51
|
Sun Y, Xiao Z, Chen B, Zhao Y, Dai J. Advances in Material-Assisted Electromagnetic Neural Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400346. [PMID: 38594598 DOI: 10.1002/adma.202400346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/26/2024] [Indexed: 04/11/2024]
Abstract
Bioelectricity plays a crucial role in organisms, being closely connected to neural activity and physiological processes. Disruptions in the nervous system can lead to chaotic ionic currents at the injured site, causing disturbances in the local cellular microenvironment, impairing biological pathways, and resulting in a loss of neural functions. Electromagnetic stimulation has the ability to generate internal currents, which can be utilized to counter tissue damage and aid in the restoration of movement in paralyzed limbs. By incorporating implanted materials, electromagnetic stimulation can be targeted more accurately, thereby significantly improving the effectiveness and safety of such interventions. Currently, there have been significant advancements in the development of numerous promising electromagnetic stimulation strategies with diverse materials. This review provides a comprehensive summary of the fundamental theories, neural stimulation modulating materials, material application strategies, and pre-clinical therapeutic effects associated with electromagnetic stimulation for neural repair. It offers a thorough analysis of current techniques that employ materials to enhance electromagnetic stimulation, as well as potential therapeutic strategies for future applications.
Collapse
Affiliation(s)
- Yuting Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| |
Collapse
|
52
|
Ng ACH, Chahine M, Scantlebury MH, Appendino JP. Channelopathies in epilepsy: an overview of clinical presentations, pathogenic mechanisms, and therapeutic insights. J Neurol 2024; 271:3063-3094. [PMID: 38607431 DOI: 10.1007/s00415-024-12352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/13/2024]
Abstract
Pathogenic variants in genes encoding ion channels are causal for various pediatric and adult neurological conditions. In particular, several epilepsy syndromes have been identified to be caused by specific channelopathies. These encompass a spectrum from self-limited epilepsies to developmental and epileptic encephalopathies spanning genetic and acquired causes. Several of these channelopathies have exquisite responses to specific antiseizure medications (ASMs), while others ASMs may prove ineffective or even worsen seizures. Some channelopathies demonstrate phenotypic pleiotropy and can cause other neurological conditions outside of epilepsy. This review aims to provide a comprehensive exploration of the pathophysiology of seizure generation, ion channels implicated in epilepsy, and several genetic epilepsies due to ion channel dysfunction. We outline the clinical presentation, pathogenesis, and the current state of basic science and clinical research for these channelopathies. In addition, we briefly look at potential precision therapy approaches emerging for these disorders.
Collapse
Affiliation(s)
- Andy Cheuk-Him Ng
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Mohamed Chahine
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- CERVO, Brain Research Centre, Quebec City, Canada
| | - Morris H Scantlebury
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada
- Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Calgary, Canada
| | - Juan P Appendino
- Clinical Neuroscience and Pediatric Neurology, Department of Pediatrics, Cumming School of Medicine, Alberta Children's Hospital, University of Calgary, 28 Oki Drive NW, Calgary, AB, T3B 6A8, Canada.
| |
Collapse
|
53
|
Salloum-Asfar S, Shin KC, Taha RZ, Khattak S, Park Y, Abdulla SA. The Potential Role of Thyroid Hormone Therapy in Neural Progenitor Cell Differentiation and Its Impact on Neurodevelopmental Disorders. Mol Neurobiol 2024; 61:3330-3342. [PMID: 37991699 PMCID: PMC11087352 DOI: 10.1007/s12035-023-03751-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Thyroid hormone (T3) plays a vital role in brain development and its dysregulation can impact behavior, nervous system function, and cognitive development. Large case-cohort studies have associated abnormal maternal T3 during early pregnancy to epilepsy, autism, and attention deficit hyperactivity disorder (ADHD) in children. Recent experimental findings have also shown T3's influence on the fate of neural precursor cells and raise the question of its convergence with embryonic neural progenitors. Our objective was to investigate how T3 treatment affects neuronal development and functionality at the cellular level. In vitro experiments using neural precursor cells (NPCs) measured cell growth and numbers after exposure to varying T3 concentrations. Time points included week 0 (W0) representing NPCs treated with 100 nM T3 for 5 days, and differentiated cortical neurons assessed at weeks 3 (W3), 6 (W6), and 8 (W8). Techniques such as single-cell calcium imaging and whole-cell patch clamp were utilized to evaluate neuronal activity and function. IHC staining detected mature neuron markers, and RNA sequencing enabled molecular profiling. W6 and W8 neurons exhibited higher action potential frequencies, with W6 showing increased peak amplitudes and shortened inter-spike intervals by 50%, indicating enhanced activity. Transcriptomic analysis revealed that W6 T3-treated neurons formed a distinct cluster, suggesting accelerated maturation. Comparison with the whole transcriptome further unveiled a correlation between W6 neurons treated with T3 and neuronal regulatory elements associated with autism and ADHD. These findings provide insights into T3's impact on neuronal development and potential mechanisms of T3 dysregulation and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Salam Salloum-Asfar
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| | - Kyung Chul Shin
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Rowaida Z Taha
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Shahryar Khattak
- BESE and KAUST Smart-Health Initiative (KSHI), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yongsoo Park
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sara A Abdulla
- Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
54
|
Logue JB, Vilmont V, Zhang J, Wu Y, Zhou Y. Inhibition of 14-3-3 proteins increases the intrinsic excitability of mouse hippocampal CA1 pyramidal neurons. Eur J Neurosci 2024; 59:3309-3321. [PMID: 38646841 DOI: 10.1111/ejn.16349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/09/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
14-3-3 proteins are a family of regulatory proteins that are abundantly expressed in the brain and enriched at the synapse. Dysfunctions of these proteins have been linked to neurodevelopmental and neuropsychiatric disorders. Our group has previously shown that functional inhibition of these proteins by a peptide inhibitor, difopein, in the mouse brain causes behavioural alterations and synaptic plasticity impairment in the hippocampus. Recently, we found an increased cFOS expression in difopein-expressing dorsal CA1 pyramidal neurons, indicating enhanced neuronal activity by 14-3-3 inhibition in these cells. In this study, we used slice electrophysiology to determine the effects of 14-3-3 inhibition on the intrinsic excitability of CA1 pyramidal neurons from a transgenic 14-3-3 functional knockout (FKO) mouse line. Our data demonstrate an increase in intrinsic excitability associated with 14-3-3 inhibition, as well as reveal action potential firing pattern shifts after novelty-induced hyperlocomotion in the 14-3-3 FKO mice. These results provide novel information on the role 14-3-3 proteins play in regulating intrinsic and activity-dependent neuronal excitability in the hippocampus.
Collapse
Affiliation(s)
- Jordan B Logue
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Violet Vilmont
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Jiajing Zhang
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yuying Wu
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | - Yi Zhou
- Biomedical Sciences Department, College of Medicine, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
55
|
Balhara M, Neikirk K, Marshall A, Hinton A, Kirabo A. Endoplasmic Reticulum Stress in Hypertension and Salt Sensitivity of Blood Pressure. Curr Hypertens Rep 2024; 26:273-290. [PMID: 38602583 PMCID: PMC11166838 DOI: 10.1007/s11906-024-01300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE OF REVIEW Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Balhara
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Andrea Marshall
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Annet Kirabo
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, 37212-8802, USA.
- Vanderbilt Center for Immunobiology, Nashville, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, USA.
- Vanderbilt Institute for Global Health, Nashville, USA.
| |
Collapse
|
56
|
Bonsor M, Ammar O, Schnoegl S, Wanker EE, Silva Ramos E. Polyglutamine disease proteins: Commonalities and differences in interaction profiles and pathological effects. Proteomics 2024; 24:e2300114. [PMID: 38615323 DOI: 10.1002/pmic.202300114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024]
Abstract
Currently, nine polyglutamine (polyQ) expansion diseases are known. They include spinocerebellar ataxias (SCA1, 2, 3, 6, 7, 17), spinal and bulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and Huntington's disease (HD). At the root of these neurodegenerative diseases are trinucleotide repeat mutations in coding regions of different genes, which lead to the production of proteins with elongated polyQ tracts. While the causative proteins differ in structure and molecular mass, the expanded polyQ domains drive pathogenesis in all these diseases. PolyQ tracts mediate the association of proteins leading to the formation of protein complexes involved in gene expression regulation, RNA processing, membrane trafficking, and signal transduction. In this review, we discuss commonalities and differences among the nine polyQ proteins focusing on their structure and function as well as the pathological features of the respective diseases. We present insights from AlphaFold-predicted structural models and discuss the biological roles of polyQ-containing proteins. Lastly, we explore reported protein-protein interaction networks to highlight shared protein interactions and their potential relevance in disease development.
