall role of mitochondria in male fertility. The pathway revealed that male infertility is associated with a loss of mitochondrial proteins in spermatozoa, which induces low sperm motility, reduces OXPHOS activity, and results in male infertility.
Collapse
|
85
|
Qin W, Wang B, Yang L, Yuan Y, Xiong X, Li J, Yin S. Molecular cloning, characterization, and function analysis of the AMH gene in Yak (Bos grunniens) Sertoli cells. Theriogenology 2021; 163:1-9. [PMID: 33476894 DOI: 10.1016/j.theriogenology.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Sertoli cells (SCs) are important testicular somatic cells that carry out various functions in spermatogenesis. Understanding the biological mechanisms underlying SC development may facilitate the understanding of animal reproduction. Anti-Mullerian hormone (AMH) is a dimeric glycoprotein produced by SCs and plays essential roles in spermatogenesis. In this study, we cloned the coding sequence of the yak AMH, predicated the structure of AMH protein, analyzed AMH expression in the testis at different stages, and studied the functions of AMH in yak SCs. The open reading frame (ORF) of the yak AMH contained 1728 bp and encoded 575 amino acids. Structural analysis revealed that the yak AMH protein had a highly conserved transforming growth factor-β (TGF-β) domain. The mRNA expression level for the AMH gene in yak testis increased significantly from the fetal stage to calf stage, then decreased with the increase of age. The highest expression was found in calf stage. Cell proliferation was depressed in AMH-deficient SCs. Expression of several genes involved in SC proliferation and development, including PCNA, BCL-2, BAX, CASP3, AR and AMHR2 were altered after knockdown of AMH. Also, three SC-secreted factors essential for spermatogenesis, SCF, GDNF and ABP, were repressed at the transcription level after AMH knockdown in yak SCs. Moreover, supplementation with exogenous AMH protein partially rescued SC proliferation, and the expression of PCNA, BCL-2, AR and AMHR2 after AMH gene interference. This research provided theoretical basis for understanding the mechanism by which AMH regulates yak spermatogenesis and might give new insights in improving yak reproductive performance in the future.
Collapse
Affiliation(s)
- Wenchang Qin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Bin Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Liuqing Yang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - YuJie Yuan
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Xianrong Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Jian Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China
| | - Shi Yin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Southwest Minzu University, Chengdu, Sichuan, 610041, China; College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu, Sichuan, 610041, China; Key Laboratory of Modem Technology (Southwest Minzu University), State Ethnic Affairs Commission, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
86
|
Göppner C, Soria AH, Hoegg-Beiler MB, Jentsch TJ. Cellular basis of ClC-2 Cl - channel-related brain and testis pathologies. J Biol Chem 2021; 296:100074. [PMID: 33187987 PMCID: PMC7949093 DOI: 10.1074/jbc.ra120.016031] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The ClC-2 chloride channel is expressed in the plasma membrane of almost all mammalian cells. Mutations that cause the loss of ClC-2 function lead to retinal and testicular degeneration and leukodystrophy, whereas gain-of-function mutations cause hyperaldosteronism. Leukodystrophy is also observed with a loss of GlialCAM, a cell adhesion molecule that binds to ClC-2 in glia. GlialCAM changes the localization of ClC-2 and opens the channel by altering its gating. We now used cell type-specific deletion of ClC-2 in mice to show that retinal and testicular degeneration depend on a loss of ClC-2 in retinal pigment epithelial cells and Sertoli cells, respectively, whereas leukodystrophy was fully developed only when ClC-2 was disrupted in both astrocytes and oligodendrocytes. The leukodystrophy of Glialcam-/- mice could not be rescued by crosses with Clcn2op/op mice in which a mutation mimics the "opening" of ClC-2 by GlialCAM. These data indicate that GlialCAM-induced changes in biophysical properties of ClC-2 are irrelevant for GLIALCAM-related leukodystrophy. Taken together, our findings suggest that the pathology caused by Clcn2 disruption results from disturbed extracellular ion homeostasis and identifies the cells involved in this process.
