51
|
Miyamoto DK, Flaxman HA, Wu HY, Gao J, Woo CM. Discovery of a Celecoxib Binding Site on Prostaglandin E Synthase (PTGES) with a Cleavable Chelation-Assisted Biotin Probe. ACS Chem Biol 2019; 14:2527-2532. [PMID: 31650837 DOI: 10.1021/acschembio.9b00511] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The coxibs are a subset of nonsteroidal anti-inflammatory drugs (NSAIDs) that primarily target cyclooxygenase-2 (COX-2) to inhibit prostaglandin signaling and reduce inflammation. However, mechanisms to inhibit other members of the prostaglandin signaling pathway may improve selectivity and reduce off-target toxicity. Here, we report a novel binding site for celecoxib on prostaglandin E synthase (PTGES), which is an enzyme downstream of COX-2 in the prostaglandin signaling pathway, using a cleavable chelation-assisted biotin probe 6. Evaluation of the multifunctional probe 6 revealed significantly improved tagging efficiencies attributable to the embedded picolyl functional group. Application of the probe 6 within the small molecule interactome mapping by photoaffinity labeling (SIM-PAL) platform using photo-celecoxib as a reporter for celecoxib identified PTGES and other membrane proteins in the top eight enriched proteins from A549 cells. Four binding sites to photo-celecoxib were mapped by the probe 6, including a binding site with PTGES. The binding interaction with PTGES was validated by competitive displacement with celecoxib and licofelone, which is a known PTGES inhibitor, and was used to generate a structural model of the interaction. The identification of photo-celecoxib interactions with membrane proteins, including the direct binding site on the membrane protein PTGES, will inform further functional followup and the design of new selective inhibitors of the prostaglandin signaling pathway.
Collapse
Affiliation(s)
- David K. Miyamoto
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hope A. Flaxman
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Hung-Yi Wu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Jinxu Gao
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, Massachusetts 02138, United States
| |
Collapse
|
52
|
Kefayat A, Ghahremani F, Safavi A, Hajiaghababa A, Moshtaghian J. C-phycocyanin: a natural product with radiosensitizing property for enhancement of colon cancer radiation therapy efficacy through inhibition of COX-2 expression. Sci Rep 2019; 9:19161. [PMID: 31844085 PMCID: PMC6915779 DOI: 10.1038/s41598-019-55605-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/29/2019] [Indexed: 12/13/2022] Open
Abstract
Different chemical and nanomaterial agents have been introduced for radiosensitizing purposes. However, many researchers believe these agents are far away from clinical application due to side effects and limited knowledge about their behavior in the human body. In this study, C-phycocyanin (C-PC) was used as a natural radiosensitizer for enhancement of radiation therapy (RT) efficacy. C-PC treatment's effect on the COX-2 expression of cancer cells was investigated by flow cytometry, western blot, qRT-PCR analyses in vitro and in vivo. Subsequently, the radiosensitizing effect of C-PC treatment was investigated by MTT and clonogenic cell survival assays for CT-26, DLD-1, HT-29 colon cancer cell lines and the CRL-1831 as normal colonic cells. In addition, the C-PC treatment effect on the radiation therapy efficacy was evaluated according to CT-26 tumor's growth progression and immunohistochemistry analyses of Ki-67 labeling index. C-PC treatment (200 µg/mL) could significantly enhance the radiation therapy efficacy in vitro and in vivo. Synergistic interaction was detected at C-PC and radiation beams co-treatment based on Chou and Talalay formula (combination index <1), especially at 200 µg/mL C-PC and 6 Gy radiation dosages. The acquired DEF of C-PC treatment was 1.39, 1.4, 1.63, and 1.05 for CT-26, DLD-1, HT-29, and CRL-1831 cells, respectively. Also, C-PC + RT treated mice exhibited 35.2% lower mean tumors' volume and about 6 days more survival time in comparison with the RT group (P < 0.05). In addition, C-PC + RT group exhibited 54% lower Ki-67 index in comparison with the RT group. Therefore, C-PC can exhibit high radiosensitizing effects. However, the potential cardiovascular risks of C-PC as a COX-2 inhibitor should be evaluated with extensive preclinical testing before developing this agent for clinical trials.
Collapse
Affiliation(s)
- Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, 38481-76941, Iran.
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Jamal Moshtaghian
- Division of Cell and Molecular Biology, Department of Biology, Faculty of Science, University of Isfahan, Isfahan, Iran
| |
Collapse
|
53
|
Isola G, Matarese G. In response to Letter to the Editor "Danger of highlighting the use of coxibs in daily dental practice". Int J Oral Maxillofac Surg 2019; 48:1608-1609. [PMID: 31230774 DOI: 10.1016/j.ijom.2019.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, University of Catania, Catania, Italy.
| | - Giovanni Matarese
- Department of Biomedical, Odontostomatological Sciences and of Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
54
|
Saxena P, Sharma PK, Purohit P. A journey of celecoxib from pain to cancer. Prostaglandins Other Lipid Mediat 2019; 147:106379. [PMID: 31726219 DOI: 10.1016/j.prostaglandins.2019.106379] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 06/30/2019] [Accepted: 09/06/2019] [Indexed: 12/14/2022]
Abstract
The most enthralling and versatile class of drugs called the Non-steroidal anti-inflammatory (NSAIDs) showed its therapeutic utility in inflammation, beginning from the era of classic drug 'Aspirin'. NSAIDs and their well-established action based on inhibiting the COX-1 and COX-2 enzyme leads to blockage of prostaglandin pathway. They further categorized into first generation (non-selective inhibitor) and second generation (selective COX-2 inhibitors). Selective COX-2 inhibitors has advantage over non-selective in terms of their improved safety profile of gastro-intestinal tract. Rejuvenating and recent avenues for COXIBS (selective COX-2 inhibitors) explains its integrated role in identification of biochemical pain signaling as well as its pivotal key role in cancer chemotherapy. A key role player in this class is the Celecoxib (only FDA approved COXIB) a member of Biopharmaceutical classification system (BCS) II. Low solubility and bioavailability issues related with celecoxib lead to the development and advancement in the discovery and research of some possible formulation administered either orally, topically or via transdermal route. This review article intent to draw the bead on Celecoxib and it clearly explain extensive knowledge of its disposition profile, its dynamic role in cancer at cellular level and cardiovascular risk assessment. Some of the possible formulations approaches with celecoxib and its improvement aspects are also briefly discussed.
Collapse
Affiliation(s)
- Pratiksha Saxena
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India.
| | - Pramod K Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| | - Priyank Purohit
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Gautam Budh Nagar, Uttar Pradesh 201310, India
| |
Collapse
|
55
|
O'Connor AT, Clark MA. Angiotensin II induces cyclooxygenase 2 expression in rat astrocytes via the angiotensin type 1 receptor. Neuropeptides 2019; 77:101958. [PMID: 31378306 DOI: 10.1016/j.npep.2019.101958] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
We previously showed that Angiotensin (Ang) II stimulated pro-inflammatory and mitogenic actions in astrocytes suggesting that astrocytes are emerging as key players in neuroinflammation. Evidence suggests that neuroinflammation may contribute to central sympathetic overactivity and elevated blood pressure. Further, cyclooxygenase (Cox)-derived prostanoids were implicated in Ang II-dependent hypertension. Cox2 is one of two Cox isoenzymes that is responsible for the formation of prostanoids from arachidonic acid. Constitutively expressed Cox2 has a protective and homeostatic role in the cardiovascular and renal systems. Inducible Cox2 has been associated with pathogenic stimuli resulting in inflammatory conditions and cancers. In this study, we investigated the effect of Ang II on Cox2 protein and mRNA expression in brainstem and cerebellum astrocytes, and determined whether any differences in Cox2 expression exist in spontaneously hypertensive rat (SHR) astrocytes compared to their normotensive control Wistar rats. We demonstrated that Ang II increased Cox2 protein and mRNA levels relative to untreated controls in a time-dependent manner, in Wistar and SHR brainstem and cerebellum astrocytes. Increases in Cox2 protein expression were evident within 4 h, with subsequent sustained elevation for several hours followed by a decline at 48 h. Ang II-induced Cox2 protein levels were higher in Wistar compared to SHRs in both brainstem and cerebellum astrocytes for the majority of time points examined. The Ang II-induced Cox2 mRNA levels increased within 8 h followed by a rapid decline to almost basal levels at later time points. At the earlier time points, Cox2 mRNA elevation were higher in SHR compared to Wistar rat astrocytes. These Ang II actions were mediated by the Ang type I receptor. Our results corroborate previous reports of Ang II's ability to stimulate neuroinflammatory mediators in astrocytes. Cox2-derived prostaglandins might play a role in brain-renin angiotensin system associated hypertension, and astrocytes could be significant players.
Collapse
Affiliation(s)
- Ann Tenneil O'Connor
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States of America
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Fort Lauderdale, FL 33328, United States of America.
| |
Collapse
|
56
|
Geißler K, Ducke M, Volk GF, Meißner W, Guntinas-Lichius O. Pain on the first postoperative day after tonsillectomy in adults: A comparison of metamizole versus etoricoxib as baseline analgesic. PLoS One 2019; 14:e0221188. [PMID: 31412091 PMCID: PMC6693748 DOI: 10.1371/journal.pone.0221188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023] Open
Abstract
Objective To compare the effect of metamizole versus etoricoxib as baseline analgesic for treating postoperative pain after tonsillectomy. Design Single centre prospective cohort study. Setting Two consecutive cohorts of tonsillectomy patients. Participants 124 patients (n = 55 treated with etoricoxib, n = 69 with metamizole); median age 30.5 years; 50% women. Main outcome measures Patients rated their pain on first postoperative day using the questionnaires of the German-wide project Quality Improvement in Postoperative Pain Treatment (QUIPS) including numeric rating scales (NRS, 0–10) for pain determination. The influence of preoperative and postoperative parameters on patients' pain was estimated by univariate and multivariate statistical analysis. Results The demographic parameters showed no differences between the patients in the metamizole group and the etoricoxib group (all p>0.05) with one exception: Patients in the metamizole group had significantly more preoperative pain than patients in the etoricoxib group (p = 0.001). The metamizole group had a mean postoperative pain in activity of 4.4 ± 2.1 and the etoricoxib group of 4.5 ± 2.2. Maximal pain for the metamizole group and the etoricoxib group were 5.6 ± 2.2 and 6.1 ± 1.9, respectively. Pain in activity, maximal pain and minimal pain were not different between both groups (p = 0.652, p = 0.113, p = 0.276, respectively). Patients of the etoricoxib group received more frequently piritramide in recovery room as demand medication (p = 0.046). In the whole cohort, patients with peritonsillar abscess had more preoperative pain in comparison to chronic tonsillitis (p<0.001). Patients under 30.5 years reported higher maximal pain than older patients (p = 0.049). On the other hand, a significant influence of patients’ age on the pain in activity and minimal pain could not be demonstrated (p = 0.368, p = 0.508, respectively). Men reported lower minimal pain than women (p = 0.041). Also, patients with ASA status I had lower minimal pain than patients with higher ASA status (p = 0.019). The multivariate analysis did not show an association between postoperative pain in activity and preoperative counseling on postoperative pain management (p = 0.588, p = 0.174, respectively). Special preoperative counseling on postoperative pain management resulted in lower levels of maximal pain (p = 0.024). Linear regression demonstrated an independent association of higher pain in activity with higher mobility impairment (p = 0.034) and respiratory impairment (p = 0.002). The linear regression of minimal pain identified female gender (p = 0.005) as an independent influencing factor with higher pain levels. In terms of satisfaction, no preoperative pain therapy (p = 0.016) could be found as an independently significant influencing factor with higher satisfaction. Conclusion Etoricoxib does not have an advantage as baseline analgesic for post tonsillectomy pain in comparison to metamizole.
