51
|
Samir M, Pessler F. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications. Front Vet Sci 2016; 3:22. [PMID: 27092305 PMCID: PMC4819147 DOI: 10.3389/fvets.2016.00022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 02/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic.
Collapse
Affiliation(s)
- Mohamed Samir
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Zoonoses Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Frank Pessler
- TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany; Helmholtz Center for Infection Research, Braunschweig, Germany
| |
Collapse
|
52
|
Lennartz F, Bayer K, Czerwonka N, Lu Y, Kehr K, Hirz M, Steinmetzer T, Garten W, Herden C. Surface glycoprotein of Borna disease virus mediates virus spread from cell to cell. Cell Microbiol 2016; 18:340-54. [PMID: 26332529 PMCID: PMC7162304 DOI: 10.1111/cmi.12515] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 07/24/2015] [Accepted: 08/21/2015] [Indexed: 12/01/2022]
Abstract
Borna disease virus (BDV) is a non-segmented negative-stranded RNA virus that maintains a strictly neurotropic and persistent infection in affected end hosts. The primary target cells for BDV infection are brain cells, e.g. neurons and astrocytes. The exact mechanism of how infection is propagated between these cells and especially the role of the viral glycoprotein (GP) for cell-cell transmission, however, are still incompletely understood. Here, we use different cell culture systems, including rat primary astrocytes and mixed cultures of rat brain cells, to show that BDV primarily spreads through cell-cell contacts. We employ a highly stable and efficient peptidomimetic inhibitor to inhibit the furin-mediated processing of GP and demonstrate that cleaved and fusion-active GP is strictly necessary for the cell-to-cell spread of BDV. Together, our quantitative observations clarify the role of Borna disease virus-glycoprotein for viral dissemination and highlight the regulation of GP expression as a potential mechanism to limit viral spread and maintain persistence. These findings furthermore indicate that targeting host cell proteases might be a promising approach to inhibit viral GP activation and spread of infection.
Collapse
Affiliation(s)
- Frank Lennartz
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Karen Bayer
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Nadine Czerwonka
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yinghui Lu
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Kristine Kehr
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Manuela Hirz
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Torsten Steinmetzer
- Institute of Pharmaceutical Chemistry, Philipps University Marburg, Marburg, Germany
| | - Wolfgang Garten
- Institute of Virology, Philipps University Marburg, Marburg, Germany
| | - Christiane Herden
- Institute of Veterinary Pathology, Justus-Liebig-University Giessen, Giessen, Germany
| |
Collapse
|
53
|
Hagendorf N, Conzelmann KK. Recombinant Fluorescent Rabies Virus Vectors for Tracing Neurons and Synaptic Connections. Cold Spring Harb Protoc 2015; 2015:pdb.top089391. [PMID: 26631133 DOI: 10.1101/pdb.top089391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recombinant rabies virus (RV) vectors expressing fluorescent proteins allow staining of neurons from many mammalian species and enable the study of neuron morphology. Because viral spread occurs only between neurons that have synaptic connections, these vectors also permit transsynaptic tracing. A recently established system for restriction of transsynaptic tracing to a single transsynaptic jump, dubbed monosynaptic tracing, uses glycoprotein gene-defective, pseudotyped RV. This allows infection of defined cells and transient complementation with the glycoprotein in situ to support a single step of transsynaptic crossing to presynaptic cells. Here, we introduce protocols describing the production of RV vectors, including the recovery of recombinant RV from complementary DNA (cDNA) and virus pseudotyping in vitro. This allows retrograde staining of neurons projecting to the inoculation site.
Collapse
|
54
|
Phylogenetic analysis of Indian rabies virus isolates targeting the complete glycoprotein gene. INFECTION GENETICS AND EVOLUTION 2015; 36:333-338. [DOI: 10.1016/j.meegid.2015.09.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 08/19/2015] [Accepted: 09/25/2015] [Indexed: 11/19/2022]
|
55
|
Cationic amphiphilic drugs enhance entry of lentiviral particles pseudotyped with rabies virus glycoprotein into non-neuronal cells. Antiviral Res 2015; 124:122-31. [PMID: 26542648 DOI: 10.1016/j.antiviral.2015.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 02/08/2023]
Abstract
Amiodarone and other cationic amphiphilic drugs (CADs) inhibit cell entry by diverse human pathogenic viruses including Filoviruses, Dengue virus and Japanese encephalitis virus. They are thus considered potential broad spectrum antiviral agents. Here we report the unexpected finding that amiodarone and other CADs markedly enhance rabies virus (RABV) glycoprotein- (GP-) mediated cell entry of pseudotyped lentiviruses into non-neuronal cells but not in neuronal cells. Increased cell entry can also be elicited when CADs are added several hours after pseudoviral attachment. Perturbing endosomal processing with phosphoinosite-3-kinase inhibitors wortmannin and LY294002 mimics the effects of CADs on RABV GP-mediated cell entry. Thus, CADs may enhance RABV GP-mediated cell entry of pseudotyped lentiviruses by promoting a late step of the pseudoviral cell entry process, possibly release from an endosomal compartment into the cytosol. In contrast to the pseudotyped lentiviruses, infection by fully infectious RABV was not enhanced by CADs, indicating, that the observed stimulation of RABV GP mediated lentivirus entry also depended on the used lentivirus vector backbone. In conclusion, we show that while CADs inhibit cell entry of diverse viruses they can also have a paradoxical enhancing effect on the ability of a viral glycoprotein to mediate cell entry depending on the cellular and viral context. Although, we show CAD-mediated enhancement of entry only for pseudoviruses, but not fully infectious RABV, the potential to unexpectedly enhance viral entry should be taken into account when considering use of CADs as antiviral agents.
Collapse
|
56
|
|
57
|
Osakada F. [From the connectome to brain function: rabies virus tools for elucidating structure and function of neural circuits]. Nihon Yakurigaku Zasshi 2015; 146:98-105. [PMID: 26256748 DOI: 10.1254/fpj.146.98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
58
|
Nassi JJ, Cepko CL, Born RT, Beier KT. Neuroanatomy goes viral! Front Neuroanat 2015; 9:80. [PMID: 26190977 PMCID: PMC4486834 DOI: 10.3389/fnana.2015.00080] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 05/25/2015] [Indexed: 02/03/2023] Open
Abstract
The nervous system is complex not simply because of the enormous number of neurons it contains but by virtue of the specificity with which they are connected. Unraveling this specificity is the task of neuroanatomy. In this endeavor, neuroanatomists have traditionally exploited an impressive array of tools ranging from the Golgi method to electron microscopy. An ideal method for studying anatomy would label neurons that are interconnected, and, in addition, allow expression of foreign genes in these neurons. Fortuitously, nature has already partially developed such a method in the form of neurotropic viruses, which have evolved to deliver their genetic material between synaptically connected neurons while largely eluding glia and the immune system. While these characteristics make some of these viruses a threat to human health, simple modifications allow them to be used in controlled experimental settings, thus enabling neuroanatomists to trace multi-synaptic connections within and across brain regions. Wild-type neurotropic viruses, such as rabies and alpha-herpes virus, have already contributed greatly to our understanding of brain connectivity, and modern molecular techniques have enabled the construction of recombinant forms of these and other viruses. These newly engineered reagents are particularly useful, as they can target genetically defined populations of neurons, spread only one synapse to either inputs or outputs, and carry instructions by which the targeted neurons can be made to express exogenous proteins, such as calcium sensors or light-sensitive ion channels, that can be used to study neuronal function. In this review, we address these uniquely powerful features of the viruses already in the neuroanatomist's toolbox, as well as the aspects of their biology that currently limit their utility. Based on the latter, we consider strategies for improving viral tracing methods by reducing toxicity, improving control of transsynaptic spread, and extending the range of species that can be studied.
