51
|
Jékely G. The chemical brain hypothesis for the origin of nervous systems. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190761. [PMID: 33550946 PMCID: PMC7935135 DOI: 10.1098/rstb.2019.0761] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
In nervous systems, there are two main modes of transmission for the propagation of activity between cells. Synaptic transmission relies on close contact at chemical or electrical synapses while volume transmission is mediated by diffusible chemical signals and does not require direct contact. It is possible to wire complex neuronal networks by both chemical and synaptic transmission. Both types of networks are ubiquitous in nervous systems, leading to the question which of the two appeared first in evolution. This paper explores a scenario where chemically organized cellular networks appeared before synapses in evolution, a possibility supported by the presence of complex peptidergic signalling in all animals except sponges. Small peptides are ideally suited to link up cells into chemical networks. They have unlimited diversity, high diffusivity and high copy numbers derived from repetitive precursors. But chemical signalling is diffusion limited and becomes inefficient in larger bodies. To overcome this, peptidergic cells may have developed projections and formed synaptically connected networks tiling body surfaces and displaying synchronized activity with pulsatile peptide release. The advent of circulatory systems and neurohemal organs further reduced the constraint imposed on chemical signalling by diffusion. This could have contributed to the explosive radiation of peptidergic signalling systems in stem bilaterians. Neurosecretory centres in extant nervous systems are still predominantly chemically wired and coexist with the synaptic brain. This article is part of the theme issue 'Basal cognition: multicellularity, neurons and the cognitive lens'.
Collapse
Affiliation(s)
- Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
52
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
53
|
Gauberg J, Abdallah S, Elkhatib W, Harracksingh AN, Piekut T, Stanley EF, Senatore A. Conserved biophysical features of the Ca V2 presynaptic Ca 2+ channel homologue from the early-diverging animal Trichoplax adhaerens. J Biol Chem 2020; 295:18553-18578. [PMID: 33097592 PMCID: PMC7939481 DOI: 10.1074/jbc.ra120.015725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
The dominant role of CaV2 voltage-gated calcium channels for driving neurotransmitter release is broadly conserved. Given the overlapping functional properties of CaV2 and CaV1 channels, and less so CaV3 channels, it is unclear why there have not been major shifts toward dependence on other CaV channels for synaptic transmission. Here, we provide a structural and functional profile of the CaV2 channel cloned from the early-diverging animal Trichoplax adhaerens, which lacks a nervous system but possesses single gene homologues for CaV1-CaV3 channels. Remarkably, the highly divergent channel possesses similar features as human CaV2.1 and other CaV2 channels, including high voltage-activated currents that are larger in external Ba2+ than in Ca2+; voltage-dependent kinetics of activation, inactivation, and deactivation; and bimodal recovery from inactivation. Altogether, the functional profile of Trichoplax CaV2 suggests that the core features of presynaptic CaV2 channels were established early during animal evolution, after CaV1 and CaV2 channels emerged via proposed gene duplication from an ancestral CaV1/2 type channel. The Trichoplax channel was relatively insensitive to mammalian CaV2 channel blockers ω-agatoxin-IVA and ω-conotoxin-GVIA and to metal cation blockers Cd2+ and Ni2+ Also absent was the capacity for voltage-dependent G-protein inhibition by co-expressed Trichoplax Gβγ subunits, which nevertheless inhibited the human CaV2.1 channel, suggesting that this modulatory capacity evolved via changes in channel sequence/structure, and not G proteins. Last, the Trichoplax channel was immunolocalized in cells that express an endomorphin-like peptide implicated in cell signaling and locomotive behavior and other likely secretory cells, suggesting contributions to regulated exocytosis.
Collapse
Affiliation(s)
- Julia Gauberg
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Salsabil Abdallah
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Wassim Elkhatib
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Alicia N Harracksingh
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Thomas Piekut
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elise F Stanley
- Laboratory of Synaptic Transmission, Krembil Research Institute, Toronto, Ontario, Canada
| | - Adriano Senatore
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| |
Collapse
|
54
|
Ectopic activation of GABA B receptors inhibits neurogenesis and metamorphosis in the cnidarian Nematostella vectensis. Nat Ecol Evol 2020; 5:111-121. [PMID: 33168995 DOI: 10.1038/s41559-020-01338-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 09/29/2020] [Indexed: 01/22/2023]
Abstract
The metabotropic gamma-aminobutyric acid B receptor (GABABR) is a G protein-coupled receptor that mediates neuronal inhibition by the neurotransmitter GABA. While GABABR-mediated signalling has been suggested to play central roles in neuronal differentiation and proliferation across evolution, it has mostly been studied in the mammalian brain. Here, we demonstrate that ectopic activation of GABABR signalling affects neurogenic functions in the sea anemone Nematostella vectensis. We identified four putative Nematostella GABABR homologues presenting conserved three-dimensional extracellular domains and residues needed for binding GABA and the GABABR agonist baclofen. Moreover, sustained activation of GABABR signalling reversibly arrests the critical metamorphosis transition from planktonic larva to sessile polyp life stage. To understand the processes that underlie the developmental arrest, we combined transcriptomic and spatial analyses of control and baclofen-treated larvae. Our findings reveal that the cnidarian neurogenic programme is arrested following the addition of baclofen to developing larvae. Specifically, neuron development and neurite extension were inhibited, resulting in an underdeveloped and less organized nervous system and downregulation of proneural factors including NvSoxB(2), NvNeuroD1 and NvElav1. Our results thus point to an evolutionarily conserved function of GABABR in neurogenesis regulation and shed light on early cnidarian development.
Collapse
|
55
|
Romanova DY, Smirnov IV, Nikitin MA, Kohn AB, Borman AI, Malyshev AY, Balaban PM, Moroz LL. Sodium action potentials in placozoa: Insights into behavioral integration and evolution of nerveless animals. Biochem Biophys Res Commun 2020; 532:120-126. [PMID: 32828537 DOI: 10.1016/j.bbrc.2020.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/09/2020] [Indexed: 01/20/2023]
Abstract
Placozoa are small disc-shaped animals, representing the simplest known, possibly ancestral, organization of free-living animals. With only six morphological distinct cell types, without any recognized neurons or muscle, placozoans exhibit fast effector reactions and complex behaviors. However, little is known about electrogenic mechanisms in these animals. Here, we showed the presence of rapid action potentials in four species of placozoans (Trichoplax adhaerens [H1 haplotype], Trichoplax sp.[H2], Hoilungia hongkongensis [H13], and Hoilungia sp. [H4]). These action potentials are sodium-dependent and can be inducible. The molecular analysis suggests the presence of 5-7 different types of voltage-gated sodium channels, which showed substantial evolutionary radiation compared to many other metazoans. Such unexpected diversity of sodium channels in early-branched metazoan lineages reflect both duplication events and parallel evolution of unique behavioral integration in these nerveless animals.
Collapse
Affiliation(s)
- Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| | - Ivan V Smirnov
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
| | - Alisa I Borman
- Department of Evolutionary Biology, Biological Faculty, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey Y Malyshev
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, 117485, Russia.
| | - Leonid L Moroz
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA; Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
56
|
Report on the First Symposium on Invertebrate Neuroscience held on 13-17th August 2019 at the Balaton Limnological Institute, MTA Centre for Ecological Research, Tihany, Hungary. INVERTEBRATE NEUROSCIENCE 2020; 20:13. [PMID: 32816072 DOI: 10.1007/s10158-020-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/11/2020] [Indexed: 10/23/2022]
Abstract
This meeting report provides an overview of the oral and poster presentations at the first international symposium for invertebrate neuroscience. The contents reflect the contributions of invertebrate neuroscience in addressing fundamental and fascinating challenges in understanding the neural substrates of animal behaviour.
Collapse
|
57
|
Moroz LL, Romanova DY, Nikitin MA, Sohn D, Kohn AB, Neveu E, Varoqueaux F, Fasshauer D. The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 2020; 10:13020. [PMID: 32747709 PMCID: PMC7400543 DOI: 10.1038/s41598-020-69851-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/16/2020] [Indexed: 12/11/2022] Open
Abstract
Nitric oxide (NO) is a ubiquitous gaseous messenger, but we know little about its early evolution. Here, we analyzed NO synthases (NOS) in four different species of placozoans-one of the early-branching animal lineages. In contrast to other invertebrates studied, Trichoplax and Hoilungia have three distinct NOS genes, including PDZ domain-containing NOS. Using ultra-sensitive capillary electrophoresis assays, we quantified nitrites (products of NO oxidation) and L-citrulline (co-product of NO synthesis from L-arginine), which were affected by NOS inhibitors confirming the presence of functional enzymes in Trichoplax. Using fluorescent single-molecule in situ hybridization, we showed that distinct NOSs are expressed in different subpopulations of cells, with a noticeable distribution close to the edge regions of Trichoplax. These data suggest both the compartmentalized release of NO and a greater diversity of cell types in placozoans than anticipated. NO receptor machinery includes both canonical and novel NIT-domain containing soluble guanylate cyclases as putative NO/nitrite/nitrate sensors. Thus, although Trichoplax and Hoilungia exemplify the morphologically simplest free-living animals, the complexity of NO-cGMP-mediated signaling in Placozoa is greater to those in vertebrates. This situation illuminates multiple lineage-specific diversifications of NOSs and NO/nitrite/nitrate sensors from the common ancestor of Metazoa and the preservation of conservative NOS architecture from prokaryotic ancestors.