Collapse
Affiliation(s)
- Katharina Geißler
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
- * E-mail:
| | - Marina Ducke
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Gerd Fabian Volk
- Department of Otorhinolaryngology, Jena University Hospital, Jena, Germany
| | - Winfried Meißner
- Department of Anaesthesiology and Intensive Care Medicine, Jena University Hospital, Jena, Germany
| | | |
Collapse
|
57
|
Wilcox CS, Wang C, Wang D. Endothelin-1-Induced Microvascular ROS and Contractility in Angiotensin-II-Infused Mice Depend on COX and TP Receptors. Antioxidants (Basel) 2019; 8:antiox8060193. [PMID: 31234522 PMCID: PMC6616505 DOI: 10.3390/antiox8060193] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 01/16/2023] Open
Abstract
(1) Background: Angiotensin II (Ang II) and endothelin 1 (ET-1) generate reactive oxygen species (ROS) that can activate cyclooxygenase (COX). However, thromboxane prostanoid receptors (TPRs) are required to increase systemic markers of ROS during Ang II infusion in mice. We hypothesized that COX and TPRs are upstream requirements for the generation of vascular ROS by ET-1. (2) Methods: ET-1-induced vascular contractions and ROS were assessed in mesenteric arterioles from wild type (+/+) and knockout (−/−) of COX1 or TPR mice infused with Ang II (400 ng/kg/min × 14 days) or a vehicle. (3) Results: Ang II infusion appeared to increase microvascular protein expression of endothelin type A receptors (ETARs), TPRs, and COX1 and 2 in COX1 and TPR +/+ mice but not in −/− mice. Ang II infusion increased ET-1-induced vascular contractions and ROS, which were prevented by a blockade of COX1 and 2 in TPR −/− mice. ET-1 increased the activity of aortic nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and decreased superoxide dismutase (SOD) 1, 2, and 3 in Ang-II-infused mice, which were prevented by a blockade of TPRs. (4) Conclusion: Activation of vascular TPRs by COX products are required for ET-1 to increase vascular contractions and ROS generation from NADPH oxidase and reduce ROS metabolism by SOD. These effects require an increase in these systems by prior infusion of Ang II.
Collapse
Affiliation(s)
- Christopher S Wilcox
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Cheng Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Dan Wang
- Division of Nephrology and Hypertension, Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| |
Collapse
|
58
|
PGE 2 signaling via the neuronal EP2 receptor increases injury in a model of cerebral ischemia. Proc Natl Acad Sci U S A 2019; 116:10019-10024. [PMID: 31036664 DOI: 10.1073/pnas.1818544116] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inflammatory prostaglandin E2 (PGE2) EP2 receptor is a master suppressor of beneficial microglial function, and myeloid EP2 signaling ablation reduces pathology in models of inflammatory neurodegeneration. Here, we investigated the role of PGE2 EP2 signaling in a model of stroke in which the initial cerebral ischemic event is followed by an extended poststroke inflammatory response. Myeloid lineage cell-specific EP2 knockdown in Cd11bCre;EP2lox/lox mice attenuated brain infiltration of Cd11b+CD45hi macrophages and CD45+Ly6Ghi neutrophils, indicating that inflammatory EP2 signaling participates in the poststroke immune response. Inducible global deletion of the EP2 receptor in adult ROSA26-CreERT2 (ROSACreER);EP2lox/lox mice also reduced brain myeloid cell trafficking but additionally reduced stroke severity, suggesting that nonimmune EP2 receptor-expressing cell types contribute to cerebral injury. EP2 receptor expression was highly induced in neurons in the ischemic hemisphere, and postnatal deletion of the neuronal EP2 receptor in Thy1Cre;EP2lox/lox mice reduced cerebral ischemic injury. These findings diverge from previous studies of congenitally null EP2 receptor mice where a global deletion increases cerebral ischemic injury. Moreover, ROSACreER;EP2lox/lox mice, unlike EP2-/- mice, exhibited normal learning and memory, suggesting a confounding effect from congenital EP2 receptor deletion. Taken together with a precedent that inhibition of EP2 signaling is protective in inflammatory neurodegeneration, these data lend support to translational approaches targeting the EP2 receptor to reduce inflammation and neuronal injury that occur after stroke.
Collapse
|
59
|
Mitchell JA, Kirkby NS. Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 2019; 176:1038-1050. [PMID: 29468666 PMCID: PMC6451069 DOI: 10.1111/bph.14167] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/30/2022] Open
Abstract
Eicosanoids represent a diverse family of lipid mediators with fundamental roles in physiology and disease. Within the eicosanoid superfamily are prostanoids, which are specifically derived from arachidonic acid by the enzyme cyclooxygenase (COX). COX has two isoforms; COX-1 and COX-2. COX-2 is the therapeutic target for the nonsteroidal anti-inflammatory drug (NSAID) class of pain medications. Of the prostanoids, prostacyclin, first discovered by Sir John Vane in 1976, remains amongst the best studied and retains an impressive pedigree as one of the fundamental cardiovascular protective pathways. Since this time, we have learnt much about how eicosanoids, COX enzymes and prostacyclin function in the cardiovascular system, knowledge that has allowed us, for example, to harness the power of prostacyclin as therapy to treat pulmonary arterial hypertension and peripheral vascular disease. However, there remain many unanswered questions in our basic understanding of the pathways, and how they can be used to improve human health. Perhaps, the most important and controversial outstanding question in the field remains; 'how do NSAIDs produce their much publicized cardiovascular side-effects?' This review summarizes the history, biology and cardiovascular function of key eicosanoids with particular focus on prostacyclin and other COX products and discusses how our knowledge of these pathways can applied in future drug discovery and be used to explain the cardiovascular side-effects of NSAIDs. LINKED ARTICLES: This article is part of a themed section on Eicosanoids 35 years from the 1982 Nobel: where are we now? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.8/issuetoc.
Collapse
Affiliation(s)
- Jane A Mitchell
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| | - Nicholas S Kirkby
- Cardiothoracic PharmacologyNational Heart and Lung InstituteLondonUK
| |
Collapse
|
60
|
Prasher P, Mudila H, Sharma M, Khati B. Developmental perspectives of the drugs targeting enzyme-instigated inflammation: a mini review. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
61
|
Abstract
The documented efficacy of COX-2 inhibitors in cancer chemoprevention and in suppression of metastasis is predominantly attributed to inflammatory responses, whereas their effects on tumor-stromal interaction are poorly understood. Through single-cell transcriptome analyses in an immune-compromised mouse xenograft model and in vitro reconstitution experiments, we uncover a tumor-stromal paracrine pathway in which secretion by tumor cells of the COX-2 product prostaglandin E2 induces prolactin production by stromal cells, which activates signaling in disseminated tumor cells with upregulated prolactin receptor expression. Analysis of multiple human cancers confirms differential tumor and stromal cell expression of COX-2, prolactin, and prolactin receptor. Together, these findings may provide novel biomarkers to inform the selective application of COX-2 inhibitors and point to additional targets for suppressing metastasis recurrence. Tumor-stromal communication within the microenvironment contributes to initiation of metastasis and may present a therapeutic opportunity. Using serial single-cell RNA sequencing in an orthotopic mouse prostate cancer model, we find up-regulation of prolactin receptor as cancer cells that have disseminated to the lungs expand into micrometastases. Secretion of the ligand prolactin by adjacent lung stromal cells is induced by tumor cell production of the COX-2 synthetic product prostaglandin E2 (PGE2). PGE2 treatment of fibroblasts activates the orphan nuclear receptor NR4A (Nur77), with prolactin as a major transcriptional target for the NR4A-retinoid X receptor (RXR) heterodimer. Ectopic expression of prolactin receptor in mouse cancer cells enhances micrometastasis, while treatment with the COX-2 inhibitor celecoxib abrogates prolactin secretion by fibroblasts and reduces tumor initiation. Across multiple human cancers, COX-2, prolactin, and prolactin receptor show consistent differential expression in tumor and stromal compartments. Such paracrine cross-talk may thus contribute to the documented efficacy of COX-2 inhibitors in cancer suppression.
Collapse
|
62
|
Hiesinger K, Wagner KM, Hammock BD, Proschak E, Hwang SH. Development of multitarget agents possessing soluble epoxide hydrolase inhibitory activity. Prostaglandins Other Lipid Mediat 2019; 140:31-39. [PMID: 30593866 PMCID: PMC6345559 DOI: 10.1016/j.prostaglandins.2018.12.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/27/2018] [Accepted: 12/24/2018] [Indexed: 02/08/2023]
Abstract
Over the last two decades polypharmacology has emerged as a new paradigm in drug discovery, even though developing drugs with high potency and selectivity toward a single biological target is still a major strategy. Often, targeting only a single enzyme or receptor shows lack of efficacy. High levels of inhibitor of a single target also can lead to adverse side effects. A second target may offer additive or synergistic effects to affecting the first target thereby reducing on- and off-target side effects. Therefore, drugs that inhibit multiple targets may offer a great potential for increased efficacy and reduced the adverse effects. In this review we summarize recent findings of rationally designed multitarget compounds that are aimed to improve efficacy and safety profiles compared to those that target a single enzyme or receptor. We focus on dual inhibitors/modulators that target the soluble epoxide hydrolase (sEH) as a common part of their design to take advantage of the beneficial effects of sEH inhibition.