Collapse
Affiliation(s)
- Jonathan J Nassi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies La Jolla, CA, USA
| | - Constance L Cepko
- Department of Genetics, Harvard Medical School Boston, MA, USA ; Department of Ophthalmology, Howard Hughes Medical Institute, Harvard Medical School Boston, MA, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School Boston, MA, USA ; Center for Brain Science, Harvard University Cambridge, MA, USA
| | - Kevin T Beier
- Department of Psychiatry and Behavioral Sciences and Department of Biology, Stanford University Stanford, CA, USA
| |
Collapse
|
59
|
Davis BM, Rall GF, Schnell MJ. Everything You Always Wanted to Know About Rabies Virus (But Were Afraid to Ask). Annu Rev Virol 2015; 2:451-71. [PMID: 26958924 DOI: 10.1146/annurev-virology-100114-055157] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cultural impact of rabies, the fatal neurological disease caused by infection with rabies virus, registers throughout recorded history. Although rabies has been the subject of large-scale public health interventions, chiefly through vaccination efforts, the disease continues to take the lives of about 40,000-70,000 people per year, roughly 40% of whom are children. Most of these deaths occur in resource-poor countries, where lack of infrastructure prevents timely reporting and postexposure prophylaxis and the ubiquity of domestic and wild animal hosts makes eradication unlikely. Moreover, although the disease is rarer than other human infections such as influenza, the prognosis following a bite from a rabid animal is poor: There is currently no effective treatment that will save the life of a symptomatic rabies patient. This review focuses on the major unanswered research questions related to rabies virus pathogenesis, especially those connecting the disease progression of rabies with the complex dysfunction caused by the virus in infected cells. The recent applications of cutting-edge research strategies to this question are described in detail.
Collapse
Affiliation(s)
| | - Glenn F Rall
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Matthias J Schnell
- Department of Microbiology and Immunology and.,Jefferson Vaccine Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, 19107; .,Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| |
Collapse
|
60
|
Sato S, Ohara S, Tsutsui KI, Iijima T. Effects of G-gene Deletion and Replacement on Rabies Virus Vector Gene Expression. PLoS One 2015; 10:e0128020. [PMID: 26023771 PMCID: PMC4449044 DOI: 10.1371/journal.pone.0128020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 04/21/2015] [Indexed: 12/26/2022] Open
Abstract
The glycoprotein-gene (G gene) -deleted rabies virus (RV) vector is a powerful tool to examine the function and structure of neural circuits. We previously reported that the deletion of the G gene enhances the transgene expression level of the RV vector. However, the mechanism of this enhancement remains to be clarified. We presume that there are two possible factors for this enhancement. The first factor is the glycoprotein of RV, which shows cytotoxicity; thus, may cause a dysfunction in the translation process of infected cells. The second possible factor is the enhanced expression of the L gene, which encodes viral RNA polymerase. In the RV, it is known that the gene expression level is altered depending on the position of the gene. Since G-gene deletion displaces the L gene in the genome, the expression of the L gene and viral transcription may be enhanced. In this study, we compared the transgene expression level and viral transcription of three recombinant RV vectors. The effect of glycoprotein was examined by comparing the viral gene expression of G-gene-intact RV and G-gene-replaced RV. Despite the fact that the L-gene transcription level of these two RV vectors was similar, the G-gene-replaced RV vector showed higher viral transcription and transgene expression level than the G-gene-intact RV vector. To examine the effect of the position of the L gene, we compared the viral gene expression of the G-gene-deleted RV and G-gene-replaced RV. The G-gene-deleted RV vector showed higher L-gene transcription, viral transcription, and transgene expression level than the G-gene-replaced RV vector. These results indicate that G-gene deletion enhances the transgene expression level through at least two factors, the absence of glycoprotein and enhancement of L-gene expression. These findings enable investigators to design a useful viral vector that shows a controlled desirable transgene expression level in applications.
Collapse
Affiliation(s)
- Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
- * E-mail:
| |
Collapse
|
61
|
Grealish S, Heuer A, Cardoso T, Kirkeby A, Jönsson M, Johansson J, Björklund A, Jakobsson J, Parmar M. Monosynaptic Tracing using Modified Rabies Virus Reveals Early and Extensive Circuit Integration of Human Embryonic Stem Cell-Derived Neurons. Stem Cell Reports 2015; 4:975-83. [PMID: 26004633 PMCID: PMC4471831 DOI: 10.1016/j.stemcr.2015.04.011] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 04/22/2015] [Accepted: 04/22/2015] [Indexed: 01/19/2023] Open
Abstract
Human embryonic stem cell (hESC)-derived dopamine neurons are currently moving toward clinical use for Parkinson’s disease (PD). However, the timing and extent at which stem cell-derived neurons functionally integrate into existing host neural circuitry after transplantation remain largely unknown. In this study, we use modified rabies virus to trace afferent and efferent connectivity of transplanted hESC-derived neurons in a rat model of PD and report that grafted human neurons integrate into the host neural circuitry in an unexpectedly rapid and extensive manner. The pattern of connectivity resembled that of local endogenous neurons, while ectopic connections were not detected. Revealing circuit integration of human dopamine neurons substantiates their potential use in clinical trials. Additionally, our data present rabies-based tracing as a valuable and widely applicable tool for analyzing graft connectivity that can easily be adapted to analyze connectivity of a variety of different neuronal sources and subtypes in different disease models. Monosynaptic tracing is used to uncover circuit integration of hESC-derived neurons Afferent and efferent synaptic contacts of grafted hESC-derived neurons are revealed Network integration in a rat model of Parkinson’s disease is stable for 6 months
Collapse
Affiliation(s)
- Shane Grealish
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Andreas Heuer
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Tiago Cardoso
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Agnete Kirkeby
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Marie Jönsson
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Jenny Johansson
- Department of Experimental Medical Science, Molecular Neurogenetics, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Anders Björklund
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Johan Jakobsson
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden; Department of Experimental Medical Science, Molecular Neurogenetics, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden
| | - Malin Parmar
- Department of Experimental Medical Science, Developmental and Regenerative Neurobiology, Wallenberg Neuroscience Center, Lund University, 22184 Lund, Sweden; Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| |
Collapse
|
62
|
Papaneri AB, Bernbaum JG, Blaney JE, Jahrling PB, Schnell MJ, Johnson RF. Controlled viral glycoprotein expression as a safety feature in a bivalent rabies-ebola vaccine. Virus Res 2015; 197:54-8. [PMID: 25481284 PMCID: PMC4362543 DOI: 10.1016/j.virusres.2014.11.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 12/25/2022]
Abstract
Using a recombinant rabies (RABV) vaccine platform, we have developed several safe and effective vaccines. Most recently, we have developed a RABV-based ebolavirus (EBOV) vaccine that is efficacious in nonhuman primates. One safety feature of this vaccine is the utilization of a live but replication-deficient RABV construct. In this construct, the RABV glycoprotein (G) has been deleted from the genome, requiring G trans complementation in order for new infectious viruses to be released from the initial infected cell. Here we analyze this safety feature of the bivalent RABV-based EBOV vaccine comprised of the G-deleted RABV backbone expressing EBOV glycoprotein (GP). We found that, while the level of RABV genome in infected cells is equivalent regardless of G supplementation, the production of infectious virus is indeed restricted by the lack of G, and most importantly, that the presence of EBOV GP does not substitute for G. These findings further support the safety profile of this replication-deficient RABV-EBOV bivalent vaccine.
Collapse
|
63
|
Osakada F, Takahashi M. Challenges in retinal circuit regeneration: linking neuronal connectivity to circuit function. Biol Pharm Bull 2015; 38:341-57. [PMID: 25757915 DOI: 10.1248/bpb.b14-00771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tremendous progress has been made in retinal regeneration, as exemplified by successful transplantation of retinal pigment epithelia and photoreceptor cells in the adult retina, as well as by generation of retinal tissue from embryonic stem cells and induced pluripotent cells. However, it remains unknown how new photoreceptors integrate within retinal circuits and contribute to vision restoration. There is a large gap in our understanding, at both the cellular and behavioral levels, of the functional roles of new neurons in the adult retina. This gap largely arises from the lack of appropriate methods for analyzing the organization and function of new neurons at the circuit level. To bridge this gap and understand the functional roles of new neurons in living animals, it will be necessary to identify newly formed connections, correlate them with function, manipulate their activity, and assess the behavioral outcome of these manipulations. Recombinant viral vectors are powerful tools not only for controlling gene expression and reprogramming cells, but also for tracing cell fates and neuronal connectivity, monitoring biological functions, and manipulating the physiological state of a specific cell population. These virus-based approaches, combined with electrophysiology and optical imaging, will provide circuit-level insight into neural regeneration and facilitate new strategies for achieving vision restoration in the adult retina. Herein, we discuss challenges and future directions in retinal regeneration research.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University; Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, California 92037, USA; PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | | |
Collapse
|
64
|
Singh NK, Meshram CD, Sonwane AA, Dahiya SS, Pawar SS, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Protection of mice against lethal rabies virus challenge using short interfering RNAs (siRNAs) delivered through lentiviral vector. Mol Biotechnol 2014; 56:91-101. [PMID: 23877894 PMCID: PMC7090658 DOI: 10.1007/s12033-013-9685-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The antiviral potential of small interfering RNAs (siRNAs) targeting rabies virus (RV) polymerase (L) and nucleoprotein (N) genes delivered through lentiviral vector was investigated. For in vitro evaluation, siRNAs expressing BHK-21 cell lines (BHK-L and BHK-N) were developed using transduction with Lenti-L and Lenti-N lentiviruses encoding siRNAs against RV-L and N genes, respectively. When these cell lines were challenged in vitro with RV Pasteur virus-11 (PV-11) strain, there was reduction in number of RV-specific foci and target gene transcripts indicating inhibitory effect on RV multiplication. For in vivo evaluation, mice were treated intracerebrally with lentiviruses and challenged with 20 LD50 of RV challenge virus standard-11 (CVS-11) strain by intramuscular route in masseter muscle. Five out of eight mice treated with Lenti-N survived indicating 62.5 % protection. The control and Lenti-L-treated mice died within 7–10 days indicating lethal nature of challenge virus and no protection. These results demonstrated that siRNA targeting RV-N could not only inhibit RV multiplication, but also conferred protection in mice against lethal RV challenge. These findings have implication on therapeutic use of siRNA targeting RV-N against RV infection.
