51
|
From fear of falling to choking under pressure: A predictive processing perspective of disrupted motor control under anxiety. Neurosci Biobehav Rev 2023; 148:105115. [PMID: 36906243 DOI: 10.1016/j.neubiorev.2023.105115] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Under the Predictive Processing Framework, perception is guided by internal models that map the probabilistic relationship between sensory states and their causes. Predictive processing has contributed to a new understanding of both emotional states and motor control but is yet to be fully applied to their interaction during the breakdown of motor movements under heightened anxiety or threat. We bring together literature on anxiety and motor control to propose that predictive processing provides a unifying principle for understanding motor breakdowns as a disruption to the neuromodulatory control mechanisms that regulate the interactions of top-down predictions and bottom-up sensory signals. We illustrate this account using examples from disrupted balance and gait in populations who are anxious/fearful of falling, as well as 'choking' in elite sport. This approach can explain both rigid and inflexible movement strategies, as well as highly variable and imprecise action and conscious movement processing, and may also unite the apparently opposing self-focus and distraction approaches to choking. We generate predictions to guide future work and propose practical recommendations.
Collapse
|
52
|
Basiński K, Quiroga-Martinez DR, Vuust P. Temporal hierarchies in the predictive processing of melody - From pure tones to songs. Neurosci Biobehav Rev 2023; 145:105007. [PMID: 36535375 DOI: 10.1016/j.neubiorev.2022.105007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/30/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Listening to musical melodies is a complex task that engages perceptual and memoryrelated processes. The processes underlying melody cognition happen simultaneously on different timescales, ranging from milliseconds to minutes. Although attempts have been made, research on melody perception is yet to produce a unified framework of how melody processing is achieved in the brain. This may in part be due to the difficulty of integrating concepts such as perception, attention and memory, which pertain to different temporal scales. Recent theories on brain processing, which hold prediction as a fundamental principle, offer potential solutions to this problem and may provide a unifying framework for explaining the neural processes that enable melody perception on multiple temporal levels. In this article, we review empirical evidence for predictive coding on the levels of pitch formation, basic pitch-related auditory patterns,more complex regularity processing extracted from basic patterns and long-term expectations related to musical syntax. We also identify areas that would benefit from further inquiry and suggest future directions in research on musical melody perception.
Collapse
Affiliation(s)
- Krzysztof Basiński
- Division of Quality of Life Research, Medical University of Gdańsk, Poland
| | - David Ricardo Quiroga-Martinez
- Helen Wills Neuroscience Institute & Department of Psychology, University of California Berkeley, USA; Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Aarhus University & The Royal Academy of Music, Denmark
| |
Collapse
|
53
|
Aussel A, Fiebelkorn IC, Kastner S, Kopell NJ, Pittman-Polletta BR. Interacting rhythms enhance sensitivity of target detection in a fronto-parietal computational model of visual attention. eLife 2023; 12:e67684. [PMID: 36718998 PMCID: PMC10129332 DOI: 10.7554/elife.67684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 01/12/2023] [Indexed: 02/01/2023] Open
Abstract
Even during sustained attention, enhanced processing of attended stimuli waxes and wanes rhythmically, with periods of enhanced and relatively diminished visual processing (and subsequent target detection) alternating at 4 or 8 Hz in a sustained visual attention task. These alternating attentional states occur alongside alternating dynamical states, in which lateral intraparietal cortex (LIP), the frontal eye field (FEF), and the mediodorsal pulvinar (mdPul) exhibit different activity and functional connectivity at α, β, and γ frequencies-rhythms associated with visual processing, working memory, and motor suppression. To assess whether and how these multiple interacting rhythms contribute to periodicity in attention, we propose a detailed computational model of FEF and LIP. When driven by θ-rhythmic inputs simulating experimentally-observed mdPul activity, this model reproduced the rhythmic dynamics and behavioral consequences of observed attentional states, revealing that the frequencies and mechanisms of the observed rhythms allow for peak sensitivity in visual target detection while maintaining functional flexibility.
Collapse
Affiliation(s)
- Amélie Aussel
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Ian C Fiebelkorn
- Department of Neuroscience and Del Monte Institute for Neuroscience, University of Rochester Medical Center, University of RochesterRochesterUnited States
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
| | - Sabine Kastner
- Princeton Neuroscience Institute, Princeton UniversityPrincetonUnited States
- Department of Psychology, Princeton UniversityPrincetonUnited States
| | - Nancy J Kopell
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| | - Benjamin Rafael Pittman-Polletta
- Cognitive Rhythms Collaborative, Boston UniversityBostonUnited States
- Department of Mathematics and Statistics, Boston UniversityRochesterUnited States
| |
Collapse
|
54
|
Friston K. Computational psychiatry: from synapses to sentience. Mol Psychiatry 2023; 28:256-268. [PMID: 36056173 PMCID: PMC7614021 DOI: 10.1038/s41380-022-01743-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/09/2023]
Abstract
This review considers computational psychiatry from a particular viewpoint: namely, a commitment to explaining psychopathology in terms of pathophysiology. It rests on the notion of a generative model as underwriting (i) sentient processing in the brain, and (ii) the scientific process in psychiatry. The story starts with a view of the brain-from cognitive and computational neuroscience-as an organ of inference and prediction. This offers a formal description of neuronal message passing, distributed processing and belief propagation in neuronal networks; and how certain kinds of dysconnection lead to aberrant belief updating and false inference. The dysconnections in question can be read as a pernicious synaptopathy that fits comfortably with formal notions of how we-or our brains-encode uncertainty or its complement, precision. It then considers how the ensuing process theories are tested empirically, with an emphasis on the computational modelling of neuronal circuits and synaptic gain control that mediates attentional set, active inference, learning and planning. The opportunities afforded by this sort of modelling are considered in light of in silico experiments; namely, computational neuropsychology, computational phenotyping and the promises of a computational nosology for psychiatry. The resulting survey of computational approaches is not scholarly or exhaustive. Rather, its aim is to review a theoretical narrative that is emerging across subdisciplines within psychiatry and empirical scales of investigation. These range from epilepsy research to neurodegenerative disorders; from post-traumatic stress disorder to the management of chronic pain, from schizophrenia to functional medical symptoms.
Collapse
Affiliation(s)
- Karl Friston
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, WC1N 3AR, UK.
| |
Collapse
|
55
|
Marguilho M, Figueiredo I, Castro-Rodrigues P. A unified model of ketamine's dissociative and psychedelic properties. J Psychopharmacol 2023; 37:14-32. [PMID: 36527355 PMCID: PMC9834329 DOI: 10.1177/02698811221140011] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ketamine is an N-methyl-d-aspartate antagonist which is increasingly being researched and used as a treatment for depression. In low doses, it can cause a transitory modification in consciousness which was classically labelled as 'dissociation'. However, ketamine is also commonly classified as an atypical psychedelic and it has been recently reported that ego dissolution experiences during ketamine administration are associated with greater antidepressant response. Neuroimaging studies have highlighted several similarities between the effects of ketamine and those of serotonergic psychedelics in the brain; however, no unified account has been proposed for ketamine's multi-level effects - from molecular to network and psychological levels. Here, we propose that the fast, albeit transient, antidepressant effects observed after ketamine infusions are mainly driven by its acute modulation of reward circuits and sub-acute increase in neuroplasticity, while its dissociative and psychedelic properties are driven by dose- and context-dependent disruption of large-scale functional networks. Computationally, as nodes of the salience network (SN) represent high-level priors about the body ('minimal' self) and nodes of the default-mode network (DMN) represent the highest-level priors about narrative self-experience ('biographical' self), we propose that transitory SN desegregation and disintegration accounts for ketamine's 'dissociative' state, while transitory DMN desegregation and disintegration accounts for ketamine's 'psychedelic' state. In psychedelic-assisted psychotherapy, a relaxation of the highest-level beliefs with psychotherapeutic support may allow a revision of pathological self-representation models, for which neuroplasticity plays a permissive role. Our account provides a multi-level rationale for using the psychedelic properties of ketamine to increase its long-term benefits.