Collapse
Affiliation(s)
- Kerstin Hiesinger
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Karen M Wagner
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe-University of Frankfurt, Max-von-Laue Str. 9, D-60439, Frankfurt am Main, Germany
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
63
|
Yao LJ, Jalil J, Attiq A, Hui CC, Zakaria NA. The medicinal uses, toxicities and anti-inflammatory activity of Polyalthia species (Annonaceae). JOURNAL OF ETHNOPHARMACOLOGY 2019; 229:303-325. [PMID: 30316887 DOI: 10.1016/j.jep.2018.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/04/2018] [Accepted: 10/06/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Polyalthia is one of the largest and notable genera in Annonaceae family. Polyalthia species have been widely used in folklore medicine for the treatment of rheumatic fever, gastrointestinal ulcer and generalized body pain. Numerous in vitro and in vivo studies on Polyalthia Species have also corroborated the significant anti-inflammatory potential of its extracts and secondary metabolites. AIM OF THE STUDY This review is an attempt to assess the anti-inflammatory activity of Polyalthia species by giving critical appraisal and establishing evidences of their traditional uses. Moreover this review will highlight the lead compounds for future drug development that can serve as a potential anti-inflammatory drug with comparative efficacy and minimum side effects. MATERIALS AND METHODS An extensive literature review, focusing the anti-inflammatory potential of Polyalthia species was conducted using the following databases:PubMed, ScienceDirect, SpringerLink, Ovid, Scopus and ProQuest, as well as the locally available books, journals and relevant documents. The reference lists of retrieved papers were also searched for additional studies. RESULTS The Polyalthia species have shown significant anti-inflammatory activity through various mechanism of action. The most significant anti-inflammatory mechanism includes the inhibition of nuclear factor kappa B (NF-κB), prostaglandins (PGs), pro-inflammatory cytokines, inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS). The data suggests that hydroxycleroda-3,13-dien-15,16-olide and 16-oxocleroda-3,13-dien-15-oic acid, quercetin, rutin, spinasterol, α-spinasterol, goniothalamin and (-)-5-hydroxygoniothalamin are the most potent anti-inflammatory compounds from Polyalthia species with comparable IC50 with positive controls. CONCLUSIONS Numerous pharmacological studies have supported the use of Polyalthia species against pain, rheumatic fever, haemorrhages and inflammation in traditional medicine. Flavonoids, diterpenoids, sterols and styrylpyrones from genus Polyalthia are the most significant class of compounds with potent anti-inflammatory activity. Secondary metabolites from these classes should be brought into further research to fill the gaps of knowledge in pharmacokinetics, pharmacodynamics, bioavailability, and toxicity in order to convert the pre-clinical results into clinical data for further investigation.
Collapse
Affiliation(s)
- Lui Jin Yao
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Ali Attiq
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chiew Chia Hui
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Aimi Zakaria
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
64
|
Kats A, Gerasimcik N, Näreoja T, Nederberg J, Grenlöv S, Lagnöhed E, Desai S, Andersson G, Yucel-Lindberg T. Aminothiazoles inhibit osteoclastogenesis and PGE 2 production in LPS-stimulated co-cultures of periodontal ligament and RAW 264.7 cells, and RANKL-mediated osteoclastogenesis and bone resorption in PBMCs. J Cell Mol Med 2018; 23:1152-1163. [PMID: 30506812 PMCID: PMC6349150 DOI: 10.1111/jcmm.14015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Inflammatory mediator prostaglandin E2 (PGE2 ) contributes to bone resorption in several inflammatory conditions including periodontitis. The terminal enzyme, microsomal prostaglandin E synthase-1 (mPGES-1) regulating PGE2 synthesis is a promising therapeutic target to reduce inflammatory bone loss. The aim of this study was to investigate effects of mPGES-1 inhibitors, aminothiazoles TH-848 and TH-644, on PGE2 production and osteoclastogenesis in co-cultures of periodontal ligament (PDL) and osteoclast progenitor cells RAW 264.7, stimulated by lipopolysaccharide (LPS), and bone resorption in RANKL-mediated peripheral blood mononuclear cells (PBMCs). PDL and RAW 264.7 cells were cultured separately or co-cultured and treated with LPS alone or in combination with aminothiazoles. Multinucleated cells stained positively for tartrate-resistant acid phosphatase (TRAP) were scored as osteoclast-like cells. Levels of PGE2 , osteoprotegerin (OPG) and interleukin-6, as well as mRNA expression of mPGES-1, OPG and RANKL were analysed in PDL cells. PBMCs were treated with RANKL alone or in combination with aminothiazoles. TRAP-positive multinucleated cells were analysed and bone resorption was measured by the CTX-I assay. Aminothiazoles reduced LPS-stimulated osteoclast-like cell formation both in co-cultures and in RAW 264.7 cells. Additionally, aminothiazoles inhibited PGE2 production in LPS-stimulated cultures, but did not affect LPS-induced mPGES-1, OPG or RANKL mRNA expression in PDL cells. In PBMCs, inhibitors decreased both osteoclast differentiation and bone resorption. In conclusion, aminothiazoles reduced the formation of osteoclast-like cells and decreased the production of PGE2 in co-cultures as well as single-cell cultures. Furthermore, these compounds inhibited RANKL-induced bone resorption and differentiation of PBMCs, suggesting these inhibitors for future treatment of inflammatory bone loss such as periodontitis.
Collapse
Affiliation(s)
- Anna Kats
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Natalija Gerasimcik
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Tuomas Näreoja
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Jonas Nederberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Simon Grenlöv
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Ekaterina Lagnöhed
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| | - Suchita Desai
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Tülay Yucel-Lindberg
- Department of Dental Medicine, Division of Periodontology, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
65
|
McCarty MF, DiNicolantonio JJ. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. Nutr Cancer 2018; 70:840-850. [DOI: 10.1080/01635581.2018.1470657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - James J. DiNicolantonio
- Preventive Cardiology Department, St. Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
66
|
The Anti-Inflammatory Effects of Vitamin D in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092736. [PMID: 30216977 PMCID: PMC6164284 DOI: 10.3390/ijms19092736] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
In conjunction with the classical functions of regulating intestinal, bone, and kidney calcium and phosphorus absorption, as well as bone mineralization of vitamin D, the population-based association between low vitamin D status and increased cancer risk is now generally accepted. Inflammation is causally related to oncogenesis. It is widely thought that vitamin D plays an important role in the modulation of the inflammation system by regulating the production of inflammatory cytokines and immune cells, which are crucial for the pathogenesis of many immune-related diseases. Mechanistic studies have shown that vitamin D influences inflammatory processes involved in cancer progression, including cytokines, prostaglandins, MAP kinase phosphatase 5 (MKP5), the nuclear factor kappa B (NF-κB) pathway, and immune cells. Multiple studies have shown that vitamin D has the potential to inhibit tumor development by interfering with the inflammation system. The present review summarizes recent studies of the mechanisms of vitamin D on regulating the inflammation system, which contributes to its potential for cancer prevention and therapy. This review helps answer whether inflammation mediates a causal relationship between vitamin D and tumorigenesis.
Collapse
|
67
|
Toutain CE, Brossard P, King SB, Helbig R. Six-month safety evaluation of robenacoxib tablets (Onsior™) in dogs after daily oral administrations. BMC Vet Res 2018; 14:242. [PMID: 30119677 PMCID: PMC6098579 DOI: 10.1186/s12917-018-1566-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/09/2018] [Indexed: 12/26/2022] Open
Abstract
Background Robenacoxib is a non-steroidal anti-inflammatory drug available for canine and feline use for the control of pain and inflammation marketed as Onsior™. The aim of this target animal safety study was to evaluate the 6-month safety profile of oral robenacoxib administration. It was a randomized, negative-controlled, parallel group study. Thirty-two healthy, young, experimentally naïve, purebred Beagle dogs were administered 0 (sham control, Group 1), 2, 6, and 10 mg/kg robenacoxib (corresponding to the upper end of the dosage range [1X, Group 2] and multiples thereof [3X and 5X, Group 3 and 4]), orally once daily for 6 months. Assessment of safety included general health and clinical observations, physical, neurological, ophthalmological and electrocardiographic examinations, gross and histopathological examinations and clinical pathology evaluations. Blood samples were collected for toxicokinetic assessment of robenacoxib. Results No serious adverse events were reported. When compared with control, no treatment effect was observed for body weight, feed or water consumption, clinical pathology, urinalysis and fecal examination parameters. There were no treatment-related changes in stifle joint tissues and microscopic/histopathology examinations of all tissues/organs were normal. Salivation and soft feces were noted in all groups but observed more frequently in the treated groups as compared with control. On Day 178, increased buccal mucosal bleeding times were observed in two treated animals (Group 3 and 4) and one dog in Group 4 displayed a retinal change. Decreased hopping and conscious proprioception was noted in four treated dogs. One dog in Group 2 had ventricular premature complexes. Post-mortem changes included mild, red foci on the cecum in one dog (Group 3) and minimal duodenal discoloration in one dog (Group 4), with no corresponding histological findings in either dog. Ovarian weights were decreased in females from Group 3 and 4 with no gross or histological changes in the ovaries. Blood concentrations of robenacoxib confirmed systemic exposure of treated dogs. Exposure increased with increasing doses and there were no accumulation of robenacoxib in blood. Conclusions Robenacoxib was well tolerated at doses from 2 to 10 mg/kg/day and this 6-month study supports the safe use of Onsior™ (robenacoxib) tablets in dogs for the intended dosing regimen.
Collapse
Affiliation(s)
- Céline E Toutain
- Elanco Animal Health, a Division of Eli Lilly and Company, Mattenstrasse 24a, CH-4058, Basel, Switzerland.