Collapse
Affiliation(s)
- Niraj K Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243122, India
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Stanek E, Cheng S, Takatoh J, Han BX, Wang F. Monosynaptic premotor circuit tracing reveals neural substrates for oro-motor coordination. eLife 2014; 3:e02511. [PMID: 24843003 PMCID: PMC4041139 DOI: 10.7554/elife.02511] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/24/2014] [Indexed: 11/21/2022] Open
Abstract
Feeding behaviors require intricately coordinated activation among the muscles of the jaw, tongue, and face, but the neural anatomical substrates underlying such coordination remain unclear. In this study, we investigate whether the premotor circuitry of jaw and tongue motoneurons contain elements for coordination. Using a modified monosynaptic rabies virus-based transsynaptic tracing strategy, we systematically mapped premotor neurons for the jaw-closing masseter muscle and the tongue-protruding genioglossus muscle. The maps revealed that the two groups of premotor neurons are distributed in regions implicated in rhythmogenesis, descending motor control, and sensory feedback. Importantly, we discovered several premotor connection configurations that are ideally suited for coordinating bilaterally symmetric jaw movements, and for enabling co-activation of specific jaw, tongue, and facial muscles. Our findings suggest that shared premotor neurons that form specific multi-target connections with selected motoneurons are a simple and general solution to the problem of orofacial coordination.DOI: http://dx.doi.org/10.7554/eLife.02511.001.
Collapse
Affiliation(s)
- Edward Stanek
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Steven Cheng
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Jun Takatoh
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Bao-Xia Han
- Department of Neurobiology, Duke University Medical Center, Durham, United States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical Center, Durham, United States Department of Cell Biology, Duke University Medical Center, Durham, United States
| |
Collapse
|
66
|
Wei Y, Gong K, Ao Q, Wang A, Gong Y, Zuo H, Zhang Y, Wang J, Wang G. Lentiviral vectors enveloped with rabies virus glycoprotein can be used as a novel retrograde tracer to assess nerve recovery in rat sciatic nerve injury models. Cell Tissue Res 2014; 355:255-66. [PMID: 24326614 DOI: 10.1007/s00441-013-1756-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/31/2013] [Indexed: 10/25/2022]
Abstract
Retrograde labeling has become the new "gold standard" technique to evaluate the recovery of injured peripheral nerves. In this study, lentiviral vectors with rabies virus glycoprotein envelop (RABV-G-LV) and RFP genes are injected into gastrocnemius muscle to determine the location of RFP in sciatic nerves. We then examine RFP expression in the L4-S1 spinal cord and sensory dorsal root ganglia and in the rat sciatic nerve, isolated Schwann cells, viral dose to expression relationship and the use of RABV-G-LV as a retrograde tracer for regeneration in the injured rat sciatic nerve. VSV-G-LV was used as control for viral envelope specificity. Results showed that RFP were positive in the myelin sheath and lumbar spinal motorneurons of the RABV-G-LV group. RFP gene could be detected both in myelinated Schwann cells and lumbar spinal motor neurons in the RABV-G-LV group. Schwann cells isolated from the RABV-G-LV injected postnatal Sprague Dawley rats were also RFP-gene positive. All the results obtained in the VSV-G-LV group were negative. Distribution of RFP was unaltered and the level of RFP expression increasing with time progressing. RABV-G-LV could assess the amount of functional regenerating nerve fibers two months post-operation in the four models. This method offers an easy-operated and consistent standardized approach for retrograde labeling regenerating peripheral nerves, which may be a significant supplement for the previous RABV-G-LV-related retrograde labeling study.
Collapse
Affiliation(s)
- Yujun Wei
- Institute of Neurological Disorders, Yuquan Hospital, Tsinghua University, Beijing, 100049, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Ohara S, Sato S, Oyama K, Tsutsui KI, Iijima T. Rabies virus vector transgene expression level and cytotoxicity improvement induced by deletion of glycoprotein gene. PLoS One 2013; 8:e80245. [PMID: 24244660 PMCID: PMC3820615 DOI: 10.1371/journal.pone.0080245] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023] Open
Abstract
The glycoprotein (G) of rabies virus (RV) is required for binding to neuronal receptors and for viral entry. G-deleted RV vector is a powerful tool for investigating the organization and function of the neural circuits. It gives the investigator the ability to genetically target initial infection to particular neurons and to control trans-synaptic propagation. In this study we have quantitatively evaluated the effect of G gene deletion on the cytotoxicity and transgene expression level of the RV vector. We compared the characteristics of the propagation-competent RV vector (rHEP5.0-CVSG-mRFP) and the G-deleted RV vector (rHEP5.0-ΔG-mRFP), both of which are based on the attenuated HEP-Flury strain and express monomeric red fluorescent protein (mRFP) as a transgene. rHEP5.0-ΔG-mRFP showed lower cytotoxicity than rHEP5.0-CVSG-mRFP, and within 16 days of infection we found no change in the basic electrophysiological properties of neurons infected with the rHEP5.0-ΔG-mRFP. The mRFP expression level of rHEP5.0-ΔG-mRFP was much higher than that of rHEP5.0-CVSG-mRFP, and 3 days after infection the retrogradely infected neurons were clearly visualized by the expressed fluorescent protein without any staining. This may be due to the low cytotoxicity and/or the presumed change in the polymerase gene (L) expression level of the G-deleted RV vector. Although the mechanisms remains to be clarified, the results of this study indicate that deletion of the G gene greatly improves the usability of the RV vector for studying the organization and function of the neural circuits by decreasing the cytotoxicity and increasing the transgene expression level.
Collapse
Affiliation(s)
- Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Sho Sato
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Kei Oyama
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
68
|
Meshram CD, Singh NK, Sonwane AA, Pawar SS, Mishra BP, Chaturvedi VK, Saini M, Singh RP, Gupta PK. Evaluation of single and dual siRNAs targeting rabies virus glycoprotein and nucleoprotein genes for inhibition of virus multiplication in vitro. Arch Virol 2013; 158:2323-32. [PMID: 23754741 PMCID: PMC7086810 DOI: 10.1007/s00705-013-1738-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/16/2013] [Indexed: 11/27/2022]
Abstract
Small interfering RNAs (siRNAs) targeting rabies virus (RV) glycoprotein (G) and nucleoprotein (N) genes were evaluated as antiviral agents against rabies virus in vitro in BHK-21 cells. To select effective siRNAs targeting RV-G, a plasmid-based transient co-transfection approach was used. In this, siRNAs were expressed as short hairpin RNAs (shRNAs), and their ability to inhibit RV-G gene expression was evaluated in cells transfected with a plasmid expressing RV-G. The nine different siRNAs designed to target RV-G exhibited varying degrees of knockdown of RV-G gene expression. One siRNA (si-G7) with considerable effect in knockdown of RV-G expression also demonstrated significant inhibition of RV multiplication in BHK-21 cells after in vitro challenge with the RV Pasteur virus-11 (PV-11) strain. A decrease in the number of fluorescent foci in siRNA-treated cells and a reduction (86.8 %) in the release of RV into infected cell culture supernatant indicated the anti-rabies potential of siRNA. Similarly, treatment with one siRNA targeting RV-N resulted in a decrease in the number of fluorescent foci and a reduction (85.9 %) in the release of RV. As a dual gene silencing approach where siRNAs targeting RV-G and RV-N genes were expressed from single construct, the anti-rabies-virus effect was observed as an 87.4 % reduction in the release of RV. These results demonstrate that siRNAs targeting RV-G and N, both in single and dual form, have potential as antiviral agent against rabies.