Collapse
Affiliation(s)
| | | | - Pedro Castro-Rodrigues
- Centro Hospitalar Psiquiátrico de Lisboa, Lisbon, Portugal,NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal,Pedro Castro-Rodrigues, Centro Hospitalar Psiquiátrico de Lisboa, Avenida do Brasil, 53, Lisbon, 1749-002, Portugal.
| |
Collapse
|
56
|
Patel S. Towards a conative account of mental imagery. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2148521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shivam Patel
- Department of Philosophy, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
57
|
Trempler I, Heimsath A, Nieborg J, Bradke B, Schubotz RI, Ohrmann P. Ignore the glitch but mind the switch: Positive effects of methylphenidate on cognition in attention deficit hyperactivity disorder are related to prediction gain. J Psychiatr Res 2022; 156:177-185. [PMID: 36252347 DOI: 10.1016/j.jpsychires.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Neuropsychological symptoms such as inattention and distractibility constitute a core characteristic of attention deficit hyperactivity disorder (ADHD). Here, we tested the hypothesis that attentional dysfunctions result from a deficit in neural gain modulation, which translates into difficulty in predictively weighting relevant sensory input while ignoring distraction. We compared thirty-seven hitherto untreated adults diagnosed with ADHD and thirty-eight healthy participants with a serial switch-drift task that requires internal models of predictable digit sequences to be either updated or stabilized. Switches between sequences that had to be indicated by key presses and digit omissions within a sequence (drifts) that should be ignored varied by stimulus-bound surprise quantified as Shannon information. To investigate whether catecholaminergic modulation by increasing extracellular norepinephrine and dopamine levels leads to an amelioration in prediction gain, participants were tested twice, with patients receiving a single dose of methylphenidate, a norepinephrine/dopamine reuptake inhibitor, in the second session. Patients and controls differed in both updating and stabilizing, depending on the respective event surprise. Specifically, patients showed difficulty in detecting expectable switches, while having greater difficulty to ignore surprising distractions. Thus, underconfident prior beliefs in ADHD may fail to appropriately weight expected relevant input, whereas the gain of neural responses to unexpected irrelevant distractors is increased. Methylphenidate improved both flexibility and stability of prediction and had a positive effect on selective responding over time. Our results suggest that ADHD is associated with an impairment in the use of prior expectations to optimally weight sensory inputs, which is improved by increasing catecholaminergic neurotransmission.
Collapse
Affiliation(s)
- Ima Trempler
- Department of Psychology, University of Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Germany; LWL-Hospital Muenster, Germany.
| | - Alexander Heimsath
- Department of Psychiatry and Psychotherapy, University Hospital Muenster, Germany
| | - Julia Nieborg
- Department of Psychiatry and Psychotherapy, University Hospital Muenster, Germany
| | - Benedikt Bradke
- Department of Psychiatry and Psychotherapy, University Hospital Muenster, Germany
| | - Ricarda I Schubotz
- Department of Psychology, University of Muenster, Germany; Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Germany
| | - Patricia Ohrmann
- Otto-Creutzfeldt-Center for Cognitive and Behavioural Neuroscience, University of Muenster, Germany; LWL-Hospital Muenster, Germany; Department of Psychiatry and Psychotherapy, University Hospital Muenster, Germany
| |
Collapse
|
58
|
Shine JM. Adaptively navigating affordance landscapes: How interactions between the superior colliculus and thalamus coordinate complex, adaptive behaviour. Neurosci Biobehav Rev 2022; 143:104921. [DOI: 10.1016/j.neubiorev.2022.104921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022]
|
59
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
60
|
Katsumi Y, Theriault JE, Quigley KS, Barrett LF. Allostasis as a core feature of hierarchical gradients in the human brain. Netw Neurosci 2022; 6:1010-1031. [PMID: 38800458 PMCID: PMC11117115 DOI: 10.1162/netn_a_00240] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 05/29/2024] Open
Abstract
This paper integrates emerging evidence from two broad streams of scientific literature into one common framework: (a) hierarchical gradients of functional connectivity that reflect the brain's large-scale structural architecture (e.g., a lamination gradient in the cerebral cortex); and (b) approaches to predictive processing and one of its specific instantiations called allostasis (i.e., the predictive regulation of energetic resources in the service of coordinating the body's internal systems). This synthesis begins to sketch a coherent, neurobiologically inspired framework suggesting that predictive energy regulation is at the core of human brain function, and by extension, psychological and behavioral phenomena, providing a shared vocabulary for theory building and knowledge accumulation.
Collapse
Affiliation(s)
- Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
61
|
Herzog P, Kube T, Fassbinder E. How childhood maltreatment alters perception and cognition - the predictive processing account of borderline personality disorder. Psychol Med 2022; 52:2899-2916. [PMID: 35979924 PMCID: PMC9693729 DOI: 10.1017/s0033291722002458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 01/05/2023]
Abstract
Borderline personality disorder (BPD) is a severe mental disorder, comprised of heterogeneous psychological and neurobiological pathologies. Here, we propose a predictive processing (PP) account of BPD to integrate these seemingly unrelated pathologies. In particular, we argue that the experience of childhood maltreatment, which is highly prevalent in BPD, leaves a developmental legacy with two facets: first, a coarse-grained, alexithymic model of self and others - leading to a rigidity and inflexibility concerning beliefs about self and others. Second, this developmental legacy leads to a loss of confidence or precision afforded beliefs about the consequences of social behavior. This results in an over reliance on sensory evidence and social feedback, with concomitant lability, impulsivity and hypersensitivity. In terms of PP, people with BPD show a distorted belief updating in response to new information with two opposing manifestations: rapid changes in beliefs and a lack of belief updating despite disconfirmatory evidence. This account of distorted information processing has the potential to explain both the instability (of affect, self-image, and interpersonal relationships) and the rigidity (of beliefs about self and others) which is typical of BPD. At the neurobiological level, we propose that enhanced levels of dopamine are associated with the increased integration of negative social feedback, and we also discuss the hypothesis of an impaired inhibitory control of the prefrontal cortex in the processing of negative social information. Our account may provide a new understanding not only of the clinical aspects of BPD, but also a unifying theory of the corresponding neurobiological pathologies. We conclude by outlining some directions for future research on the behavioral, neurobiological, and computational underpinnings of this model, and point to some clinical implications of it.
Collapse
Affiliation(s)
- Philipp Herzog
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, D-23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University of Kiel, Niemannsweg 147, D-24105 Kiel, Germany
- Department of Psychology, University of Koblenz-Landau, Ostbahnstr. 10, 76829 Landau, Germany
| | - Tobias Kube
- Department of Psychology, University of Koblenz-Landau, Ostbahnstr. 10, 76829 Landau, Germany
| | - Eva Fassbinder
- Department of Psychiatry and Psychotherapy, Christian-Albrechts-University of Kiel, Niemannsweg 147, D-24105 Kiel, Germany
| |
Collapse
|
62
|
Oversampled and undersolved: Depressive rumination from an active inference perspective. Neurosci Biobehav Rev 2022; 142:104873. [PMID: 36116573 DOI: 10.1016/j.neubiorev.2022.104873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Rumination is a widely recognized cognitive deviation in depression. Despite the recognition, researchers have struggled to explain why patients cannot disengage from the process, although it depresses their mood and fails to lead to effective problem-solving. We rethink rumination as repetitive but unsuccessful problem-solving attempts. Appealing to an active inference account, we suggest that adaptive problem-solving is based on the generation, evaluation, and performance of candidate policies that increase an organism's knowledge of its environment. We argue that the problem-solving process is distorted during rumination. Specifically, rumination is understood as engaging in excessive yet unsuccessful oversampling of policy candidates that do not resolve uncertainty. Because candidates are sampled from policies that were selected in states resembling one's current state, "bad" starting points (e.g., depressed mood, physical inactivity) make the problem-solving process vulnerable for generating a ruminative "halting problem". This problem leads to high opportunity costs, learned helplessness and diminished overt behavior. Besides reviewing evidence for the conceptual paths of this model, we discuss its neurophysiological correlates and point towards clinical implications.
Collapse
|
63
|
Quiroga‐Martinez DR, Basiński K, Nasielski J, Tillmann B, Brattico E, Cholvy F, Fornoni L, Vuust P, Caclin A. Enhanced mismatch negativity in harmonic compared with inharmonic sounds. Eur J Neurosci 2022; 56:4583-4599. [PMID: 35833941 PMCID: PMC9543822 DOI: 10.1111/ejn.15769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/29/2022]
Abstract
Many natural sounds have frequency spectra composed of integer multiples of a fundamental frequency. This property, known as harmonicity, plays an important role in auditory information processing. However, the extent to which harmonicity influences the processing of sound features beyond pitch is still unclear. This is interesting because harmonic sounds have lower information entropy than inharmonic sounds. According to predictive processing accounts of perception, this property could produce more salient neural responses due to the brain's weighting of sensory signals according to their uncertainty. In the present study, we used electroencephalography to investigate brain responses to harmonic and inharmonic sounds commonly occurring in music: Piano tones and hi-hat cymbal sounds. In a multifeature oddball paradigm, we measured mismatch negativity (MMN) and P3a responses to timbre, intensity, and location deviants in listeners with and without congenital amusia-an impairment of pitch processing. As hypothesized, we observed larger amplitudes and earlier latencies (for both MMN and P3a) in harmonic compared with inharmonic sounds. These harmonicity effects were modulated by sound feature. Moreover, the difference in P3a latency between harmonic and inharmonic sounds was larger for controls than amusics. We propose an explanation of these results based on predictive coding and discuss the relationship between harmonicity, information entropy, and precision weighting of prediction errors.