Collapse
Affiliation(s)
- Megan Bonsor
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Orchid Ammar
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Sigrid Schnoegl
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Erich E Wanker
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Eduardo Silva Ramos
- Department of Neuroproteomics, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
57
|
Huang J, Fan X, Jin X, Lyu C, Guo Q, Liu T, Chen J, Davakan A, Lory P, Yan N. Structural basis for human Ca v3.2 inhibition by selective antagonists. Cell Res 2024; 34:440-450. [PMID: 38605177 PMCID: PMC11143251 DOI: 10.1038/s41422-024-00959-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
The Cav3.2 subtype of T-type calcium channels has been targeted for developing analgesics and anti-epileptics for its role in pain and epilepsy. Here we present the cryo-EM structures of Cav3.2 alone and in complex with four T-type calcium channel selective antagonists with overall resolutions ranging from 2.8 Å to 3.2 Å. The four compounds display two binding poses. ACT-709478 and TTA-A2 both place their cyclopropylphenyl-containing ends in the central cavity to directly obstruct ion flow, meanwhile extending their polar tails into the IV-I fenestration. TTA-P2 and ML218 project their 3,5-dichlorobenzamide groups into the II-III fenestration and place their hydrophobic tails in the cavity to impede ion permeation. The fenestration-penetrating mode immediately affords an explanation for the state-dependent activities of these antagonists. Structure-guided mutational analysis identifies several key residues that determine the T-type preference of these drugs. The structures also suggest the role of an endogenous lipid in stabilizing drug binding in the central cavity.
Collapse
Affiliation(s)
- Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Xiao Fan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Laboratory of Neurophysiology and Behavior, The Rockefeller University, New York, NY, USA.
| | - Xueqin Jin
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Chen Lyu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Qinmeng Guo
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Tao Liu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jiaofeng Chen
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Amaël Davakan
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Philippe Lory
- IGF, Université de Montpellier, CNRS, INSERM, LabEx 'Ion Channel Science and Therapeutics', Montpellier, France
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen, Guangdong, China.
| |
Collapse
|
58
|
Mandracchia B, Zheng C, Rajendran S, Liu W, Forghani P, Xu C, Jia S. High-speed optical imaging with sCMOS pixel reassignment. Nat Commun 2024; 15:4598. [PMID: 38816394 PMCID: PMC11139943 DOI: 10.1038/s41467-024-48987-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Fluorescence microscopy has undergone rapid advancements, offering unprecedented visualization of biological events and shedding light on the intricate mechanisms governing living organisms. However, the exploration of rapid biological dynamics still poses a significant challenge due to the limitations of current digital camera architectures and the inherent compromise between imaging speed and other capabilities. Here, we introduce sHAPR, a high-speed acquisition technique that leverages the operating principles of sCMOS cameras to capture fast cellular and subcellular processes. sHAPR harnesses custom fiber optics to convert microscopy images into one-dimensional recordings, enabling acquisition at the maximum camera readout rate, typically between 25 and 250 kHz. We have demonstrated the utility of sHAPR with a variety of phantom and dynamic systems, including high-throughput flow cytometry, cardiomyocyte contraction, and neuronal calcium waves, using a standard epi-fluorescence microscope. sHAPR is highly adaptable and can be integrated into existing microscopy systems without requiring extensive platform modifications. This method pushes the boundaries of current fluorescence imaging capabilities, opening up new avenues for investigating high-speed biological phenomena.
Collapse
Affiliation(s)
- Biagio Mandracchia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- E.T.S.I. Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Corey Zheng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Suraj Rajendran
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wenhao Liu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Parvin Forghani
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Chunhui Xu
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
59
|
Maraslioglu-Sperber A, Pizzi E, Fisch JO, Kattler K, Ritter T, Friauf E. Molecular and functional profiling of cell diversity and identity in the lateral superior olive, an auditory brainstem center with ascending and descending projections. Front Cell Neurosci 2024; 18:1354520. [PMID: 38846638 PMCID: PMC11153811 DOI: 10.3389/fncel.2024.1354520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/15/2024] [Indexed: 06/09/2024] Open
Abstract
The lateral superior olive (LSO), a prominent integration center in the auditory brainstem, contains a remarkably heterogeneous population of neurons. Ascending neurons, predominantly principal neurons (pLSOs), process interaural level differences for sound localization. Descending neurons (lateral olivocochlear neurons, LOCs) provide feedback into the cochlea and are thought to protect against acoustic overload. The molecular determinants of the neuronal diversity in the LSO are largely unknown. Here, we used patch-seq analysis in mice at postnatal days P10-12 to classify developing LSO neurons according to their functional and molecular profiles. Across the entire sample (n = 86 neurons), genes involved in ATP synthesis were particularly highly expressed, confirming the energy expenditure of auditory neurons. Two clusters were identified, pLSOs and LOCs. They were distinguished by 353 differentially expressed genes (DEGs), most of which were novel for the LSO. Electrophysiological analysis confirmed the transcriptomic clustering. We focused on genes affecting neuronal input-output properties and validated some of them by immunohistochemistry, electrophysiology, and pharmacology. These genes encode proteins such as osteopontin, Kv11.3, and Kvβ3 (pLSO-specific), calcitonin-gene-related peptide (LOC-specific), or Kv7.2 and Kv7.3 (no DEGs). We identified 12 "Super DEGs" and 12 genes showing "Cluster similarity." Collectively, we provide fundamental and comprehensive insights into the molecular composition of individual ascending and descending neurons in the juvenile auditory brainstem and how this may relate to their specific functions, including developmental aspects.
Collapse
Affiliation(s)
- Ayse Maraslioglu-Sperber
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Erika Pizzi
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Jonas O. Fisch
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Kathrin Kattler
- Genetics/Epigenetics Group, Department of Biological Sciences, Saarland University, Saarbrücken, Germany
| | - Tamara Ritter
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Eckhard Friauf
- Animal Physiology Group, Department of Biology, University of Kaiserslautern-Landau, Kaiserslautern, Germany
| |
Collapse
|
60
|
Dates J, Kolosov D. Voltage-gated ion channels as novel regulators of epithelial ion transport in the osmoregulatory organs of insects. FRONTIERS IN INSECT SCIENCE 2024; 4:1385895. [PMID: 38835480 PMCID: PMC11148248 DOI: 10.3389/finsc.2024.1385895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024]
Abstract
Voltage-gated ion channels (VGICs) respond to changes in membrane potential (Vm) and typically exhibit fast kinetic properties. They play an important role in signal detection and propagation in excitable tissues. In contrast, the role of VGICs in non-excitable tissues like epithelia is less studied and less clear. Studies in epithelia of vertebrates and invertebrates demonstrate wide expression of VGICs in epithelia of animals. Recently, VGICs have emerged as regulators of ion transport in the Malpighian tubules (MTs) and other osmoregulatory organs of insects. This mini-review aims to concisely summarize which VGICs have been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects to date, and highlight select groups for further study. We have also speculated on the roles VGICs may potentially play in regulating processes connected directly to ion transport in insects (e.g., acid-base balance, desiccation, thermal tolerance). This review is not meant to be exhaustive but should rather serve as a thought-provoking collection of select existing highlights on VGICs, and to emphasize how understudied this mechanism of ion transport regulation is in insect epithelia.
Collapse
Affiliation(s)
- Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, United States
| |
Collapse
|
61
|
Morabbi A, Karimian M. Trace and essential elements as vital components to improve the performance of the male reproductive system: Implications in cell signaling pathways. J Trace Elem Med Biol 2024; 83:127403. [PMID: 38340548 DOI: 10.1016/j.jtemb.2024.127403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/02/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Successful male fertilization requires the main processes such as normal spermatogenesis, sperm capacitation, hyperactivation, and acrosome reaction. The progress of these processes depends on some endogenous and exogenous factors. So, the optimal level of ions and essential and rare elements such as selenium, zinc, copper, iron, manganese, calcium, and so on in various types of cells of the reproductive system could affect conception and male fertility rates. The function of trace elements in the male reproductive system could be exerted through some cellular and molecular processes, such as the management of active oxygen species, involvement in the action of membrane channels, regulation of enzyme activity, regulation of gene expression and hormone levels, and modulation of signaling cascades. In this review, we aim to summarize the available evidence on the role of trace elements in improving male reproductive performance. Also, special attention is paid to the cellular aspects and the involved molecular signaling cascades.