Collapse
Affiliation(s)
- Leonid L Moroz
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
| | - Mikhail A Nikitin
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dosung Sohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Andrea B Kohn
- Whitney Laboratory for Marine Bioscience and Departments of Neuroscience, University of Florida, St. Augustine and Gainesville, FL, 32080, USA
| | - Emilie Neveu
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Frederique Varoqueaux
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| | - Dirk Fasshauer
- Department of Fundamental Neurosciences, University of Lausanne, 1005, Lausanne, Switzerland
| |
Collapse
|
58
|
Hulett RE, Potter D, Srivastava M. Neural architecture and regeneration in the acoel Hofstenia miamia. Proc Biol Sci 2020; 287:20201198. [PMID: 32693729 PMCID: PMC7423668 DOI: 10.1098/rspb.2020.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The origin of bilateral symmetry, a major transition in animal evolution, coincided with the evolution of organized nervous systems that show regionalization along major body axes. Studies of Xenacoelomorpha, the likely outgroup lineage to all other animals with bilateral symmetry, can inform the evolutionary history of animal nervous systems. Here, we characterized the neural anatomy of the acoel Hofstenia miamia. Our analysis of transcriptomic data uncovered orthologues of enzymes for all major neurotransmitter synthesis pathways. Expression patterns of these enzymes revealed the presence of a nerve net and an anterior condensation of neural cells. The anterior condensation was layered, containing several cell types with distinct molecular identities organized in spatially distinct territories. Using these anterior cell types and structures as landmarks, we obtained a detailed timeline for regeneration of the H. miamia nervous system, showing that the anterior condensation is restored by eight days after amputation. Our work detailing neural anatomy in H. miamia will enable mechanistic studies of neural cell type diversity and regeneration and provide insight into the evolution of these processes.
Collapse
Affiliation(s)
- Ryan E Hulett
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| | - Deirdre Potter
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Mansi Srivastava
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
59
|
Hehenberger E, Eitel M, Fortunato SAV, Miller DJ, Keeling PJ, Cahill MA. Early eukaryotic origins and metazoan elaboration of MAPR family proteins. Mol Phylogenet Evol 2020; 148:106814. [PMID: 32278076 DOI: 10.1016/j.ympev.2020.106814] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 01/01/2023]
Abstract
The membrane-associated progesterone receptor (MAPR) family consists of heme-binding proteins containing a cytochrome b5 (cytb5) domain characterized by the presence of a MAPR-specific interhelical insert region (MIHIR) between helices 3 and 4 of the canonical cytb5-domain fold. Animals possess three MAPR genes (PGRMC-like, Neuferricin and Neudesin). Here we show that all three animal MAPR genes were already present in the common ancestor of the opisthokonts (comprising animals and fungi as well as related single-celled taxa). All three MAPR genes acquired extensions C-terminal to the cytb5 domain, either before or with the evolution of animals. The archetypical MAPR protein, progesterone receptor membrane component 1 (PGRMC1), contains phosphorylated tyrosines Y139 and Y180. The combination of Y139/Y180 appeared in the common ancestor of cnidarians and bilaterians, along with an early embryological organizer and synapsed neurons, and is strongly conserved in all bilaterian animals. A predicted protein interaction motif in the PGRMC1 MIHIR is potentially regulated by Y139 phosphorylation. A multilayered model of animal MAPR function acquisition includes some pre-metazoan functions (e.g., heme binding and cytochrome P450 interactions) and some acquired animal-specific functions that involve regulation of strongly conserved protein interaction motifs acquired by animals (Metazoa). This study provides a conceptual framework for future studies, against which especially PGRMC1's multiple functions can perhaps be stratified and functionally dissected.
Collapse
Affiliation(s)
- Elisabeth Hehenberger
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael Eitel
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sofia A V Fortunato
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - David J Miller
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, 3529-6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada
| | - Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia; ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia.
| |
Collapse
|
60
|
Martinez P, Sprecher SG. Of Circuits and Brains: The Origin and Diversification of Neural Architectures. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
61
|
Abstract
One of the most important aspects of the scientific endeavour is the definition of specific concepts as precisely as possible. However, it is also important not to lose sight of two facts: (i) we divide the study of nature into manageable parts in order to better understand it owing to our limited cognitive capacities and (ii) definitions are inherently arbitrary and heavily influenced by cultural norms, language, the current political climate, and even personal preferences, among many other factors. As a consequence of these facts, clear-cut definitions, despite their evident importance, are oftentimes quite difficult to formulate. One of the most illustrative examples about the difficulty of articulating precise scientific definitions is trying to define the concept of a brain. Even though the current thinking about the brain is beginning to take into account a variety of organisms, a vertebrocentric bias still tends to dominate the scientific discourse about this concept. Here I will briefly explore the evolution of our 'thoughts about the brain', highlighting the difficulty of constructing a universally (or even a generally) accepted formal definition of it and using planarians as one of the earliest examples of organisms proposed to possess a 'traditional', vertebrate-style brain. I also suggest that the time is right to attempt to expand our view of what a brain is, going beyond exclusively structural and taxa-specific criteria. Thus, I propose a classification that could represent a starting point in an effort to expand our current definitions of the brain, hopefully to help initiate conversations leading to changes of perspective on how we think about this concept. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Oné R Pagán
- Department of Biology, West Chester University , West Chester, PA 19383 , USA
| |
Collapse
|
62
|
Fields C, Levin M. Does regeneration recapitulate phylogeny? Planaria as a model of body-axis specification in ancestral eumetazoa. Commun Integr Biol 2020; 13:27-38. [PMID: 32128026 PMCID: PMC7039665 DOI: 10.1080/19420889.2020.1729601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/07/2020] [Accepted: 02/09/2020] [Indexed: 12/31/2022] Open
Abstract
Metazoan body plans combine well-defined primary, secondary, and in many bilaterians, tertiary body axes with structural asymmetries at multiple scales. Despite decades of study, how axis-defining symmetries and system-defining asymmetries co-emerge during both evolution and development remain open questions. Regeneration studies in asexual planaria have demonstrated an array of viable forms with symmetrized and, in some cases, duplicated body axes. We suggest that such forms may point toward an ancestral eumetazoan form with characteristics of both cnidarians and placazoa.
Collapse
Affiliation(s)
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
63
|
Fields C, Bischof J, Levin M. Morphological Coordination: A Common Ancestral Function Unifying Neural and Non-Neural Signaling. Physiology (Bethesda) 2020; 35:16-30. [DOI: 10.1152/physiol.00027.2019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Nervous systems are traditionally thought of as providing sensing and behavioral coordination functions at the level of the whole organism. What is the evolutionary origin of the mechanisms enabling the nervous systems’ information processing ability? Here, we review evidence from evolutionary, developmental, and regenerative biology suggesting a deeper, ancestral function of both pre-neural and neural cell-cell communication systems: the long-distance coordination of cell division and differentiation required to create and maintain body-axis symmetries. This conceptualization of the function of nervous system activity sheds new light on the evolutionary transition from the morphologically rudimentary, non-neural Porifera and Placazoa to the complex morphologies of Ctenophores, Cnidarians, and Bilaterians. It further allows a sharp formulation of the distinction between long-distance axis-symmetry coordination based on external coordinates, e.g., by whole-organism scale trophisms as employed by plants and sessile animals, and coordination based on body-centered coordinates as employed by motile animals. Thus we suggest that the systems that control animal behavior evolved from ancient mechanisms adapting preexisting ionic and neurotransmitter mechanisms to regulate individual cell behaviors during morphogenesis. An appreciation of the ancient, non-neural origins of bioelectrically mediated computation suggests new approaches to the study of embryological development, including embryological dysregulation, cancer, regenerative medicine, and synthetic bioengineering.
Collapse
Affiliation(s)
- Chris Fields
- 23 Rue des Lavandières, Caunes Minervois, France
| | - Johanna Bischof
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts
| |
Collapse
|
64
|
Pallasdies F, Goedeke S, Braun W, Memmesheimer RM. From single neurons to behavior in the jellyfish Aurelia aurita. eLife 2019; 8:e50084. [PMID: 31868586 PMCID: PMC6999044 DOI: 10.7554/elife.50084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/22/2019] [Indexed: 01/13/2023] Open
Abstract
Jellyfish nerve nets provide insight into the origins of nervous systems, as both their taxonomic position and their evolutionary age imply that jellyfish resemble some of the earliest neuron-bearing, actively-swimming animals. Here, we develop the first neuronal network model for the nerve nets of jellyfish. Specifically, we focus on the moon jelly Aurelia aurita and the control of its energy-efficient swimming motion. The proposed single neuron model disentangles the contributions of different currents to a spike. The network model identifies factors ensuring non-pathological activity and suggests an optimization for the transmission of signals. After modeling the jellyfish's muscle system and its bell in a hydrodynamic environment, we explore the swimming elicited by neural activity. We find that different delays between nerve net activations lead to well-controlled, differently directed movements. Our model bridges the scales from single neurons to behavior, allowing for a comprehensive understanding of jellyfish neural control of locomotion.