Collapse
Affiliation(s)
- Chetan D. Meshram
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Niraj K. Singh
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Arvind A. Sonwane
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Sachin S. Pawar
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - B. P. Mishra
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - V. K. Chaturvedi
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Mohini Saini
- Centre for Wildlife, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - R. P. Singh
- Division of Biological Products, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| | - Praveen K. Gupta
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, 243 122 India
| |
Collapse
|
69
|
Characterization of street rabies virus variants with an additional N-glycan at position 247 in the glycoprotein. Arch Virol 2013; 159:207-16. [DOI: 10.1007/s00705-013-1805-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023]
|
70
|
Abstract
Rabies viruses, negative-strand RNA viruses, infect neurons through axon terminals and spread trans-synaptically in a retrograde direction between neurons. Rabies viruses whose glycoprotein (G) gene is deleted from the genome cannot spread across synapses. Complementation of G in trans, however, enables trans-synaptic spreading of G-deleted rabies viruses to directly connected, presynaptic neurons. Recombinant rabies viruses can encode genes of interest for labeling cells, controlling gene expression and monitoring or manipulating neural activity. Cre-dependent or bridge protein-mediated transduction and single-cell electroporation via the EnvA-TVA or EnvB-TVB (envelope glycoprotein and its specific receptor for avian sarcoma leukosis virus subgroup A or B) system allow cell type-specific or single cell-specific targeting. These rabies virus-based approaches permit the linking of connectivity to cell morphology and circuit function for particular cell types or single cells. Here we describe methods for construction of rabies viral vectors, recovery of G-deleted rabies viruses from cDNA, amplification of the viruses, pseudotyping them with EnvA or EnvB and concentration and titration of the viruses. The entire protocol takes 6-8 weeks.
Collapse
|
71
|
Osten P, Margrie TW. Mapping brain circuitry with a light microscope. Nat Methods 2013; 10:515-23. [PMID: 23722211 PMCID: PMC3982327 DOI: 10.1038/nmeth.2477] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 04/15/2013] [Indexed: 12/16/2022]
Abstract
The beginning of the 21st century has seen a renaissance in light microscopy and anatomical tract tracing that together are rapidly advancing our understanding of the form and function of neuronal circuits. The introduction of instruments for automated imaging of whole mouse brains, new cell type–specific and trans-synaptic tracers, and computational methods for handling the whole-brain data sets has opened the door to neuroanatomical studies at an unprecedented scale. We present an overview of the present state and future opportunities in charting long-range and local connectivity in the entire mouse brain and in linking brain circuits to function.
Collapse
Affiliation(s)
- Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA.
| | | |
Collapse
|
72
|
Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD, Arenkiel BR, Mooney R, Wang F. New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 2013; 77:346-60. [PMID: 23352170 DOI: 10.1016/j.neuron.2012.11.010] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2012] [Indexed: 01/08/2023]
Abstract
Rodents begin to use bilaterally coordinated, rhythmic sweeping of their vibrissae ("whisking") for environmental exploration around 2 weeks after birth. Whether (and how) the vibrissal control circuitry changes after birth is unknown, and the relevant premotor circuitry remains poorly characterized. Using a modified rabies virus transsynaptic tracing strategy, we labeled neurons synapsing directly onto vibrissa facial motor neurons (vFMNs). Sources of potential excitatory, inhibitory, and modulatory vFMN premotor neurons, and differences between the premotor circuitry for vFMNs innervating intrinsic versus extrinsic vibrissal muscles were systematically characterized. The emergence of whisking is accompanied by the addition of new sets of bilateral excitatory inputs to vFMNs from neurons in the lateral paragigantocellularis (LPGi). Furthermore, descending axons from the motor cortex directly innervate LPGi premotor neurons. Thus, neural modules that are well suited to facilitate the bilateral coordination and cortical control of whisking are added to the premotor circuitry in parallel with the emergence of this exploratory behavior.
Collapse
Affiliation(s)
- Jun Takatoh
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Vivar C, van Praag H. Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits 2013; 7:15. [PMID: 23443839 PMCID: PMC3580993 DOI: 10.3389/fncir.2013.00015] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/23/2013] [Indexed: 01/17/2023] Open
Abstract
The hippocampus is crucial for memory formation. New neurons are added throughout life to the hippocampal dentate gyrus (DG), a brain area considered important for differential storage of similar experiences and contexts. To better understand the functional contribution of adult neurogenesis to pattern separation processes, we recently used a novel synapse specific trans-neuronal tracing approach to identify the (sub) cortical inputs to new dentate granule cells (GCs). It was observed that newly born neurons receive sequential innervation from structures important for memory function. Initially, septal-hippocampal cells provide input to new neurons, including transient innervation from mature GCs as well as direct feedback from area CA3 pyramidal neurons. After about 1 month perirhinal (PRH) and lateral entorhinal cortex (LEC), brain areas deemed relevant to integration of novel sensory and environmental information, become substantial input to new GCs. Here, we review the developmental time-course and proposed functional relevance of new neurons, within the context of their unique neural circuitry.
Collapse
Affiliation(s)
- Carmen Vivar
- Neuroplasticity and Behavior Unit, Laboratory of Neurosciences, Intramural Research Program, National Institute on Aging, National Institutes of Health Baltimore, MD, USA
| | | |
Collapse
|
74
|
Ginger M, Haberl M, Conzelmann KK, Schwarz MK, Frick A. Revealing the secrets of neuronal circuits with recombinant rabies virus technology. Front Neural Circuits 2013; 7:2. [PMID: 23355811 PMCID: PMC3553424 DOI: 10.3389/fncir.2013.00002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 01/05/2013] [Indexed: 01/06/2023] Open
Abstract
An understanding of how the brain processes information requires knowledge of the architecture of its underlying neuronal circuits, as well as insights into the relationship between architecture and physiological function. A range of sophisticated tools is needed to acquire this knowledge, and recombinant rabies virus (RABV) is becoming an increasingly important part of this essential toolbox. RABV has been recognized for years for its properties as a synapse-specific trans-neuronal tracer. A novel genetically modified variant now enables the investigation of specific monosynaptic connections. This technology, in combination with other genetic, physiological, optical, and computational tools, has enormous potential for the visualization of neuronal circuits, and for monitoring and manipulating their activity. Here we will summarize the latest developments in this fast moving field and provide a perspective for the use of this technology for the dissection of neuronal circuit structure and function in the normal and diseased brain.
Collapse
Affiliation(s)
- Melanie Ginger
- Neurocentre Magendie, INSERM U862 Bordeaux, France ; University of Bordeaux Bordeaux, France
| | | | | | | | | |
Collapse
|
75
|
Nagai Y. Reverse Genetics of Mononegavirales: The Rabies Virus Paradigm. SENDAI VIRUS VECTOR 2013. [PMCID: PMC7121350 DOI: 10.1007/978-4-431-54556-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The neurotropic rabies virus (RABV) is a prototype member of the Mononegavirales order of viruses and is the most significant human pathogen of the Rhabdoviridae family. A reverse genetics system for RABV was established almost 20 years ago, providing a paradigm for other Mononegavirales members as well. The availability of engineered recombinant viruses opened a new era to study common aspects of Mononegavirales biology and specific aspects of the unique lifestyle and pathogenesis of individual members. Above all, the knowledge gained has allowed engineering of beneficial biomedical tools such as viral vectors, vaccines, and tracers. In this chapter, the development of the classical rabies virus reverse genetics approach is described, and some of the most exciting biomedical applications for recombinant RABV and other Mononegavirales are briefly addressed.
Collapse
|
76
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
77
|
Marston DA, McElhinney LM, Banyard AC, Horton DL, Núñez A, Koser ML, Schnell MJ, Fooks AR. Interspecies protein substitution to investigate the role of the lyssavirus glycoprotein. J Gen Virol 2012; 94:284-292. [PMID: 23100360 PMCID: PMC3709617 DOI: 10.1099/vir.0.048827-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
European bat lyssaviruses type 1 (EBLV-1) and type 2 (EBLV-2) circulate within bat populations throughout Europe and are capable of causing disease indistinguishable from that caused by classical rabies virus (RABV). However, the determinants of viral fitness and pathogenicity are poorly understood. Full-length genome clones based on the highly attenuated, non-neuroinvasive, RABV vaccine strain (SAD-B19) were constructed with the glycoprotein (G) of either SAD-B19 (SN), of EBLV-1 (SN-1) or EBLV-2 (SN-2). In vitro characterization of SN-1 and SN-2 in comparison to wild-type EBLVs demonstrated that the substitution of G affected the final virus titre and antigenicity. In vivo, following peripheral infection with a high viral dose (104 f.f.u.), animals infected with SN-1 had reduced survivorship relative to infection with SN, resulting in survivorship similar to animals infected with EBLV-1. The histopathological changes and antigen distribution observed for SN-1 were more representative of those observed with SN than with EBLV-1. EBLV-2 was unable to achieve a titre equivalent to that of the other viruses. Therefore, a reduced-dose experiment (103 f.f.u.) was undertaken in vivo to compare EBLV-2 and SN-2, which resulted in 100 % survivorship for all recombinant viruses (SN, SN-1 and SN-2) while clinical disease developed in mice infected with the EBLVs. These data indicate that interspecies replacement of G has an effect on virus titre in vitro, probably as a result of suboptimal G–matrix protein interactions, and influences the survival outcome following a peripheral challenge with a high virus titre in mice.