Collapse
Affiliation(s)
- Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
62
|
Elkhoury K, Kodeih S, Enciso‐Martínez E, Maziz A, Bergaud C. Advancing Cardiomyocyte Maturation: Current Strategies and Promising Conductive Polymer-Based Approaches. Adv Healthc Mater 2024; 13:e2303288. [PMID: 38349615 PMCID: PMC11468390 DOI: 10.1002/adhm.202303288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Cardiovascular diseases are a leading cause of mortality and pose a significant burden on healthcare systems worldwide. Despite remarkable progress in medical research, the development of effective cardiovascular drugs has been hindered by high failure rates and escalating costs. One contributing factor is the limited availability of mature cardiomyocytes (CMs) for accurate disease modeling and drug screening. Human induced pluripotent stem cell-derived CMs offer a promising source of CMs; however, their immature phenotype presents challenges in translational applications. This review focuses on the road to achieving mature CMs by summarizing the major differences between immature and mature CMs, discussing the importance of adult-like CMs for drug discovery, highlighting the limitations of current strategies, and exploring potential solutions using electro-mechano active polymer-based scaffolds based on conductive polymers. However, critical considerations such as the trade-off between 3D systems and nutrient exchange, biocompatibility, degradation, cell adhesion, longevity, and integration into wider systems must be carefully evaluated. Continued advancements in these areas will contribute to a better understanding of cardiac diseases, improved drug discovery, and the development of personalized treatment strategies for patients with cardiovascular disorders.
Collapse
Affiliation(s)
- Kamil Elkhoury
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | - Sacha Kodeih
- Faculty of Medicine and Medical SciencesUniversity of BalamandTripoliP.O. Box 100Lebanon
| | | | - Ali Maziz
- LAAS‐CNRS, Université de Toulouse, CNRSToulouseF‐31400France
| | | |
Collapse
|
63
|
Sandoval A, Duran P, Corzo-López A, Fernández-Gallardo M, Muñoz-Herrera D, Leyva-Leyva M, González-Ramírez R, Felix R. The role of voltage-gated calcium channels in the pathogenesis of Parkinson's disease. Int J Neurosci 2024; 134:452-461. [PMID: 35993158 DOI: 10.1080/00207454.2022.2115905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 10/15/2022]
Abstract
Aim: Voltage-gated calcium (CaV) channels play an essential role in maintaining calcium homeostasis and regulating numerous physiological processes in neurons. Therefore, dysregulation of calcium signaling is relevant in many neurological disorders, including Parkinson's disease (PD). This review aims to introduce the role of CaV channels in PD and discuss some novel aspects of channel regulation and its impact on the molecular pathophysiology of the disease. Methods: an exhaustive search of the literature in the field was carried out using the PubMed database of The National Center for Biotechnology Information. Systematic searches were performed from the initial date of publication to May 2022. Results: Although α-synuclein aggregates are the main feature of PD, L-type calcium (CaV1) channels seem to play an essential role in the pathogenesis of PD. Changes in the functional expression of CaV1.3 channels alter Calcium homeostasis and contribute to the degeneration of dopaminergic neurons. Furthermore, recent studies suggest that CaV channel trafficking towards the cell membrane depends on the activity of the ubiquitin-proteasome system (UPS). In PD, there is an increase in the expression of L-type channels associated with a decrease in the expression of Parkin, an E3 enzyme of the UPS. Therefore, a link between Parkin and CaV channels could play a fundamental role in the pathogenesis of PD and, as such, could be a potentially attractive target for therapeutic intervention. Conclusion: The study of alterations in the functional expression of CaV channels will provide a framework to understand better the neurodegenerative processes that occur in PD and a possible path toward identifying new therapeutic targets to treat this condition.
Collapse
Affiliation(s)
- Alejandro Sandoval
- School of Medicine FES Iztacala, National Autonomous University of Mexico (UNAM), Tlalnepantla, Mexico
| | - Paz Duran
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Alejandra Corzo-López
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | | | - David Muñoz-Herrera
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Margarita Leyva-Leyva
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo González-Ramírez
- Department of Molecular Biology and Histocompatibility, "Dr. Manuel Gea González" General Hospital, Mexico City, Mexico
| | - Ricardo Felix
- Department of Cell Biology, Centre for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| |
Collapse
|
64
|
Meng Y, Toledo-Rodriguez M, Fedorenko O, Smith PA. Sex and age affect depot expression of Ca2+ channels in rat white fat adipocytes. J Mol Endocrinol 2024; 72:e230108. [PMID: 38299791 PMCID: PMC10959010 DOI: 10.1530/jme-23-0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
White adipose tissue (WAT) requires extracellular Ca2+ influx for lipolysis, differentiation, and expansion. This partly occurs via plasma membrane Ca2+ voltage-dependent channels (CaVs). However, WFA exists in different depots whose function varies with age, sex, and location. To explore whether their CaV expression profiles also differ we used RNAseq and qPCR on gonadal, mesenteric, retroperitoneal, and inguinal subcutaneous fat depots from rats of different ages and sex. CaV expression was found dependent on age, sex, and WFA location. In the gonadal depots of both sexes a significantly lower expression of CaV1.2 and CaV1.3 was seen for adults compared to pre-pubescent juveniles. A lower level of expression was also seen for CaV3.1 in adult male but not female gonadal WFA, the latter of whose expression remained unchanged with age. Relatively little expression of CaV3.2 and 3.2 was observed. In post-pubescent inguinal subcutaneous fat, where the third and fourth mammary glands are located, CaV3.1 was decreased in males but increased in females - thus suggesting that this channel is associated with mammogenesis; however, no difference in intracellular Ca2+ levels or adipocyte size were noted. For all adult depots, CaV3.1 expression was larger in females than males - a difference not seen in pre-pubescent rats. These observations are consistent with the changes of CaV3.1 expression seen in 3T3-L1 cell differentiation and the ability of selective CaV3.1 antagonists to inhibit adipogensis. Our results show that changes in CaV expression patterns occur in fat depots related to sexual dimorphism: reproductive tracts and mammogenesis.
Collapse
Affiliation(s)
- Yan Meng
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Maria Toledo-Rodriguez
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Olena Fedorenko
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| | - Paul A Smith
- School of Life Sciences, University of Nottingham, Queen’s Medical Centre, Nottingham, UK
| |
Collapse
|
65
|
Danis AB, Gallagher AA, Anderson AN, Isakharov A, Beeson KA, Schnell E. Altered Hippocampal Activation in Seizure-Prone CACNA2D2 Knock-out Mice. eNeuro 2024; 11:ENEURO.0486-23.2024. [PMID: 38749701 PMCID: PMC11097259 DOI: 10.1523/eneuro.0486-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The voltage-gated calcium channel subunit α2δ-2 controls calcium-dependent signaling in neurons, and loss of this subunit causes epilepsy in both mice and humans. To determine whether mice without α2δ-2 demonstrate hippocampal activation or histopathological changes associated with seizure activity, we measured expression of the activity-dependent gene c-fos and various histopathological correlates of temporal lobe epilepsy (TLE) in hippocampal tissue from wild-type (WT) and α2δ-2 knock-out (CACNA2D2 KO) mice using immunohistochemical staining and confocal microscopy. Both genotypes demonstrated similarly sparse c-fos and ΔFosB expressions within the hippocampal dentate granule cell layer (GCL) at baseline, consistent with no difference in basal activity of granule cells between genotypes. Surprisingly, when mice were assayed 1 h after handling-associated convulsions, KO mice had fewer c-fos-positive cells but dramatically increased ΔFosB expression in the dentate gyrus compared with WT mice. After administration of a subthreshold pentylenetetrazol dose, however, KO mice dentate had significantly more c-fos expression compared with WT mice. Other histopathological markers of TLE in these mice, including markers of neurogenesis, glial activation, and mossy fiber sprouting, were similar between WT and KO mice, apart from a small but statistically significant increase in hilar mossy cell density, opposite to what is typically found in mice with TLE. This suggests that the differences in seizure-associated dentate gyrus function in the absence of α2δ-2 protein are likely due to altered functional properties of the network without associated structural changes in the hippocampus at the typical age of seizure onset.