| | - Patrick Brossard
- Elanco Animal Health, a Division of Eli Lilly and Company, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| | - Stephen B King
- Elanco Animal Health, a Division of Eli Lilly and Company, 2500 Innovation Way, Greenfield, IN, 64140, USA
| | - Rainer Helbig
- Elanco Animal Health, a Division of Eli Lilly and Company, Mattenstrasse 24a, CH-4058, Basel, Switzerland
| |
Collapse
|
68
|
Ferdinandy P, Baczkó I, Bencsik P, Giricz Z, Görbe A, Pacher P, Varga ZV, Varró A, Schulz R. Definition of hidden drug cardiotoxicity: paradigm change in cardiac safety testing and its clinical implications. Eur Heart J 2018; 40:1771-1777. [PMID: 29982507 PMCID: PMC6554653 DOI: 10.1093/eurheartj/ehy365] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Unexpected cardiac adverse effects are the leading causes of discontinuation of clinical trials and withdrawal of drugs from the market. Since the original observations in the mid-90s, it has been well established that cardiovascular risk factors and comorbidities (such as ageing, hyperlipidaemia, and diabetes) and their medications (e.g. nitrate tolerance, adenosine triphosphate-dependent potassium inhibitor antidiabetic drugs, statins, etc.) may interfere with cardiac ischaemic tolerance and endogenous cardioprotective signalling pathways. Indeed drugs may exert unwanted effects on the diseased and treated heart that is hidden in the healthy myocardium. Hidden cardiotoxic effects may be due to (i) drug-induced enhancement of deleterious signalling due to ischaemia/reperfusion injury and/or the presence of risk factors and/or (ii) inhibition of cardioprotective survival signalling pathways, both of which may lead to ischaemia-related cell death and/or pro-arrhythmic effects. This led to a novel concept of ‘hidden cardiotoxicity’, defined as cardiotoxity of a drug that manifests only in the diseased heart with e.g. ischaemia/reperfusion injury and/or in the presence of its major comorbidities. Little is known on the mechanism of hidden cardiotoxocity, moreover, hidden cardiotoxicity cannot be revealed by the routinely used non-clinical cardiac safety testing methods on healthy animals or tissues. Therefore, here, we emphasize the need for development of novel cardiac safety testing platform involving combined experimental models of cardiac diseases (especially myocardial ischaemia/reperfusion and ischaemic conditioning) in the presence and absence of major cardiovascular comorbidities and/or cotreatments.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, Szeged, Hungary
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - Anikó Görbe
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Pharmahungary Group, Hajnoczy u. 6, Szeged, Hungary
| | - Pál Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Fishers Lane, Bethesda, MD, USA
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, Hungary
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Fishers Lane, Bethesda, MD, USA
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Dóm tér 12, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Aulweg 129, Giessen, Germany
| |
Collapse
|
69
|
Comparison of Pulmonary and Systemic NO- and PGI 2-Dependent Endothelial Function in Diabetic Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4036709. [PMID: 29967661 PMCID: PMC6008763 DOI: 10.1155/2018/4036709] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/16/2022]
Abstract
Diabetes increases the risk of pulmonary hypertension and is associated with alterations in pulmonary vascular function. Still, it is not clear whether alterations in the phenotype of pulmonary endothelium induced by diabetes are distinct, as compared to peripheral endothelium. In the present work, we characterized differences between diabetic complications in the lung and aorta in db/db mice with advanced diabetes. Male, 20-week-old db/db mice displayed increased HbA1c and glucose concentration compatible with advanced diabetes. Diabetic lungs had signs of mild fibrosis, and pulmonary endothelium displayed significantly ultrastructural changes. In the isolated, perfused lung from db/db mice, filtration coefficient (Kf,c) and contractile response to TXA2 analogue were enhanced, while endothelial NO-dependent modulation of pulmonary response to hypoxic ventilation and cumulative production of NO2− were impaired, with no changes in immunostaining for eNOS expression. In turn, 6-keto-PGF1α release from the isolated lung from db/db mice was increased, as well as immunostaining of thrombomodulin (CD141). In contrast to the lung, NO-dependent, acetylcholine-induced vasodilation, ionophore-stimulated NO2− generation, and production of 6-keto-PGF1α were all impaired in aortic rings from db/db mice. Although eNOS immunostaining was not changed, that of CD141 was clearly lowered. Interestingly, diabetes-induced nitration of proteins in aorta was higher than that in the lungs. In summary, diabetes induced marked ultrastructural changes in pulmonary endothelium that were associated with the increased permeability of pulmonary microcirculation, impaired NO-dependent vascular function, with compensatory increase in PGI2 production, and increased CD141 expression. In contrast, endothelial dysfunction in the aorta was featured by impaired NO-, PGI2-dependent function and diminished CD141 expression.
Collapse
|
70
|
Benelli R, Venè R, Ferrari N. Prostaglandin-endoperoxide synthase 2 (cyclooxygenase-2), a complex target for colorectal cancer prevention and therapy. Transl Res 2018; 196:42-61. [PMID: 29421522 DOI: 10.1016/j.trsl.2018.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/15/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
A plentiful literature has linked colorectal cancer (CRC) to inflammation and prostaglandin-endoperoxide synthase (PTGS)2 expression. Accordingly, several nonsteroidal antiinflammatory drugs (NSAIDs) have been tested often successfully in CRC chemoprevention despite their different ability to specifically target PTGS2 and the low or null expression of PTGS2 in early colon adenomas. Some observational studies showed an increased survival for patients with CRC assuming NSAIDs after diagnosis, but no clinical trial has yet demonstrated the efficacy of NSAIDs against established CRC, where PTGS2 is expressed at high levels. The major limits for the application of NSAIDs, or specific PTGS2 inhibitors, as adjuvant drugs in CRC are (1) a frequent confusion about the physiological role of PTGS1 and PTGS2, reflecting in CRC pathology and therapy; (2) the presence of unavoidable side effects linked to the intrinsic function of these enzymes; (3) the need of established criteria and markers for patient selection; and (4) the evaluation of the immunomodulatory potential of PTGS2 inhibitors as possible adjuvants for immunotherapy. This review has been written to rediscover the multifaceted potential of PTGS2 targeting, hoping it could act as a starting point for a new and more aware application of NSAIDs against CRC.
Collapse
Affiliation(s)
- Roberto Benelli
- OU Immunology, Ospedale Policlinico San Martino (Istituto di ricovero e cura a carattere scientifico per l'oncologia), Genoa, Italy.
| | - Roberta Venè
- OU Molecular Oncology & Angiogenesis, Ospedale Policlinico San Martino (Istituto di ricovero e cura a carattere scientifico per l'oncologia), Genoa, Italy
| | - Nicoletta Ferrari
- OU Molecular Oncology & Angiogenesis, Ospedale Policlinico San Martino (Istituto di ricovero e cura a carattere scientifico per l'oncologia), Genoa, Italy
| |
Collapse
|
71
|
Inceler N, Ozkan Y, Turan NN, Kahraman DC, Cetin-Atalay R, Baytas SN. Design, synthesis and biological evaluation of novel 1,3-diarylpyrazoles as cyclooxygenase inhibitors, antiplatelet and anticancer agents. MEDCHEMCOMM 2018; 9:795-811. [PMID: 30108969 DOI: 10.1039/c8md00022k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/16/2018] [Indexed: 11/21/2022]
Abstract
With the aim of achieving new compounds possessing both anti-inflammatory and antiplatelet activities, we synthesized (E)-3-[3-(pyridin-3/4-yl)-1-(phenyl/sulfonylmethylphenyl)-1H-pyrazol-4-yl]acrylamides, and evaluated their COX-1 and COX-2 inhibitory and antiplatelet activities. Since COX-2 inhibitory and antiplatelet compounds have anticancer potential, we also screened their antiproliferative effects against three human cancer cell lines. Compounds 5n, 5p, 5s, 10d, 10g and 10i were determined as dual COX-2 inhibitor/antiplatelet compounds. Compound 10h appeared to be a compound that exhibited antiplatelet activity without inhibiting the COX enzyme. Compounds 5h, 10a and 10i were the most effective derivatives which displayed antiproliferative activity against Huh7, MCF7 and HCT116 cells. Particularly, compound 10i, as the compound exhibiting the highest cytotoxic, antiplatelet and COX-2 inhibitory activity, was remarkable.
Collapse
Affiliation(s)
- Nazan Inceler
- Division of Pharmaceutical Sciences , Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Gazi University , 06330 , Ankara , Turkey .
| | - Yesim Ozkan
- Department of Biochemistry , Faculty of Pharmacy , Gazi University , 06330 , Ankara , Turkey
| | - Nilufer Nermin Turan
- Department of Pharmacology , Faculty of Pharmacy , Gazi University , 06330 , Ankara , Turkey
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory , Graduate School of Informatics , METU , 06800 , Ankara , Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory , Graduate School of Informatics , METU , 06800 , Ankara , Turkey
| | - Sultan Nacak Baytas
- Division of Pharmaceutical Sciences , Department of Pharmaceutical Chemistry , Faculty of Pharmacy , Gazi University , 06330 , Ankara , Turkey .
| |
Collapse
|
72
|
Mitchell JA, Knowles RB, Kirkby NS, Reed DM, Edin ML, White WE, Chan MV, Longhurst H, Yaqoob MM, Milne GL, Zeldin DC, Warner TD. Kidney Transplantation in a Patient Lacking Cytosolic Phospholipase A 2 Proves Renal Origins of Urinary PGI-M and TX-M. Circ Res 2018; 122:555-559. [PMID: 29298774 PMCID: PMC5816977 DOI: 10.1161/circresaha.117.312144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 01/31/2023]
Abstract
RATIONALE The balance between vascular prostacyclin, which is antithrombotic, and platelet thromboxane A2, which is prothrombotic, is fundamental to cardiovascular health. Prostacyclin and thromboxane A2 are formed after the concerted actions of cPLA2α (cytosolic phospholipase A2) and COX (cyclooxygenase). Urinary 2,3-dinor-6-keto-PGF1α (PGI-M) and 11-dehydro-TXB2 (TX-M) have been taken as biomarkers of prostacyclin and thromboxane A2 formation within the circulation and used to explain COX biology and patient phenotypes, despite concerns that urinary PGI-M and TX-M originate in the kidney. OBJECTIVE We report data from a remarkable patient carrying an extremely rare genetic mutation in cPLA2α, causing almost complete loss of prostacyclin and thromboxane A2, who was transplanted with a normal kidney resulting in an experimental scenario of whole-body cPLA2α knockout, kidney-specific knockin. By studying this patient, we can determine definitively the contribution of the kidney to the productions of PGI-M and TX-M and test their validity as markers of prostacyclin and thromboxane A2 in the circulation. METHODS AND RESULTS Metabolites were measured using liquid chromatography-tandem mass spectrometry. Endothelial cells were grown from blood progenitors. Before kidney transplantation, the patient's endothelial cells and platelets released negligible levels of prostacyclin (measured as 6-keto-prostaglandin F1α) and thromboxane A2 (measured as TXB2), respectively. Likewise, the urinary levels of PGI-M and TX-M were very low. After transplantation and the establishment of normal renal function, the levels of PGI-M and TX-M in the patient's urine rose to within normal ranges, whereas endothelial production of prostacyclin and platelet production of thromboxane A2 remained negligible. CONCLUSIONS These data show that PGI-M and TX-M can be derived exclusively from the kidney without contribution from prostacyclin made by endothelial cells or thromboxane A2 by platelets in the general circulation. Previous work relying on urinary metabolites of prostacyclin and thromboxane A2 as markers of whole-body endothelial and platelet function now requires reevaluation.
Collapse
Affiliation(s)
- Jane A Mitchell
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Rebecca B Knowles
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Nicholas S Kirkby
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Daniel M Reed
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Matthew L Edin
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - William E White
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Melissa V Chan
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Hilary Longhurst
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Magdi M Yaqoob
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Ginger L Milne
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Darryl C Zeldin
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.)
| | - Timothy D Warner
- From the National Heart and Lung Institute, Imperial College London, United Kingdom (J.A.M., N.S.K., D.M.R.); Blizard Institute, Queen Mary University of London, United Kingdom (R.B.K., W.E.W., M.V.C., M.M.Y., T.D.W.); National Institute for Environmental Health Sciences, Research Triangle, NC (M.L.E., D.C.Z.); Department of Nephrology (W.E.W., M.M.Y.) and Immunology Department (H.L.), Barts Health NHS Trust, London, United Kingdom; and Departments of Pharmacology and Medicine, Vanderbilt University, Nashville, TN (G.L.M.).
| |
Collapse
|
73
|
Abstract
Prostaglandins and leukotrienes are produced in the COX and 5-LOX pathways of the inflammatory process. The current drugs target the upstream enzymes of either of the two pathways, leading to side effects. We have attempted to target the downstream enzymes simultaneously. Two compounds 2 and 3 (10 μM), identified by virtual screening, inhibited mPGES-1 activity by 53.4 ± 4.0 and 53.9 ± 8.1%, respectively. Structural and pharmacophore studies revealed a set of common residues between LTC4S and mPGES-1 as well as four-point pharmacophore mapping onto the inhibitors of both these enzymes as well as 2 and 3. These structural and pharmacophoric features may be exploited for ligand- and structure-based screening of inhibitors and designing of dual inhibitors.