Collapse
Affiliation(s)
- David Ricardo Quiroga‐Martinez
- Helen Wills Neuroscience InstituteUniversity of California BerkeleyBerkeleyCAUSA
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Krzysztof Basiński
- Division of Quality of Life Research, Faculty of Health SciencesMedical University of GdańskGdańskPoland
| | | | - Barbara Tillmann
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Elvira Brattico
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
- Department of Educational Sciences, Psychology and CommunicationUniversity of Bari Aldo MoroBariItaly
| | - Fanny Cholvy
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Lesly Fornoni
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| | - Peter Vuust
- Center for Music in the BrainAarhus University & The Royal Academy of MusicAarhusDenmark
| | - Anne Caclin
- Lyon Neuroscience Research CenterCNRS, UMR5292; INSERM, U1028LyonFrance
- University Lyon 1LyonFrance
| |
Collapse
|
64
|
Anil Meera A, Novicky F, Parr T, Friston K, Lanillos P, Sajid N. Reclaiming saliency: Rhythmic precision-modulated action and perception. Front Neurorobot 2022; 16:896229. [PMID: 35966370 PMCID: PMC9368584 DOI: 10.3389/fnbot.2022.896229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words, they do not consider where to sample next, given current beliefs. Here, we reclaim salience as an active inference process that relies on two basic principles: uncertainty minimization and rhythmic scheduling. For this, we make a distinction between attention and salience. Briefly, we associate attention with precision control, i.e., the confidence with which beliefs can be updated given sampled sensory data, and salience with uncertainty minimization that underwrites the selection of future sensory data. Using this, we propose a new account of attention based on rhythmic precision-modulation and discuss its potential in robotics, providing numerical experiments that showcase its advantages for state and noise estimation, system identification and action selection for informative path planning.
Collapse
Affiliation(s)
- Ajith Anil Meera
- Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Ajith Anil Meera
| | - Filip Novicky
- Department of Neurophysiology, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Filip Novicky
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Pablo Lanillos
- Department of Artificial Intelligence, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
65
|
Spiech C, Sioros G, Endestad T, Danielsen A, Laeng B. Pupil drift rate indexes groove ratings. Sci Rep 2022; 12:11620. [PMID: 35804069 PMCID: PMC9270355 DOI: 10.1038/s41598-022-15763-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
Groove, understood as an enjoyable compulsion to move to musical rhythms, typically varies along an inverted U-curve with increasing rhythmic complexity (e.g., syncopation, pickups). Predictive coding accounts posit that moderate complexity drives us to move to reduce sensory prediction errors and model the temporal structure. While musicologists generally distinguish the effects of pickups (anacruses) and syncopations, their difference remains unexplored in groove. We used pupillometry as an index to noradrenergic arousal while subjects listened to and rated drumbeats varying in rhythmic complexity. We replicated the inverted U-shaped relationship between rhythmic complexity and groove and showed this is modulated by musical ability, based on a psychoacoustic beat perception test. The pupil drift rates suggest that groovier rhythms hold attention longer than ones rated less groovy. Moreover, we found complementary effects of syncopations and pickups on groove ratings and pupil size, respectively, discovering a distinct predictive process related to pickups. We suggest that the brain deploys attention to pickups to sharpen subsequent strong beats, augmenting the predictive scaffolding's focus on beats that reduce syncopations' prediction errors. This interpretation is in accordance with groove envisioned as an embodied resolution of precision-weighted prediction error.
Collapse
Affiliation(s)
- Connor Spiech
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Postboks 1133 Blindern, 0318, Oslo, Norway. .,Department of Psychology, University of Oslo, Oslo, Norway.
| | - George Sioros
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Postboks 1133 Blindern, 0318, Oslo, Norway.,Department of Musicology, University of Oslo, Oslo, Norway
| | - Tor Endestad
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Postboks 1133 Blindern, 0318, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Anne Danielsen
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Postboks 1133 Blindern, 0318, Oslo, Norway.,Department of Musicology, University of Oslo, Oslo, Norway
| | - Bruno Laeng
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Postboks 1133 Blindern, 0318, Oslo, Norway.,Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
66
|
Djebbara Z, Jensen OB, Parada FJ, Gramann K. Neuroscience and architecture: Modulating behavior through sensorimotor responses to the built environment. Neurosci Biobehav Rev 2022; 138:104715. [PMID: 35654280 DOI: 10.1016/j.neubiorev.2022.104715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022]
Abstract
As we move through the world, natural and built environments implicitly guide behavior by appealing to certain sensory and motor dynamics. This process can be motivated by automatic attention to environmental features that resonate with specific sensorimotor responses. This review aims at providing a psychobiological framework describing how environmental features can lead to automated sensorimotor responses through defined neurophysiological mechanisms underlying attention. Through the use of automated processes in subsets of cortical structures, the goal of this framework is to describe on a neuronal level the functional link between the designed environment and sensorimotor responses. By distinguishing between environmental features and sensorimotor responses we elaborate on how automatic behavior employs the environment for sensorimotor adaptation. This is realized through a thalamo-cortical network integrating environmental features with motor aspects of behavior. We highlight the underlying transthalamic transmission from an Enactive and predictive perspective and review recent studies that effectively modulated behavior by systematically manipulating environmental features. We end by suggesting a promising combination of neuroimaging and computational analysis for future studies.
Collapse
Affiliation(s)
- Zakaria Djebbara
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark; Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany.
| | - Ole B Jensen
- Department of Architecture, Design, Media, and Technology, Aalborg University, Aalborg, Denmark
| | - Francisco J Parada
- Centro de Estudios en Neurociencia Humana y Neuropsicología, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Klaus Gramann
- Biopsychology and Neuroergonomics, Technical University Berlin, Berlin, Germany
| |
Collapse
|
67
|
Persichilli G, Grifoni J, Pagani M, Bertoli M, Gianni E, L'Abbate T, Cerniglia L, Bevacqua G, Paulon L, Tecchio F. Sensorimotor Interaction Against Trauma. Front Neurosci 2022; 16:913410. [PMID: 35774554 PMCID: PMC9238294 DOI: 10.3389/fnins.2022.913410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Giada Persichilli
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
| | - Joy Grifoni
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Marco Pagani
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
| | - Massimo Bertoli
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Eugenia Gianni
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Teresa L'Abbate
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “Gabriele D'Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | | | | | - Franca Tecchio
- Laboratory of Electrophysiology for Translational Neuroscience LET'S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale Delle Ricerche CNR, Rome, Italy
- *Correspondence: Franca Tecchio ; orcid.org/0000-0002-1325-5059
| |
Collapse
|
68
|
Fields C, Glazebrook JF, Levin M. Neurons as hierarchies of quantum reference frames. Biosystems 2022; 219:104714. [PMID: 35671840 DOI: 10.1016/j.biosystems.2022.104714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/28/2022] [Accepted: 05/28/2022] [Indexed: 11/19/2022]
Abstract
Conceptual and mathematical models of neurons have lagged behind empirical understanding for decades. Here we extend previous work in modeling biological systems with fully scale-independent quantum information-theoretic tools to develop a uniform, scalable representation of synapses, dendritic and axonal processes, neurons, and local networks of neurons. In this representation, hierarchies of quantum reference frames act as hierarchical active-inference systems. The resulting model enables specific predictions of correlations between synaptic activity, dendritic remodeling, and trophic reward. We summarize how the model may be generalized to nonneural cells and tissues in developmental and regenerative contexts.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France.
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, Charleston, IL 61920, USA; Adjunct Faculty, Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA
| |
Collapse
|
69
|
Rossion B. Twenty years of investigation with the case of prosopagnosia PS to understand human face identity recognition. Part II: Neural basis. Neuropsychologia 2022; 173:108279. [PMID: 35667496 DOI: 10.1016/j.neuropsychologia.2022.108279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 10/18/2022]
Abstract
Patient PS sustained her dramatic brain injury in 1992, the same year as the first report of a neuroimaging study of human face recognition. The present paper complements the review on the functional nature of PS's prosopagnosia (part I), illustrating how her case study directly, i.e., through neuroimaging investigations of her brain structure and activity, but also indirectly, through neural studies performed on other clinical cases and neurotypical individuals, inspired and constrained neural models of human face recognition. In the dominant right hemisphere for face recognition in humans, PS's main lesion concerns (inputs to) the inferior occipital gyrus (IOG), in a region where face-selective activity is typically found in normal individuals ('Occipital Face Area', OFA). Her case study initially supported the criticality of this region for face identity recognition (FIR) and provided the impetus for transcranial magnetic stimulation (TMS), intracerebral electrical stimulation, and cortical surgery studies that have generally supported this view. Despite PS's right IOG lesion, typical face-selectivity is found anteriorly in the middle portion of the fusiform gyrus, a hominoid structure (termed the right 'Fusiform Face Area', FFA) that is widely considered to be the most important region for human face recognition. This finding led to the original proposal of direct anatomico-functional connections from early visual cortices to the FFA, bypassing the IOG/OFA (lulu), a hypothesis supported by further neuroimaging studies of PS, other neurological cases and neuro-typical individuals with original visual stimulation paradigms, data recordings and analyses. The proposal of a lack of sensitivity to face identity in PS's right FFA due to defective reentrant inputs from the IOG/FFA has also been supported by other cases, functional connectivity and cortical surgery studies. Overall, neural studies of, and based on, the case of prosopagnosia PS strongly question the hierarchical organization of the human neural face recognition system, supporting a more flexible and dynamic view of this key social brain function.