Collapse
Affiliation(s)
- Fabian Pallasdies
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | - Sven Goedeke
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | - Wilhelm Braun
- Neural Network Dynamics and Computation, Institute of GeneticsUniversity of BonnBonnGermany
| | | |
Collapse
|
65
|
Norekian TP, Moroz LL. Atlas of the neuromuscular system in the Trachymedusa Aglantha digitale: Insights from the advanced hydrozoan. J Comp Neurol 2019; 528:1231-1254. [PMID: 31749185 DOI: 10.1002/cne.24821] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 01/26/2023]
Abstract
Cnidaria is the sister taxon to bilaterian animals, and therefore, represents a key reference lineage to understand early origins and evolution of the neural systems. The hydromedusa Aglantha digitale is arguably the best electrophysiologically studied jellyfish because of its system of giant axons and unique fast swimming/escape behaviors. Here, using a combination of scanning electron microscopy and immunohistochemistry together with phalloidin labeling, we systematically characterize both neural and muscular systems in Aglantha, summarizing and expanding further the previous knowledge on the microscopic neuroanatomy of this crucial reference species. We found that the majority, if not all (~2,500) neurons, that are labeled by FMRFamide antibody are different from those revealed by anti-α-tubulin immunostaining, making these two neuronal markers complementary to each other and, therefore, expanding the diversity of neural elements in Aglantha with two distinct neural subsystems. Our data uncovered the complex organization of neural networks forming a functional "annulus-type" central nervous system with three subsets of giant axons, dozen subtypes of neurons, muscles, and a variety of receptors fully integrated with epithelial conductive pathways supporting swimming, escape and feeding behaviors. The observed unique adaptations within the Aglantha lineage (including giant axons innervating striated muscles) strongly support an extensive and wide-spread parallel evolution of integrative and effector systems across Metazoa.
Collapse
Affiliation(s)
- Tigran P Norekian
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Leonid L Moroz
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, Florida.,Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
66
|
Faltine-Gonzalez DZ, Layden MJ. Characterization of nAChRs in Nematostella vectensis supports neuronal and non-neuronal roles in the cnidarian-bilaterian common ancestor. EvoDevo 2019; 10:27. [PMID: 31700598 PMCID: PMC6825365 DOI: 10.1186/s13227-019-0136-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/06/2019] [Indexed: 02/01/2023] Open
Abstract
Background Nicotinic and muscarinic acetylcholine receptors likely evolved in the cnidarian–bilaterian common ancestor. Both receptor families are best known for their role at chemical synapses in bilaterian animals, but they also have described roles as non-neuronal signaling receptors within the bilaterians. It is not clear when either of the functions for nicotinic or muscarinic receptors evolved. Previous studies in cnidarians suggest that acetylcholine’s neuronal role existed prior to the cnidarian–bilaterian divergence, but did not address potential non-neuronal functions. To determine the origins of neuronal and non-neuronal functions of nicotinic acetylcholine receptors, we investigated the phylogenetic position of cnidarian acetylcholine receptors, characterized the spatiotemporal expression patterns of nicotinic receptors in N. vectensis, and compared pharmacological studies in N. vectensis to the previous work in other cnidarians. Results Consistent with described activity in other cnidarians, treatment with acetylcholine-induced tentacular contractions in the cnidarian sea anemone N. vectensis. Phylogenetic analysis suggests that the N. vectensis genome encodes 26 nicotinic (nAChRs) and no muscarinic (mAChRs) acetylcholine receptors and that nAChRs independently radiated in cnidarian and bilaterian linages. The namesake nAChR agonist, nicotine, induced tentacular contractions similar to those observed with acetylcholine, and the nAChR antagonist mecamylamine suppressed tentacular contractions induced by both acetylcholine and nicotine. This indicated that tentacle contractions are in fact mediated by nAChRs. Nicotine also induced the contraction of radial muscles, which contract as part of the peristaltic waves that propagate along the oral–aboral axis of the trunk. Radial contractions and peristaltic waves were suppressed by mecamylamine. The ability of nicotine to mimic acetylcholine responses, and of mecamylamine to suppress acetylcholine and nicotine-induced contractions, supports a neuronal function for acetylcholine in cnidarians. Examination of the spatiotemporal expression of N. vectensis nAChRs (NvnAChRs) during development and in juvenile polyps identified that NvnAChRs are expressed in neurons, muscles, gonads, and large domains known to be consistent with a role in developmental patterning. These patterns are consistent with nAChRs functioning in both a neuronal and non-neuronal capacity in N. vectensis. Conclusion Our data suggest that nAChR receptors functioned at chemical synapses in N. vectensis to regulate tentacle contraction. Similar responses to acetylcholine are well documented in cnidarians, suggesting that the neuronal function represents an ancestral role for nAChRs. Expression patterns of nAChRs are consistent with both neuronal and non-neuronal roles for acetylcholine in cnidarians. Together, these observations suggest that both neuronal and non-neuronal functions for the ancestral nAChRs were present in the cnidarian–bilaterian common ancestor. Thus, both roles described in bilaterian species likely arose at or near the base of nAChR evolution.
Collapse
Affiliation(s)
| | - Michael J Layden
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015 USA
| |
Collapse
|
67
|
Wong E, Mölter J, Anggono V, Degnan SM, Degnan BM. Co-expression of synaptic genes in the sponge Amphimedon queenslandica uncovers ancient neural submodules. Sci Rep 2019; 9:15781. [PMID: 31673079 PMCID: PMC6823388 DOI: 10.1038/s41598-019-51282-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 09/28/2019] [Indexed: 12/13/2022] Open
Abstract
The synapse is a complex cellular module crucial to the functioning of neurons. It evolved largely through the exaptation of pre-existing smaller submodules, each of which are comprised of ancient sets of proteins that are conserved in modern animals and other eukaryotes. Although these ancient submodules themselves have non-neural roles, it has been hypothesized that they may mediate environmental sensing behaviors in aneural animals, such as sponges. Here we identify orthologues in the sponge Amphimedon queenslandica of genes encoding synaptic submodules in neural animals, and analyse their cell-type specific and developmental expression to determine their potential to be co-regulated. We find that genes comprising certain synaptic submodules, including those involved in vesicle trafficking, calcium-regulation and scaffolding of postsynaptic receptor clusters, are co-expressed in adult choanocytes and during metamorphosis. Although these submodules may contribute to sensory roles in this cell type and this life cycle stage, total synaptic gene co-expression profiles do not support the existence of a functional synapse in A. queenslandica. The lack of evidence for the co-regulation of genes necessary for pre- and post-synaptic functioning in A. queenslandica suggests that sponges, and perhaps the last common ancestor of sponges and other extant animals, had the ability to promulgate sensory inputs without complete synapse-like functionalities. The differential co-expression of multiple synaptic submodule genes in sponge choanocytes, which have sensory and feeding roles, however, is consistent with the metazoan ancestor minimally being able to undergo exo- and endocytosis in a controlled and localized manner.
Collapse
Affiliation(s)
- Eunice Wong
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jan Mölter
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Victor Anggono
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, 4072, Australia
- Clem Jones Centre for Ageing Dementia Research, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Sandie M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
68
|
Friedman R. Neuronal Morphology and Synapse Count in the Nematode Worm. Front Comput Neurosci 2019; 13:74. [PMID: 31695603 PMCID: PMC6817514 DOI: 10.3389/fncom.2019.00074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
The somatic nervous system of the nematode worm Caenorhabditis elegans is a model for understanding the physical characteristics of the neurons and their interconnections. Its neurons show high variation in morphological attributes. This study investigates the relationship of neuronal morphology to the number of synapses per neuron. Morphology is also examined for any detectable association with neuron cell type or ganglion membership.