Collapse
|
74
|
McLane RD, Le Cozannet-Laidin L, Boyle MS, Lanzillotta L, Taylor ZL, Anthony SR, Tranter M, Onorato AJ. Synthesis and PGE2 inhibitory activity of novel diarylheptanoids. Bioorg Med Chem Lett 2018; 28:334-338. [DOI: 10.1016/j.bmcl.2017.12.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 11/16/2022]
|
75
|
Lakshman TR, Deb J, Paine TK. Anti-inflammatory activity and enhanced COX-2 selectivity of nitric oxide-donating zinc(ii)-NSAID complexes. Dalton Trans 2018; 45:14053-14057. [PMID: 27711752 DOI: 10.1039/c6dt00838k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zinc(ii)-NSAID complexes supported by NO-donating 1,10-phenanthrolinefuroxan exhibit anti-inflammatory activities through selective inhibition of the COX-2 pathway. The strategy represents a general procedure to convert non-selective or COX-1 selective NSAIDs to selective COX-2 inhibitors.
Collapse
Affiliation(s)
- Triloke Ranjan Lakshman
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Jolly Deb
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Tapan Kanti Paine
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, 2A&2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
76
|
Nakamoto K, Tokuyama S. [The role of brain n-3 fatty acids-GPR40/FFAR1 signaling in pain]. Nihon Yakurigaku Zasshi 2018; 151:21-26. [PMID: 29321392 DOI: 10.1254/fpj.151.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
G-protein-coupled receptor 40 (GPR40)/free fatty acid receptor (FFAR) 1 is activated by long-chain fatty acids such as docosahexaenoic acid (DHA). Its receptor is expressed predominantly in the central nervous system (CNS) and in β-cells in the pancreatic Islets. We have already demonstrated that the intracerebroventricular administration of DHA or GW9508, a GPR40/FFAR1 agonist, suppresses formalin-induced pain behavior. It also attenuates complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia, suggesting that these effects occur by increasing β-endorphin release from propiomelanocortin neurons. Furthermore, we found that the brain GPR40/FFAR1 signaling may involve in the regulation of the descending pain control system, whereas the deletion of GPR40/FFAR1 might exacerbate mechanical allodynia in postoperative pain. Therefore, it is possible that the brain n-3 fatty acid-GPR40/FFAR1 signaling may play a key role in the modulation of the endogenous pain control system and emotional function. Here, we discuss the role of brain n-3 fatty acids-GPR40/FFAR1 signaling in a pain, and we review the current status and future prospects of the brain GPR40/FFAR1.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
77
|
Walker C, Biasucci LM. Cardiovascular safety of non-steroidal anti-inflammatory drugs revisited. Postgrad Med 2017; 130:55-71. [DOI: 10.1080/00325481.2018.1412799] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chris Walker
- Global Product Director, Pfizer, Walton Oaks, UK
| | | |
Collapse
|
78
|
In silico-based screen synergistic drug combinations from herb medicines: a case using Cistanche tubulosa. Sci Rep 2017; 7:16364. [PMID: 29180652 PMCID: PMC5703970 DOI: 10.1038/s41598-017-16571-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammation is characterized by the elaborated inflammatory response repertoire of central nervous system tissue. The limitations of the current treatments for neuroinflammation are well-known side effects in the clinical trials of monotherapy. Drug combination therapies are promising strategies to overcome the compensatory mechanisms and off-target effects. However, discovery of synergistic drug combinations from herb medicines is rare. Encouraged by the successfully applied cases we move on to investigate the effective drug combinations based on system pharmacology among compounds from Cistanche tubulosa (SCHENK) R. WIGHT. Firstly, 63 potential bioactive compounds, the related 133 direct and indirect targets are screened out by Drug-likeness evaluation combined with drug targeting process. Secondly, Compound-Target network is built to acquire the data set for predicting drug combinations. We list the top 10 drug combinations which are employed by the algorithm Probability Ensemble Approach (PEA), and Compound-Target-Pathway network is then constructed by the 12 compounds of the combinations, targets, and pathways to unearth the corresponding pharmacological actions. Finally, an integrating pathway approach is developed to elucidate the therapeutic effects of the herb in different pathological features-relevant biological processes. Overall, the method may provide a productive avenue for developing drug combination therapeutics.
Collapse
|
79
|
Saroj Devi N, Shanmugam R, Ghorai J, Ramanan M, Anbarasan P, Doble M. Ligand-based Modeling for the Prediction of Pharmacophore Features for Multi-targeted Inhibition of the Arachidonic Acid Cascade. Mol Inform 2017; 37. [PMID: 28991413 DOI: 10.1002/minf.201700073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/21/2017] [Indexed: 01/22/2023]
Abstract
The single-target drugs against the arachidonic acid inflammatory pathway are associated with serious side effects, hence, as a first step towards multi-target drugs, we have studied the pharmacophoric features common to the inhibitors of 5-lipoxygenase-activating protein (FLAP), microsomal prostaglandin E-synthase 1 (mPGES-1) and leukotriene A4 hydrolase (LTA4H). FLAP and mPGES-1 shared subfamily-specific positions (SSPs) and four mPGES-1 inhibitors binding to them mapped onto the pharmacophore derived from FLAP inhibitors (Ph-FLAP). The reactions of mPGES-1 and LTA4H had high structural similarity. The pharmacophore derived from two substrate mimic inhibitors of LTA4H (Ph-LTA4H) also mapped onto three mPGES-1 inhibitors. Screening of in-house database for Ph-FLAP and Ph-LTA4H identified one compound, C1. It inhibited the production of the mPGES-1 product, prostaglandin E2 (PGE2) by 97.8±1.6 % at 50 μM in HeLa cells and can be a starting point for designing molecules inhibiting all three targets simultaneously.
Collapse
Affiliation(s)
- Nisha Saroj Devi
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Rajasekar Shanmugam
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Jayanta Ghorai
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Meera Ramanan
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| | - Pazhamalai Anbarasan
- CYB 104A, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036
| | - Mukesh Doble
- Bioengineering and Drug Design Lab, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036
| |
Collapse
|
80
|
Kasthuri JK, Singh Jadav S, Thripuram VD, Gundabolu UR, Ala VB, Kolla JN, Jayaprakash V, Ahsan MJ, Bollikolla HB. Synthesis, Characterization, Docking and Study of Inhibitory Action of Some Novel C-Alkylated Chalcones on 5-LOX Enzyme. ChemistrySelect 2017. [DOI: 10.1002/slct.201700517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | - Surender Singh Jadav
- Department of Pharmaceutical Sciences and Technology; Birla Institute of Technology; Mesra Ranchi- 835 215, India
| | | | - Usha Rani Gundabolu
- Department of Chemistry; Acharya Nagarjuna University; Guntur- 522 510 AP-India
| | - Vasu babu Ala
- Department of Chemistry; Acharya Nagarjuna University; Guntur- 522 510 AP-India
| | | | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences and Technology; Birla Institute of Technology; Mesra Ranchi- 835 215, India
| | - Mohamed Jawed Ahsan
- Department of Pharmaceutical Chemistry; Maharishi Arvind College of Pharmacy; Jaipur- 302 039 India
| | | |
Collapse
|
81
|
Taneja A, Della Pasqua O, Danhof M. Challenges in translational drug research in neuropathic and inflammatory pain: the prerequisites for a new paradigm. Eur J Clin Pharmacol 2017; 73:1219-1236. [PMID: 28894907 PMCID: PMC5599481 DOI: 10.1007/s00228-017-2301-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 07/03/2017] [Indexed: 12/21/2022]
Abstract
AIM Despite an improved understanding of the molecular mechanisms of nociception, existing analgesic drugs remain limited in terms of efficacy in chronic conditions, such as neuropathic pain. Here, we explore the underlying pathophysiological mechanisms of neuropathic and inflammatory pain and discuss the prerequisites and opportunities to reduce attrition and high-failure rate in the development of analgesic drugs. METHODS A literature search was performed on preclinical and clinical publications aimed at the evaluation of analgesic compounds using MESH terms in PubMed. Publications were selected, which focused on (1) disease mechanisms leading to chronic/neuropathic pain and (2) druggable targets which are currently under evaluation in drug development. Attention was also given to the role of biomarkers and pharmacokinetic-pharmacodynamic modelling. RESULTS Multiple mechanisms act concurrently to produce pain, which is a non-specific manifestation of underlying nociceptive pathways. Whereas these manifestations can be divided into neuropathic and inflammatory pain, it is now clear that inflammatory mechanisms are a common trigger for both types of pain. This has implications for drug development, as the assessment of drug effects in experimental models of neuropathic and chronic pain is driven by overt behavioural measures. By contrast, the use of mechanistic biomarkers in inflammatory pain has provided the pharmacological basis for dose selection and evaluation of non-steroidal anti-inflammatory drugs (NSAIDs). CONCLUSION A different paradigm is required for the identification of relevant targets and candidate molecules whereby pain is coupled to the cause of sensorial signal processing dysfunction rather than clinical symptoms. Biomarkers which enable the characterisation of drug binding and target activity are needed for a more robust dose rationale in early clinical development. Such an approach may be facilitated by quantitative clinical pharmacology and evolving technologies in brain imaging, allowing accurate assessment of target engagement, and prediction of treatment effects before embarking on large clinical trials.
Collapse
Affiliation(s)
- A Taneja
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - O Della Pasqua
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.,Clinical Pharmacology Modelling & Simulation, GlaxoSmithKline, Uxbridge, UK.,Clinical Pharmacology & Therapeutics Group, University College London, London, UK
| | - M Danhof
- Division of Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
82
|
Kopschina Feltes P, Doorduin J, Klein HC, Juárez-Orozco LE, Dierckx RAJO, Moriguchi-Jeckel CM, de Vries EFJ. Anti-inflammatory treatment for major depressive disorder: implications for patients with an elevated immune profile and non-responders to standard antidepressant therapy. J Psychopharmacol 2017; 31:1149-1165. [PMID: 28653857 PMCID: PMC5606303 DOI: 10.1177/0269881117711708] [Citation(s) in RCA: 166] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a prevalent and disabling psychiatric disease with rates of non-responsiveness to antidepressants ranging from 30-50%. Historically, the monoamine depletion hypothesis has dominated the view on the pathophysiology of depression. However, the lack of responsiveness to antidepressants and treatment resistance suggests that additional mechanisms might play a role. Evidence has shown that a subgroup of depressive patients may have an underlying immune deregulation that could explain the lack of therapeutic benefit from antidepressants. Stimuli like inflammation and infection can trigger the activation of microglia to release pro-inflammatory cytokines, acting on two main pathways: (1) activation of the hypothalamic-pituitary adrenal axis, generating an imbalance in the serotonergic and noradrenergic circuits; (2) increased activity of the enzyme indoleamine-2,3-dioxygenase, resulting in depletion of serotonin levels and the production of quinolinic acid. If this hypothesis is proven true, the subgroup of MDD patients with increased levels of pro-inflammatory cytokines, mainly IL-6, TNF-α and IL-1β, might benefit from an anti-inflammatory intervention. Here, we discuss the pre-clinical and clinical studies that have provided support for treatment with non-steroidal anti-inflammatory drugs in depressed patients with inflammatory comorbidities or an elevated immune profile, as well as evidences for anti-inflammatory properties of standard antidepressants.