Collapse
Affiliation(s)
- Corinna Göppner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Audrey H Soria
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Maja B Hoegg-Beiler
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Thomas J Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany; NeuroCure Cluster of Excellence, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
87
|
Olaniyan OT, Dare A, Okotie GE, Adetunji CO, Ibitoye BO, Bamidele OJ, Eweoya OO. Testis and blood-testis barrier in Covid-19 infestation: role of angiotensin-converting enzyme 2 in male infertility. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2020-0156. [PMID: 33006953 DOI: 10.1515/jbcpp-2020-0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) that causes COVID-19 infections penetrates body cells by binding to angiotensin-converting enzyme-2 (ACE2) receptors. Evidence shows that SARS-CoV-2 can also affect the urogenital tract. Hence, it should be given serious attention when treating COVID-19-infected male patients of reproductive age group. Other viruses like HIV, mumps, papilloma and Epstein-Barr can induce viral orchitis, germ cell apoptosis, inflammation and germ cell destruction with attending infertility and tumors. The blood-testis barrier (BTB) and blood-epididymis barrier (BEB) are essential physical barricades in the male reproductive tract located between the blood vessel and seminiferous tubules in the testes. Despite the significant role of these barriers in male reproductive function, studies have shown that a wide range of viruses can still penetrate the barriers and induce testicular dysfunctions. Therefore, this mini-review highlights the role of ACE2 receptors in promoting SARS-CoV-2-induced blood-testis/epididymal barrier infiltration and testicular dysfunction.
Collapse
Affiliation(s)
- Olugbemi T Olaniyan
- Laboratory for Reproductive Biology and Developmental Programming, Department of Physiology, Edo University Iyamho, Iyamho, Nigeria
| | - Ayobami Dare
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| | - Gloria E Okotie
- Department of Physiology, University of Ibadan, Ibadan, Nigeria
| | - Charles O Adetunji
- Applied Microbiology, Department of Microbiology, Biotechnology and Nanotechnology Laboratory, Edo University Iyamho, Iyamho, Edo State, Nigeria
| | | | - Okoli J Bamidele
- Institute of Chemical and Biotechnology, Faculty of Computer and Applied Sciences, Vaal University of Technology, Southern Gauteng Science and Technology Park, Department of Chemistry, Vanderbijlpark, South Africa
| | - Olugbenga O Eweoya
- Department of Anatomical Sciences, School of Medicine and Allied Health Sciences, University of the Gambia, Banjul, The Gambia
| |
Collapse
|
88
|
Hussein MT, Abdel-Maksoud FM. Structural Investigation of Epididymal Microvasculature and Its Relation to Telocytes and Immune Cells in Camel. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1024-1034. [PMID: 32665042 DOI: 10.1017/s1431927620001786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The vascular and perivascular cells, including telocytes (TCs) and immune cells, play an important role in male fertility. The current study intended to describe in detail the microvascular structures harboring special regulatory devices in addition to the interstitial cellular components of the one-humped camel epididymis. The samples were collected from 10 clinically healthy mature camels (Camelus dromedarius). The distribution and characteristics of TCs, peripheral blood vessels of the epididymis, and immune cells were investigated using the light, immunohistochemistry, immunofluorescence, and transmission electron microscopy analyses. Frequent occlusive or throttle arterioles were demonstrated in the epididymal interstitium and their tunica media consisted of glomus cells. In addition, some vein walls consisted of one or two layers of glomus cells. TCs, fibroblasts, muscle cells, and tunica media of the blood vessels, that present in the loose connective tissue surrounding the intertubular interstitium of camel epididymis, showed a positive reaction with vimentin. The endothelium of blood vessels and veins showed positive immunoreactivity for CD34 and vascular endothelial growth factor (VEGF). Furthermore, VEGF, CD34, and S100 proteins were expressed in dendritic cells (DCs) as well as TCs. The current data suggest the involvement of DCs and TCs in angiogenesis and a possible role for the interstitial components in creating an appropriate milieu for the full maturation of sperms.