Collapse
Affiliation(s)
- Alyssa B Danis
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashlynn A Gallagher
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Ashley N Anderson
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
| | - Arielle Isakharov
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Kathleen A Beeson
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| | - Eric Schnell
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, Oregon 97239
- Research and Development Service, Portland VA Health Care System, Portland, Oregon 97239
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, Oregon 97239
| |
Collapse
|
66
|
Murphy EA, Kleiner FH, Helliwell KE, Wheeler GL. Channels of Evolution: Unveiling Evolutionary Patterns in Diatom Ca 2+ Signalling. PLANTS (BASEL, SWITZERLAND) 2024; 13:1207. [PMID: 38732422 PMCID: PMC11085791 DOI: 10.3390/plants13091207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/13/2024]
Abstract
Diatoms are important primary producers in marine and freshwater environments, but little is known about the signalling mechanisms they use to detect changes in their environment. All eukaryotic organisms use Ca2+ signalling to perceive and respond to environmental stimuli, employing a range of Ca2+-permeable ion channels to facilitate the movement of Ca2+ across cellular membranes. We investigated the distribution of different families of Ca2+ channels in diatom genomes, with comparison to other members of the stramenopile lineage. The four-domain voltage-gated Ca2+ channels (Cav) are present in some centric diatoms but almost completely absent in pennate diatoms, whereas single-domain voltage-gated EukCatA channels were found in all diatoms. Glutamate receptors (GLRs) and pentameric ligand-gated ion channels (pLGICs) also appear to have been lost in several pennate species. Transient receptor potential (TRP) channels are present in all diatoms, but have not undergone the significant expansion seen in brown algae. All diatom species analysed lacked the mitochondrial uniporter (MCU), a highly conserved channel type found in many eukaryotes, including several stramenopile lineages. These results highlight the unique Ca2+-signalling toolkit of diatoms and indicate that evolutionary gains or losses of different Ca2+ channels may contribute to differences in cellular-signalling mechanisms between species.
Collapse
Affiliation(s)
- Eleanor A. Murphy
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | - Katherine E. Helliwell
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
- Department of Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - Glen L. Wheeler
- Marine Biological Association, Plymouth PL1 2PB, UK (K.E.H.)
| |
Collapse
|
67
|
Lin G, Rennie M, Adeeko A, Scarlata S. The role of calcium in neuronal membrane tension and synaptic plasticity. Biochem Soc Trans 2024; 52:937-945. [PMID: 38533899 DOI: 10.1042/bst20231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Calcium is a primary second messenger that plays a role in cellular functions including growth, movement and responses to drugs. The role that calcium plays in mediating communication between neurons by synaptic vesicle release is well established. This review focuses on the dependence of the physical properties of neuronal plasma membranes on calcium levels. After describing the key features of synaptic plasticity, we summarize the general role of calcium in cell function and the signaling pathways responsible for intracellular increase in calcium levels. We then present findings showing that increases in intracellular calcium levels cause neurites to contract and break synaptic connections by changes in membrane tension.
Collapse
Affiliation(s)
- Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Ayobami Adeeko
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| |
Collapse
|
68
|
Scala M, Khan K, Beneteau C, Fox RG, von Hardenberg S, Khan A, Joubert M, Fievet L, Musquer M, Le Vaillant C, Holsclaw JK, Lim D, Berking AC, Accogli A, Giacomini T, Nobili L, Striano P, Zara F, Torella A, Nigro V, Cogné B, Salick MR, Kaykas A, Eggan K, Capra V, Bézieau S, Davis EE, Wells MF. Biallelic loss-of-function variants in CACHD1 cause a novel neurodevelopmental syndrome with facial dysmorphism and multisystem congenital abnormalities. Genet Med 2024; 26:101057. [PMID: 38158856 DOI: 10.1016/j.gim.2023.101057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024] Open
Abstract
PURPOSE We established the genetic etiology of a syndromic neurodevelopmental condition characterized by variable cognitive impairment, recognizable facial dysmorphism, and a constellation of extra-neurological manifestations. METHODS We performed phenotypic characterization of 6 participants from 4 unrelated families presenting with a neurodevelopmental syndrome and used exome sequencing to investigate the underlying genetic cause. To probe relevance to the neurodevelopmental phenotype and craniofacial dysmorphism, we established two- and three-dimensional human stem cell-derived neural models and generated a stable cachd1 zebrafish mutant on a transgenic cartilage reporter line. RESULTS Affected individuals showed mild cognitive impairment, dysmorphism featuring oculo-auriculo abnormalities, and developmental defects involving genitourinary and digestive tracts. Exome sequencing revealed biallelic putative loss-of-function variants in CACHD1 segregating with disease in all pedigrees. RNA sequencing in CACHD1-depleted neural progenitors revealed abnormal expression of genes with key roles in Wnt signaling, neurodevelopment, and organ morphogenesis. CACHD1 depletion in neural progenitors resulted in reduced percentages of post-mitotic neurons and enlargement of 3D neurospheres. Homozygous cachd1 mutant larvae showed mandibular patterning defects mimicking human facial dysmorphism. CONCLUSION Our findings support the role of loss-of-function variants in CACHD1 as the cause of a rare neurodevelopmental syndrome with facial dysmorphism and multisystem abnormalities.
Collapse
Affiliation(s)
- Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Kamal Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Claire Beneteau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France
| | - Rachel G Fox
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | | | - Ayaz Khan
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL
| | - Madeleine Joubert
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC
| | - Marie Musquer
- CHU Nantes, UF of Fœtopathology and Genetics, Nantes, France; CHU Nantes, Department of Anatomical Pathology, Nantes, France
| | | | | | - Derek Lim
- Department of Clinical Genetics, Birmingham Women's and Children's NHS Foundation Trust and Birmingham Health Partners, Birmingham, United Kingdom; Department of Medicine, University of Birmingham, Birmingham, United Kingdom
| | | | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Thea Giacomini
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lino Nobili
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Child Neuropsychiatry Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, University of Genoa, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy; Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Annalaura Torella
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli," Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Benjamin Cogné
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | | | | | - Kevin Eggan
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Valeria Capra
- Medical Genetics Unit, IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Stéphane Bézieau
- CHU Nantes, Department of Medical Genetics, CHU Nantes, 9 quai Moncousu, Nantes, France; Nantes Université, CHU de Nantes, CNRS, INSERM, l'institut du thorax, Nantes, France
| | - Erica E Davis
- Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| | - Michael F Wells
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA.
| |
Collapse
|
69
|
Lankford L, Maddala R, Jablonski MM, Rao PV. Influence of the calcium voltage-gated channel auxiliary subunit (CACNA2D1) absence on intraocular pressure in mice. Exp Eye Res 2024; 241:109835. [PMID: 38373629 PMCID: PMC11192037 DOI: 10.1016/j.exer.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
The etiology of elevated intraocular pressure (IOP), a major risk factor for glaucoma (optic nerve atrophy), is poorly understood despite continued efforts. Although the gene variant of CACNA2D1 (encoding α2δ1), a calcium voltage-gated channel auxiliary subunit, has been reported to be associated with primary open-angle glaucoma, and the pharmacological mitigation of α2δ1 activity by pregabalin lowers IOP, the cellular basis for α2δ1 role in the modulation of IOP remains unclear. Our recent findings reveled readily detectable levels of α2δ1 and its ligand thrombospondin in the cytoskeletome fraction of human trabecular meshwork (TM) cells. To understand the direct role of α2δ1 in the modulation of IOP, we evaluated α2δ1 null mice for changes in IOP and found a moderate (∼10%) but significant decrease in IOP compared to littermate wild type control mice. Additionally, to gain cellular insights into α2δ1 antagonist (pregabalin) induced IOP changes, we assessed pregabalin's effects on human TM cell actin cytoskeletal organization and cell adhesive interactions in comparison with a Rho kinase inhibitor (Y27632), a known ocular hypotensive agent. Unlike Y27632, pregabalin did not have overt effects on cell morphology, actin cytoskeletal organization, or cell adhesion in human TM cells. These results reveal a modest but significant decrease in IOP in α2δ1 deficient mice, and this response appears to be not associated with the contractile and cell adhesive characteristics of TM cells based on the findings of pregabalin effects on isolated TM cells. Therefore, the mechanism by which pregabalin lowers IOP remains elusive.