Collapse
Affiliation(s)
- Robert Friedman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
69
|
Hahn N, Büschgens L, Schwedhelm-Domeyer N, Bank S, Geurten BRH, Neugebauer P, Massih B, Göpfert MC, Heinrich R. The Orphan Cytokine Receptor CRLF3 Emerged With the Origin of the Nervous System and Is a Neuroprotective Erythropoietin Receptor in Locusts. Front Mol Neurosci 2019; 12:251. [PMID: 31680856 PMCID: PMC6797617 DOI: 10.3389/fnmol.2019.00251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022] Open
Abstract
The orphan cytokine receptor-like factor 3 (CRLF3) was identified as a neuroprotective erythropoietin receptor in locust neurons and emerged with the evolution of the eumetazoan nervous system. Human CRLF3 belongs to class I helical cytokine receptors that mediate pleiotropic cellular reactions to injury and diverse physiological challenges. It is expressed in various tissues including the central nervous system but its ligand remains unidentified. A CRLF3 ortholog in the holometabolous beetle Tribolium castaneum was recently shown to induce anti-apoptotic mechanisms upon stimulation with human recombinant erythropoietin. To test the hypothesis that CRLF3 represents an ancient cell-protective receptor for erythropoietin-like cytokines, we investigated its presence across metazoan species. Furthermore, we examined CRLF3 expression and function in the hemimetabolous insect Locusta migratoria. Phylogenetic analysis of CRLF3 sequences indicated that CRLF3 is absent in Porifera, Placozoa and Ctenophora, all lacking the traditional nervous system. However, it is present in all major eumetazoan groups ranging from cnidarians over protostomians to mammals. The CRLF3 sequence is highly conserved and abundant amongst vertebrates. In contrast, relatively few invertebrates express CRLF3 and these sequences show greater variability, suggesting frequent loss due to low functional importance. In L. migratoria, we identified the transcript Lm-crlf3 by RACE-PCR and detected its expression in locust brain, skeletal muscle and hemocytes. These findings correspond to the ubiquitous expression of crlf3 in mammalian tissues. We demonstrate that the sole addition of double-stranded RNA to the culture medium (called soaking RNA interference) specifically interferes with protein expression in locust primary brain cell cultures. This technique was used to knock down Lm-crlf3 expression and to abolish its physiological function. We confirmed that recombinant human erythropoietin rescues locust brain neurons from hypoxia-induced apoptosis and showed that this neuroprotective effect is absent after knocking down Lm-crlf3. Our results affirm the erythropoietin-induced neuroprotective function of CRLF3 in a second insect species from a different taxonomic group. They suggest that the phylogenetically conserved CRLF3 receptor may function as a cell protective receptor for erythropoietin or a structurally related cytokine also in other animals including vertebrate and mammalian species.
Collapse
Affiliation(s)
- Nina Hahn
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Luca Büschgens
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Nicola Schwedhelm-Domeyer
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Sarah Bank
- Department of Animal Evolution and Biodiversity, Institute for Zoology & Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Pia Neugebauer
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bita Massih
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Institute for Zoology and Anthropology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
70
|
Norekian TP, Moroz LL. Comparative neuroanatomy of ctenophores: Neural and muscular systems in
Euplokamis dunlapae
and related species. J Comp Neurol 2019; 528:481-501. [DOI: 10.1002/cne.24770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/03/2019] [Accepted: 09/04/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
71
|
Mayorova TD, Hammar K, Winters CA, Reese TS, Smith CL. The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biol Open 2019; 8:bio045674. [PMID: 31366453 PMCID: PMC6737977 DOI: 10.1242/bio.045674] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023] Open
Abstract
The disk-shaped millimeter-sized marine animal, Trichoplax adhaerens, is notable because of its small number of cell types and primitive mode of feeding. It glides on substrates propelled by beating cilia on its lower surface and periodically pauses to feed on underlying microorganisms, which it digests externally. Here, a combination of advanced electron and light microscopic techniques are used to take a closer look at its secretory cell types and their roles in locomotion and feeding. We identify digestive enzymes in lipophils, a cell type implicated in external digestion and distributed uniformly throughout the ventral epithelium except for a narrow zone near its edge. We find three morphologically distinct types of gland cell. The most prevalent contains and secretes mucus, which is shown to be involved in adhesion and gliding. Half of the mucocytes are arrayed in a tight row around the edge of the ventral epithelium while the rest are scattered further inside, in the region containing lipophils. The secretory granules in mucocytes at the edge label with an antibody against a neuropeptide that was reported to arrest ciliary beating during feeding. A second type of gland cell is arrayed in a narrow row just inside the row of mucocytes while a third is located more centrally. Our maps of the positions of the structurally distinct secretory cell types provide a foundation for further characterization of the multiple peptidergic cell types in Trichoplax and the microscopic techniques we introduce provide tools for carrying out these studies.
Collapse
Affiliation(s)
- Tatiana D Mayorova
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Katherine Hammar
- Central Microscopy Facility, Marine Biological Laboratory, 7 MBL Street, Woods Hole, MA 02543, USA
| | - Christine A Winters
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Thomas S Reese
- Laboratory of Neurobiology, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892, USA
| | - Carolyn L Smith
- Light Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 35 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
72
|
Smith CL, Mayorova TD. Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell Tissue Res 2019; 377:353-367. [PMID: 31270610 DOI: 10.1007/s00441-019-03057-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/09/2019] [Indexed: 01/01/2023]
Abstract
Trichoplax, a member of the phylum Placozoa, is a tiny ciliated marine animal that glides on surfaces feeding on algae and cyanobacteria. It stands out from other animals in that it lacks an internal digestive system and, instead, digests food trapped under its lower surface. Here we review recent work on the phenotypes of its six cell types and their roles in digestion and feeding behavior. Phylogenomic analyses place Placozoa as sister to Eumetazoa, the clade that includes Cnidaria and Bilateria. Comparing the phenotypes of cells in Trichoplax to those of cells in the digestive epithelia of Eumetazoa allows us to make inferences about the cell types and mode of feeding of their ancestors. From our increasingly mechanistic understanding of feeding in Trichoplax, we get a glimpse into how primitive animals may have hunted and consumed food prior to the evolution of neurons, muscles, and internal digestive systems.
Collapse
Affiliation(s)
- Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tatiana D Mayorova
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
73
|
Nielsen C. Early animal evolution: a morphologist's view. ROYAL SOCIETY OPEN SCIENCE 2019; 6:190638. [PMID: 31417759 PMCID: PMC6689584 DOI: 10.1098/rsos.190638] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 05/15/2023]
Abstract
Two hypotheses for the early radiation of the metazoans are vividly discussed in recent phylogenomic studies, the 'Porifera-first' hypothesis, which places the poriferans as the sister group of all other metazoans, and the 'Ctenophora-first' hypothesis, which places the ctenophores as the sister group to all other metazoans. It has been suggested that an analysis of morphological characters (including specific molecules) could throw additional light on the controversy, and this is the aim of this paper. Both hypotheses imply independent evolution of nervous systems in Planulozoa and Ctenophora. The Porifera-first hypothesis implies no homoplasies or losses of major characters. The Ctenophora-first hypothesis shows no important synapomorphies of Porifera, Planulozoa and Placozoa. It implies either independent evolution, in Planulozoa and Ctenophora, of a new digestive system with a gut with extracellular digestion, which enables feeding on larger organisms, or the subsequent loss of this new gut in the Poriferans (and the re-evolution of the collar complex). The major losses implied in the Ctenophora-first theory show absolutely no adaptational advantages. Thus, morphology gives very strong support for the Porifera-first hypothesis.
Collapse
Affiliation(s)
- Claus Nielsen
- The Natural History Museum of Denmark, University of Copenhagen, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
74
|
Bouchard C, Boudko DY, Jiang RHY. A SLC6 transporter cloned from the lion's mane jellyfish (Cnidaria, Scyphozoa) is expressed in neurons. PLoS One 2019; 14:e0218806. [PMID: 31233570 PMCID: PMC6590891 DOI: 10.1371/journal.pone.0218806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/10/2019] [Indexed: 11/18/2022] Open
Abstract
In the course of recent comparative genomic studies conducted on nervous systems across the phylogeny, current thinking is leaning in favor of more heterogeneity among nervous systems than what was initially expected. The isolation and characterization of molecular components that constitute the cnidarian neuron is not only of interest to the physiologist but also, on a larger scale, to those who study the evolution of nervous systems. Understanding the function of those ancient neurons involves the identification of neurotransmitters and their precursors, the description of nutrients used by neurons for metabolic purposes and the identification of integral membrane proteins that bind to those compounds. Using a molecular cloning strategy targeting membrane proteins that are known to be present in all forms of life, we isolated a member of the solute carrier family 6 from the scyphozoan jellyfish Cyanea capillata. The phylogenetic analysis suggested that the new transporter sequence belongs to an ancestral group of the nutrient amino acid transporter subfamily and is part of a cluster of cnidarian sequences which may translocate the same substrate. We found that the jellyfish transporter is expressed in neurons of the motor nerve net of the animal. To this end, we established an in situ hybridization protocol for the tissues of C. capillata and developed a specific antibody to the jellyfish transporter. Finally, we showed that the gene that codes for the jellyfish transporter also expresses a long non-coding RNA. We hope that this research will contribute to studies that seek to understand what constitutes a neuron in species that belong to an ancient phylum.