Collapse
Affiliation(s)
- Bruno Rossion
- Université de Lorraine, CNRS, CRAN, F-54000, Nancy, France; CHRU-Nancy, Service de Neurologie, F-5400, France; Psychological Sciences Research Institute, Institute of Neuroscience, University of Louvain, Belgium.
| |
Collapse
|
70
|
Shaffer C, Westlin C, Quigley KS, Whitfield-Gabrieli S, Barrett LF. Allostasis, Action, and Affect in Depression: Insights from the Theory of Constructed Emotion. Annu Rev Clin Psychol 2022; 18:553-580. [PMID: 35534123 PMCID: PMC9247744 DOI: 10.1146/annurev-clinpsy-081219-115627] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The theory of constructed emotion is a systems neuroscience approach to understanding the nature of emotion. It is also a general theoretical framework to guide hypothesis generation for how actions and experiences are constructed as the brain continually anticipates metabolic needs and attempts to meet those needs before they arise (termed allostasis). In this review, we introduce this framework and hypothesize that allostatic dysregulation is a trans-disorder vulnerability for mental and physical illness. We then review published findings consistent with the hypothesis that several symptoms in major depressive disorder (MDD), such as fatigue, distress, context insensitivity, reward insensitivity, and motor retardation, are associated with persistent problems in energy regulation. Our approach transforms the current understanding of MDD as resulting from enhanced emotional reactivity combined with reduced cognitive control and, in doing so, offers novel hypotheses regarding the development, progression, treatment, and prevention of MDD.
Collapse
Affiliation(s)
- Clare Shaffer
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA; ,
| | - Christiana Westlin
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA; ,
| | - Karen S Quigley
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA; ,
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Susan Whitfield-Gabrieli
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA; ,
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, Massachusetts, USA; ,
- Department of Psychiatry and the Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
71
|
From representations in predictive processing to degrees of representational features. Minds Mach (Dordr) 2022. [DOI: 10.1007/s11023-022-09599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AbstractWhilst the topic of representations is one of the key topics in philosophy of mind, it has only occasionally been noted that representations and representational features may be gradual. Apart from vague allusions, little has been said on what representational gradation amounts to and why it could be explanatorily useful. The aim of this paper is to provide a novel take on gradation of representational features within the neuroscientific framework of predictive processing. More specifically, we provide a gradual account of two features of structural representations: structural similarity and decoupling. We argue that structural similarity can be analysed in terms of two dimensions: number of preserved relations and state space granularity. Both dimensions can take on different values and hence render structural similarity gradual. We further argue that decoupling is gradual in two ways. First, we show that different brain areas are involved in decoupled cognitive processes to a greater or lesser degree depending on the cause (internal or external) of their activity. Second, and more importantly, we show that the degree of decoupling can be further regulated in some brain areas through precision weighting of prediction error. We lastly argue that gradation of decoupling (via precision weighting) and gradation of structural similarity (via state space granularity) are conducive to behavioural success.
Collapse
|
72
|
Löhr G, Michel C. Copredication in Context: A Predictive Processing Approach. Cogn Sci 2022; 46:e13138. [PMID: 35488793 PMCID: PMC9287088 DOI: 10.1111/cogs.13138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 01/09/2023]
Abstract
We propose a cognitive‐psychological model of linguistic intuitions about copredication statements. In copredication statements, like “The book is heavy and informative,” the nominal denotes two ontologically distinct entities at the same time. This has been considered a problem for standard truth‐conditional semantics. In this paper, we discuss two questions that have so far received less attention: What kinds of word representations and cognitive mechanisms are responsible for judgments about the felicitousness of copredication statements? Relatedly, why can similar copredication statements have different degrees of felicitousness? We first propose a cognitive‐computational model of copredication within the predictive processing framework. We then suggest that certain asymmetries in felicitousness judgments can be modeled in terms of a set of expectations that are influenced by higher‐order priors associated with discourse context and world knowledge.
Collapse
Affiliation(s)
- Guido Löhr
- Research Group Philosophy and Ethics, Eindhoven University of Technology
| | | |
Collapse
|
73
|
Millidge B, Tschantz A, Buckley CL. Predictive Coding Approximates Backprop along Arbitrary Computation Graphs. Neural Comput 2022; 34:1329-1368. [PMID: 35534010 DOI: 10.1162/neco_a_01497] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/10/2021] [Indexed: 11/04/2022]
Abstract
Backpropagation of error (backprop) is a powerful algorithm for training machine learning architectures through end-to-end differentiation. Recently it has been shown that backprop in multilayer perceptrons (MLPs) can be approximated using predictive coding, a biologically plausible process theory of cortical computation that relies solely on local and Hebbian updates. The power of backprop, however, lies not in its instantiation in MLPs but in the concept of automatic differentiation, which allows for the optimization of any differentiable program expressed as a computation graph. Here, we demonstrate that predictive coding converges asymptotically (and in practice, rapidly) to exact backprop gradients on arbitrary computation graphs using only local learning rules. We apply this result to develop a straightforward strategy to translate core machine learning architectures into their predictive coding equivalents. We construct predictive coding convolutional neural networks, recurrent neural networks, and the more complex long short-term memory, which include a nonlayer-like branching internal graph structure and multiplicative interactions. Our models perform equivalently to backprop on challenging machine learning benchmarks while using only local and (mostly) Hebbian plasticity. Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry and may also contribute to the development of completely distributed neuromorphic architectures.
Collapse
Affiliation(s)
- Beren Millidge
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, U.K.
| | - Alexander Tschantz
- Sackler Center for Consciousness Science, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, U.K.
| | - Christopher L Buckley
- Evolutionary and Adaptive Systems Research Group, School of Engineering and Informatics, University of Sussex, Brighton BN1 9QJ, U.K.
| |
Collapse
|
74
|
Stoliker D, Egan GF, Razi A. Reduced Precision Underwrites Ego Dissolution and Therapeutic Outcomes Under Psychedelics. Front Neurosci 2022; 16:827400. [PMID: 35368271 PMCID: PMC8968396 DOI: 10.3389/fnins.2022.827400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/02/2022] [Indexed: 01/02/2023] Open
Abstract
Evidence suggests classic psychedelics reduce the precision of belief updating and enable access to a range of alternate hypotheses that underwrite how we make sense of the world. This process, in the higher cortices, has been postulated to explain the therapeutic efficacy of psychedelics for the treatment of internalizing disorders. We argue reduced precision also underpins change to consciousness, known as "ego dissolution," and that alterations to consciousness and attention under psychedelics have a common mechanism of reduced precision of Bayesian belief updating. Evidence, connecting the role of serotonergic receptors to large-scale connectivity changes in the cortex, suggests the precision of Bayesian belief updating may be a mechanism to modify and investigate consciousness and attention.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Wellcome Centre for Human Neuroimaging, University College London (UCL), London, United Kingdom
- CIFAR Azrieli Global Scholars Programs, Canadian Institute for Advanced Research (CIFAR), Toronto, ON, Canada
| |
Collapse
|
75
|
Michel C. Scaling up Predictive Processing to language with Construction Grammar. PHILOSOPHICAL PSYCHOLOGY 2022. [DOI: 10.1080/09515089.2022.2050198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Christian Michel
- Department of Philosophy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
76
|
Aguilera M, Millidge B, Tschantz A, Buckley CL. How particular is the physics of the free energy principle? Phys Life Rev 2022; 40:24-50. [PMID: 34895862 PMCID: PMC8902446 DOI: 10.1016/j.plrev.2021.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022]
Abstract
The free energy principle (FEP) states that any dynamical system can be interpreted as performing Bayesian inference upon its surrounding environment. Although, in theory, the FEP applies to a wide variety of systems, there has been almost no direct exploration or demonstration of the principle in concrete systems. In this work, we examine in depth the assumptions required to derive the FEP in the simplest possible set of systems - weakly-coupled non-equilibrium linear stochastic systems. Specifically, we explore (i) how general the requirements imposed on the statistical structure of a system are and (ii) how informative the FEP is about the behaviour of such systems. We discover that two requirements of the FEP - the Markov blanket condition (i.e. a statistical boundary precluding direct coupling between internal and external states) and stringent restrictions on its solenoidal flows (i.e. tendencies driving a system out of equilibrium) - are only valid for a very narrow space of parameters. Suitable systems require an absence of perception-action asymmetries that is highly unusual for living systems interacting with an environment. More importantly, we observe that a mathematically central step in the argument, connecting the behaviour of a system to variational inference, relies on an implicit equivalence between the dynamics of the average states of a system with the average of the dynamics of those states. This equivalence does not hold in general even for linear stochastic systems, since it requires an effective decoupling from the system's history of interactions. These observations are critical for evaluating the generality and applicability of the FEP and indicate the existence of significant problems of the theory in its current form. These issues make the FEP, as it stands, not straightforwardly applicable to the simple linear systems studied here and suggest that more development is needed before the theory could be applied to the kind of complex systems that describe living and cognitive processes.