Collapse
Affiliation(s)
- Levi Lankford
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rupalatha Maddala
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Monica M Jablonski
- Department of Ophthalmology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - P Vasantha Rao
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
70
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
71
|
Patel G, Sakiri A, Brown A, Pasha A, Bansal V. Case report: A novel case of paraneoplastic voltage gated calcium channel antibodies secondary to appendiceal adenocarcinoma. Front Neurol 2024; 15:1355437. [PMID: 38601338 PMCID: PMC11005677 DOI: 10.3389/fneur.2024.1355437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
Voltage gated calcium channels (VGCCs) play a critical role in neural transmission. Antibodies that target these ion channels can disrupt cellular signal transmission resulting in various clinical presentations. VGCC antibodies are most commonly associated with paraneoplastic syndromes such as Lambert-Eatons myasthenic syndrome. Here, we report a 47-year-old female with Stage IV appendiceal adenocarcinoma status post appendectomy and right hemicolectomy, who presented with progressive memory impairment, aphasia, ataxia, weakness, and headache. Neurologic exam was notable for right-sided parietal drift, decreased right arm swing, and ataxia of the bilateral upper extremities, more prominent on the right side. MRI of the brain with and without contrast was unremarkable. Cerebrospinal fluid (CSF) was notable for an elevated myelin basic protein (4.9 ng/mL, normal reference 0.0-3.7 ng/mL) with normal cell count, flow cytometry, and cytology. An extensive serum autoimmune neurology antibody evaluation revealed elevated VGCC autoantibodies (observed value: 96.1 pmol/L, normal range 0.0-30.0 pmol/L). A diagnosis of paraneoplastic voltage gated calcium channel antibodies secondary to appendiceal adenocarcinoma was made. The patient was treated with five exchanges with plasmapheresis over 10 days with significant clinical improvement in her symptoms. Upon literature review, this would be the first reported case of VGCC antibodies associated with appendiceal adenocarcinoma.
Collapse
Affiliation(s)
- Ghanshyam Patel
- Mercyhealth, Internal Medicine Residency, Rockford, IL, United States
| | - Ahmet Sakiri
- Mercyhealth, Internal Medicine Residency, Rockford, IL, United States
| | - Abby Brown
- Department of Medicine, University of Illinois College of Medicine, Rockford, IL, United States
| | - Arfa Pasha
- Department of Medicine, Sheikh Khalifa Medical City, Abu Dhabi, United Kingdom
| | - Vibhav Bansal
- Department of Neurology, Mercyhealth Javon Bea Hospital Rockford, Rockford, IL, United States
| |
Collapse
|
72
|
Kumari N, Pullaguri N, Rath SN, Bajaj A, Sahu V, Ealla KKR. Dysregulation of calcium homeostasis in cancer and its role in chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:11. [PMID: 38510751 PMCID: PMC10951838 DOI: 10.20517/cdr.2023.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/22/2024]
Abstract
Globally, cancer, as a major public health concern, poses a severe threat to people's well-being. Advanced and specialized therapies can now cure the majority of people with early-stage cancer. However, emerging resistance to traditional and novel chemotherapeutic drugs remains a serious issue in clinical medicine. Chemoresistance often leads to cancer recurrence, metastasis, and increased mortality, accounting for 90% of chemotherapy failures. Thus, it is important to understand the molecular mechanisms of chemoresistance and find novel therapeutic approaches for cancer treatment. Among the several factors responsible for chemoresistance, calcium (Ca2+) dysregulation plays a significant role in cancer progression and chemoresistance. Therefore, targeting this derailed Ca2+ signalling for cancer therapy has become an emerging research area. Of note, the Ca2+ signal and its proteins are a multifaceted and potent tool by which cells achieve specific outcomes. Depending on cell survival needs, Ca2+ is either upregulated or downregulated in both chemosensitive and chemoresistant cancer cells. Consequently, the appropriate treatment should be selected based on Ca2+ signalling dysregulation. This review discusses the role of Ca2+ in cancer cells and the targeting of Ca2+ channels, pumps, and exchangers. Furthermore, we have emphasised the role of Ca2+ in chemoresistance and therapeutic strategies. In conclusion, targeting Ca2+ signalling is a multifaceted process. Methods such as site-specific drug delivery, target-based drug-designing, and targeting two or more Ca2+ proteins simultaneously may be explored; however, further clinical studies are essential to validate Ca2+ blockers' anti-cancer efficacy.
Collapse
Affiliation(s)
- Neema Kumari
- Department of Microbiology, Malla Reddy Institute of Medical Sciences, Hyderabad 500055, India
- Authors contributed equally
| | - Narasimha Pullaguri
- Research & Development division, Hetero Biopharma Limited, Jadcherla 509301, India
- Authors contributed equally
| | - Subha Narayan Rath
- Department of Biomedical Engineering, Indian Institute of Technology, Hyderabad 502284, India
| | - Ashish Bajaj
- National Reference Laboratory, Oncquest Laboratories Ltd., Gurugram 122001, India
| | - Vikas Sahu
- Department of Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad 500055, India
| | - Kranti Kiran Reddy Ealla
- Department of Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad 500055, India
| |
Collapse
|
73
|
Bonsignore G, Martinotti S, Ranzato E. Wound Repair and Ca 2+ Signalling Interplay: The Role of Ca 2+ Channels in Skin. Cells 2024; 13:491. [PMID: 38534335 DOI: 10.3390/cells13060491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/02/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
The process of wound healing is intricate and tightly controlled, involving a number of different cellular and molecular processes. Numerous cellular functions, especially those related to wound healing, depend critically on calcium ions (Ca2+). Ca2+ channels are proteins involved in signal transduction and communication inside cells that allow calcium ions to pass through cell membranes. Key Ca2+ channel types involved in wound repair are described in this review.
Collapse
Affiliation(s)
- Gregorio Bonsignore
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
| | - Simona Martinotti
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
- SSD Laboratori di Ricerca-DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| | - Elia Ranzato
- Dipartimento di Scienze e Innovazione Tecnologica (DiSIT), University of Piemonte Orientale, 15121 Alessandria, Italy
- SSD Laboratori di Ricerca-DAIRI, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|
74
|
Ji R, Chang L, An C, Zhang J. Proton-sensing ion channels, GPCRs and calcium signaling regulated by them: implications for cancer. Front Cell Dev Biol 2024; 12:1326231. [PMID: 38505262 PMCID: PMC10949864 DOI: 10.3389/fcell.2024.1326231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/21/2024] Open
Abstract
Extracellular acidification of tumors is common. Through proton-sensing ion channels or proton-sensing G protein-coupled receptors (GPCRs), tumor cells sense extracellular acidification to stimulate a variety of intracellular signaling pathways including the calcium signaling, which consequently exerts global impacts on tumor cells. Proton-sensing ion channels, and proton-sensing GPCRs have natural advantages as drug targets of anticancer therapy. However, they and the calcium signaling regulated by them attracted limited attention as potential targets of anticancer drugs. In the present review, we discuss the progress in studies on proton-sensing ion channels, and proton-sensing GPCRs, especially emphasizing the effects of calcium signaling activated by them on the characteristics of tumors, including proliferation, migration, invasion, metastasis, drug resistance, angiogenesis. In addition, we review the drugs targeting proton-sensing channels or GPCRs that are currently in clinical trials, as well as the relevant potential drugs for cancer treatments, and discuss their future prospects. The present review aims to elucidate the important role of proton-sensing ion channels, GPCRs and calcium signaling regulated by them in cancer initiation and development. This review will promote the development of drugs targeting proton-sensing channels or GPCRs for cancer treatments, effectively taking their unique advantage as anti-cancer drug targets.