Collapse
Affiliation(s)
- Denise A Marston
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Lorraine M McElhinney
- University of Liverpool, National Consortium for Zoonosis Research, Leahurst, Neston, South Wirral, CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Daniel L Horton
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Alejandro Núñez
- Pathology Unit, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Martin L Koser
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Jefferson Vaccine Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Anthony R Fooks
- University of Liverpool, National Consortium for Zoonosis Research, Leahurst, Neston, South Wirral, CH64 7TE, UK.,Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal Health and Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB, UK
| |
Collapse
|
78
|
Sonwane AA, Dahiya SS, Saini M, Chaturvedi V, Singh R, Gupta PK. Inhibition of rabies virus multiplication by siRNA delivered through adenoviral vector in vitro in BHK-21 cells and in vivo in mice. Res Vet Sci 2012; 93:498-503. [DOI: 10.1016/j.rvsc.2011.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 05/23/2011] [Accepted: 06/08/2011] [Indexed: 10/17/2022]
|
79
|
Choi J, Callaway EM. Monosynaptic inputs to ErbB4-expressing inhibitory neurons in mouse primary somatosensory cortex. J Comp Neurol 2012; 519:3402-14. [PMID: 21618237 DOI: 10.1002/cne.22680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous reports have described inputs to the somatosensory cortex (S1) in mouse or rat using retrograde or anterograde tracers. Such studies do not, however, reveal which particular cell types within the S1 cortex receive direct monosynaptic connections from these input sources. Here we describe the monosynaptic inputs to a subpopulation of mouse S1 inhibitory neurons that express ErbB4. We used a previously described "bridge protein," composed of the ErbB4 ligand, neuregulin (NRG1), fused to the avian viral receptor TVB (TVB-NRG1), along with EnvB pseudotyped lentivirus (LV) and rabies virus (RV), to selectively coinfect ErbB4-expressing neurons (Choi et al. [2010] Proc Natl Acad Sci U S A 107:16703-16708). The RV had its glycoprotein gene deleted and replaced with mCherry, so that infected cells express mCherry and the virus cannot spread without provision of rabies glycoprotein (RG) by transcomplementation. The LV encoded and expressed RG to allow transcomplementation in coinfected neurons, so that the RV could spread transsynaptically and label their direct monosynaptic inputs. The RV could not spread beyond the direct inputs, due to the lack of RG in presynaptic cells. This method revealed long-range connections from thalamus, nucleus basalis, raphe, and distant cortical areas, including ipsilateral motor, secondary somatosensory, retrosplenial, and perirhinal cortex and contralateral S1. In addition, local connections from ipsilateral pyramidal neurons within S1 were labeled. These input sources account for all of the known inputs to S1 described with standard tracers, suggesting that the subpopulation of ErbB4-positive inhibitory neurons infected using the TVB-NRG1 bridge protein receives inputs indiscriminately from S1 input sources.
Collapse
Affiliation(s)
- Jiwon Choi
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | |
Collapse
|
80
|
Yamada K, Park CH, Noguchi K, Kojima D, Kubo T, Komiya N, Matsumoto T, Mitui MT, Ahmed K, Morimoto K, Inoue S, Nishizono A. Serial passage of a street rabies virus in mouse neuroblastoma cells resulted in attenuation: potential role of the additional N-glycosylation of a viral glycoprotein in the reduced pathogenicity of street rabies virus. Virus Res 2012; 165:34-45. [PMID: 22248643 DOI: 10.1016/j.virusres.2012.01.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 12/23/2011] [Accepted: 01/01/2012] [Indexed: 12/25/2022]
Abstract
Street rabies viruses are field isolates known to be highly neurotropic. However, the viral elements related to their pathogenicity have yet to be identified at the nucleotide or amino acid level. Here, through 30 passages in mouse neuroblastoma NA cells, we have established an attenuated variant of street rabies virus strain 1088, originating from a rabid woodchuck followed by 2 passages in the brains of suckling mice. The variant, 1088-N30, was well adapted to NA cells and highly attenuated in adult mice after intramuscular (i.m.) but not intracerebral (i.c.) inoculations. 1088-N30 had seven nucleotide substitutions, and the R196S mutation of the G protein led to an additional N-glycosylation. Street viruses usually possess one or two N-glycosylation sites on the G protein, 1088 has two, while an additional N-glycosylation site is observed in laboratory-adapted strains. We also established a cloned variant 1088-N4#14 by limiting dilution. Apart from the R196S mutation, 1088-N4#14 possessed only one amino acid substitution in the P protein, which is found in several field isolates. 1088-N4#14 also efficiently replicated in NA cells and was attenuated in adult mice after i.m. inoculations, although it was more pathogenic than 1088-N30. The spread of 1088-N30 in the brain was highly restricted after i.m. inoculations, although the pattern of 1088-N4#14's spread was intermediate between that of the parental 1088 and 1088-N30. Meanwhile, both variants strongly induced humoral immune responses in mice compared to 1088. Our results indicate that the additional N-glycosylation is likely related to the reduced pathogenicity. Taken together, we propose that the number of N-glycosylation sites in the G protein is one of the determinants of the pathogenicity of street rabies viruses.
Collapse
Affiliation(s)
- Kentaro Yamada
- Research Promotion Project, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu, Oita 879-5593, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Nhan HL, Callaway EM. Morphology of superior colliculus- and middle temporal area-projecting neurons in primate primary visual cortex. J Comp Neurol 2012; 520:52-80. [PMID: 21674487 PMCID: PMC3886567 DOI: 10.1002/cne.22685] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Layers 5 and 6 of primate primary visual cortex (V1) harbor morphologically diverse cell groups that have corticocortical and corticosubcortical projections. Layer 6 middle temporal area (MT)-projecting neurons are particularly interesting, as they are the only deep-layer cortical neurons that provide both corticocortical feedforward inputs (to area MT) and corticosubcortical feedback projections (to superior colliculus [SC]) (Fries et al. [1985] Exp Brain Res 58:613-616). However, due to limitations in anatomical tracing techniques, little is known about the detailed morphologies of these cells. We therefore applied a genetically modified rabies virus as a retrograde tracer to fill the dendrites of projection neurons with green fluorescent protein (GFP) (Wickersham et al. [2007] Nat Methods 4:47-49). We injected virus into SC or area MT of macaque monkeys and examined labeled cells in V1. Two-thirds of labeled neurons following SC injections were found in layer 5, consisting of "tall-tufted" and "nontufted" cells; the remaining cells were layer 6 "nontufted." Area MT injections labeled neurons in layers 4B and 6, as previously described (Shipp and Zeki [1989] Eur J Neurosci 1:309-332). The layer 6 neurons projecting to MT were remarkably similar to the layer 6 SC-projecting neurons. In contrast to the dense and focused dendritic arbors of layer 5 "tall-tufted" pyramids, all "nontufted" cells had sparse, but unusually long basal dendrites. The nontufted cells closely resemble Meynert cells (le Gros Clark [1942] J Anat 76:369-376; Winfield et al. [1983] Proc R Soc Lond B Biol Sci 217:129-139), but the full in vivo reconstructions presented here show that their basal dendrites can extend much further (up to 1.2 mm) and are less asymmetric than inferred from Golgi reconstructions.
Collapse
Affiliation(s)
- Hoang L. Nhan
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| | - Edward M. Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California 92037
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92037
| |
Collapse
|
82
|
Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 2011; 71:617-31. [PMID: 21867879 DOI: 10.1016/j.neuron.2011.07.005] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2011] [Indexed: 01/12/2023]
Abstract
Glycoprotein-deleted (ΔG) rabies virus is a powerful tool for studies of neural circuit structure. Here, we describe the development and demonstrate the utility of new resources that allow experiments directly investigating relationships between the structure and function of neural circuits. New methods and reagents allowed efficient production of 12 novel ΔG rabies variants from plasmid DNA. These new rabies viruses express useful neuroscience tools, including the Ca(2+) indicator GCaMP3 for monitoring activity; Channelrhodopsin-2 for photoactivation; allatostatin receptor for inactivation by ligand application; and rtTA, ER(T2)CreER(T2), or FLPo, for control of gene expression. These new tools allow neurons targeted on the basis of their connectivity to have their function assayed or their activity or gene expression manipulated. Combining these tools with in vivo imaging and optogenetic methods and/or inducible gene expression in transgenic mice will facilitate experiments investigating neural circuit development, plasticity, and function that have not been possible with existing reagents.