Collapse
Affiliation(s)
- Paula Kopschina Feltes
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Hans C Klein
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Luis Eduardo Juárez-Orozco
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Rudi AJO Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Cristina M Moriguchi-Jeckel
- Instituto de Geriatria e Gerontologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
- Instituto do Cérebro do Rio Grande do Sul, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brasil
| | - Erik FJ de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
83
|
Abstract
In response to myocardial infarction (MI), time-dependent leukocyte infiltration is critical to program the acute inflammatory response. Post-MI leukocyte density, residence time in the infarcted area, and exit from the infarcted injury predict resolving or nonresolving inflammation. Overactive or unresolved inflammation is the primary determinant in heart failure pathology post-MI. Here, our review describes supporting evidence that the acute inflammatory response also guides the generation of healing and regenerative mediators after cardiac damage. Time-dependent leukocyte density and diversity and the magnitude of myocardial injury is responsible for the resolving and nonresolving pathway in myocardial healing. Post MI, the diversity of leukocytes, such as neutrophils, macrophages, and lymphocytes, has been explored that regulate the clearance of deceased cardiomyocytes by using the classic and reparative pathways. Among the innovative factors and intermediates that have been recognized as essential in acute the self-healing and clearance mechanism, we highlight specialized proresolving mediators as the emerging factor for post-MI reparative mechanisms-translational leukocyte modifiers, such as aging, the source of leukocytes, and the milieu around the leukocytes. In the clinical setting, it is possible that leukocyte diversity is more prominent as a result of risk factors, such as obesity, diabetes, and hypertension. Pharmacologic agents are critical modifiers of leukocyte diversity in healing mechanisms that may impair or stimulate the clearance mechanism. Future research is needed, with a focused approach to understand the molecular targets, cellular effectors, and receptors. A clear understanding of resolving and nonresolving inflammation in myocardial healing will help to develop novel targets with major emphasis on the resolution of inflammation in heart failure pathology.-Tourki, B., Halade, G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
Collapse
Affiliation(s)
- Bochra Tourki
- Laboratoire des Venins et Biomolécules Thérapeutiques et Plateforme de Physiologie et de Physiopathologie Cardiovasculaires, Institut Pasteur de Tunis, Université Carthage Tunis, Carthage, Tunisia
| | - Ganesh Halade
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
84
|
Tacconelli S, Bruno A, Grande R, Ballerini P, Patrignani P. Nonsteroidal anti-inflammatory drugs and cardiovascular safety – translating pharmacological data into clinical readouts. Expert Opin Drug Saf 2017; 16:791-807. [DOI: 10.1080/14740338.2017.1338272] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Stefania Tacconelli
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Annalisa Bruno
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Rosalia Grande
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| | - Patrizia Ballerini
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
- Department of Psychological, Health and Territorial Sciences, ‘G.d’Annunzio’ University, Chieti, Italy
| | - Paola Patrignani
- Department of Neuroscience, Imaging and Clinical Sciences, ‘G. d’Annunzio’ University, Chieti, Italy
- Center for Aging and Translational Medicine (CeSI-MeT), ‘G. d’Annunzio’ University, Chieti, Italy
| |
Collapse
|
85
|
Medications to Avoid in Acute Decompensated Heart Failure. CURRENT EMERGENCY AND HOSPITAL MEDICINE REPORTS 2017. [DOI: 10.1007/s40138-017-0134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
86
|
Nakamoto K. A New Pain Regulatory System via the Brain Long Chain Fatty Acid Receptor GPR40/FFA1 Signal. YAKUGAKU ZASSHI 2017; 137:199-204. [PMID: 28154332 DOI: 10.1248/yakushi.16-00208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An increasingly large number of pharmacological and physiological works on fatty acids have shown that the functional properties of fatty acids are regulated by the amount of individual fatty acid intake and the distribution of fatty acids among organs. Recently, it has been determined that G-protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFA1) is activated by long-chain fatty acids, such as docosahexaenoic acid (DHA). GPR40/FFA1 is mainly expressed in the β cell of the pancreas, spinal cord and brain. It is reported that this receptor has a functional role in controlling blood glucose levels via the modulation of insulin secretion. However, its physiological function in the brain remains unknown. Our previous studies have shown that GPR40/FFA1 is expressed in pro-opiomelanocortin (POMC)-positive neurons of the arcuate nucleus, serotonergic neurons in the nucleus raphe magnus, and in noradrenergic neurons in the locus coeruleus. Furthermore, the intracerebroventricular injection of DHA or GW9508, which is a selective GPR40/FFA1 agonist, attenuates formalin-induced inflammatory pain behavior through increasing β-endorphin release in the hypothalamus. It also suppresses complete Freund's adjuvant-induced mechanical allodynia and thermal hyperalgesia. Our findings suggest that brain free long-chain fatty acids-GPR40/FFA1 signaling might have an important role in the modulation of endogenous pain control systems. In this review, I discuss the current status and our recent study regarding a new pain regulatory system via the brain long chain fatty acid receptor GPR40/FFA1 signal.
Collapse
Affiliation(s)
- Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
87
|
Lynch JJ, Van Vleet TR, Mittelstadt SW, Blomme EAG. Potential functional and pathological side effects related to off-target pharmacological activity. J Pharmacol Toxicol Methods 2017; 87:108-126. [PMID: 28216264 DOI: 10.1016/j.vascn.2017.02.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/24/2017] [Accepted: 02/15/2017] [Indexed: 12/22/2022]
Abstract
Most pharmaceutical companies test their discovery-stage proprietary molecules in a battery of in vitro pharmacology assays to try to determine off-target interactions. During all phases of drug discovery and development, various questions arise regarding potential side effects associated with such off-target pharmacological activity. Here we present a scientific literature curation effort undertaken to determine and summarize the most likely functional and pathological outcomes associated with interactions at 70 receptors, enzymes, ion channels and transporters with established links to adverse effects. To that end, the scientific literature was reviewed using an on-line database, and the most commonly reported effects were summarized in tabular format. The resultant table should serve as a practical guide for research scientists and clinical investigators for the prediction and interpretation of adverse side effects associated with molecules interacting with components of this screening battery.
Collapse
Affiliation(s)
- James J Lynch
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA.
| | | | | | - Eric A G Blomme
- AbbVie Inc., 1 North Waukegan Road, North Chicago, IL 60064, USA
| |
Collapse
|
88
|
Li J, Wang W, Han L, Feng M, Lu H, Yang L, Hu X, Shi S, Jiang S, Wang Q, Ye L. Human apolipoprotein A-I exerts a prophylactic effect on high-fat diet-induced atherosclerosis via inflammation inhibition in a rabbit model. Acta Biochim Biophys Sin (Shanghai) 2017; 49:149-158. [PMID: 28069582 DOI: 10.1093/abbs/gmw128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 11/29/2016] [Indexed: 01/15/2023] Open
Abstract
Apolipoprotein A-I (apoA-I) is the major functional protein fraction of high-density lipoprotein. The prophylactic effect and mechanism of human apoA-I on atherosclerosis (AS) were investigated in a high-fat diet-induced AS rabbit model. The rabbits were injected with apoA-I once a week while fed high-fat diet for 20 weeks. Our results showed that apoA-I could raise the serum level of high-density lipoprotein-cholesterol and reduce those of lipid total cholesterol, triglyceride, and low-density lipoprotein-cholesterol in AS rabbits. Decreased aortic plaque area and aortic injury degree were also observed by Oil Red O staining and HE staining in apoA-I-treated high-fat diet-induced AS rabbits. Further study elucidated that apoA-I could down-regulate the expression of some inflammatory mediators including intercellular adhesion molecule type 1, vascular adhesion molecule-1 (VCAM-1), monocyte chemoattractant protein-1, tumor necrosis factor-α, interleukin-6 (IL-6), and C-reactive protein in serum and aorta of AS rabbits. In addition, real-time quantitative RT-PCR analyses showed that the apoA-I infusions decreased the mRNA levels of two pro-inflammatory molecules, i.e. nuclear factor kappa B (NF-κB) and cyclooxygenase-2 (COX-2), in aorta of AS rabbits, which was associated with a concomitant reduction in endothelial VCAM-1 and IL-6 mRNA transcription. Together, our results support the atheroprotective and prophylactic role of apoA-I in vivo, and this activity may be correlated with its anti-inflammatory effect.
Collapse
Affiliation(s)
- Jiyang Li
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Weina Wang
- Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Lei Han
- Shanghai Benemae Pharmaceutical Corporation, Shanghai International Medical Park, Shanghai 201321, China
| | - Meiqing Feng
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Hui Lu
- Shanghai RAAS Blood Products Co., Ltd, Shanghai 201401, China
| | - Li Yang
- Shanghai RAAS Blood Products Co., Ltd, Shanghai 201401, China
| | - Xiangxiang Hu
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Si Shi
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shanshan Jiang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Qian Wang
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Li Ye
- Department of Biosynthesis & Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
89
|
Novel polyfunctional esters of ibuprofen and ketoprofen with hypolipidemic, lipoxygenase inhibitory and enhanced anti-inflammatory activity. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1767-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
90
|
Micallef D, Micallef S, Schembri-Wismayer P, Calleja-Agius J. Novel applications of COX-2 inhibitors, metformin, and statins for the primary chemoprevention of breast cancer. J Turk Ger Gynecol Assoc 2016; 17:214-223. [PMID: 27990091 DOI: 10.5152/jtgga.2016.15200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/27/2016] [Indexed: 12/29/2022] Open
Abstract
Recent evidence shows that commonly prescribed drugs, such as non-steroidal anti-inflammatory drugs (NSAIDs), metformin, and statins, may have beneficial roles in the primary chemoprevention of breast cancer. Therefore, these drugs could potentially be used in addition to the hormonal drugs currently used for this purpose (namely, selective estrogen receptor modulators and aromatase inhibitors) due to their alternative mechanisms of action.