Collapse
Affiliation(s)
- Miguel Aguilera
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom.
| | - Beren Millidge
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford, OX1 3TH, United Kingdom
| | - Alexander Tschantz
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom; Sackler Center for Consciousness Science, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom
| | - Christopher L Buckley
- School of Engineering and Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ, United Kingdom
| |
Collapse
|
77
|
Schirner M, Kong X, Yeo BTT, Deco G, Ritter P. Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome". Neuroimage 2022; 250:118928. [PMID: 35101596 DOI: 10.1016/j.neuroimage.2022.118928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| | - Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Clayton, Australia
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| |
Collapse
|
78
|
Li H, Yang J, Yu Y, Wang W, Liu Y, Zhou M, Li Q, Yang J, Shao S, Takahashi S, Ejima Y, Wu J. Global surface features contribute to human haptic roughness estimations. Exp Brain Res 2022; 240:773-789. [PMID: 35034179 PMCID: PMC8918205 DOI: 10.1007/s00221-021-06289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/08/2021] [Indexed: 12/03/2022]
Abstract
Previous studies have paid special attention to the relationship between local features (e.g., raised dots) and human roughness perception. However, the relationship between global features (e.g., curved surface) and haptic roughness perception is still unclear. In the present study, a series of roughness estimation experiments was performed to investigate how global features affect human roughness perception. In each experiment, participants were asked to estimate the roughness of a series of haptic stimuli that combined local features (raised dots) and global features (sinusoidal-like curves). Experiments were designed to reveal whether global features changed their haptic roughness estimation. Furthermore, the present study tested whether the exploration method (direct, indirect, and static) changed haptic roughness estimations and examined the contribution of global features to roughness estimations. The results showed that sinusoidal-like curved surfaces with small periods were perceived to be rougher than those with large periods, while the direction of finger movement and indirect exploration did not change this phenomenon. Furthermore, the influence of global features on roughness was modulated by local features, regardless of whether raised-dot surfaces or smooth surfaces were used. Taken together, these findings suggested that an object’s global features contribute to haptic roughness perceptions, while local features change the weight of the contribution that global features make to haptic roughness perceptions.
Collapse
Affiliation(s)
- Huazhi Li
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan. .,Section On Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.,Section On Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Wu Wang
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Yulong Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Mengni Zhou
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Qingqing Li
- Department of Teacher Education, Wenzhou University, Wenzhou, China
| | - Jingjing Yang
- School of Computer Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Shiping Shao
- School of Social Welfare, Yonsei University, Seoul, Korea
| | - Satoshi Takahashi
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama, 700-8530, Japan.,School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
79
|
No Evidence for the Involvement of Cognitive Immunisation in Updating Beliefs About the Self in Three Non-Clinical Samples. COGNITIVE THERAPY AND RESEARCH 2022; 46:43-61. [PMID: 34345057 PMCID: PMC8323093 DOI: 10.1007/s10608-021-10256-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cognitive immunisation against disconfirmatory evidence (i.e., devaluing expectation-disconfirming information through cognitive mechanisms) has recently been discussed as an obstacle to the revision of dysfunctional beliefs in mental disorders such as depression. Yet, it is unclear whether cognitive immunisation is also involved in belief updating in non-clinical samples. METHODS Using a three-group modulation protocol (promotion vs. inhibition of cognitive immunisation vs. control group), we examined how cognitive immunisation influences belief updating in response to performance feedback in three non-clinical samples. In Experiments 1 (N = 99) and 2 (N = 93), participants received unexpectedly negative feedback, whereas participants from Experiment 3 (N = 118) received unexpectedly positive feedback. Depressive symptoms and dispositional optimism were examined as additional predictors of belief updating. RESULTS In all experiments, participants adjusted their expectations in line with the feedback received, but this effect was not influenced by the cognitive immunisation manipulation. In Experiment 3, expectation change remained stable over 2 weeks. Depressive symptoms were associated with a reduced integration of positive feedback, but not with an increased sensitivity to negative feedback. CONCLUSIONS Whereas previous research has shown that cognitive immunisation contributes to persistent beliefs in clinical populations, the present findings suggest that it does not affect belief updating in non-clinical samples. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10608-021-10256-y.
Collapse
|
80
|
A single oral dose of citalopram increases interoceptive insight in healthy volunteers. Psychopharmacology (Berl) 2022; 239:2289-2298. [PMID: 35325257 PMCID: PMC9205807 DOI: 10.1007/s00213-022-06115-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/06/2022] [Indexed: 12/17/2022]
Abstract
RATIONALE Interoception is the signalling, perception, and interpretation of internal physiological states. Many mental disorders associated with changes of interoception, including depressive and anxiety disorders, are treated with selective serotonin reuptake inhibitors (SSRIs). However, the causative link between SSRIs and interoception is not yet clear. OBJECTIVES To ascertain the causal effect of acute changes of serotonin levels on cardiac interoception. METHODS Using a within-participant placebo-controlled design, forty-seven healthy human volunteers (31 female, 16 male) were tested on and off a 20 mg oral dose of the commonly prescribed SSRI, citalopram. Participants made judgements on the synchrony between their heartbeat and auditory tones and then expressed confidence in each judgement. We measured three types of interoceptive cognition. RESULTS Citalopram increased cardiac interoceptive insight, measured as correspondence of self-reported confidence to the likelihood that interoceptive judgements were actually correct. This effect was driven by enhanced confidence for correct interoceptive judgements and was independent of measured cardiac and reported subjective effects of the drug. CONCLUSIONS An acute change of serotonin levels can increase insight into the reliability of inferences made from cardiac interoceptive sensations.
Collapse
|
81
|
Villiger D. How Psychedelic-Assisted Treatment Works in the Bayesian Brain. Front Psychiatry 2022; 13:812180. [PMID: 35360137 PMCID: PMC8963812 DOI: 10.3389/fpsyt.2022.812180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Psychedelics are experiencing a renaissance in clinical research. In recent years, an increasing number of studies on psychedelic-assisted treatment have been conducted. So far, the results are promising, suggesting that this new (or rather, rediscovered) form of therapy has great potential. One particular reason for that appears to be the synergistic combination of the pharmacological and psychotherapeutic interventions in psychedelic-assisted treatment. But how exactly do these two interventions complement each other? This paper provides the first account of the interaction between pharmacological and psychological effects in psychedelic-assisted treatment. Building on the relaxed beliefs under psychedelics (REBUS) hypothesis of Carhart-Harris and Friston and the contextual model of Wampold, it argues that psychedelics amplify the common factors and thereby the remedial effects of psychotherapy. More precisely, psychedelics are assumed to attenuate the precision of high-level predictions, making them more revisable by bottom-up input. Psychotherapy constitutes an important source of such input. At best, it signalizes a safe and supportive environment (cf. setting) and induces remedial expectations (cf. set). During treatment, these signals should become incorporated when high-level predictions are revised: a process that is hypothesized to occur as a matter of course in psychotherapy but to get reinforced and accelerated under psychedelics. Ultimately, these revisions should lead to a relief of symptoms.
Collapse
Affiliation(s)
- Daniel Villiger
- Department of Psychosomatics and Psychotherapy, Psychiatric University Hospital Basel, University of Basel, Basel, Switzerland.,Institute of Philosophy, University of Zurich, Zurich, Switzerland
| |
Collapse
|
82
|
Yu Y, Huber L, Yang J, Fukunaga M, Chai Y, Jangraw DC, Chen G, Handwerker DA, Molfese PJ, Ejima Y, Sadato N, Wu J, Bandettini PA. Layer-specific activation in human primary somatosensory cortex during tactile temporal prediction error processing. Neuroimage 2021; 248:118867. [PMID: 34974114 DOI: 10.1016/j.neuroimage.2021.118867] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022] Open
Abstract
The human brain continuously generates predictions of incoming sensory input and calculates corresponding prediction errors from the perceived inputs to update internal predictions. In human primary somatosensory cortex (area 3b), different cortical layers are involved in receiving the sensory input and generation of error signals. It remains unknown, however, how the layers in the human area 3b contribute to the temporal prediction error processing. To investigate prediction error representation in the area 3b across layers, we acquired layer-specific functional magnetic resonance imaging (fMRI) data at 7T from human area 3b during a task of index finger poking with no-delay, short-delay and long-delay touching sequences. We demonstrate that all three tasks increased activity in both superficial and deep layers of area 3b compared to the random sensory input. The fMRI signal was differentially modulated solely in the deep layers rather than the superficial layers of area 3b by the delay time. Compared with the no-delay stimuli, activity was greater in the deep layers of area 3b during the short-delay stimuli but lower during the long-delay stimuli. This difference activity features in the superficial and deep layers suggest distinct functional contributions of area 3b layers to tactile temporal prediction error processing. The functional segregation in area 3b across layers may reflect that the excitatory and inhibitory interplay in the sensory cortex contributions to flexible communication between cortical layers or between cortical areas.