Collapse
Affiliation(s)
- Manal T Hussein
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut71526, Egypt
| | - Fatma M Abdel-Maksoud
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut71526, Egypt
| |
Collapse
|
89
|
Zhao H, Yu C, He C, Mei C, Liao A, Huang D. The Immune Characteristics of the Epididymis and the Immune Pathway of the Epididymitis Caused by Different Pathogens. Front Immunol 2020; 11:2115. [PMID: 33117332 PMCID: PMC7561410 DOI: 10.3389/fimmu.2020.02115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/05/2020] [Indexed: 01/26/2023] Open
Abstract
The epididymis is an important male accessory sex organ where sperm motility and fertilization ability develop. When spermatozoa carrying foreign antigens enter the epididymis, the epididymis shows "immune privilege" to tolerate them. It is well-known that a tolerogenic environment exists in the caput epididymis, while pro-inflammatory circumstances prefer the cauda epididymis. This meticulously regulated immune environment not only protects spermatozoa from autoimmunity but also defends spermatozoa against pathogenic damage. Epididymitis is one of the common causes of male infertility. Up to 40% of patients suffer from permanent oligospermia or azoospermia. This is related to the immune characteristics of the epididymis itself. Moreover, epididymitis induced by different pathogenic microbial infections has different characteristics. This article elaborates on the distribution and immune response characteristics of epididymis immune cells, the role of epididymis epithelial cells (EECs), and the epididymis defense against different pathogenic infections (such as uropathogenic Escherichia coli, Chlamydia trachomatis, and viruses to provide therapeutic approaches for epididymitis and its subsequent fertility problems.
Collapse
Affiliation(s)
- Hu Zhao
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caiqian Yu
- Department of Human Anatomy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu He
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunlei Mei
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Aihua Liao
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Donghui Huang
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
90
|
Bryan ER, Kollipara A, Trim LK, Armitage CW, Carey AJ, Mihalas B, Redgrove KA, McLaughlin EA, Beagley KW. Hematogenous dissemination of Chlamydia muridarum from the urethra in macrophages causes testicular infection and sperm DNA damage†. Biol Reprod 2020; 101:748-759. [PMID: 31373361 DOI: 10.1093/biolre/ioz146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 05/27/2019] [Accepted: 07/25/2019] [Indexed: 12/17/2022] Open
Abstract
The incidence of Chlamydia infection, in both females and males, is increasing worldwide. Male infections have been associated clinically with urethritis, epididymitis, and orchitis, believed to be caused by ascending infection, although the impact of infection on male fertility remains controversial. Using a mouse model of male chlamydial infection, we show that all the major testicular cell populations, germ cells, Sertoli cells, Leydig cells, and testicular macrophages can be productively infected. Furthermore, sperm isolated from vas deferens of infected mice also had increased levels of DNA damage as early as 4 weeks post-infection. Bilateral vasectomy, prior to infection, did not affect the chlamydial load recovered from testes at 2, 4, and 8 weeks post-infection, and Chlamydia-infected macrophages were detectable in blood and the testes as soon as 3 days post-infection. Partial depletion of macrophages with clodronate liposomes significantly reduced the testicular chlamydial burden, consistent with a hematogenous route of infection, with Chlamydia transported to the testes in infected macrophages. These data suggest that macrophages serve as Trojan horses, transporting Chlamydia from the penile urethra to the testes within 3 days of infection, bypassing the entire male reproductive tract. In the testes, infected macrophages likely transfer infection to Leydig, Sertoli, and germ cells, causing sperm DNA damage and impaired spermatogenesis.