Collapse
Affiliation(s)
- Darren Micallef
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
| | - Sarah Micallef
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
| | - Pierre Schembri-Wismayer
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Tal-Qroqq, Msida, Malta
| |
Collapse
|
91
|
Klafke JZ, Pereira RLD, Hirsch GE, Parisi MM, Porto FG, de Almeida AS, Rubin FH, Schmidt A, Beutler H, Nascimento S, Trevisan G, Brusco I, de Oliveira SM, Duarte MMMF, Duarte T, Viecili PRN. Study of oxidative and inflammatory parameters in LDLr-KO mice treated with a hypercholesterolemic diet: Comparison between the use of Campomanesia xanthocarpa and acetylsalicylic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:1227-1234. [PMID: 26776955 DOI: 10.1016/j.phymed.2015.11.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/11/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Atherosclerosis is an inflammatory disease that affects the arterial wall leading to myocardial, cerebral, and peripheral ischemic syndromes. The use of low doses of aspirin inhibits platelet aggregation and inflammation and prevents cardiovascular mortality. However, ASA may produce hemorrhagic events. Thus, several studies have sought new natural compounds to suppress platelet aggregation without causing serious adverse effects. PURPOSE In this sense, this study aims to compare the effects of Campomanesia xanthocarpa plant extract with those of acetylsalicylic acid (ASA) on inflammatory parameters observed in homozygous mice knockout for the low-density lipoprotein receptor (LDLr-KO) treated with a hypercholesterolemic diet. MATERIAL AND METHODS In this study, 28 male LDLr-KO mice were divided into three groups and fed a hypercholesterolemic diet for 4 weeks. Thereafter, the animals that received the hypercholesterolemic diet were treated for 5 days with (1) distilled water, (2) C. xanthocarpa extract, or (3) acetylsalicylic acid. The levels of inflammatory markers were assessed in the blood samples. The gastric tolerability of the animals after oral administration of the treatments was assessed through quantification of the lesions in the gastric mucosa. RESULTS The levels of proinflammatory cytokines IL-1, IL-6, TNF-α, and INF-γ were reduced to 19.2 ± 3%, 20.4 + 1.3%, 24.7 ± 1.2%, and 20.8 ± 1.7%, respectively, in the group treated with C. xanthocarpa, when compared to control group. Furthermore, treatment with plant extract significantly increased the levels of the anti-inflammatory cytokine IL-10 by 27.3 ± 5.9%, but ASA showed no significant effect on the same cytokines when compared to the control group, with the exception of IL-10, which presented an increase of 8.6 ± 3.5%. Treatments with C. xanthocarpa and ASA also caused significant reductions of 26.4 ± 3% and 38.4± 6% in the serum levels of oxLDL, respectively. However, only treatment with C. xanthocarpa reduced the levels of anti-oxLDL antibodies when compared with the control (25.8 ± 6%). In addition, the analyzed extract did not induce ulcerogenic activity, while ASA induced the formation of lesions. CONCLUSION In conclusion, treatment with C. xanthocarpa causes anti-inflammatory activity in hypercholesterolemic animals, with results superior to those obtained with the use of ASA.
Collapse
Affiliation(s)
- Jonatas Zeni Klafke
- Programa de Pós-Graduação em Atenção Integral à Saúde (PPGAIS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil.
| | - Roberta Lelis Dias Pereira
- Programa de Pós-Graduação em Atenção Integral à Saúde (PPGAIS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Gabriela Elisa Hirsch
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Mariana Migliorini Parisi
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Fernando Garcez Porto
- Programa de Pós-Graduação em Atenção Integral à Saúde (PPGAIS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Amanda Spring de Almeida
- Programa de Pós-Graduação em Atenção Integral à Saúde (PPGAIS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Fabiane Horbach Rubin
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Aline Schmidt
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Henrique Beutler
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil
| | - Sabrina Nascimento
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil
| | - Gabriela Trevisan
- Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (UNESC), 88006-000 Cricíuma, SC, Brazil
| | - Indiara Brusco
- Programa de Pós-Graduacão em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Sara Marchesan de Oliveira
- Programa de Pós-Graduacão em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | | | - Thiago Duarte
- Centro de ciências da saúde, Pós-Graduação em farmacologia Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Paulo Ricardo Nazário Viecili
- Programa de Pós-Graduação em Atenção Integral à Saúde (PPGAIS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Grupo Multidisciplinar de Saúde (GMS), Universidade de Cruz Alta (UNICRUZ), 98020-290 Cruz Alta, RS, Brazil; Centro de Ensino e Pesquisa (CEP), Instituto de Cardiologia de Cruz Alta (ICCA), 98010-110 Cruz Alta, RS, Brazil.
| |
Collapse
|
92
|
van der Goes MC, Strehl C, Buttgereit F, Bijlsma JW, Jacobs JW. Can adverse effects of glucocorticoid therapy be prevented and treated? Expert Opin Pharmacother 2016; 17:2129-2133. [DOI: 10.1080/14656566.2016.1232390] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
McCarthy CG, Wenceslau CF, Goulopoulou S, Ogbi S, Matsumoto T, Webb RC. Autoimmune therapeutic chloroquine lowers blood pressure and improves endothelial function in spontaneously hypertensive rats. Pharmacol Res 2016; 113:384-394. [PMID: 27639600 DOI: 10.1016/j.phrs.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 09/08/2016] [Indexed: 12/18/2022]
Abstract
It has been suggested that hypertension results from a loss of immunological tolerance and the resulting autoimmunity may be an important underlying factor of its pathogenesis. This stems from the observations that many of the features involved in autoimmunity are also implicated in hypertension. Furthermore, the underlying presence of hypertension and cardiovascular disease are frequently observed in patients with autoimmune diseases. Antimalarial agents such as chloroquine are generally among the first line treatment options for patients with autoimmune diseases; however, whether they can improve a hypertensive phenotype in a genetic model of essential hypertension remains to be clarified. Therefore, we hypothesized that chloroquine treatment would improve endothelial function and lower blood pressure in spontaneously hypertensive rats (SHR). We treated adult SHR and Wistar-Kyoto rats (12 weeks old), as well as a group of young SHR (5 weeks old), with chloroquine (40mg/kg/day via intraperitoneal injection) for 21 days. Chloroquine lowered blood pressure in adult SHR, but did not impede the development of high blood pressure in young SHR. In isolated mesenteric resistance arteries from SHR of both ages, chloroquine treatment inhibited cyclooxygenase-dependent contraction to acetylcholine, lowered vascular and systemic generation of reactive oxygen species, and improved nitric oxide bioavailability. Overall, these data reveal the anti-hypertensive mechanisms of chloroquine in the vasculature, which may be important for lowering risk of cardiovascular disease in patients with autoimmune diseases. Furthermore, it adds to the growing body of evidence suggesting that autoimmunity underlies hypertension.
Collapse
Affiliation(s)
| | | | - Styliani Goulopoulou
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Safia Ogbi
- Department of Physiology, Augusta University, Augusta, GA, USA
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Tokyo, Japan
| | - R Clinton Webb
- Department of Physiology, Augusta University, Augusta, GA, USA
| |
Collapse
|
94
|
Andreasson KI, Bachstetter AD, Colonna M, Ginhoux F, Holmes C, Lamb B, Landreth G, Lee DC, Low D, Lynch MA, Monsonego A, O’Banion MK, Pekny M, Puschmann T, Russek-Blum N, Sandusky LA, Selenica MLB, Takata K, Teeling J, Town T, Van Eldik LJ, Russek-Blum N, Monsonego A, Low D, Takata K, Ginhoux F, Town T, O’Banion MK, Lamb B, Colonna M, Landreth G, Andreasson KI, Sandusky LA, Selenica MLB, Lee DC, Holmes C, Teeling J, Lynch MA, Van Eldik LJ, Bachstetter AD, Pekny M, Puschmann T. Targeting innate immunity for neurodegenerative disorders of the central nervous system. J Neurochem 2016; 138:653-93. [PMID: 27248001 PMCID: PMC5433264 DOI: 10.1111/jnc.13667] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/01/2016] [Accepted: 04/30/2016] [Indexed: 12/21/2022]
Abstract
Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview of physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia and astrocyte cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article. Neuroinflammation is critically involved in numerous neurodegenerative diseases, and key signaling steps of innate immune activation hence represent promising therapeutic targets. This mini review series originated from the 4th Venusberg Meeting on Neuroinflammation held in Bonn, Germany, 7-9th May 2015, presenting updates on innate immunity in acute brain injury and chronic neurodegenerative disorders, such as traumatic brain injury and Alzheimer's disease, on the role of astrocytes and microglia, as well as technical developments that may help elucidate neuroinflammatory mechanisms and establish clinical relevance. In this meeting report, a brief overview on physiological and pathological microglia morphology is followed by a synopsis on PGE2 receptors, insights into the role of arginine metabolism and further relevant aspects of neuroinflammation in various clinical settings, and concluded by a presentation of technical challenges and solutions when working with microglia cultures. Microglial ontogeny and induced pluripotent stem cell-derived microglia, advances of TREM2 signaling, and the cytokine paradox in Alzheimer's disease are further contributions to this article.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Niva Russek-Blum
- The Dead Sea and Arava Science Center, Central Arava Branch, Yair Station, Hazeva, Israel
| | - Alon Monsonego
- The Shraga Segal Dept. of Microbiology, Immunology and Genetics, The Faculty of Health Sciences: The National Institute of Biotechnology in the Negev, and Zlotowski Center for Neuroscience, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Donovan Low
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Kazuyuki Takata
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Clinical and Translational Physiology, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Terrence Town
- Departments of Physiology and Biophysics, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089,
| | - M. Kerry O’Banion
- Departments of Neuroscience and Neurology, Del Monte Neuromedicine Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY 14642,
| | - Bruce Lamb
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH 44106
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gary Landreth
- Department of Neurosciences, Case Western Reserve University 44106
| | - Katrin I. Andreasson
- Department of Neurology and Neurological Sciences, Stanford Neuroscience Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leslie A. Sandusky
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Maj-Linda B. Selenica
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Daniel C. Lee
- USF Health Byrd Alzheimer’s Institute, Tampa, FL 33613
- College of Pharmacy & Pharmaceutical Sciences, Tampa, FL 33613
| | - Clive Holmes
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | - Jessica Teeling
- Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton, SO16 7YD, United Kingdom
| | | | | | | | - Milos Pekny
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Hunter Medical Research Institute, University of Newcastle, New South Wales, Australia
| | - Till Puschmann
- Center for Brain Repair and Rehabilitation, Department of Clinical Neuroscience and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
95
|
Abstract
Cardiovascular disease (CVD) is a preventable disease, which combines two general processes: chronic vascular inflammation and acute thrombosis. Both are amplified with positive feedback signals by n-6 eicosanoids derived from food-based n-6 highly unsaturated fatty acids (n-6 HUFA). This amplification is lessened by competing actions of n-3 HUFA. Death results from fatal interactions of the vascular wall with platelets and clotting proteins. The benefits of fish oil interventions are confounded by complex details in pharmacokinetics, pharmacodynamics, adverse events, timescale factors, topology, financial incentives and people's sense of cause and effect. Two basic aspects of n-3 HUFA that are overlooked in CVD dynamics are saturable, hyperbolic responses of the enzymes continually supplying n-6 HUFA and hard-to-control positive feedback receptor signals by excessive n-6 HUFA-based mediators. Multiple feedback loops in inflammation and thrombosis have diverse mediators, and reducing one mediator that occurs above its rate-limiting levels may not reduce the pathophysiology. Clinicians have developed some successful interventions that decrease CVD deaths in the form of secondary prevention. However, the current high CVD prevalence in the USA remains unchanged, and successful primary prevention of CVD remains uncertain. This review weighs the available evidence to help clinicians, the biomedical community and the public put the use of fish oil supplements into a balanced perspective.