Collapse
Affiliation(s)
- Christelle Bouchard
- College of Science and Mathematics, University of South Florida, Sarasota, Florida, United States of America
| | - Dmitri Y. Boudko
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, Illinois, United States of America
| | - Rays H. Y. Jiang
- Global and Planetary Health, College of Public Health, University of South Florida USF Genomics Program, Tampa, Florida, United States of America
| |
Collapse
|
75
|
Newman SA. Inherency of Form and Function in Animal Development and Evolution. Front Physiol 2019; 10:702. [PMID: 31275153 PMCID: PMC6593199 DOI: 10.3389/fphys.2019.00702] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/20/2019] [Indexed: 12/11/2022] Open
Abstract
I discuss recent work on the origins of morphology and cell-type diversification in Metazoa – collectively the animals – and propose a scenario for how these two properties became integrated, with the help of a third set of processes, cellular pattern formation, into the developmental programs seen in present-day metazoans. Inherent propensities to generate familiar forms and cell types, in essence a parts kit for the animals, are exhibited by present-day organisms and were likely more prominent in primitive ones. The structural motifs of animal bodies and organs, e.g., multilayered, hollow, elongated and segmented tissues, internal and external appendages, branched tubes, and modular endoskeletons, can be accounted for by the properties of mesoscale masses of metazoan cells. These material properties, in turn, resulted from the recruitment of “generic” physical forces and mechanisms – adhesion, contraction, polarity, chemical oscillation, diffusion – by toolkit molecules that were partly conserved from unicellular holozoan antecedents and partly novel, distributed in the different metazoan phyla in a fashion correlated with morphological complexity. The specialized functions of the terminally differentiated cell types in animals, e.g., contraction, excitability, barrier function, detoxification, excretion, were already present in ancestral unicellular organisms. These functions were implemented in metazoan differentiation in some cases using the same transcription factors as in single-celled ancestors, although controlled by regulatory mechanisms that were hybrids between earlier-evolved processes and regulatory innovations, such as enhancers. Cellular pattern formation, mediated by released morphogens interacting with biochemically responsive and excitable tissues, drew on inherent self-organizing processes in proto-metazoans to transform clusters of holozoan cells into animal embryos and organs.
Collapse
Affiliation(s)
- Stuart A Newman
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
76
|
Martinez-Corral R, Liu J, Prindle A, Süel GM, Garcia-Ojalvo J. Metabolic basis of brain-like electrical signalling in bacterial communities. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180382. [PMID: 31006362 PMCID: PMC6553584 DOI: 10.1098/rstb.2018.0382] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
Information processing in the mammalian brain relies on a careful regulation of the membrane potential dynamics of its constituent neurons, which propagates across the neuronal tissue via electrical signalling. We recently reported the existence of electrical signalling in a much simpler organism, the bacterium Bacillus subtilis. In dense bacterial communities known as biofilms, nutrient-deprived B. subtilis cells in the interior of the colony use electrical communication to transmit stress signals to the periphery, which interfere with the growth of peripheral cells and reduce nutrient consumption, thereby relieving stress from the interior. Here, we explicitly address the interplay between metabolism and electrophysiology in bacterial biofilms, by introducing a spatially extended mathematical model that combines the metabolic and electrical components of the phenomenon in a discretized reaction-diffusion scheme. The model is experimentally validated by environmental and genetic perturbations, and confirms that metabolic stress is transmitted through the bacterial population via a potassium wave. Interestingly, this behaviour is reminiscent of cortical spreading depression in the brain, characterized by a wave of electrical activity mediated by potassium diffusion that has been linked to various neurological disorders, calling for future studies on the evolutionary link between the two phenomena. This article is part of the theme issue 'Liquid brains, solid brains: How distributed cognitive architectures process information'.
Collapse
Affiliation(s)
- Rosa Martinez-Corral
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| | - Jintao Liu
- Center for Infectious Diseases Research and Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, People's Republic of China
| | - Arthur Prindle
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
| | - Gürol M. Süel
- Division of Biological Sciences, San Diego Center for Systems Biology and Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona 08003, Spain
| |
Collapse
|
77
|
Reuter I, Jäckels J, Kneitz S, Kuper J, Lesch KP, Lillesaar C. Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish. Biol Open 2019; 8:bio.040683. [PMID: 31036752 PMCID: PMC6602327 DOI: 10.1242/bio.040683] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development. Summary: This study highlights Fgf3 in a novel context where it is part of a signalling pathway of critical importance for development of hypothalamic monoaminergic cells in zebrafish.
Collapse
Affiliation(s)
- Isabel Reuter
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jana Jäckels
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Susanne Kneitz
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany
| | - Jochen Kuper
- Structural Biology, Rudolf Virchow Center for Biomedical Research, University of Würzburg, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Germany.,Laboratory of Psychiatric Neurobiology, Institute of Molecular Medicine, I.M. Sechenov First Moscow State Medical University, Moscow, Russia; Department of Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christina Lillesaar
- Department of Physiological Chemistry, Biocenter, Am Hubland, University of Würzburg, Germany .,Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Germany
| |
Collapse
|
78
|
Hooper SL. Motor Evolution: Lit-Up Hydra Bare All. Curr Biol 2019; 29:R408-R410. [PMID: 31163142 DOI: 10.1016/j.cub.2019.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Whole-animal Hydra imaging shows that epitheliomuscular calcium influx dynamics and inter-cell progression speeds are very different for different behaviors. Hydra movements therefore likely arise from fast (ionotropic) and slow (metabotropic) neural mechanisms, and from interactions among the epitheliomuscular cells themselves.
Collapse
Affiliation(s)
- Scott L Hooper
- Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
79
|
Norekian TP, Moroz LL. Neural system and receptor diversity in the ctenophore
Beroe abyssicola. J Comp Neurol 2019; 527:1986-2008. [DOI: 10.1002/cne.24633] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Department of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
80
|
Townsend JP, Sweeney AM. Catecholic Compounds in Ctenophore Colloblast and Nerve Net Proteins Suggest a Structural Role for DOPA-Like Molecules in an Early-Diverging Animal Lineage. THE BIOLOGICAL BULLETIN 2019; 236:55-65. [PMID: 30707604 DOI: 10.1086/700695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ctenophores, or comb jellies, are among the earliest-diverging extant animal lineages. Several recent phylogenomic studies suggest that they may even be the sister group to all other animals. This unexpected finding remains difficult to contextualize, particularly given ctenophores' unique and sometimes poorly understood physiology. Colloblasts, a ctenophore-specific cell type found on the surface of these animals' tentacles, are emblematic of this difficulty. The exterior of the colloblast is dotted with granules that burst and release an adhesive on contact with prey, ensnaring it for consumption. To date, little is known about the fast-acting underwater adhesive that these cells secrete or its biochemistry. We present evidence that proteins in the colloblasts of the ctenophore Pleurobrachia bachei incorporate catecholic compounds similar to the amino acid l-3,4-dihydroxyphenylalanine. These compounds are associated with adhesive-containing granules on the surface of colloblasts, suggesting that they may play a role in prey capture, akin to dihydroxyphenylalanine-based adhesives in mussel byssus. We also present unexpected evidence of similar catecholic compounds in association with the subepithelial nerve net. There, catecholic compounds are present in spatial patterns similar to those of l-3,4-dihydroxyphenylalanine and its derivatives in cnidarian nerves, where they are associated with membranes and possess unknown functionality. This "structural" use of catecholic molecules in ctenophores represents the earliest-diverging animal lineage in which this trait has been observed, though it remains unclear whether structural catechols are deeply rooted in animals or whether they have arisen multiple times.
Collapse
Key Words
- -DOPA, -3,4-dihydroxyphenylalanine
- -diphenols, -diphenols
- AcOH, acetic acid
- CTAB, cetrimonium bromide
- DOPA, dihydroxyphenylalanine
- FIF, formaldehyde-induced fluorescence
- PBS, phosphate-buffered saline
- PFA, paraformaldehyde
- TCA, tricholoracetic acid.