Collapse
Affiliation(s)
- Fumitaka Osakada
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
83
|
A novel borna disease virus vector system that stably expresses foreign proteins from an intercistronic noncoding region. J Virol 2011; 85:12170-8. [PMID: 21937656 DOI: 10.1128/jvi.05554-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), a nonsegmented, negative-strand RNA virus, infects a wide variety of mammalian species and readily establishes a long-lasting, persistent infection in brain cells. Therefore, this virus could be a promising candidate as a novel RNA virus vector enabling stable gene expression in the central nervous system (CNS). Previous studies demonstrated that the 5' untranslated region of the genome is the only site for insertion and expression of a foreign gene. In this study, we established a novel BDV vector in which an additional transcription cassette has been inserted into an intercistronic noncoding region between the viral phosphoprotein (P) and matrix (M) genes. The recombinant BDV (rBDV) carrying green fluorescent protein (GFP) between the P and M genes, rBDV P/M-GFP, expressed GFP efficiently in cultured cells and rodent brains for a long period of time without attenuation. Furthermore, we generated a nonpropagating rBDV, ΔGLLP/M, which lacks the envelope glycoprotein (G) and a splicing intron within the polymerase gene (L), by the transcomplementation system with either transient or stable expression of the G gene. Interestingly, rBDV ΔGLLP/M established a persistent infection in cultured cells with stable expression of GFP in the absence of the expression of G. Using persistently infected rBDV ΔGLLP/M-infected cells, we determined the amino acid region in the cytoplasmic tail (CT) of BDV G important for the release of infectious rBDV particles and also demonstrated that the CT region may be critical for the generation of pseudotyped rBDV having vesicular stomatitis virus G protein. Our results revealed that the newly established BDV vector constitutes an alternative tool not only for stable expression of foreign genes in the CNS but also for understanding the mechanism of the release of enveloped virions.
Collapse
|
84
|
Abstract
Powerful transneuronal tracing technologies exploit the ability of some neurotropic viruses to travel across neuronal pathways and to function as self-amplifying markers. Rabies virus is the only viral tracer that is entirely specific, as it propagates exclusively between connected neurons by strictly unidirectional (retrograde) transneuronal transfer, allowing for the stepwise identification of neuronal connections of progressively higher order. Transneuronal tracing studies in primates and rodent models prior to the development of clinical disease have provided valuable information on rabies pathogenesis. We have shown that rabies virus propagation occurs at chemical synapses but not via gap junctions or cell-to-cell spread. Infected neurons remain viable, as they can express their neurotransmitters and cotransport other tracers. Axonal transport occurs at high speed, and all populations of the same synaptic order are infected simultaneously regardless of their neurotransmitters, synaptic strength, and distance, showing that rabies virus receptors are ubiquitously distributed within the CNS. Conversely, in the peripheral nervous system, rabies virus receptors are present only on motor endplates and motor axons, since uptake and transneuronal transmission to the CNS occur exclusively via the motor route, while sensory and autonomic endings are not infected. Infection of sensory and autonomic ganglia requires longer incubation times, as it reflects centrifugal propagation from the CNS to the periphery, via polysynaptic connections from sensory and autonomic neurons to the initially infected motoneurons. Virus is recovered from end organs only after the development of rabies because anterograde spread to end organs is likely mediated by passive diffusion, rather than active transport mechanisms.
Collapse
Affiliation(s)
- Gabriella Ugolini
- Neurobiologie et Développement, UPR3294 CNRS, Institut de Neurobiologie Alfred Fessard, 91198 Gif-sur-Yvette, France
| |
Collapse
|
85
|
Abstract
Until recently, single-stranded negative sense RNA viruses (ssNSVs) were one of only a few important human viral pathogens, which could not be created from cDNA. The inability to manipulate their genomes hindered their detailed genetic analysis. A key paper from Conzelmann's laboratory in 1994 changed this with the publication of a method to recover rabies virus (RABV) from cDNA. This discovery not only dramatically changed the broader field of ssNSV biology but also opened a whole new avenue for studying RABV pathogenicity, developing novel RABV vaccines as well a new generation of RABV-based vaccine vectors, and creating research tools important in neuroscience such as neuronal tracing.
Collapse
Affiliation(s)
- Emily A Gomme
- Department of Microbiology and Immunology, Jefferson Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
86
|
Intracerebral delivery of small interfering RNAs (siRNAs) using adenoviral vector protects mice against lethal peripheral rabies challenge. Virus Res 2011; 163:11-8. [PMID: 21864591 PMCID: PMC7114402 DOI: 10.1016/j.virusres.2011.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/08/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022]
Abstract
To investigate the potential of RNA interference (RNAi) as antiviral agent against rabies, two small interfering RNAs (siRNAs) targeting rabies virus (RABV) nucleoprotein (N) and polymerase (L) genes were designed and evaluated. Both siRNAs knockdown or silenced the target RABV genes as evaluated in a plasmid based transient expression model. For efficient delivery, adenoviruses expressing the siRNAs were constructed and antiviral potential of the delivered siRNAs was investigated in BHK-21 cells. When cells treated with adenoviruses expressing siRNAs were challenged with RABV, there was 88.35±2.4% and 41.52±9.3% reduction in RABV multiplication in infected cells with siRNAs targeting RABV-N and L genes, respectively. Relative quantification of RABV transcripts using real-time PCR revealed knockdown of both RABV-N and L gene transcripts, however, significant reduction was observed only with adenovirus expressing siRNA against RABV-N. When mice treated intracerebrally with adenoviruses expressing siRNAs were challenged peripherally with lethal RABV by the intramuscular route in masseter muscle, there was 66.6% and 33.3% protection with adenoviruses expressing siRNAs against RABV-N and L genes, respectively. These results demonstrated that adenovirus expressing siRNA against RABV-N efficiently inhibited the RABV multiplication both, in vitro and in vivo and conferred significant protection against lethal RABV challenge. This supported the hypothesis that RNAi, based on siRNA targeting RABV-N gene can prevent RABV infection and holds the potential of RNAi as an approach to prevent rabies infection.
Collapse
|
87
|
Tomar NR, Singh V, Marla SS, Chandra R, Kumar R, Kumar A. Molecular docking studies with rabies virus glycoprotein to design viral therapeutics. Indian J Pharm Sci 2011; 72:486-90. [PMID: 21218060 PMCID: PMC3013581 DOI: 10.4103/0250-474x.73905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Revised: 07/14/2010] [Accepted: 07/30/2010] [Indexed: 01/03/2023] Open
Abstract
The genome of rabies virus encodes five proteins; the nucleoprotein, the phosphoprotein, the matrix protein, the glycoprotein, and the RNA-dependent RNA polymerase. Among these, the glycoprotein is the most important as it is the major contributor to pathogenicity and virus neutralizing antibody response. Keeping in mind that glycoprotein is the only protein exposed on the surface of virus and is thought to be responsible for the interaction with the cell membrane, it was attempted to target glycoprotein by a ligand polyethylene glycol 4000, which blocks its active site, as seen by molecular operating environment software, so that it may be possible to prevent the spread of virus into the host. The ligand polyethylene glycol 4000 was retrieved from Research Collaboratory for Structural Bioinformatics protein data bank by providing the glycoprotein sequence to the databank. In this study it was observed that the ligand was successfully docked on a major portion of antigenic site II of glycoprotein by mimicking the virus neutralizing antibodies. This knowledge may be important for the development of novel therapies for the treatment of rabies and other viral diseases in the future.