Collapse
Affiliation(s)
- Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA.
| | - Laurentius Huber
- MR-Methods Group, MBIC, Cognitive Neuroscience Department, Faculty of Psychology and Neuroscience, University of Maastricht, Cognitive Neuroscience, Room 1.014, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Masaki Fukunaga
- Division of Cerebral Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Yuhui Chai
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - David C Jangraw
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Gang Chen
- Scientific and Statistical Computational Core, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Daniel A Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Peter J Molfese
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| | - Yoshimichi Ejima
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan
| | - Norihiro Sadato
- Division of Cerebral Research, National Institute for Physiological Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Jinglong Wu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, 3-1-1 Tsushima-Naka, Kita-ku, Okayama 700-8530, Japan; Beijing Institute of Technology, 5 South Zhongguancun Street, Hiadian District, Beijing 100081, China
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA; Functional MRI Core Facility, National Institute of Mental Health, Building 10, 10 Center Dr Bethesda, MD 20892, USA
| |
Collapse
|
83
|
Mohan A, Luckey A, Weisz N, Vanneste S. Predisposition to domain-wide maladaptive changes in predictive coding in auditory phantom perception. Neuroimage 2021; 248:118813. [PMID: 34923130 DOI: 10.1016/j.neuroimage.2021.118813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/30/2021] [Accepted: 12/13/2021] [Indexed: 01/22/2023] Open
Abstract
Tinnitus is hypothesised to be a predictive coding problem. Previous research indicates lower sensitivity to prediction errors (PEs) in tinnitus patients while processing auditory deviants corresponding to tinnitus-specific stimuli. However, based on research with patients with hallucinations and no psychosis we hypothesise tinnitus patients may be more sensitive to PEs produced by auditory stimuli that are not related to tinnitus characteristics. Specifically in patients with minimal to no hearing loss, we hypothesise a more top-down subtype of tinnitus that may be driven by maladaptive changes in an auditory predictive coding network. To test this, we use an auditory oddball paradigm with omission of global and local deviants, a measure that is previously shown to empirically characterise hierarchical prediction errors (PEs). We observe: (1) increased predictions characterised by increased pre-stimulus response and increased alpha connectivity between the parahippocampus, dorsal anterior cingulate cortex and parahippocampus, pregenual anterior cingulate cortex and posterior cingulate cortex; (2) increased PEs characterised by increased P300 amplitude and gamma activity and increased theta connectivity between auditory cortices, parahippocampus and dorsal anterior cingulate cortex in the tinnitus group; (3) increased overall feed-forward connectivity in theta from the auditory cortex and parahippocampus to the dorsal anterior cingulate cortex; (4) correlations of pre-stimulus theta activity to tinnitus loudness and alpha activity to tinnitus distress. These results provide empirical evidence of maladaptive changes in a hierarchical predictive coding network in a subgroup of tinnitus patients with minimal to no hearing loss. The changes in pre-stimulus activity and connectivity to non-tinnitus specific stimuli suggest that tinnitus patients not only produce strong predictions about upcoming stimuli but also may be predisposed to stimulus a-specific PEs in the auditory domain. Correlations with tinnitus-related characteristics may be a biomarker for maladaptive changes in auditory predictive coding.
Collapse
Affiliation(s)
- Anusha Mohan
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland
| | - Alison Luckey
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland
| | - Nathan Weisz
- Salzburg Brain Dynamics Lab, University of Salzburg, Austria
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, College Green 2, Dublin, Ireland; Lab for Clinical & Integrative Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, United States.
| |
Collapse
|
84
|
Marino J. Predictive Coding, Variational Autoencoders, and Biological Connections. Neural Comput 2021; 34:1-44. [PMID: 34758480 DOI: 10.1162/neco_a_01458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/14/2021] [Indexed: 11/04/2022]
Abstract
We present a review of predictive coding, from theoretical neuroscience, and variational autoencoders, from machine learning, identifying the common origin and mathematical framework underlying both areas. As each area is prominent within its respective field, more firmly connecting these areas could prove useful in the dialogue between neuroscience and machine learning. After reviewing each area, we discuss two possible correspondences implied by this perspective: cortical pyramidal dendrites as analogous to (nonlinear) deep networks and lateral inhibition as analogous to normalizing flows. These connections may provide new directions for further investigations in each field.
Collapse
Affiliation(s)
- Joseph Marino
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.
| |
Collapse
|
85
|
Hong CCH, Fallon JH, Friston KJ. fMRI Evidence for Default Mode Network Deactivation Associated with Rapid Eye Movements in Sleep. Brain Sci 2021; 11:brainsci11111528. [PMID: 34827529 PMCID: PMC8615877 DOI: 10.3390/brainsci11111528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022] Open
Abstract
System-specific brain responses—time-locked to rapid eye movements (REMs) in sleep—are characteristically widespread, with robust and clear activation in the primary visual cortex and other structures involved in multisensory integration. This pattern suggests that REMs underwrite hierarchical processing of visual information in a time-locked manner, where REMs index the generation and scanning of virtual-world models, through multisensory integration in dreaming—as in awake states. Default mode network (DMN) activity increases during rest and reduces during various tasks including visual perception. The implicit anticorrelation between the DMN and task-positive network (TPN)—that persists in REM sleep—prompted us to focus on DMN responses to temporally-precise REM events. We timed REMs during sleep from the video recordings and quantified the neural correlates of REMs—using functional MRI (fMRI)—in 24 independent studies of 11 healthy participants. A reanalysis of these data revealed that the cortical areas exempt from widespread REM-locked brain activation were restricted to the DMN. Furthermore, our analysis revealed a modest temporally-precise REM-locked decrease—phasic deactivation—in key DMN nodes, in a subset of independent studies. These results are consistent with hierarchical predictive coding; namely, permissive deactivation of DMN at the top of the hierarchy (leading to the widespread cortical activation at lower levels; especially the primary visual cortex). Additional findings indicate REM-locked cerebral vasodilation and suggest putative mechanisms for dream forgetting.
Collapse
Affiliation(s)
- Charles Chong-Hwa Hong
- Patuxent Institution, Correctional Mental Health Center—Jessup, Jessup, MD 20794, USA
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-410-596-1956
| | - James H. Fallon
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA;
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA
| | - Karl J. Friston
- The Well Come Centre for Human Neuroimaging, Institute of Neurology, University College London, London WC1N 3AR, UK;
| |
Collapse
|
86
|
Neubert CR, Förstel AP, Debener S, Bendixen A. Predictability-Based Source Segregation and Sensory Deviance Detection in Auditory Aging. Front Hum Neurosci 2021; 15:734231. [PMID: 34776906 PMCID: PMC8586071 DOI: 10.3389/fnhum.2021.734231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022] Open
Abstract
When multiple sound sources are present at the same time, auditory perception is often challenged with disentangling the resulting mixture and focusing attention on the target source. It has been repeatedly demonstrated that background (distractor) sound sources are easier to ignore when their spectrotemporal signature is predictable. Prior evidence suggests that this ability to exploit predictability for foreground-background segregation degrades with age. On a theoretical level, this has been related with an impairment in elderly adults’ capabilities to detect certain types of sensory deviance in unattended sound sequences. Yet the link between those two capacities, deviance detection and predictability-based sound source segregation, has not been empirically demonstrated. Here we report on a combined behavioral-EEG study investigating the ability of elderly listeners (60–75 years of age) to use predictability as a cue for sound source segregation, as well as their sensory deviance detection capacities. Listeners performed a detection task on a target stream that can only be solved when a concurrent distractor stream is successfully ignored. We contrast two conditions whose distractor streams differ in their predictability. The ability to benefit from predictability was operationalized as performance difference between the two conditions. Results show that elderly listeners can use predictability for sound source segregation at group level, yet with a high degree of inter-individual variation in this ability. In a further, passive-listening control condition, we measured correlates of deviance detection in the event-related brain potential (ERP) elicited by occasional deviations from the same spectrotemporal pattern as used for the predictable distractor sequence during the behavioral task. ERP results confirmed neural signatures of deviance detection in terms of mismatch negativity (MMN) at group level. Correlation analyses at single-subject level provide no evidence for the hypothesis that deviance detection ability (measured by MMN amplitude) is related to the ability to benefit from predictability for sound source segregation. These results are discussed in the frameworks of sensory deviance detection and predictive coding.
Collapse
Affiliation(s)
- Christiane R Neubert
- Cognitive Systems Lab, Faculty of Natural Sciences, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| | - Alexander P Förstel
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Stefan Debener
- Neuropsychology Lab, Department of Psychology, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Alexandra Bendixen
- Cognitive Systems Lab, Faculty of Natural Sciences, Institute of Physics, Chemnitz University of Technology, Chemnitz, Germany
| |
Collapse
|
87
|
Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021; 15:768762. [PMID: 34803618 PMCID: PMC8602873 DOI: 10.3389/fnsys.2021.768762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising, and this typically evokes prediction error signatures in mammalian brains. In humans such mismatched expectations are often associated with an emotional response as well, and emotional dysregulation can lead to cognitive disorders such as depression or schizophrenia. Emotional responses are understood to be important for memory consolidation, suggesting that positive or negative 'valence' cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely (as could happen by generalization or habituation) is probably maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain function as an ongoing balance between prediction and surprise suggests a compelling approach to study and understand the evolution of consciousness in animals. In particular, this view may provide insight into the function and evolution of 'active' sleep. Here, we propose that active sleep - when animals are behaviorally asleep but their brain seems awake - is widespread beyond mammals and birds, and may have evolved as a mechanism for optimizing predictive processing in motile creatures confronted with constantly changing environments. To explore our hypothesis, we progress from humans to invertebrates, investigating how a potential role for rapid eye movement (REM) sleep in emotional regulation in humans could be re-examined as a conserved sleep function that co-evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness in animals.