Collapse
|
81
|
Fux JE, Mehta A, Moffat J, Spafford JD. Eukaryotic Voltage-Gated Sodium Channels: On Their Origins, Asymmetries, Losses, Diversification and Adaptations. Front Physiol 2018; 9:1406. [PMID: 30519187 PMCID: PMC6259924 DOI: 10.3389/fphys.2018.01406] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
The appearance of voltage-gated, sodium-selective channels with rapid gating kinetics was a limiting factor in the evolution of nervous systems. Two rounds of domain duplications generated a common 24 transmembrane segment (4 × 6 TM) template that is shared amongst voltage-gated sodium (Nav1 and Nav2) and calcium channels (Cav1, Cav2, and Cav3) and leak channel (NALCN) plus homologs from yeast, different single-cell protists (heterokont and unikont) and algae (green and brown). A shared architecture in 4 × 6 TM channels include an asymmetrical arrangement of extended extracellular L5/L6 turrets containing a 4-0-2-2 pattern of cysteines, glycosylated residues, a universally short III-IV cytoplasmic linker and often a recognizable, C-terminal PDZ binding motif. Six intron splice junctions are conserved in the first domain, including a rare U12-type of the minor spliceosome provides support for a shared heritage for sodium and calcium channels, and a separate lineage for NALCN. The asymmetrically arranged pores of 4x6 TM channels allows for a changeable ion selectivity by means of a single lysine residue change in the high field strength site of the ion selectivity filter in Domains II or III. Multicellularity and the appearance of systems was an impetus for Nav1 channels to adapt to sodium ion selectivity and fast ion gating. A non-selective, and slowly gating Nav2 channel homolog in single cell eukaryotes, predate the diversification of Nav1 channels from a basal homolog in a common ancestor to extant cnidarians to the nine vertebrate Nav1.x channel genes plus Nax. A close kinship between Nav2 and Nav1 homologs is evident in the sharing of most (twenty) intron splice junctions. Different metazoan groups have lost their Nav1 channel genes altogether, while vertebrates rapidly expanded their gene numbers. The expansion in vertebrate Nav1 channel genes fills unique functional niches and generates overlapping properties contributing to redundancies. Specific nervous system adaptations include cytoplasmic linkers with phosphorylation sites and tethered elements to protein assemblies in First Initial Segments and nodes of Ranvier. Analogous accessory beta subunit appeared alongside Nav1 channels within different animal sub-phyla. Nav1 channels contribute to pace-making as persistent or resurgent currents, the former which is widespread across animals, while the latter is a likely vertebrate adaptation.
Collapse
Affiliation(s)
- Julia E Fux
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Amrit Mehta
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Jack Moffat
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - J David Spafford
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
82
|
Norekian TP, Moroz LL. Neuromuscular organization of the Ctenophore
Pleurobrachia bachei. J Comp Neurol 2018; 527:406-436. [DOI: 10.1002/cne.24546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 01/21/2023]
Affiliation(s)
- Tigran P. Norekian
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences Moscow Russia
| | - Leonid L. Moroz
- Whitney Laboratory for Marine Bioscience University of Florida St. Augustine Florida
- Friday Harbor Laboratories University of Washington Friday Harbor Washington
- Departments of Neuroscience and McKnight Brain Institute University of Florida Gainesville Florida
| |
Collapse
|
83
|
Laumer CE, Gruber-Vodicka H, Hadfield MG, Pearse VB, Riesgo A, Marioni JC, Giribet G. Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. eLife 2018; 7:e36278. [PMID: 30373720 PMCID: PMC6277202 DOI: 10.7554/elife.36278] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The phylogenetic placement of the morphologically simple placozoans is crucial to understanding the evolution of complex animal traits. Here, we examine the influence of adding new genomes from placozoans to a large dataset designed to study the deepest splits in the animal phylogeny. Using site-heterogeneous substitution models, we show that it is possible to obtain strong support, in both amino acid and reduced-alphabet matrices, for either a sister-group relationship between Cnidaria and Placozoa, or for Cnidaria and Bilateria as seen in most published work to date, depending on the orthologues selected to construct the matrix. We demonstrate that a majority of genes show evidence of compositional heterogeneity, and that support for the Cnidaria + Bilateria clade can be assigned to this source of systematic error. In interpreting these results, we caution against a peremptory reading of placozoans as secondarily reduced forms of little relevance to broader discussions of early animal evolution.
Collapse
Affiliation(s)
- Christopher E Laumer
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
| | | | - Michael G Hadfield
- Kewalo Marine LaboratoryPacific Biosciences Research Center and the University of Hawaii-ManoaHonoluluUnited States
| | - Vicki B Pearse
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzUnited States
| | - Ana Riesgo
- Invertebrate Division, Life Sciences DepartmentThe Natural History MuseumLondonUnited Kingdom
| | - John C Marioni
- Wellcome Trust Sanger InstituteHinxtonUnited Kingdom
- European Molecular Biology Laboratories-European Bioinformatics InstituteHinxtonUnited Kingdom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUnited Kingdom
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUnited States
| |
Collapse
|
84
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
85
|
Moroz LL. NeuroSystematics and Periodic System of Neurons: Model vs Reference Species at Single-Cell Resolution. ACS Chem Neurosci 2018; 9:1884-1903. [PMID: 29989789 DOI: 10.1021/acschemneuro.8b00100] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
There is more than one way to develop neuronal complexity, and animals frequently use different molecular toolkits to achieve similar functional outcomes (=convergent evolution). Neurons are different not only because they have different functions, but also because neurons and circuits have different genealogies, and perhaps independent origins at the broadest scale from ctenophores and cnidarians to cephalopods and primates. By combining modern phylogenomics, single-neuron sequencing (scRNA-seq), machine learning, single-cell proteomics, and metabolomic across Metazoa, it is possible to reconstruct the evolutionary histories of neurons tracing them to ancestral secretory cells. Comparative data suggest that neurons, and perhaps synapses, evolved at least 2-3 times (in ctenophore, cnidarian and bilateral lineages) during ∼600 million years of animal evolution. There were also several independent events of the nervous system centralization either from a common bilateral/cnidarian ancestor without the bona fide neurons or from the urbilaterian with diffuse, nerve-net type nervous system. From the evolutionary standpoint, (i) a neuron should be viewed as a functional rather than a genetic character, and (ii) any given neural system might be chimeric and composed of different cell lineages with distinct origins and evolutionary histories. The identification of distant neural homologies or examples of convergent evolution among 34 phyla will not only allow the reconstruction of neural systems' evolution but together with single-cell "omic" approaches the proposed synthesis would lead to the "Periodic System of Neurons" with predictive power for neuronal phenotypes and plasticity. Such a phylogenetic classification framework of Neuronal Systematics (NeuroSystematics) might be a conceptual analog of the Periodic System of Chemical Elements. scRNA-seq profiling of all neurons in an entire brain or Brain-seq is now fully achievable in many nontraditional reference species across the entire animal kingdom. Arguably, marine animals are the most suitable for the proposed tasks because the world oceans represent the greatest taxonomic and body-plan diversity.
Collapse
Affiliation(s)
- Leonid L. Moroz
- Department of Neuroscience and McKnight Brain Institute, University of Florida, 1149 Newell Drive, Gainesville, Florida 32611, United States
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd., St. Augustine, Florida 32080, United States
| |
Collapse
|
86
|
Farnsworth KD. How Organisms Gained Causal Independence and How It Might Be Quantified. BIOLOGY 2018; 7:E38. [PMID: 29966241 PMCID: PMC6163937 DOI: 10.3390/biology7030038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/30/2018] [Accepted: 06/23/2018] [Indexed: 12/20/2022]
Abstract
Two broad features are jointly necessary for autonomous agency: organisational closure and the embodiment of an objective-function providing a ‘goal’: so far only organisms demonstrate both. Organisational closure has been studied (mostly in abstract), especially as cell autopoiesis and the cybernetic principles of autonomy, but the role of an internalised ‘goal’ and how it is instantiated by cell signalling and the functioning of nervous systems has received less attention. Here I add some biological ‘flesh’ to the cybernetic theory and trace the evolutionary development of step-changes in autonomy: (1) homeostasis of organisationally closed systems; (2) perception-action systems; (3) action selection systems; (4) cognitive systems; (5) memory supporting a self-model able to anticipate and evaluate actions and consequences. Each stage is characterised by the number of nested goal-directed control-loops embodied by the organism, summarised as will-nestedness N. Organism tegument, receptor/transducer system, mechanisms of cellular and whole-organism re-programming and organisational integration, all contribute to causal independence. CONCLUSION organisms are cybernetic phenomena whose identity is created by the information structure of the highest level of causal closure (maximum N), which has increased through evolution, leading to increased causal independence, which might be quantifiable by ‘Integrated Information Theory’ measures.
Collapse
|
87
|
de Wiljes OO, van Elburg RAJ, Keijzer FA. Modelling the effects of short and random proto-neural elongations. J R Soc Interface 2018; 14:rsif.2017.0399. [PMID: 29070590 DOI: 10.1098/rsif.2017.0399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 11/12/2022] Open
Abstract
To understand how neurons and nervous systems first evolved, we need an account of the origins of neural elongations: why did neural elongations (axons and dendrites) first originate, such that they could become the central component of both neurons and nervous systems? Two contrasting conceptual accounts provide different answers to this question. Braitenberg's vehicles provide the iconic illustration of the dominant input-output (IO) view. Here, the basic role of neural elongations is to connect sensors to effectors, both situated at different positions within the body. For this function, neural elongations are thought of as comparatively long and specific connections, which require an articulated body involving substantial developmental processes to build. Internal coordination (IC) models stress a different function for early nervous systems. Here, the coordination of activity across extended parts of a multicellular body is held central, in particular, for the contractions of (muscle) tissue. An IC perspective allows the hypothesis that the earliest proto-neural elongations could have been functional even when they were initially simple, short and random connections, as long as they enhanced the patterning of contractile activity across a multicellular surface. The present computational study provides a proof of concept that such short and random neural elongations can play this role. While an excitable epithelium can generate basic forms of patterning for small body configurations, adding elongations allows such patterning to scale up to larger bodies. This result supports a new, more gradual evolutionary route towards the origins of the very first neurons and nervous systems.