Collapse
Affiliation(s)
- N R Tomar
- Department of Molecular Biology and Genetic Engineering, G. B. Pant University of Agriculture and Technology, Pantnagar-263 145, India
| | | | | | | | | | | |
Collapse
|
88
|
Du J, Tang Q, Huang Y, Rodney WE, Wang L, Liang G. Development of recombinant rabies viruses vectors with Gaussia luciferase reporter based on Chinese vaccine strain CTN181. Virus Res 2011; 160:82-8. [PMID: 21645562 PMCID: PMC7114501 DOI: 10.1016/j.virusres.2011.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 12/24/2022]
Abstract
The recombinant rabies virus (RV) vectors encoding the secreted gene marker Gaussia luciferase (Gluc) were generated based on Chinese vaccine strain CTN181. Vectors included replication competent CTN-Gluc, CTN/GQ333R-Gluc, in which the amino acid in position 333 of glycoprotein was mutated from glutamine (Q) to arginine (R), and replication constrained CTNΔG-Gluc, in which the glycoprotein encoding gene (G) was deleted. The growth of recombinant RVs in transfected cells was confirmed through biochemical assays of Gluc activities. Gluc expression in recombinant CTNΔG-Gluc virus was highest while that in CTN/GQ333R-Gluc virus was lowest. The optimal time to harvest recombinant RVs was determined and the function of pathogenic and nonpathogenic rabies glycoprotein in virus recovery was examined. The addition of glycoprotein was slightly beneficial for virus recovery and the titer of rescued virus was lowered even when the amino acid in G333 position of glycoprotein was mutated from nonpathogenic Gln to pathogenic Arg. Conclusions: Viral vectors based on a human rabies vaccine strain CTN181 were successful. Gluc was useful as an in vitro gene marker for monitoring the growth of recombinant RVs iteratively in cell culture.
Collapse
Affiliation(s)
- Jialiang Du
- State Key Laboratory for Infectious Diseases Prevention and Control, State Key Laboratory for Molecular Virology and Genetic Engineering, Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai St. Changping Dist., Beijing 102206, China
| | | | | | | | | | | |
Collapse
|
89
|
Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM. Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci U S A 2010; 107:21848-53. [PMID: 21115815 PMCID: PMC3003023 DOI: 10.1073/pnas.1011756107] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We describe a powerful system for revealing the direct monosynaptic inputs to specific cell types in Cre-expressing transgenic mice through the use of Cre-dependent helper virus and a modified rabies virus. We generated helper viruses that target gene expression to Cre-expressing cells, allowing us to control initial rabies virus infection and subsequent monosynaptic retrograde spread. Investigators can use this system to elucidate the connections onto a desired cell type in a high-throughput manner, limited only by the availability of Cre mouse lines. This method allows for identification of circuits that would be extremely tedious or impossible to study with other methods and can be used to build subcircuit maps of inputs onto many different types of cells within the same brain region. Furthermore, by expressing various transgenes from the rabies genome, this system also has the potential to allow manipulation of targeted neuronal circuits without perturbing neighboring cells.
Collapse
Affiliation(s)
- Nicholas R. Wall
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, CA 92093; and
| | - Ian R. Wickersham
- The Howard Hughes Medical Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Ali Cetin
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Mauricio De La Parra
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Edward M. Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, CA 92037
- Neurosciences Graduate Program, University of California at San Diego, La Jolla, CA 92093; and
| |
Collapse
|
90
|
Ugolini G. Advances in viral transneuronal tracing. J Neurosci Methods 2010; 194:2-20. [DOI: 10.1016/j.jneumeth.2009.12.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 11/28/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
|
91
|
Haubensak W, Kunwar P, Cai H, Ciocchi S, Wall N, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Lüthi A, Anderson DJ. Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 2010; 468:270-6. [PMID: 21068836 PMCID: PMC3597095 DOI: 10.1038/nature09553] [Citation(s) in RCA: 649] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Accepted: 10/06/2010] [Indexed: 12/12/2022]
Abstract
The role of different amygdala nuclei (neuroanatomical subdivisions) in processing Pavlovian conditioned fear has been studied extensively, but the function of the heterogeneous neuronal subtypes within these nuclei remains poorly understood. Here we use molecular genetic approaches to map the functional connectivity of a subpopulation of GABA-containing neurons, located in the lateral subdivision of the central amygdala (CEl), which express protein kinase C-δ (PKC-δ). Channelrhodopsin-2-assisted circuit mapping in amygdala slices and cell-specific viral tracing indicate that PKC-δ(+) neurons inhibit output neurons in the medial central amygdala (CEm), and also make reciprocal inhibitory synapses with PKC-δ(-) neurons in CEl. Electrical silencing of PKC-δ(+) neurons in vivo suggests that they correspond to physiologically identified units that are inhibited by the conditioned stimulus, called CEl(off) units. This correspondence, together with behavioural data, defines an inhibitory microcircuit in CEl that gates CEm output to control the level of conditioned freezing.
Collapse
Affiliation(s)
- Wulf Haubensak
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Prabhat Kunwar
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Haijiang Cai
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
| | - Stephane Ciocchi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - Nicholas Wall
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Ravikumar Ponnusamy
- Department of Psychology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jonathan Biag
- Laboratory for Neuroimaging, University of California, Los Angeles, Los Angeles, CA 90095
| | - Hong-Wei Dong
- Laboratory for Neuroimaging, University of California, Los Angeles, Los Angeles, CA 90095
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305
| | - Edward M. Callaway
- Systems Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | - Michael S. Fanselow
- Department of Psychology and the Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Andreas Lüthi
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | - David J. Anderson
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA USA 91125
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA USA 91125
| |
Collapse
|
92
|
Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J Virol 2010; 85:697-704. [PMID: 21068252 DOI: 10.1128/jvi.01309-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Previous comparisons of different rabies virus (RV) strains suggested an inverse relationship between pathogenicity and the amount of glycoprotein produced in infected cells. In order to provide more insight into this relationship, we pursued an experimental approach that allowed us to alter the glycoprotein expression level without altering the glycoprotein sequence, thereby eliminating the contribution of amino acid changes to differences in viral virulence. To this end, we constructed an infectious clone of the highly pathogenic rabies virus strain CVS-N2c and replaced its cognate glycoprotein gene with synthetic versions in which silent mutations were introduced to replace wild-type codons with the most or least frequently used synonymous codons. A recombinant N2c variant containing the fully codon-optimized G gene and three variants carrying a partially codon-deoptimized G gene were recovered on mouse neuroblastoma cells and shown to express 2- to 3-fold more and less glycoprotein, respectively, than wild-type N2c. Pathogenicity studies in mice revealed the WT-N2c virus to be the most pathogenic strain. Variants containing partially codon-deoptimized glycoprotein genes or the codon-optimized gene were less pathogenic than WT-N2c but still caused significant mortality. We conclude that the expression level of the glycoprotein gene does have an impact on pathogenicity but is not a dominant factor that determines pathogenicity. Thus, strategies such as changes in codon usage that aim solely at altering the expression level of the glycoprotein gene do not suffice to render a pathogenic rabies virus apathogenic and are not a viable and safe approach for attenuation of a pathogenic strain.
Collapse
|
93
|
Choi J, Young JAT, Callaway EM. Selective viral vector transduction of ErbB4 expressing cortical interneurons in vivo with a viral receptor-ligand bridge protein. Proc Natl Acad Sci U S A 2010; 107:16703-8. [PMID: 20823240 PMCID: PMC2944738 DOI: 10.1073/pnas.1006233107] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Both treatment of disease and basic studies of complex tissues can benefit from directing viral vector infection to specific cell types. We have used a unique cell targeting method to direct viral vector transduction to cerebral cortical neurons expressing the neuregulin (NRG) receptor ErbB4; both NRG and ErbB4 have been implicated in schizophrenia, and ErbB4 expression in cerebral cortex is known to be restricted to inhibitory neurons. We find that a bridge protein composed of the avian viral receptor TVB fused to NRG, along with EnvB-pseudotyped virus, is able to direct infection selectively to ErbB4-expressing inhibitory cortical neurons in vivo. Interestingly, although ErbB4 is expressed in a broad range of cortical inhibitory cell types, NRG-dependent infection is restricted to a more selective subset of inhibitory cell types. These results demonstrate a tool that can be used for further studies of NRG and ErbB receptors in brain circuits and demonstrate the feasibility for further development of related bridge proteins to target gene expression to other specific cell types in complex tissues.
Collapse
Affiliation(s)
| | - John A. T. Young
- Nomis Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA 92037
| | | |
Collapse
|
94
|
Marshel JH, Mori T, Nielsen KJ, Callaway EM. Targeting single neuronal networks for gene expression and cell labeling in vivo. Neuron 2010; 67:562-74. [PMID: 20797534 PMCID: PMC2929426 DOI: 10.1016/j.neuron.2010.08.001] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 11/28/2022]
Abstract
To understand fine-scale structure and function of single mammalian neuronal networks, we developed and validated a strategy to genetically target and trace monosynaptic inputs to a single neuron in vitro and in vivo. The strategy independently targets a neuron and its presynaptic network for specific gene expression and fine-scale labeling, using single-cell electroporation of DNA to target infection and monosynaptic retrograde spread of a genetically modifiable rabies virus. The technique is highly reliable, with transsynaptic labeling occurring in every electroporated neuron infected by the virus. Targeting single neocortical neuronal networks in vivo, we found clusters of both spiny and aspiny neurons surrounding the electroporated neuron in each case, in addition to intricately labeled distal cortical and subcortical inputs. This technique, broadly applicable for probing and manipulating single neuronal networks with single-cell resolution in vivo, may help shed new light on fundamental mechanisms underlying circuit development and information processing by neuronal networks throughout the brain.