Collapse
Affiliation(s)
- Emily R Bryan
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Avinash Kollipara
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Logan K Trim
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Charles W Armitage
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Alison J Carey
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| | - Bettina Mihalas
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Kate A Redgrove
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia.,Science and Technology Office, University of Canberra, Bruce, ACT, Australia
| | - Kenneth W Beagley
- School of Biomedical Sciences and Institute of Health & Biomedical Innovation, Queensland University of Technology, Herston, QLD, Australia
| |
Collapse
|
91
|
Oxidative Stress and Reproductive Function in the Aging Male. BIOLOGY 2020; 9:biology9090282. [PMID: 32932761 PMCID: PMC7564187 DOI: 10.3390/biology9090282] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/02/2020] [Accepted: 09/06/2020] [Indexed: 12/21/2022]
Abstract
With the delay of parenthood becoming more common, the age at which men father children is on the rise. While the effects of advanced maternal age have been well documented, only recently have studies started to focus on the impact of advanced paternal age (APA) in the context of male reproduction. As men age, the antioxidant defense system gradually becomes less efficient and elevated levels of reactive oxygen species (ROS) accumulate in spermatozoa; this can impair their functional and structural integrity. In this review, we present an overview of how oxidative stress is implicated in male reproductive aging by providing a summary of the sources and roles of ROS, the theories of aging, and the current animal and human studies that demonstrate the impacts of APA on the male germ line, the health of progeny and fertility, and how treatment with antioxidants may reverse these effects.
Collapse
|
92
|
Patel TN, R P, Vashi Y, Bhattacharya P. Toxic impacts and industrial potential of graphene. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2020; 38:269-297. [PMID: 32897810 DOI: 10.1080/26896583.2020.1812335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Advancement in the field of nanotechnology has increased the synthesis and exploitation of graphene-like nanomaterials. Graphene is a two-dimensional planar and hexagonal array of carbon atoms. Due to its flexible nature graphene and its derivatives have several significant prospects extending from electronics to life sciences and drug delivery systems. In this review, we enlist some of the toxic effects of graphene family nanomaterials (GFNs) in various aspects of biosystems viz., in vitro, in vivo, microbial, molecular and environmental. We also appreciate their extensive and promising applications though with some underlying challenges. This review also draws attention toward current and future prospect of global graphene market for wide-range commercialization.
Collapse
Affiliation(s)
- Trupti N Patel
- Department of Integrative Biology, Vellore Institute of Technology, Vellore, India
| | - Priyanka R
- College of Veterinary Medicine, Jeju National University, Jeju, Republic of Korea
| | - Yash Vashi
- Operations and Product Development Department, University of Southern California, Los Angeles, California, USA
| | | |
Collapse
|
93
|
Voisin A, Saez F, Drevet JR, Guiton R. The epididymal immune balance: a key to preserving male fertility. Asian J Androl 2020; 21:531-539. [PMID: 30924450 PMCID: PMC6859654 DOI: 10.4103/aja.aja_11_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Up to 15% of male infertility has an immunological origin, either due to repetitive infections or to autoimmune responses mainly affecting the epididymis, prostate, and testis. Clinical observations and epidemiological data clearly contradict the idea that the testis confers immune protection to the whole male genital tract. As a consequence, the epididymis, in which posttesticular spermatozoa mature and are stored, has raised some interest in recent years when it comes to its immune mechanisms. Indeed, sperm cells are produced at puberty, long after the establishment of self-tolerance, and they possess unique surface proteins that cannot be recognized as self. These are potential targets of the immune system, with the risk of inducing autoantibodies and consequently male infertility. Epididymal immunity is based on a finely tuned equilibrium between efficient immune responses to pathogens and strong tolerance to sperm cells. These processes rely on incompletely described molecules and cell types. This review compiles recent studies focusing on the immune cell types populating the epididymis, and proposes hypothetical models of the organization of epididymal immunity with a special emphasis on the immune response, while also discussing important aspects of the epididymal immune regulation such as tolerance and tumour control.