Collapse
Affiliation(s)
- Oltman O de Wiljes
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands .,Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| | - R A J van Elburg
- Institute of Artificial Intelligence, University of Groningen, Groningen, The Netherlands
| | - Fred A Keijzer
- Department of Theoretical Philosophy, University of Groningen, Groningen, The Netherlands.,Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
88
|
Belahbib H, Renard E, Santini S, Jourda C, Claverie JM, Borchiellini C, Le Bivic A. New genomic data and analyses challenge the traditional vision of animal epithelium evolution. BMC Genomics 2018; 19:393. [PMID: 29793430 PMCID: PMC5968619 DOI: 10.1186/s12864-018-4715-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 11/16/2022] Open
Abstract
Background The emergence of epithelia was the foundation of metazoan expansion. Epithelial tissues are a hallmark of metazoans deeply rooted in the evolution of their complex developmental morphogenesis processes. However, studies on the epithelial features of non-bilaterians are still sparse and it remains unclear whether the last common metazoan ancestor possessed a fully functional epithelial toolkit or if it was acquired later during metazoan evolution. Results To investigate the early evolution of animal epithelia, we sequenced the genome and transcriptomes of two new sponge species to characterize epithelial markers such as the E-cadherin complex and the polarity complexes for all classes (Calcarea, Demospongiae, Hexactinellida, Homoscleromorpha) of sponges (phylum Porifera) and compare them with their homologues in Placozoa and in Ctenophora. We found that Placozoa and most sponges possess orthologues of all essential genes encoding proteins characteristic of bilaterian epithelial cells, as well as their conserved interaction domains. In stark contrast, we found that ctenophores lack several major polarity complex components such as the Crumbs complex and Scribble. Furthermore, the E-cadherin ctenophore orthologue exhibits a divergent cytoplasmic domain making it unlikely to interact with its canonical cytoplasmic partners. Conclusions These unexpected findings challenge the current evolutionary paradigm on the emergence of epithelia. Altogether, our results raise doubt on the homology of protein complexes and structures involved in cell polarity and adhesive-type junctions between Ctenophora and Bilateria epithelia. Electronic supplementary material The online version of this article (10.1186/s12864-018-4715-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hassiba Belahbib
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Emmanuelle Renard
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France
| | - Sébastien Santini
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Cyril Jourda
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, Aix-Marseille Université & CNRS UMR 7256, Mediterranean Institute of Microbiology (IMM FR 3479), Marseille, France.
| | - Carole Borchiellini
- Aix Marseille Univ, Univ Avignon, CNRS, IRD, UMR 7263, Mediterranean Institute of Marine and Continental Biodiversity and Ecology (IMBE), Station Marine d'Endoume, Marseille, France.
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille Luminy (IBDM), Marseille, France.
| |
Collapse
|
89
|
Di Cosmo A, Maselli V, Polese G. Octopus vulgaris: An Alternative in Evolution. Results Probl Cell Differ 2018; 65:585-598. [DOI: 10.1007/978-3-319-92486-1_26] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
90
|
Abstract
Zic family genes encode five C2H2-type zinc finger domain-containing proteins that have many roles in animal development and maintenance. Recent phylogenetic analyses showed that Zic family genes are distributed in metazoans (multicellular animals), except Porifera (sponges) and Ctenophora (comb jellies). The sequence comparisons revealed that the zinc finger domains were absolutely conserved among the Zic family genes. Zic zinc finger domains are similar to, but distinct from those of the Gli, Glis, and Nkl gene family, and these zinc finger protein families are proposed to have been derived from a common ancestor gene. The Gli-Glis-Nkl-Zic superfamily and some other eukaryotic zinc finger proteins share a tandem CWCH2 (tCWCH2) motif, a hallmark for inter-zinc finger interaction between two adjacent C2H2 zinc fingers. In Zic family proteins, there exist additional evolutionally conserved domains known as ZOC and ZFNC, both of which may have appeared before cnidarian-bilaterian divergence. Comparison of the exon-intron boundaries in the Zic zinc finger domains revealed an intron (A-intron) that was absolutely conserved in bilaterians (metazoans with bilateral symmetry) and a placozoan (a simple nonparasitic metazoan). In vertebrates, there are five to seven Zic paralogs among which Zic1, Zic2, and Zic3 are generated through a tandem gene duplication and carboxy-terminal truncation in a vertebrate common ancestor, sharing a conserved carboxy-terminal sequence. Several hypotheses have been proposed to explain the Zic family phylogeny, including their origin, unique features in the first and second zinc finger motif, evolution of the nuclear localization signal, significance of the animal taxa-selective degeneration, gene multiplication in the vertebrate lineage, and involvement in the evolutionary alteration of the animal body plan.
Collapse
|
91
|
Liebeskind BJ, Hofmann HA, Hillis DM, Zakon HH. Evolution of Animal Neural Systems. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2017. [DOI: 10.1146/annurev-ecolsys-110316-023048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nervous systems are among the most spectacular products of evolution. Their provenance and evolution have been of interest and often the subjects of intense debate since the late nineteenth century. The genomics era has provided researchers with a new set of tools with which to study the early evolution of neurons, and recent progress on the molecular evolution of the first neurons has been both exciting and frustrating. It has become increasingly obvious that genomic data are often insufficient to reconstruct complex phenotypes in deep evolutionary time because too little is known about how gene function evolves over deep time. Therefore, additional functional data across the animal tree are a prerequisite to a fuller understanding of cell evolution. To this end, we review the functional modules of neurons and the evolution of their molecular components, and we introduce the idea of hierarchical molecular evolution.
Collapse
Affiliation(s)
- Benjamin J. Liebeskind
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
| | - Hans A. Hofmann
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| | - David M. Hillis
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
| | - Harold H. Zakon
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712
- Center for Computational Biology and Bioinformatics, University of Texas at Austin, Austin, Texas 78712
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712
- Department of Neuroscience, University of Texas at Austin, Austin, Texas 78712
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
92
|
Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM. Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 2017; 1:1737-1746. [PMID: 28993654 PMCID: PMC5664179 DOI: 10.1038/s41559-017-0331-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/31/2017] [Indexed: 11/17/2022]
Abstract
Ctenophora, compromising approximately 200 described species, is an important lineage for understanding metazoan evolution and is of great ecological and economic importance. Ctenophore diversity includes species with unique colloblasts used for prey capture, smooth and striated muscles, benthic and pelagic lifestyles, and locomotion with ciliated paddles or muscular propulsion. However, ancestral states of traits are debated and relationships among many lineages are unresolved. Here, using 27 newly sequenced ctenophore transcriptomes, publicly available data, and methods to control systematic error we establish the placement of Ctenophora as the sister group to all other animals and refine phylogenetic relationships within ctenophores. Molecular clock analyses suggest modern ctenophore diversity originated approximately 350MYA ± 88 MY, conflicting with previous hypotheses of approximately 65 MYA. We recover Euplokamis dunlapae, a species with striated muscles, as the sister lineage to other sampled ctenophores. Ancestral state reconstruction shows the most recent common ancestor of extant ctenophores was pelagic, possessed tentacles, was bioluminescent, and did not have separate sexes. Our results imply at least two transitions from a pelagic to a benthic lifestyle within Ctenophora, suggesting such transitions were more common in animal diversification than appreciated.
Collapse
Affiliation(s)
- Nathan V Whelan
- Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA. .,Warm Springs Fish Technology Center, US Fish and Wildlife Service, 5308 Spring St, Warm Springs, GA, 31830, USA.
| | - Kevin M Kocot
- Department of Biological Sciences, The University of Alabama, Box 870344, Tuscaloosa, AL, 35487, USA
| | - Tatiana P Moroz
- The Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Krishanu Mukherjee
- The Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Peter Williams
- The Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA
| | - Gustav Paulay
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Leonid L Moroz
- The Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, 32080, USA. .,Department of Neuroscience and McKnight Brain Institute, University of Florida, Gainesville, FL, 32611, USA.
| | - Kenneth M Halanych
- Molette Biology Laboratory for Environmental and Climate Change Studies, Department of Biological Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
93
|
Senatore A, Reese TS, Smith CL. Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 2017; 220:3381-3390. [PMID: 28931721 PMCID: PMC5612019 DOI: 10.1242/jeb.162396] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/04/2017] [Indexed: 12/17/2022]
Abstract
Trichoplax adhaerens is a flat, millimeter-sized marine animal that adheres to surfaces and grazes on algae. Trichoplax displays a repertoire of different feeding behaviors despite the apparent absence of a true nervous system with electrical or chemical synapses. It glides along surfaces to find food, propelled by beating cilia on cells at its ventral surface, and pauses during feeding by arresting ciliary beating. We found that when endomorphin-like peptides are applied to an animal, ciliary beating is arrested, mimicking natural feeding pauses. Antibodies against these neuropeptides label cells that express the neurosecretory proteins and voltage-gated calcium channels implicated in regulated secretion. These cells are embedded in the ventral epithelium, where they comprise only 4% of the total, and are concentrated around the edge of the animal. Each bears a cilium likely to be chemosensory and used to detect algae. Trichoplax pausing during feeding or spontaneously in the absence of food often induce their neighbors to pause as well, even neighbors not in direct contact. Pausing behavior propagates from animal to animal across distances much greater than the signal that diffuses from just one animal, so we presume that the peptides secreted from one animal elicit secretion from nearby animals. Signal amplification by peptide-induced peptide secretion explains how a small number of sensory secretory cells lacking processes and synapses can evoke a wave of peptide secretion across the entire animal to globally arrest ciliary beating and allow pausing during feeding.