Collapse
Affiliation(s)
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
88
|
Toward the unity of pathological and exertional fatigue: A predictive processing model. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 22:215-228. [PMID: 34668170 PMCID: PMC8983507 DOI: 10.3758/s13415-021-00958-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/23/2023]
Abstract
Fatigue is a common experience in both health and disease. Yet, pathological (i.e., prolonged or chronic) and transient (i.e., exertional) fatigue symptoms are traditionally considered distinct, compounding a separation between interested research fields within the study of fatigue. Within the clinical neurosciences, nascent frameworks position pathological fatigue as a product of inference derived through hierarchical predictive processing. The metacognitive theory of dyshomeostasis (Stephan et al., 2016) states that pathological fatigue emerges from the metacognitive mechanism in which the detection of persistent mismatches between prior interoceptive predictions and ascending sensory evidence (i.e., prediction error) signals low evidence for internal generative models, which undermine an agent’s feeling of mastery over the body and is thus experienced phenomenologically as fatigue. Although acute, transient subjective symptoms of exertional fatigue have also been associated with increasing interoceptive prediction error, the dynamic computations that underlie its development have not been clearly defined. Here, drawing on the metacognitive theory of dyshomeostasis, we extend this account to offer an explicit description of the development of fatigue during extended periods of (physical) exertion. Accordingly, it is proposed that a loss of certainty or confidence in control predictions in response to persistent detection of prediction error features as a common foundation for the conscious experience of both pathological and nonpathological fatigue.
Collapse
|
89
|
Sandved-Smith L, Hesp C, Mattout J, Friston K, Lutz A, Ramstead MJD. Towards a computational phenomenology of mental action: modelling meta-awareness and attentional control with deep parametric active inference. Neurosci Conscious 2021; 2021:niab018. [PMID: 34457352 PMCID: PMC8396119 DOI: 10.1093/nc/niab018] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/23/2021] [Accepted: 07/14/2021] [Indexed: 11/29/2022] Open
Abstract
Meta-awareness refers to the capacity to explicitly notice the current content of consciousness and has been identified as a key component for the successful control of cognitive states, such as the deliberate direction of attention. This paper proposes a formal model of meta-awareness and attentional control using hierarchical active inference. To do so, we cast mental action as policy selection over higher-level cognitive states and add a further hierarchical level to model meta-awareness states that modulate the expected confidence (precision) in the mapping between observations and hidden cognitive states. We simulate the example of mind-wandering and its regulation during a task involving sustained selective attention on a perceptual object. This provides a computational case study for an inferential architecture that is apt to enable the emergence of these central components of human phenomenology, namely, the ability to access and control cognitive states. We propose that this approach can be generalized to other cognitive states, and hence, this paper provides the first steps towards the development of a computational phenomenology of mental action and more broadly of our ability to monitor and control our own cognitive states. Future steps of this work will focus on fitting the model with qualitative, behavioural, and neural data.
Collapse
Affiliation(s)
- Lars Sandved-Smith
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, 95 Bd Pinel, Lyon 69500, France
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK
| | - Casper Hesp
- Department of Developmental Psychology, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
- Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, Amsterdam 1098 XH, Netherlands
- Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, Amsterdam 1012 GC, Netherlands
| | - Jérémie Mattout
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, 95 Bd Pinel, Lyon 69500, France
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK
| | - Antoine Lutz
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, 95 Bd Pinel, Lyon 69500, France
| | - Maxwell J D Ramstead
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3BG, UK
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, 1033 Pine Ave W, QC H3A 1A1, Canada
- Culture, Mind, and Brain Program, McGill University, Montreal, 1033 Pine Ave W, QC H3A 1A1, Canada
| |
Collapse
|
90
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
91
|
Litwin P, Miłkowski M. Unification by Fiat: Arrested Development of Predictive Processing. Cogn Sci 2021; 44:e12867. [PMID: 32594580 PMCID: PMC7378938 DOI: 10.1111/cogs.12867] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 04/25/2020] [Accepted: 05/15/2020] [Indexed: 01/24/2023]
Abstract
Predictive processing (PP) has been repeatedly presented as a unificatory account of perception, action, and cognition. In this paper, we argue that this is premature: As a unifying theory, PP fails to deliver general, simple, homogeneous, and systematic explanations. By examining its current trajectory of development, we conclude that PP remains only loosely connected both to its computational framework and to its hypothetical biological underpinnings, which makes its fundamentals unclear. Instead of offering explanations that refer to the same set of principles, we observe systematic equivocations in PP‐based models, or outright contradictions with its avowed principles. To make matters worse, PP‐based models are seldom empirically validated, and they are frequently offered as mere just‐so stories. The large number of PP‐based models is thus not evidence of theoretical progress in unifying perception, action, and cognition. On the contrary, we maintain that the gap between theory and its biological and computational bases contributes to the arrested development of PP as a unificatory theory. Thus, we urge the defenders of PP to focus on its critical problems instead of offering mere re‐descriptions of known phenomena, and to validate their models against possible alternative explanations that stem from different theoretical assumptions. Otherwise, PP will ultimately fail as a unified theory of cognition.
Collapse
Affiliation(s)
- Piotr Litwin
- Faculty of Psychology, University of Warsaw.,Institute of Philosophy and Sociology, Polish Academy of Sciences
| | - Marcin Miłkowski
- Institute of Philosophy and Sociology, Polish Academy of Sciences
| |
Collapse
|
92
|
Tivadar RI, Knight RT, Tzovara A. Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing. Front Hum Neurosci 2021; 15:702520. [PMID: 34489663 PMCID: PMC8416526 DOI: 10.3389/fnhum.2021.702520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.
Collapse
Affiliation(s)
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Sleep-Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
93
|
Fields C, Glazebrook JF, Levin M. Minimal physicalism as a scale-free substrate for cognition and consciousness. Neurosci Conscious 2021; 2021:niab013. [PMID: 34345441 PMCID: PMC8327199 DOI: 10.1093/nc/niab013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/14/2022] Open
Abstract
Theories of consciousness and cognition that assume a neural substrate automatically regard phylogenetically basal, nonneural systems as nonconscious and noncognitive. Here, we advance a scale-free characterization of consciousness and cognition that regards basal systems, including synthetic constructs, as not only informative about the structure and function of experience in more complex systems but also as offering distinct advantages for experimental manipulation. Our "minimal physicalist" approach makes no assumptions beyond those of quantum information theory, and hence is applicable from the molecular scale upwards. We show that standard concepts including integrated information, state broadcasting via small-world networks, and hierarchical Bayesian inference emerge naturally in this setting, and that common phenomena including stigmergic memory, perceptual coarse-graining, and attention switching follow directly from the thermodynamic requirements of classical computation. We show that the self-representation that lies at the heart of human autonoetic awareness can be traced as far back as, and serves the same basic functions as, the stress response in bacteria and other basal systems.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, 11160 Caunes Minervois, France
| | - James F Glazebrook
- Department of Mathematics and Computer Science, Eastern Illinois University, 600 Lincoln Ave, Charleston, IL 61920 USA
- Department of Mathematics, Adjunct Faculty, University of Illinois at Urbana–Champaign, 1409 W. Green Street, Urbana, IL 61801, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 College Avenue, Medford, MA 02155, USA
| |
Collapse
|
94
|
Parr T, Limanowski J, Rawji V, Friston K. The computational neurology of movement under active inference. Brain 2021; 144:1799-1818. [PMID: 33704439 PMCID: PMC8320263 DOI: 10.1093/brain/awab085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 11/08/2020] [Accepted: 12/20/2020] [Indexed: 12/31/2022] Open
Abstract
We propose a computational neurology of movement based on the convergence of theoretical neurobiology and clinical neurology. A significant development in the former is the idea that we can frame brain function as a process of (active) inference, in which the nervous system makes predictions about its sensory data. These predictions depend upon an implicit predictive (generative) model used by the brain. This means neural dynamics can be framed as generating actions to ensure sensations are consistent with these predictions-and adjusting predictions when they are not. We illustrate the significance of this formulation for clinical neurology by simulating a clinical examination of the motor system using an upper limb coordination task. Specifically, we show how tendon reflexes emerge naturally under the right kind of generative model. Through simulated perturbations, pertaining to prior probabilities of this model's variables, we illustrate the emergence of hyperreflexia and pendular reflexes, reminiscent of neurological lesions in the corticospinal tract and cerebellum. We then turn to the computational lesions causing hypokinesia and deficits of coordination. This in silico lesion-deficit analysis provides an opportunity to revisit classic neurological dichotomies (e.g. pyramidal versus extrapyramidal systems) from the perspective of modern approaches to theoretical neurobiology-and our understanding of the neurocomputational architecture of movement control based on first principles.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Jakub Limanowski
- Faculty of Psychology and Center for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| | - Vishal Rawji
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
95
|
Edalati M, Mahmoudzadeh M, Safaie J, Wallois F, Moghimi S. Violation of rhythmic expectancies can elicit late frontal gamma activity nested in theta oscillations. Psychophysiology 2021; 58:e13909. [PMID: 34310719 PMCID: PMC9285090 DOI: 10.1111/psyp.13909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Rhythm processing involves building expectations according to the hierarchical temporal structure of auditory events. Although rhythm processing has been addressed in the context of predictive coding, the properties of the oscillatory response in different cortical areas are still not clear. We explored the oscillatory properties of the neural response to rhythmic incongruence and the cross-frequency coupling between multiple frequencies to further investigate the mechanisms underlying rhythm perception. We designed an experiment to investigate the neural response to rhythmic deviations in which the tone either arrived earlier than expected or the tone in the same metrical position was omitted. These two manipulations modulate the rhythmic structure differently, with the former creating a larger violation of the general structure of the musical stimulus than the latter. Both deviations resulted in an MMN response, whereas only the rhythmic deviant resulted in a subsequent P3a. Rhythmic deviants due to the early occurrence of a tone, but not omission deviants, seemed to elicit a late high gamma response (60-80 Hz) at the end of the P3a over the left frontal region, which, interestingly, correlated with the P3a amplitude over the same region and was also nested in theta oscillations. The timing of the elicited high-frequency gamma oscillations related to rhythmic deviation suggests that it might be related to the update of the predictive neural model, corresponding to the temporal structure of the events in higher-level cortical areas.