Collapse
Affiliation(s)
- Renhui Ji
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Li Chang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
- Department of Pathophysiology, Basic Medicine College of Inner Mongolia Medical University, Hohhot, China
| | - Caiyan An
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| | - Junjing Zhang
- Foundational and Translational Medical Research Center, Department of Allergy and General Surgery, Hohhot First Hospital, Hohhot, China
| |
Collapse
|
75
|
Montefusco A, Helfmann L, Okunola T, Winkelmann S, Schütte C. Partial mean-field model for neurotransmission dynamics. Math Biosci 2024; 369:109143. [PMID: 38220067 DOI: 10.1016/j.mbs.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/07/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
This article addresses reaction networks in which spatial and stochastic effects are of crucial importance. For such systems, particle-based models allow us to describe all microscopic details with high accuracy. However, they suffer from computational inefficiency if particle numbers and density get too large. Alternative coarse-grained-resolution models reduce computational effort tremendously, e.g., by replacing the particle distribution by a continuous concentration field governed by reaction-diffusion PDEs. We demonstrate how models on the different resolution levels can be combined into hybrid models that seamlessly combine the best of both worlds, describing molecular species with large copy numbers by macroscopic equations with spatial resolution while keeping the spatial-stochastic particle-based resolution level for the species with low copy numbers. To this end, we introduce a simple particle-based model for the binding dynamics of ions and vesicles at the heart of the neurotransmission process. Within this framework, we derive a novel hybrid model and present results from numerical experiments which demonstrate that the hybrid model allows for an accurate approximation of the full particle-based model in realistic scenarios.
Collapse
Affiliation(s)
- Alberto Montefusco
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany
| | - Luzie Helfmann
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany
| | - Toluwani Okunola
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany; Institute Of Mathematics, Technische Universität Berlin, Straße des 17. Juni 136, Berlin, 10623, Germany
| | - Stefanie Winkelmann
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany.
| | - Christof Schütte
- Mathematics of Complex Systems, Zuse-Institut Berlin, Takustraße 7, Berlin, 14195, Germany; Institute of Mathematics, Freie Universität Berlin, Arnimallee 6, Berlin, 14195, Germany
| |
Collapse
|
76
|
Lin YC, Mo J, Zeng H, Lee YH. Radiation-induced Bystander Effects on Glioblastoma Tumor Cells via NMDA Receptor Signaling. Radiat Res 2024; 201:197-205. [PMID: 38289696 DOI: 10.1667/rade-23-00166.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Proton therapy has been widely applied on treating inaccessible and inoperable tumors, such as tumors deep within the brain or close to the critical brain stem. Nevertheless, the damaging effect of radiation for central nervous system (CNS) tumors is difficult to be confined within the irradiated region and has led to decline of neurological function in especially children with congenital CNS tumors. Currently, the involvement of n-methyl-d-aspartate (NMDA) receptors or secretary cytokines and chemokines in proton-induced bystander effects remains unclear. To understand the modulatory effects of NMDA receptor inhibition on the survival and proliferation of glioblastoma-derived cells, mesenchymal-like U373 cells were applied along with U87 neural glioblastoma cells for single doses of proton radiation at different LET in the presence or absence of pretreatment with memantine and/or collimation. Under collimation, neuronal tumor cells that are not directly irradiated (i.e., bystander cells) encounter similar biological effects potentially through cell coupling and synaptic transmission. Furthermore, whether proton LET plays a role in the mediation of bystander effect awaits to be elucidated. From this study, synaptic transmission was found to play differential roles in the proliferation of U373 and U87 cells after exposure to collimated radiation. Also, radiation-induced cell proliferation at the late stage was more correlated with bystander cell survival than early manifested γH2AX foci, suggesting that proton-induced glutamatergic synapse may act as a more important contributor than proton-induced direct effect on DNA double-stranded breaks to the late-stage responses of glioblastoma cells.
Collapse
Affiliation(s)
- Ying-Chun Lin
- Department of Radiation Oncology, China Medical University Hospital, Taichung 40402, Taiwan
- School of Medicine, College of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Jiamin Mo
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - Hanyan Zeng
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
| | - Yuan-Hao Lee
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan
- Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan
| |
Collapse
|
77
|
Rain BD, Plourde‐Kelly AD, Lafrenie RM, Dotta BT. Induction of apoptosis in B16-BL6 melanoma cells following exposure to electromagnetic fields modeled after intercellular calcium waves. FEBS Open Bio 2024; 14:515-524. [PMID: 38143305 PMCID: PMC10909972 DOI: 10.1002/2211-5463.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 12/22/2023] [Indexed: 12/26/2023] Open
Abstract
Exposure to time-varying electromagnetic fields (EMF) has the capacity to influence biological systems. Our results demonstrate that exposure to time-varying EMF modeled after the physiological firing frequency of intercellular calcium waves can inhibit proliferation and induce apoptosis in malignant cells. Single exposure of B16-BL6 cells to a Ca2+ EMF for 40 min reduced the number of viable cells by 50.3%. Cell imaging with acridine orange and ethidium bromide dye revealed substantial cellular apoptosis, preapoptotic cells, nuclear fragmentation, and large spacing between cells in the Ca2+ EMF condition when compared to the control condition. The ability of Ca2+ EMF to influence the proliferation and survival of malignant cells suggests that exposure to specific EMF may function as a potential anticancer therapy.
Collapse
Affiliation(s)
- Benjamin D. Rain
- Behavioural Neuroscience & Biology Programs, School of Natural ScienceLaurentian UniversitySudburyONCanada
| | - Adam D. Plourde‐Kelly
- Behavioural Neuroscience & Biology Programs, School of Natural ScienceLaurentian UniversitySudburyONCanada
| | - Robert M. Lafrenie
- Behavioural Neuroscience & Biology Programs, School of Natural ScienceLaurentian UniversitySudburyONCanada
| | - Blake T. Dotta
- Behavioural Neuroscience & Biology Programs, School of Natural ScienceLaurentian UniversitySudburyONCanada
| |
Collapse
|
78
|
Pradeepan KS, McCready FP, Wei W, Khaki M, Zhang W, Salter MW, Ellis J, Martinez-Trujillo J. Calcium-Dependent Hyperexcitability in Human Stem Cell-Derived Rett Syndrome Neuronal Networks. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100290. [PMID: 38420187 PMCID: PMC10899066 DOI: 10.1016/j.bpsgos.2024.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 03/02/2024] Open
Abstract
Background Mutations in MECP2 predominantly cause Rett syndrome and can be modeled in vitro using human stem cell-derived neurons. Patients with Rett syndrome have signs of cortical hyperexcitability, such as seizures. Human stem cell-derived MECP2 null excitatory neurons have smaller soma size and reduced synaptic connectivity but are also hyperexcitable due to higher input resistance. Paradoxically, networks of MECP2 null neurons show a decrease in the frequency of network bursts consistent with a hypoconnectivity phenotype. Here, we examine this issue. Methods We reanalyzed multielectrode array data from 3 isogenic MECP2 cell line pairs recorded over 6 weeks (n = 144). We used a custom burst detection algorithm to analyze network events and isolated a phenomenon that we termed reverberating super bursts (RSBs). To probe potential mechanisms of RSBs, we conducted pharmacological manipulations using bicuculline, EGTA-AM, and DMSO on 1 cell line (n = 34). Results RSBs, often misidentified as single long-duration bursts, consisted of a large-amplitude initial burst followed by several high-frequency, low-amplitude minibursts. Our analysis revealed that MECP2 null networks exhibited increased frequency of RSBs, which produced increased bursts compared with isogenic controls. Bicuculline or DMSO treatment did not affect RSBs. EGTA-AM selectively eliminated RSBs and rescued network burst dynamics. Conclusions During early development, MECP2 null neurons are hyperexcitable and produce hyperexcitable networks. This may predispose them to the emergence of hypersynchronic states that potentially translate into seizures. Network hyperexcitability depends on asynchronous neurotransmitter release that is likely driven by presynaptic Ca2+ and can be rescued by EGTA-AM to restore typical network dynamics.