Collapse
Affiliation(s)
- Allison Voisin
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Fabrice Saez
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Joël R Drevet
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Rachel Guiton
- Team Mechanisms of Posttesticular Infertility, GReD Laboratory, CNRS UMR 6293 - INSERM U1103, University of Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
94
|
Chen X, Zheng Y, Li X, Gao Q, Feng T, Zhang P, Liao M, Tian X, Lu H, Zeng W. Profiling of miRNAs in porcine Sertoli cells. J Anim Sci Biotechnol 2020; 11:85. [PMID: 32821380 PMCID: PMC7429792 DOI: 10.1186/s40104-020-00487-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/12/2020] [Indexed: 11/10/2022] Open
Abstract
Background Sertoli cells (SCs) create a specialized environment to support and dictate spermatogenesis. MicroRNAs (miRNAs), a kind of ~ 22 nt small noncoding RNAs, have been reported to be highly abundant in mouse SCs and play critical roles in spermatogenesis. However, the miRNAs of porcine SCs remain largely unknown. Methods We isolated porcine SCs and conducted small RNA sequencing. By comparing miRNAs in germ cells, we systematically analyzed the miRNA expression pattern of porcine SCs. We screened the highly enriched SC miRNAs and predicted their functions by Gene Ontology analysis. The dual luciferase assay was used to elucidate the regulation of tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) by ssc-miR-149. Results The analysis showed that 18 miRNAs were highly expressed in SCs and 15 miRNAs were highly expressed in germ cells. These miRNAs were predicted to mediate SC and germ cell functions. In addition, ssc-miR-149 played critical roles in SCs by targeting TRAF3. Conclusion Our findings provide novel insights into the miRNA expression pattern and their regulatory roles of porcine SCs.
Collapse
Affiliation(s)
- Xiaoxu Chen
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001 China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Yi Zheng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xueliang Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Qiang Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Tongying Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Pengfei Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Mingzhi Liao
- College of Life Science, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Xiu'e Tian
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| | - Hongzhao Lu
- College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723001 China
| | - Wenxian Zeng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
95
|
Abe T, Nishimura H, Sato T, Suzuki H, Ogawa T, Suzuki T. Transcriptome analysis reveals inadequate spermatogenesis and immediate radical immune reactions during organ culture in vitro spermatogenesis. Biochem Biophys Res Commun 2020; 530:732-738. [PMID: 32782148 DOI: 10.1016/j.bbrc.2020.06.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/30/2020] [Indexed: 10/23/2022]
Abstract
Cultivation of neonatal mouse testis tissue can induce spermatogenesis and produce fertile sperms. However, in vitro spermatogenesis mediated by the current organ culture method comes short in fully mimicking the in vivo counterpart, partly due to a lack of knowledge underlying molecular phenotypes of in vitro spermatogenesis. In this study, we investigated transcriptome of cultured testis tissues using microarray method. Principle component analysis of the transcriptome data revealed delay and/or arrest of spermatogenesis and immediate radical immune reactions in the cultured testis tissues. The delay/arrest of spermatogenesis occurred before and during early meiotic phase, resulting in inefficient progression of meiosis. The immune reaction, on the other hand, was drastic and overwhelming, in which TLR4-NF-kB signaling was speculated to be involved. Notably, treatment with TAK242, an inhibitor of TLR4-NF-kB signaling pathway, ameliorated the macrophage activation which otherwise would exacerbate the inflammation. Thus, the present study revealed for the first time at molecular level that the deficiency of germ cell differentiation and the immense immune reaction are major abnormalities in the cultured testis tissues.