Collapse
Affiliation(s)
- M Edalati
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - M Mahmoudzadeh
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - J Safaie
- Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - F Wallois
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| | - S Moghimi
- Inserm UMR1105, Groupe de Recherches sur l'Analyse Multimodale de la Fonction Cérébrale, CURS, Amiens, France.,Electrical Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran.,Inserm UMR1105, EFSN Pédiatriques, CHU Amiens sud, Amiens, France
| |
Collapse
|
96
|
Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021; 128:467-478. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Laboratory animal research has provided significant knowledge into the function of cortical circuits at the laminar level, which has yet to be fully leveraged towards insights about human brain function on a similar spatiotemporal scale. The use of functional magnetic resonance imaging (fMRI) in conjunction with neural models provides new opportunities to gain important insights from current knowledge. During the last five years, human studies have demonstrated the value of high-resolution fMRI to study laminar-specific activity in the human brain. This is mostly performed at ultra-high-field strengths (≥ 7 T) and is known as laminar fMRI. Advancements in laminar fMRI are beginning to open new possibilities for studying questions in basic cognitive neuroscience. In this paper, we first review recent methodological advances in laminar fMRI and describe recent human laminar fMRI studies. Then, we discuss how the use of laminar fMRI can help bridge the gap between cortical circuit models and human cognition.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Laurentius Huber
- MR-Methods Group, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
97
|
Kolodny O, Moyal R, Edelman S. A possible evolutionary function of phenomenal conscious experience of pain. Neurosci Conscious 2021; 2021:niab012. [PMID: 34141452 PMCID: PMC8206511 DOI: 10.1093/nc/niab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary accounts of feelings, and in particular of negative affect and of pain, assume that creatures that feel and care about the outcomes of their behavior outperform those that do not in terms of their evolutionary fitness. Such accounts, however, can only work if feelings can be shown to contribute to fitness-influencing outcomes. Simply assuming that a learner that feels and cares about outcomes is more strongly motivated than one that does is not enough, if only because motivation can be tied directly to outcomes by incorporating an appropriate reward function, without leaving any apparent role to feelings (as it is done in state-of-the-art engineered systems based on reinforcement learning). Here, we propose a possible mechanism whereby pain contributes to fitness: an actor-critic functional architecture for reinforcement learning, in which pain reflects the costs imposed on actors in their bidding for control, so as to promote honest signaling and ultimately help the system optimize learning and future behavior.
Collapse
Affiliation(s)
- Oren Kolodny
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus - Givat Ram, Jerusalem 9190401, Israel
| | - Roy Moyal
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| | - Shimon Edelman
- Department of Psychology, Uris Hall, Ithaca, NY 14853, USA
| |
Collapse
|
98
|
Cannon J. Expectancy-based rhythmic entrainment as continuous Bayesian inference. PLoS Comput Biol 2021; 17:e1009025. [PMID: 34106918 PMCID: PMC8216548 DOI: 10.1371/journal.pcbi.1009025] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 06/21/2021] [Accepted: 04/29/2021] [Indexed: 11/18/2022] Open
Abstract
When presented with complex rhythmic auditory stimuli, humans are able to track underlying temporal structure (e.g., a "beat"), both covertly and with their movements. This capacity goes far beyond that of a simple entrained oscillator, drawing on contextual and enculturated timing expectations and adjusting rapidly to perturbations in event timing, phase, and tempo. Previous modeling work has described how entrainment to rhythms may be shaped by event timing expectations, but sheds little light on any underlying computational principles that could unify the phenomenon of expectation-based entrainment with other brain processes. Inspired by the predictive processing framework, we propose that the problem of rhythm tracking is naturally characterized as a problem of continuously estimating an underlying phase and tempo based on precise event times and their correspondence to timing expectations. We present two inference problems formalizing this insight: PIPPET (Phase Inference from Point Process Event Timing) and PATIPPET (Phase and Tempo Inference). Variational solutions to these inference problems resemble previous "Dynamic Attending" models of perceptual entrainment, but introduce new terms representing the dynamics of uncertainty and the influence of expectations in the absence of sensory events. These terms allow us to model multiple characteristics of covert and motor human rhythm tracking not addressed by other models, including sensitivity of error corrections to inter-event interval and perceived tempo changes induced by event omissions. We show that positing these novel influences in human entrainment yields a range of testable behavioral predictions. Guided by recent neurophysiological observations, we attempt to align the phase inference framework with a specific brain implementation. We also explore the potential of this normative framework to guide the interpretation of experimental data and serve as building blocks for even richer predictive processing and active inference models of timing.
Collapse
Affiliation(s)
- Jonathan Cannon
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
99
|
Bhat A, Parr T, Ramstead M, Friston K. Immunoceptive inference: why are psychiatric disorders and immune responses intertwined? BIOLOGY & PHILOSOPHY 2021; 36:27. [PMID: 33948044 PMCID: PMC8085803 DOI: 10.1007/s10539-021-09801-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/27/2021] [Indexed: 06/03/2023]
Abstract
There is a steadily growing literature on the role of the immune system in psychiatric disorders. So far, these advances have largely taken the form of correlations between specific aspects of inflammation (e.g. blood plasma levels of inflammatory markers, genetic mutations in immune pathways, viral or bacterial infection) with the development of neuropsychiatric conditions such as autism, bipolar disorder, schizophrenia and depression. A fundamental question remains open: why are psychiatric disorders and immune responses intertwined? To address this would require a step back from a historical mind-body dualism that has created such a dichotomy. We propose three contributions of active inference when addressing this question: translation, unification, and simulation. To illustrate these contributions, we consider the following questions. Is there an immunological analogue of sensory attenuation? Is there a common generative model that the brain and immune system jointly optimise? Can the immune response and psychiatric illness both be explained in terms of self-organising systems responding to threatening stimuli in their external environment, whether those stimuli happen to be pathogens, predators, or people? Does false inference at an immunological level alter the message passing at a psychological level (or vice versa) through a principled exchange between the two systems?
Collapse
Affiliation(s)
- Anjali Bhat
- Wellcome Centre for Human Neuroimaging, London, UK
- Division of Psychiatry, University College London, London, UK
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, London, UK
| | - Maxwell Ramstead
- Wellcome Centre for Human Neuroimaging, London, UK
- Division of Social and Transcultural Psychiatry, Department of Psychiatry, McGill University, Montreal, Canada
- Spatial Web Foundation, Los Angeles, CA USA
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, London, UK
| |
Collapse
|
100
|
Parr T, Sajid N, Da Costa L, Mirza MB, Friston KJ. Generative Models for Active Vision. Front Neurorobot 2021; 15:651432. [PMID: 33927605 PMCID: PMC8076554 DOI: 10.3389/fnbot.2021.651432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The active visual system comprises the visual cortices, cerebral attention networks, and oculomotor system. While fascinating in its own right, it is also an important model for sensorimotor networks in general. A prominent approach to studying this system is active inference-which assumes the brain makes use of an internal (generative) model to predict proprioceptive and visual input. This approach treats action as ensuring sensations conform to predictions (i.e., by moving the eyes) and posits that visual percepts are the consequence of updating predictions to conform to sensations. Under active inference, the challenge is to identify the form of the generative model that makes these predictions-and thus directs behavior. In this paper, we provide an overview of the generative models that the brain must employ to engage in active vision. This means specifying the processes that explain retinal cell activity and proprioceptive information from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these processes include our choices about where to move our eyes. These decisions rest upon beliefs about salient locations, or the potential for information gain and belief-updating. A key theme of this paper is the relationship between "looking" and "seeing" under the brain's implicit generative model of the visual world.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Lancelot Da Costa
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - M. Berk Mirza
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|