Collapse
Affiliation(s)
- Adriano Senatore
- University of Toronto Mississauga, Mississauga, ON, Canada L5L 1C6
| | | | | |
Collapse
|
94
|
Abstract
The evolutionary origin of synapses and neurons is an enigmatic subject that inspires much debate. Non-bilaterian metazoans, both with and without neurons and their closest relatives already contain many components of the molecular toolkits for synapse functions. The origin of these components and their assembly into ancient synaptic signaling machineries are particularly important in light of recent findings on the phylogeny of non-bilaterian metazoans. The evolution of synapses and neurons are often discussed only from a metazoan perspective leaving a considerable gap in our understanding. By taking an integrative approach we highlight the need to consider different, but extremely relevant phyla and to include the closest unicellular relatives of metazoans, the ichthyosporeans, filastereans and choanoflagellates, to fully understand the evolutionary origin of synapses and neurons. This approach allows for a detailed understanding of when and how the first pre- and postsynaptic signaling machineries evolved.
Collapse
Affiliation(s)
- Pawel Burkhardt
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, United Kingdom
| | - Simon G Sprecher
- Institute of Cell and Developmental Biology, Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
95
|
The birth of the synapse. Brain Struct Funct 2017; 222:3369-3374. [DOI: 10.1007/s00429-017-1459-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 10/19/2022]
|
96
|
van Duijn M. Phylogenetic origins of biological cognition: convergent patterns in the early evolution of learning. Interface Focus 2017; 7:20160158. [PMID: 28479986 PMCID: PMC5413897 DOI: 10.1098/rsfs.2016.0158] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Various forms of elementary learning have recently been discovered in organisms lacking a nervous system, such as protists, fungi and plants. This finding has fundamental implications for how we view the role of convergent evolution in biological cognition. In this article, I first review the evidence for basic forms of learning in aneural organisms, focusing particularly on habituation and classical conditioning and considering the plausibility for convergent evolution of these capacities. Next, I examine the possible role of convergent evolution regarding these basic learning abilities during the early evolution of nervous systems. The evolution of nervous systems set the stage for at least two major events relevant to convergent evolution that are central to biological cognition: (i) nervous systems evolved, perhaps more than once, because of strong selection pressures for sustaining sensorimotor strategies in increasingly larger multicellular organisms and (ii) associative learning was a subsequent adaptation that evolved multiple times within the neuralia. Although convergent evolution of basic forms of learning among distantly related organisms such as protists, plants and neuralia is highly plausible, more research is needed to verify whether these forms of learning within the neuralia arose through convergent or parallel evolution.
Collapse
Affiliation(s)
- Marc van Duijn
- Faculty of Arts, Culture and Cognition, Rijksuniversiteit Groningen, Oude Boteringestraat 34, Groningen, The Netherlands
| |
Collapse
|
97
|
Petralia RS, Wang YX, Mattson MP, Yao PJ. The Diversity of Spine Synapses in Animals. Neuromolecular Med 2016; 18:497-539. [PMID: 27230661 PMCID: PMC5158183 DOI: 10.1007/s12017-016-8405-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/11/2016] [Indexed: 12/23/2022]
Abstract
Here we examine the structure of the various types of spine synapses throughout the animal kingdom. Based on available evidence, we suggest that there are two major categories of spine synapses: invaginating and non-invaginating, with distributions that vary among different groups of animals. In the simplest living animals with definitive nerve cells and synapses, the cnidarians and ctenophores, most chemical synapses do not form spine synapses. But some cnidarians have invaginating spine synapses, especially in photoreceptor terminals of motile cnidarians with highly complex visual organs, and also in some mainly sessile cnidarians with rapid prey capture reflexes. This association of invaginating spine synapses with complex sensory inputs is retained in the evolution of higher animals in photoreceptor terminals and some mechanoreceptor synapses. In contrast to invaginating spine synapse, non-invaginating spine synapses have been described only in animals with bilateral symmetry, heads and brains, associated with greater complexity in neural connections. This is apparent already in the simplest bilaterians, the flatworms, which can have well-developed non-invaginating spine synapses in some cases. Non-invaginating spine synapses diversify in higher animal groups. We also discuss the functional advantages of having synapses on spines and more specifically, on invaginating spines. And finally we discuss pathologies associated with spine synapses, concentrating on those systems and diseases where invaginating spine synapses are involved.
Collapse
Affiliation(s)
- Ronald S Petralia
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA.
| | - Ya-Xian Wang
- Advanced Imaging Core, NIDCD/NIH, 35A Center Drive, Room 1E614, Bethesda, MD, 20892-3729, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Pamela J Yao
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| |
Collapse
|
98
|
Senatore A, Raiss H, Le P. Physiology and Evolution of Voltage-Gated Calcium Channels in Early Diverging Animal Phyla: Cnidaria, Placozoa, Porifera and Ctenophora. Front Physiol 2016; 7:481. [PMID: 27867359 PMCID: PMC5095125 DOI: 10.3389/fphys.2016.00481] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 10/07/2016] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium (Cav) channels serve dual roles in the cell, where they can both depolarize the membrane potential for electrical excitability, and activate transient cytoplasmic Ca2+ signals. In animals, Cav channels play crucial roles including driving muscle contraction (excitation-contraction coupling), gene expression (excitation-transcription coupling), pre-synaptic and neuroendocrine exocytosis (excitation-secretion coupling), regulation of flagellar/ciliary beating, and regulation of cellular excitability, either directly or through modulation of other Ca2+-sensitive ion channels. In recent years, genome sequencing has provided significant insights into the molecular evolution of Cav channels. Furthermore, expanded gene datasets have permitted improved inference of the species phylogeny at the base of Metazoa, providing clearer insights into the evolution of complex animal traits which involve Cav channels, including the nervous system. For the various types of metazoan Cav channels, key properties that determine their cellular contribution include: Ion selectivity, pore gating, and, importantly, cytoplasmic protein-protein interactions that direct sub-cellular localization and functional complexing. It is unclear when these defining features, many of which are essential for nervous system function, evolved. In this review, we highlight some experimental observations that implicate Cav channels in the physiology and behavior of the most early-diverging animals from the phyla Cnidaria, Placozoa, Porifera, and Ctenophora. Given our limited understanding of the molecular biology of Cav channels in these basal animal lineages, we infer insights from better-studied vertebrate and invertebrate animals. We also highlight some apparently conserved cellular functions of Cav channels, which might have emerged very early on during metazoan evolution, or perhaps predated it.
Collapse
Affiliation(s)
- Adriano Senatore
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Hamad Raiss
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| | - Phuong Le
- Department of Biology, University of Toronto Mississauga Mississauga, ON, Canada
| |
Collapse
|
99
|
|
100
|
Eisthen HL, Theis KR. Animal-microbe interactions and the evolution of nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150052. [PMID: 26598731 DOI: 10.1098/rstb.2015.0052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Animals ubiquitously interact with environmental and symbiotic microbes, and the effects of these interactions on animal physiology are currently the subject of intense interest. Nevertheless, the influence of microbes on nervous system evolution has been largely ignored. We illustrate here how taking microbes into account might enrich our ideas about the evolution of nervous systems. For example, microbes are involved in animals' communicative, defensive, predatory and dispersal behaviours, and have likely influenced the evolution of chemo- and photosensory systems. In addition, we speculate that the need to regulate interactions with microbes at the epithelial surface may have contributed to the evolutionary internalization of the nervous system.
Collapse
Affiliation(s)
- Heather L Eisthen
- Department of Integrative Biology, Michigan State University, 288 Farm Lane Rm 203, East Lansing, MI 48824, USA BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA
| | - Kevin R Theis
- BEACON Center for the Study of Evolution in Action, 567 Wilson Road Rm 1441, East Lansing, MI 48824, USA Department of Internal Medicine, University of Michigan Medical School, 1150 West Medical Center Drive, MSRB I Rm 1510A, Ann Arbor, MI 48109, USA
| |
Collapse
|