Collapse
Affiliation(s)
- Kartik S. Pradeepan
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Fraser P. McCready
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wei Wei
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Milad Khaki
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Wenbo Zhang
- Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael W. Salter
- Neuroscience & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - James Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental & Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julio Martinez-Trujillo
- Graduate Program in Neuroscience, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology, and Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
- Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
79
|
Ma W, del Rio CL, Qi L, Prodanovic M, Mijailovich S, Zambataro C, Gong H, Shimkunas R, Gollapudi S, Nag S, Irving TC. Myosin in autoinhibited off state(s), stabilized by mavacamten, can be recruited in response to inotropic interventions. Proc Natl Acad Sci U S A 2024; 121:e2314914121. [PMID: 38346202 PMCID: PMC10895252 DOI: 10.1073/pnas.2314914121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Mavacamten is a FDA-approved small-molecule therapeutic designed to regulate cardiac function at the sarcomere level by selectively but reversibly inhibiting the enzymatic activity of myosin. It shifts myosin toward ordered off states close to the thick filament backbone. It remains elusive whether these myosin heads in the off state(s) can be recruited in response to physiological stimuli when required to boost cardiac output. We show that cardiac myosins stabilized in these off state(s) by mavacamten are recruitable by 1) Ca2+, 2) increased chronotropy [heart rate (HR)], 3) stretch, and 4) β-adrenergic (β-AR) stimulation, all known physiological inotropic interventions. At the molecular level, we show that Ca2+ increases myosin ATPase activity by shifting mavacamten-stabilized myosin heads from the inactive super-relaxed state to the active disordered relaxed state. At the myofilament level, both Ca2+ and passive lengthening can shift mavacamten-ordered off myosin heads from positions close to the thick filament backbone to disordered on states closer to the thin filaments. In isolated rat cardiomyocytes, increased stimulation rates enhanced shortening fraction in mavacamten-treated cells. This observation was confirmed in vivo in telemetered rats, where left-ventricular dP/dtmax, an index of inotropy, increased with HR in mavacamten-treated animals. Finally, we show that β-AR stimulation in vivo increases left-ventricular function and stroke volume in the setting of mavacamten. Our data demonstrate that the mavacamten-promoted off states of myosin in the thick filament are at least partially activable, thus preserving cardiac reserve mechanisms.
Collapse
Affiliation(s)
- Weikang Ma
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL60616
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL60616
| | - Carlos L. del Rio
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
- Cardiac Consulting, San Mateo, CA94010
| | - Lin Qi
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Momcilo Prodanovic
- Institute for Information Technologies, University of Kragujevac, Kragujevac34000, Serbia
- FilamenTech, Inc., Newtown, MA02458
| | | | | | - Henry Gong
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| | - Rafael Shimkunas
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Sampath Gollapudi
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Suman Nag
- Cardiovascular Drug Discovery, Bristol Myers Squibb, Brisbane, CA94005
| | - Thomas C. Irving
- Biophysics Collaborative Access Team, Department of Biology, Illinois Institute of Technology, Chicago, IL60616
- Center for Synchrotron Radiation Research and Instrumentation, Illinois Institute of Technology, Chicago, IL60616
- Department of Biology, Illinois Institute of Technology, Chicago, IL60616
| |
Collapse
|
80
|
Flockerzi V, Fakler B. TR(i)P Goes On: Auxiliary TRP Channel Subunits? Circ Res 2024; 134:346-350. [PMID: 38359093 DOI: 10.1161/circresaha.123.323178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/28/2023] [Indexed: 02/17/2024]
Abstract
Transient receptor potential (TRP) cation channels are a diverse family of channels whose members play prominent roles as cellular sensors and effectors. The important role of TRP channels (and mechanosensitive piezo channels) in the complex interaction of our senses with the environment was underlined by the award of the Nobel Prize in Physiology or Medicine to 2 pioneers in this field, David Julius and Ardem Patapoutian. There are many competent and comprehensive reviews on many aspects of the TRP channels, and there is no intention to expand on them. Rather, after an introduction to the nomenclature, the molecular architecture of native TRP channel/protein complexes in vivo will be summarized using TRP channels of the canonical transient receptor potential subfamily as an example. This molecular architecture provides the basis for the signatures of native canonical transient receptor potential currents and their control by endogenous modulators and potential drugs.
Collapse
Affiliation(s)
- Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany (V.F.)
| | - Bernd Fakler
- Institute of Physiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany (B.F.)
| |
Collapse
|
81
|
Chen F, Dong X, Wang Z, Wu T, Wei L, Li Y, Zhang K, Ma Z, Tian C, Li J, Zhao J, Zhang W, Liu A, Shen H. Regulation of specific abnormal calcium signals in the hippocampal CA1 and primary cortex M1 alleviates the progression of temporal lobe epilepsy. Neural Regen Res 2024; 19:425-433. [PMID: 37488907 PMCID: PMC10503629 DOI: 10.4103/1673-5374.379048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 07/26/2023] Open
Abstract
Temporal lobe epilepsy is a multifactorial neurological dysfunction syndrome that is refractory, resistant to antiepileptic drugs, and has a high recurrence rate. The pathogenesis of temporal lobe epilepsy is complex and is not fully understood. Intracellular calcium dynamics have been implicated in temporal lobe epilepsy. However, the effect of fluctuating calcium activity in CA1 pyramidal neurons on temporal lobe epilepsy is unknown, and no longitudinal studies have investigated calcium activity in pyramidal neurons in the hippocampal CA1 and primary motor cortex M1 of freely moving mice. In this study, we used a multi-channel fiber photometry system to continuously record calcium signals in CA1 and M1 during the temporal lobe epilepsy process. We found that calcium signals varied according to the grade of temporal lobe epilepsy episodes. In particular, cortical spreading depression, which has recently been frequently used to represent the continuously and substantially increased calcium signals, was found to correspond to complex and severe behavioral characteristics of temporal lobe epilepsy ranging from grade II to grade V. However, vigorous calcium oscillations and highly synchronized calcium signals in CA1 and M1 were strongly related to convulsive motor seizures. Chemogenetic inhibition of pyramidal neurons in CA1 significantly attenuated the amplitudes of the calcium signals corresponding to grade I episodes. In addition, the latency of cortical spreading depression was prolonged, and the above-mentioned abnormal calcium signals in CA1 and M1 were also significantly reduced. Intriguingly, it was possible to rescue the altered intracellular calcium dynamics. Via simultaneous analysis of calcium signals and epileptic behaviors, we found that the progression of temporal lobe epilepsy was alleviated when specific calcium signals were reduced, and that the end-point behaviors of temporal lobe epilepsy were improved. Our results indicate that the calcium dynamic between CA1 and M1 may reflect specific epileptic behaviors corresponding to different grades. Furthermore, the selective regulation of abnormal calcium signals in CA1 pyramidal neurons appears to effectively alleviate temporal lobe epilepsy, thereby providing a potential molecular mechanism for a new temporal lobe epilepsy diagnosis and treatment strategy.
Collapse
Affiliation(s)
- Feng Chen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Zhenhuan Wang
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Tongrui Wu
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Liangpeng Wei
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
- Department of Radiology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Yuanyuan Li
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kai Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zengguang Ma
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Chao Tian
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingyu Zhao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Wei Zhang
- Tianjin Eye Hospital, Tianjin Eye Institute, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, China
| | - Aili Liu
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Laboratory of Neurobiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
82
|
Yan J, Wang L, Yang QL, Yang QX, He X, Dong Y, Hu Z, Seeliger MW, Jiao K, Paquet-Durand F. T-type voltage-gated channels, Na +/Ca 2+-exchanger, and calpain-2 promote photoreceptor cell death in inherited retinal degeneration. Cell Commun Signal 2024; 22:92. [PMID: 38303059 PMCID: PMC10836022 DOI: 10.1186/s12964-023-01391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/09/2023] [Indexed: 02/03/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of untreatable and commonly blinding diseases characterized by progressive photoreceptor loss. IRD pathology has been linked to an excessive activation of cyclic nucleotide-gated channels (CNGC) leading to Na+- and Ca2+-influx, subsequent activation of voltage-gated Ca2+-channels (VGCC), and further Ca2+ influx. However, a connection between excessive Ca2+ influx and photoreceptor loss has yet to be proven.Here, we used whole-retina and single-cell RNA-sequencing to compare gene expression between the rd1 mouse model for IRD and wild-type (wt) mice. Differentially expressed genes indicated links to several Ca2+-signalling related pathways. To explore these, rd1 and wt organotypic retinal explant cultures were treated with the intracellular Ca2+-chelator BAPTA-AM or inhibitors of different Ca2+-permeable channels, including CNGC, L-type VGCC, T-type VGCC, Ca2+-release-activated channel (CRAC), and Na+/Ca2+ exchanger (NCX). Moreover, we employed the novel compound NA-184 to selectively inhibit the Ca2+-dependent protease calpain-2. Effects on the retinal activity of poly(ADP-ribose) polymerase (PARP), sirtuin-type histone-deacetylase, calpains, as well as on activation of calpain-1, and - 2 were monitored, cell death was assessed via the TUNEL assay.While rd1 photoreceptor cell death was reduced by BAPTA-AM, Ca2+-channel blockers had divergent effects: While inhibition of T-type VGCC and NCX promoted survival, blocking CNGCs and CRACs did not. The treatment-related activity patterns of calpains and PARPs corresponded to the extent of cell death. Remarkably, sirtuin activity and calpain-1 activation were linked to photoreceptor protection, while calpain-2 activity was related to degeneration. In support of this finding, the calpain-2 inhibitor NA-184 protected rd1 photoreceptors.These results suggest that Ca2+ overload in rd1 photoreceptors may be triggered by T-type VGCCs and NCX. High Ca2+-levels likely suppress protective activity of calpain-1 and promote retinal degeneration via activation of calpain-2. Overall, our study details the complexity of Ca2+-signalling in photoreceptors and emphasizes the importance of targeting degenerative processes specifically to achieve a therapeutic benefit for IRDs. Video Abstract.