Collapse
Affiliation(s)
- Takeru Abe
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan; Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Hajime Nishimura
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takuya Sato
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Harukazu Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takehiko Ogawa
- Biopharmaceutical and Regenerative Sciences, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
| | - Takahiro Suzuki
- Laboratory for Cellular Function Conversion Technology, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Functional Genomics, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, Japan.
| |
Collapse
|
96
|
Taniguchi M, Okazaki T. Ceramide/Sphingomyelin Rheostat Regulated by Sphingomyelin Synthases and Chronic Diseases in Murine Models. J Lipid Atheroscler 2020; 9:380-405. [PMID: 33024732 PMCID: PMC7521967 DOI: 10.12997/jla.2020.9.3.380] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/19/2020] [Indexed: 12/16/2022] Open
Abstract
Ceramide and sphingomyelin (SM) are major components of the double membrane-bound sphingolipids. Ceramide is an essential bioactive lipid involved in numerous cell processes including apoptosis, necrosis, and autophagy-dependent cell death. Inversely, SM regulates opposite cellular processes such as proliferation and migration by changing receptor-mediated signal transduction in the lipid microdomain. SM is generated through a transfer of phosphocholine from phosphatidylcholine to ceramide by SM synthases (SMSs). Research during the past several decades has revealed that the ceramide/SM balance in cellular membranes regulated by SMSs is important to decide the cell fate, survival, and proliferation. In addition, recent experimental studies utilizing SMS knockout mice and murine disease models provide evidence that SMS-regulated ceramide/SM balance is involved in human diseases. Here, we review the basic structural and functional characteristics of SMSs and focus on their cellular functions through the regulation of ceramide/SM balance in membrane microdomains. In addition, we present the pathological or physiological implications of SMSs by analyzing their role in SMS-knockout mice and human disease models. This review finally presents evidence indicating that the regulation of ceramide/SM balance through SMS could be a therapeutic target for human disorders.
Collapse
Affiliation(s)
- Makoto Taniguchi
- Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku, Japan
| | - Toshiro Okazaki
- Research Institute for Bioresources and Biotechnology, Kanazawa Prefectural University, Nonoichi, Japan
| |
Collapse
|
97
|
van der Kuyl AC, Berkhout B. Viruses in the reproductive tract: On their way to the germ line? Virus Res 2020; 286:198101. [PMID: 32710926 DOI: 10.1016/j.virusres.2020.198101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 01/13/2023]
Abstract
Studies of vertebrate genomes have indicated that all species contain in their chromosomes stretches of DNA with sequence similarity to viral genomes. How such 'endogenous' viral elements (EVEs) ended up in host genomes is usually explained in general terms such as 'they entered the germ line at some point during evolution'. This seems a correct statement, but is also rather imprecise. The vast number of endogenous viral sequences suggest that common routes to the 'germ line' may exist, as relying on chance alone may not easily explain the abundance of EVEs in modern mammalian genomes. An increasing number of virus types have been detected in human semen and a growing number of studies have reported on viral infections that cause male infertility or subfertility and on viral infections that threaten in vitro fertilisation practices. Thus, it is timely to survey the pathway(s) that viruses can use to gain access to the human germ line. Embryo transfer and semen quality studies in livestock form another source of relevant information because virus infection during reproduction is clearly unwanted, as is the case for the human situation. In this review, studies on viruses in the male and female reproductive tract and in the early embryo will be discussed to propose a plausible viral route to the mammalian germ line.
Collapse
Affiliation(s)
- Antoinette Cornelia van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
98
|
Castro MM, Kim B, Games PD, Hill E, Neves CA, Serrão JE, Breton S, Machado-Neves M. Distribution pattern of ZO-1 and claudins in the epididymis of vampire bats. Tissue Barriers 2020; 8:1779526. [PMID: 32552339 DOI: 10.1080/21688370.2020.1779526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Epithelial cells connect with each other by tight junctions (TJs) in several tissues. In epididymides, TJs proteins form the blood-epididymis barrier (BEB), which is crucial for male fertility. However, little is known about BEB morphological and physiological aspects in wild animals. This study examines the region-specific distribution pattern of TJs proteins in D. rotundus' epididymis, assessing their regulation in rainy and dry season. The expression of zonula occludens-1 (ZO-1), and claudins (Cldn)-1, -3, and -4 were evaluated by confocal immunofluorescence and ELISA analysis. Herein, ZO-1 was strictly expressed in TJs, whereas Cldns were expressed in TJs and basolateral membranes of epithelial cells. Their co-localization and intensity of expression varied in the epididymal regions examined. The effect of season on protein expression was detected mainly in TJ proteins located in the proximal regions. As such, in the initial segment (IS), Cldn-3 and -4 were detected at low levels in basolateral membranes in the rainy season compared to the dry season. Furthermore, in the distal IS, Cldn-1 expression was lower in TJs of epithelial cells during the rainy season than the dry season. ZO-1 expression was higher in the cauda region than the corpus region by ELISA analysis. Additionally, in the corpus region, ZO-1 expression was higher in TJs during dry season compared to the rainy season. Our study sheds light on the understanding of BEB in D. rotundus, improving the knowledge of their reproductive biology.