Collapse
Affiliation(s)
- James H Marshel
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
95
|
Sunden Y, Yano S, Ishida S, Ochiai K, Umemura T. Intracerebral vaccination suppresses the spread of rabies virus in the mouse brain. Microbes Infect 2010; 12:1163-9. [PMID: 20713172 PMCID: PMC7110474 DOI: 10.1016/j.micinf.2010.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Revised: 06/20/2010] [Accepted: 08/04/2010] [Indexed: 12/25/2022]
Abstract
To investigate the efficacy of intracerebral (IC) immunization in preventing viral spread in the brain, we immunized mice with inactivated rabies virus via the subcutaneous (SC) or IC route, followed by administration of a lethal dose of rabies virus (challenge virus standard strain), directly into the brains of immunized mice. Progressive paralytic neurological signs were observed in control and 75% of SC immunized mice, whereas only 20% of IC immunized mice exhibited symptoms. Neutralizing antibody titers in blood plasma were significantly elevated in SC and IC immunized mice, with the highest levels seen in IC immunized mice. Analysis of whole brain lysates revealed a strong induction of immunoglobulin in the brains of IC immunized mice that had virus neutralizing activity. Histopathological examination of brain tissue revealed mild encephalitis and disseminated viral antigen in control and SC immunized mice, but rare in IC immunized mice. These results suggest that IC immunization induces a preventive humoral immune response against intracerebrally inoculated rabies virus. Induction of neutralizing antibody in cerebrospinal fluid represents a putative therapeutic measure for the treatment of rabid animals and humans.
Collapse
Affiliation(s)
- Yuji Sunden
- Laboratory of Comparative Pathology, Graduate School of Veterinary Medicine, Hokkaido University, N18 W9, Kita-ku, Sapporo 060-0818, Japan.
| | | | | | | | | |
Collapse
|
96
|
Assenberg R, Delmas O, Morin B, Graham SC, De Lamballerie X, Laubert C, Coutard B, Grimes JM, Neyts J, Owens RJ, Brandt BW, Gorbalenya A, Tucker P, Stuart DI, Canard B, Bourhy H. Genomics and structure/function studies of Rhabdoviridae proteins involved in replication and transcription. Antiviral Res 2010; 87:149-61. [PMID: 20188763 DOI: 10.1016/j.antiviral.2010.02.322] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 02/20/2010] [Indexed: 01/19/2023]
Abstract
Some mammalian rhabdoviruses may infect humans, and also infect invertebrates, dogs, and bats, which may act as vectors transmitting viruses among different host species. The VIZIER programme, an EU-funded FP6 program, has characterized viruses that belong to the Vesiculovirus, Ephemerovirus and Lyssavirus genera of the Rhabdoviridae family to perform ground-breaking research on the identification of potential new drug targets against these RNA viruses through comprehensive structural characterization of the replicative machinery. The contribution of VIZIER programme was of several orders. First, it contributed substantially to research aimed at understanding the origin, evolution and diversity of rhabdoviruses. This diversity was then used to obtain further structural information on the proteins involved in replication. Two strategies were used to produce recombinant proteins by expression of both full length or domain constructs in either E. coli or insect cells, using the baculovirus system. In both cases, parallel cloning and expression screening at small-scale of multiple constructs based on different viruses including the addition of fusion tags, was key to the rapid generation of expression data. As a result, some progress has been made in the VIZIER programme towards dissecting the multi-functional L protein into components suitable for structural and functional studies. However, the phosphoprotein polymerase co-factor and the structural matrix protein, which play a number of roles during viral replication and drives viral assembly, have both proved much more amenable to structural biology. Applying the multi-construct/multi-virus approach central to protein production processes in VIZIER has yielded new structural information which may ultimately be exploitable in the derivation of novel ways of intervening in viral replication.
Collapse
Affiliation(s)
- R Assenberg
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Molecular basis of neurovirulence of flury rabies virus vaccine strains: importance of the polymerase and the glycoprotein R333Q mutation. J Virol 2010; 84:8926-36. [PMID: 20538851 DOI: 10.1128/jvi.00787-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms associated with rabies virus (RV) virulence are not fully understood. In this study, the RV Flury low-egg-passage (LEP) and high-egg-passage (HEP) strains were used as models to explore the attenuation mechanism of RV. The results of our studies confirmed that the R333Q mutation in the glycoprotein (G(R333Q)) is crucial for the attenuation of Flury RV in mice. The R333Q mutation is stably maintained in the HEP genome background but not in the LEP genome background during replication in mouse brain tissue or cell culture. Further investigation using chimeric viruses revealed that the polymerase L gene determines the genetic stability of the G(R333Q) mutation during replication. Moreover, a recombinant RV containing the LEP G protein with the R333Q mutation and the HEP L gene showed significant attenuation, genetic stability, enhancement of apoptosis, and immunogenicity. These results indicate that attenuation of the RV Flury strain results from the coevolution of G and L elements and provide important information for the generation of safer and more effective modified live rabies vaccine.
Collapse
|
98
|
Wickersham IR, Sullivan HA, Seung HS. Production of glycoprotein-deleted rabies viruses for monosynaptic tracing and high-level gene expression in neurons. Nat Protoc 2010; 5:595-606. [PMID: 20203674 DOI: 10.1038/nprot.2009.248] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recombinant rabies viruses rendered replication-deficient by the deletion of their envelope glycoprotein gene are useful tools for neuroscientists, permitting (1) extraordinarily high transgene expression levels within neurons, (2) retrograde infection of projection neurons through their axon terminals, (3) targeted infection of genetically specified neurons and (4) monosynaptic tracing of neuronal inputs. Here we present a detailed protocol for the production of high-titer and high-purity viral stocks, from initial generation of infectious virus from cDNA through amplification on complementing cell lines, pseudotyping if desired, purification by ultracentrifugation and titering. The procedure requires 3-4 weeks to complete.
Collapse
Affiliation(s)
- Ian R Wickersham
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
99
|
Abstract
Rabies virus, the prototypical neurotropic virus, causes one of the most lethal zoonotic diseases. According to official estimates, over 55,000 people die of the disease annually, but this is probably a severe underestimation. A combination of virulence factors enables the virus to enter neurons at peripheral sites and travel through the spinal cord to the brain of the infected host, where it often induces aggression that facilitates the transfer of the virus to a new host. This Review summarizes the current knowledge of the replication cycle of rabies virus and virus- host cell interactions, both of which are fundamental elements in our quest to understand the life cycle of rabies virus and the pathogenesis of rabies.
Collapse
|
100
|
Abstract
Recombinant rabies virus (RV)-based vectors have demonstrated their efficacy in generating long-term, antigen-specific immune responses in murine and monkey models. However, replication-competent viral vectors pose significant safety concerns due to vector pathogenicity. RV pathogenicity is largely attributed to its glycoprotein (RV-G), which facilitates the attachment and entry of RV into host cells. We have developed a live, single-cycle RV by deletion of the G gene from an RV vaccine vector expressing HIV-1 Gag (SPBN-DeltaG-Gag). Passage of SPBN-DeltaG-Gag on cells stably expressing RV-G allowed efficient propagation of the G-deleted RV. The in vivo immunogenicity data comparing single-cycle RV to a replication-competent control (BNSP-Gag) showed lower RV-specific antibodies; however, the overall isotype profiles (IgG2a/IgG1) were similar for the two vaccine vectors. Despite this difference, mice immunized with SPBN-DeltaG-Gag and BNSP-Gag mounted similar levels of Gag-specific CD8(+) T-cell responses as measured by major histocompatibility complex class I Gag-tetramer staining, gamma interferon-enzyme-linked immunospot assay, and cytotoxic T-cell assay. Moreover, these cellular responses were maintained equally at immunization titers as low as 10(3) focus-forming units for both RV vaccine vectors. CD8(+) T-cell responses were significantly enhanced by a boost with a single-cycle RV complemented with a heterologous vesicular stomatitis virus glycoprotein. These findings demonstrate that single-cycle RV is an effective alternative to replication-competent RV vectors for future development of vaccines for HIV-1 and other infectious diseases.
Collapse
|