Collapse
Affiliation(s)
- Bill Lands
- American Society for Nutrition, Rockville, MD, USA.
- American Association for the Advancement of Science, Washington, DC, USA.
- , 6100 Westchester Park Drive, #1219, College Park, MD, 20740, USA.
| |
Collapse
|
96
|
Singh DP, Borse SP, Nivsarkar M. Clinical importance of nonsteroidal anti-inflammatory drug enteropathy: the relevance of tumor necrosis factor as a promising target. Transl Res 2016; 175:76-91. [PMID: 27083387 DOI: 10.1016/j.trsl.2016.03.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/13/2022]
Abstract
The pathogenesis of nonsteroidal anti-inflammatory drug (NSAID) enteropathy is still unclear, and consequently, there is no approved therapeutic strategy for ameliorating such damage. On the other hand, molecular treatment strategies targeting tumor necrosis factor (TNF) exerts beneficial effects on NSAID-induced intestinal lesions in rodents and rheumatoid arthritis patients. Thus, TNF appears to be a potential therapeutic target for both the prevention and treatment of NSAID enteropathy. However, the causative relationship between TNF and NSAID enteropathy is largely unknown. Currently approved anti-TNF agents are highly expensive and exhibit numerous side effects. Hence, in this review, the pivotal role of TNF in NSAID enteropathy has been summarized and plant-derived polyphenols have been suggested as useful alternative anti-TNF agents because of their ability to suppress TNF activated inflammatory pathways both in vitro and in vivo.
Collapse
Affiliation(s)
- Devendra Pratap Singh
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Swapnil P Borse
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India; Registered Ph.D Scholar (External) at Institute of Pharmacy, NIRMA University, Sarkhej-Gandhinagar Highway, Ahmedabad, Gujarat, India
| | - Manish Nivsarkar
- Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, Thaltej, Ahmedabad, Gujarat, India.
| |
Collapse
|
97
|
Howard ML, Warhurst RD, Sheehan C. Safety of Continuous Infusion Ketorolac in Postoperative Coronary Artery Bypass Graft Surgery Patients. PHARMACY 2016; 4:pharmacy4030022. [PMID: 28970395 PMCID: PMC5419367 DOI: 10.3390/pharmacy4030022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/30/2016] [Accepted: 06/21/2016] [Indexed: 12/02/2022] Open
Abstract
Background:Continuous infusion ketorolac is sometimes utilized for analgesia in postoperative coronary artery bypass graft (CABG) patients despite contraindications for use. Limited literature surrounds this topic; therefore, this study was conducted to evaluate the safety of this practice. Methods: This retrospective cohort study evaluated the primary outcome of mortality and secondary outcomes of incidence of bleeding and myocardial infarction (MI). All patients who underwent isolated CABG surgeries and received continuous infusion ketorolac during the study period were included. An equal number of randomly selected isolated CABG patients served as control patients. Electronic medical records and the Society of Thoracic Surgeons (STS) database were utilized to determine baseline characteristics and outcomes; Results: One hundred and seventy-eight patients met inclusion; 89 in each group. More patients in the control group underwent on-pump surgeries (78.6% vs. 29.2%, p = 0.01) and had higher STS risk scores (1.1% vs. 0.6%, p = 0.003). There was no difference in mortality between the ketorolac group and control group (2.2% vs. 3.3%, p = 0.605). Additionally, no patients experienced a MI and there was no difference in bleeding incidence (5.5% vs. 6.7%, p = 0.58); Conclusions: No association was found between continuous infusion ketorolac and increased risk of mortality, MI, or bleeding events in postoperative CABG patients. Considerations to differences in baseline characteristics must be made when interpreting results.
Collapse
Affiliation(s)
- Meredith L Howard
- University of North Texas System College of Pharmacy, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA.
| | - Robert D Warhurst
- Department of Pharmacy, Indiana University Health, Saxony Hospital, 13000 E. 136th St., Fishers, IN 46037, USA.
| | - Courtney Sheehan
- Department of Pharmacy, Indiana University Health, Methodist Hospital, 1701 N. Senate Ave., AG401, Indianapolis, IN 46202, USA.
| |
Collapse
|
98
|
Eivers SB, Kinsella BT. Regulated expression of the prostacyclin receptor (IP) gene by androgens within the vasculature: Combined role for androgens and serum cholesterol. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1333-51. [PMID: 27365208 DOI: 10.1016/j.bbagrm.2016.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/11/2023]
Abstract
The prostanoid prostacyclin plays a key cardioprotective role within the vasculature. There is increasing evidence that androgens may also confer cardioprotection but through unknown mechanisms. This study investigated whether the androgen dihydrotestosterone (DHT) may regulate expression of the prostacyclin/I prostanoid receptor or, in short, the IP in platelet-progenitor megakaryoblastic and vascular endothelial cells. DHT significantly increased IP mRNA and protein expression, IP-induced cAMP generation and promoter (PrmIP)-directed gene expression in all cell types examined. The androgen-responsive region was localised to a cis-acting androgen response element (ARE), which lies in close proximity to a functional sterol response element (SRE) within the core promoter. In normal serum conditions, DHT increased IP expression through classic androgen receptor (AR) binding to the functional ARE within the PrmIP. However, under conditions of low-cholesterol, DHT led to further increases in IP expression through an indirect mechanism involving AR-dependent upregulation of SCAP expression and enhanced SREBP1 processing & binding to the SRE within the PrmIP. Chromatin immunoprecipitation assays confirmed DHT-induced AR binding to the ARE in vivo in cells cultured in normal serum while, in conditions of low cholesterol, DHT led to increased AR and SREBP1 binding to the functional ARE and SRE cis-acting elements, respectively, within the core PrmIP resulting in further increases in IP expression. Collectively, these data establish that the human IP gene is under the transcriptional regulation of DHT, where this regulation is further influenced by serum-cholesterol levels. This may explain, in part, some of the protective actions of androgens within the vasculature.
Collapse
Affiliation(s)
- Sarah B Eivers
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
99
|
Tran HTT, Márton MR, Herz C, Maul R, Baldermann S, Schreiner M, Lamy E. Nasturtium (Indian cress, Tropaeolum majus nanum) dually blocks the COX and LOX pathway in primary human immune cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:611-620. [PMID: 27161402 DOI: 10.1016/j.phymed.2016.02.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/20/2016] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Nasturtium (Indian cress, Tropaeolum majus) is known for its pharmacological value in the treatment of bacterial infections of the upper air tract and urinary bladder. However, scientific data on the anti-inflammatory potency in human-derived cells is missing. PURPOSE The aim of this study was to investigate the potential of nasturtium to inhibit the lipopolysaccharide (LPS) induced inflammatory response in primary human cells of the immune system. STUDY DESIGN The anti-inflammatory activities of nasturtium and its fractions were evaluated via regulation of arachidonic acid (AA) pathway and MAPK kinase cascade. Fraction H4 which was responsible for the anti-inflammatory effects was further characterized. METHODS Human peripheral blood mononuclear cells (PBMC) were either treated with plant extracts or fractions thereof, stimulated with LPS and/or N-formyl-methionyl-leucyl-phenylalanine (fMLP) and analysed for COX and LOX, release of prostaglandin PGE2, leukotriene LTB4, TNF-alpha and ERK signaling pathway activation. The plant extracts were separated into four fractions by HPLC; fraction H4 was subjected to UHPLC-ToF/MS analysis to identify potential bioactive compounds. RESULTS We found that aqueous extracts of nasturtium did exert strong concentration dependent suppression of LPS-triggered TNF-alpha release and COX pathway signaling, including PGE2 synthesis. Whereas COX-1 protein expression was not impacted, LPS-triggered COX-2 protein expression was concentration dependently blocked by the plant extract but not COX-2 enzyme activity. These findings suggest a mechanism of action for the plant extract which is different from non-steroidal anti-inflammatory drugs (NSAIDs). Moreover, the plant extract blocked leukotriene LTB4 release, the major end product of the 5-LOX pathway from PBMC. Down-regulation of ERK1/2 and c-Jun activation preceded COX-2 suppression upon plant extract treatment in the presence of LPS. Using HPLC separation of the aqueous extract followed by metabolomic analysis we could limit the number of relevant bioactive compounds in the extract to about 50. CONCLUSIONS This study provides a rationale for the anti-inflammatory efficacy of nasturtium observed in man and gives first insight into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Hoai Thi Thu Tran
- University of Freiburg - Medical Center, Institute of Environmental Health Sciences, Molecular Preventive Medicine, Breisacher Strasse 115b, 79106 Freiburg, Germany; University of Freiburg - Medical Center, Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Elsässerstr. 2, 79110 Freiburg, Germany
| | - Melinda-Rita Márton
- University of Freiburg - Medical Center, Institute of Environmental Health Sciences, Molecular Preventive Medicine, Breisacher Strasse 115b, 79106 Freiburg, Germany
| | - Corinna Herz
- University of Freiburg - Medical Center, Institute of Environmental Health Sciences, Molecular Preventive Medicine, Breisacher Strasse 115b, 79106 Freiburg, Germany; University of Freiburg - Medical Center, Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Elsässerstr. 2, 79110 Freiburg, Germany
| | - Ronald Maul
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Susanne Baldermann
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Monika Schreiner
- Leibniz Institute of Vegetable and Ornamental Crops Grossbeeren/Erfurt e.V., Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany
| | - Evelyn Lamy
- University of Freiburg - Medical Center, Institute of Environmental Health Sciences, Molecular Preventive Medicine, Breisacher Strasse 115b, 79106 Freiburg, Germany; University of Freiburg - Medical Center, Institute for Prevention and Cancer Epidemiology, Molecular Preventive Medicine, Elsässerstr. 2, 79110 Freiburg, Germany.
| |
Collapse
|
100
|
Nakamoto K, Tokuyama S. [The possibility of a novel pain control system through brain long chain fatty acid receptor GPR40/FFAR1]. Nihon Yakurigaku Zasshi 2016; 146:302-8. [PMID: 26657120 DOI: 10.1254/fpj.146.302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|