Collapse
Affiliation(s)
- Mariana M Castro
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Bongki Kim
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA.,Department of Animal Resources Science, Kongju National University , Yesan, Republic of Korea
| | - Patrícia D Games
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Eric Hill
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | | - José Eduardo Serrão
- Departmento De Biologia Geral, Universidade Federal De Viçosa , Viçosa, Brasil
| | - Sylvie Breton
- Program in Membrane Biology/Nephrology Division, Massachusetts General Hospital/Harvard Medical School , Boston, MA, USA
| | | |
Collapse
|
99
|
Tsetsarkin KA, Acklin JA, Liu G, Kenney H, Teterina NL, Pletnev AG, Lim JK. Zika virus tropism during early infection of the testicular interstitium and its role in viral pathogenesis in the testes. PLoS Pathog 2020; 16:e1008601. [PMID: 32614902 PMCID: PMC7331987 DOI: 10.1371/journal.ppat.1008601] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
Sexual transmission and persistence of Zika virus (ZIKV) in the testes pose new challenges for controlling virus outbreaks and developing live-attenuated vaccines. It has been shown that testicular infection of ZIKV is initiated in the testicular interstitium, followed by spread of the virus in the seminiferous tubules. This leads to testicular damage and/or viral dissemination into the epididymis and eventually into semen. However, it remains unknown which cell types are targeted by ZIKV in the testicular interstitium, and what is the specific order of infectious events leading to ZIKV invasion of the seminiferous tubules. Here, we demonstrate that interstitial leukocytes expressing mir-511-3p microRNA are the initial targets of ZIKV in the testes, and infection of mir-511-3p-expressing cells in the testicular interstitium is necessary for downstream infection of the seminiferous tubules. Mir-511-3p is expressed concurrently with CD206, a marker of lineage 2 (M2) macrophages and monocyte derived dendritic cells (moDCs). Selective restriction of ZIKV infection of CD206-expressing M2 macrophages/moDCs results in the attenuation of macrophage-associated inflammatory responses in vivo and prevents the disruption of the Sertoli cell barrier in vitro. Finally, we show that targeting of viral genome for mir-511-3p significantly attenuates early ZIKV replication not only in the testes, but also in many peripheral organs, including spleen, epididymis, and pancreas. This incriminates M2 macrophages/moDCs as important targets for visceral ZIKV replication following hematogenous dissemination of the virus from the site of infection.
Collapse
Affiliation(s)
- Konstantin A. Tsetsarkin
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Joshua A. Acklin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Guangping Liu
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Heather Kenney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Natalia L. Teterina
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Alexander G. Pletnev
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Jean K. Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
100
|
Bryan ER, Kim J, Beagley KW, Carey AJ. Testicular inflammation and infertility: Could chlamydial infections be contributing? Am J Reprod Immunol 2020; 84:e13286. [DOI: 10.1111/aji.13286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Emily R. Bryan
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Jay Kim
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Kenneth W. Beagley
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| | - Alison J. Carey
- School of Biomedical Sciences Institute of Health and Biomedical Innovation Queensland University of Technology Brisbane Qld Australia
| |
Collapse
|