Collapse
Affiliation(s)
- Jie Yan
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Lan Wang
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
| | - Qian-Lu Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Qian-Xi Yang
- The Third Affiliated Hospital of Kunming Medical University &Yunnan Cancer Hospital, Kunming, Yunnan, 650118, China
| | - Xinyi He
- Graduate Training Centre of Neuroscience, University of Tübingen, Tübingen, 72076, Germany
- High-resolution Functional Imaging and Test Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Yujie Dong
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Zhulin Hu
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany
| | - Kangwei Jiao
- Yunnan Eye Institute & Key Laboratory of Yunnan Province, Yunnan Eye Disease Clinical Medical Center, Affiliated Hospital of Yunnan University, Yunnan University, 176 Qingnian, Kunming, 650021, China
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Tübingen, 72076, Germany.
| |
Collapse
|
83
|
Farrell S, Dates J, Ramirez N, Hausknecht-Buss H, Kolosov D. Voltage-gated ion channels are expressed in the Malpighian tubules and anal papillae of the yellow fever mosquito (Aedes aegypti), and may regulate ion transport during salt and water imbalance. J Exp Biol 2024; 227:jeb246486. [PMID: 38197515 PMCID: PMC10912814 DOI: 10.1242/jeb.246486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Vectors of infectious disease include several species of Aedes mosquitoes. The life cycle of Aedes aegypti, the yellow fever mosquito, consists of a terrestrial adult and an aquatic larval life stage. Developing in coastal waters can expose larvae to fluctuating salinity, causing salt and water imbalance, which is addressed by two prime osmoregulatory organs - the Malpighian tubules (MTs) and anal papillae (AP). Voltage-gated ion channels (VGICs) have recently been implicated in the regulation of ion transport in the osmoregulatory epithelia of insects. In the current study, we: (i) generated MT transcriptomes of freshwater-acclimated and brackish water-exposed larvae of Ae. aegypti, (ii) detected expression of several voltage-gated Ca2+, K+, Na+ and non-ion-selective ion channels in the MTs and AP using transcriptomics, PCR and gel electrophoresis, (iii) demonstrated that mRNA abundance of many altered significantly following brackish water exposure, and (iv) immunolocalized CaV1, NALCN, TRP/Painless and KCNH8 in the MTs and AP of larvae using custom-made antibodies. We found CaV1 to be expressed in the apical membrane of MTs of both larvae and adults, and its inhibition to alter membrane potentials of this osmoregulatory epithelium. Our data demonstrate that multiple VGICs are expressed in osmoregulatory epithelia of Ae. aegypti and may play an important role in the autonomous regulation of ion transport.
Collapse
Affiliation(s)
- Serena Farrell
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Jocelyne Dates
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Nancy Ramirez
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Hannah Hausknecht-Buss
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S. Twin Oaks Valley Road, San Marcos, CA 92096, USA
| |
Collapse
|
84
|
Wang G, Zhang Z, Li J, Han J, Lu C. The PTB and PRR domains of numb regulate neurite outgrowth by influencing voltage-gated calcium channel expression and kinetics. Brain Res Bull 2024; 207:110876. [PMID: 38215950 DOI: 10.1016/j.brainresbull.2024.110876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Numb is an evolutionarily conserved protein that regulates the differentiation of neuronal progenitor cells through unknown mechanisms. Numb has four alternative splice variants with different lengths of phosphotyrosine-binding (PTB) and proline-rich regions (PRR) domains. In this study, we demonstrated that Numb expression was increased in the primary cultures of rat cortical and hippocampal neurons over time in vitro, and Numb antisense inhibited neurite outgrowth. We verified that cells overexpressing short PTB (SPTB) or long PTB (LPTB) domains exhibited differentiation or proliferation, respectively. SPTB-mediated differentiation was related to the PRR domains, as cells expressing SPTB/LPRR had longer dendrites and more branched dendrites than cells expressing SPTB/SPRR. The differentiation of both cell types was completely blocked by the Ca2+ chelator. Western blot analysis revealed the increased total protein expression of voltage-gated calcium channel (VGCC) subunit α1C and α1D in cells expressing SPTB and LPTB Numb. The increased expression of the VGCC β3 subunit was only observed in cells expressing SPTB Numb. Immunocytochemistry further showed that SPTB-mediated cell differentiation was associated with increased membrane expression of VGCC subunits α1C, α1D and β3, which corresponded to the higher Ca2+ current (ICa) densities. Furthermore, we found that VGCC of cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms exhibit steady-state inactivation (SSI) in both differentiated and undifferentiated phenotypes. A similar SSI of VGCC was observed in the differentiated cells transfected with SPTB/SPRR or SPTB/LPRR Numb isoforms, whereas a left shift SSI of VGCC in cells expressing SPTB/LPRR was detected in the undifferentiated cells. Collectively, these data indicate that SPTB domain is essential for neurite outgrowth involving in membrane expression of VGCC subunits, and LPRR plays a role in neuronal branching and the regulation of VGCC inactivation kinetics.
Collapse
Affiliation(s)
- Guodong Wang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; School of Nursing, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhengyan Zhang
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China; The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang 453003, China
| | - Junmei Li
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinhong Han
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
| | - Chengbiao Lu
- International-Joint Lab for Non-Invasive Neural Modulation of Henan Province, Department of Physiology and Pathophysiology, Xinxiang Medical University, Xinxiang 453003, China.
| |
Collapse
|
85
|
Orfali R, Alwatban AZ, Orfali RS, Lau L, Chea N, Alotaibi AM, Nam YW, Zhang M. Oxidative stress and ion channels in neurodegenerative diseases. Front Physiol 2024; 15:1320086. [PMID: 38348223 PMCID: PMC10859863 DOI: 10.3389/fphys.2024.1320086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
Numerous neurodegenerative diseases result from altered ion channel function and mutations. The intracellular redox status can significantly alter the gating characteristics of ion channels. Abundant neurodegenerative diseases associated with oxidative stress have been documented, including Parkinson's, Alzheimer's, spinocerebellar ataxia, amyotrophic lateral sclerosis, and Huntington's disease. Reactive oxygen and nitrogen species compounds trigger posttranslational alterations that target specific sites within the subunits responsible for channel assembly. These alterations include the adjustment of cysteine residues through redox reactions induced by reactive oxygen species (ROS), nitration, and S-nitrosylation assisted by nitric oxide of tyrosine residues through peroxynitrite. Several ion channels have been directly investigated for their functional responses to oxidizing agents and oxidative stress. This review primarily explores the relationship and potential links between oxidative stress and ion channels in neurodegenerative conditions, such as cerebellar ataxias and Parkinson's disease. The potential correlation between oxidative stress and ion channels could hold promise for developing innovative therapies for common neurodegenerative diseases.
Collapse
Affiliation(s)
- Razan Orfali
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Adnan Z. Alwatban
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Liz Lau
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Noble Chea
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Abdullah M. Alotaibi
- Neuroscience Research Department, Research Centre, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Young-Woo Nam
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| | - Miao Zhang
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, CA, United States
| |
Collapse
|
86
|
Skalka GL, Tsakovska M, Murphy DJ. Kinase signalling adaptation supports dysfunctional mitochondria in disease. Front Mol Biosci 2024; 11:1354682. [PMID: 38434478 PMCID: PMC10906720 DOI: 10.3389/fmolb.2024.1354682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 03/05/2024] Open
Abstract
Mitochondria form a critical control nexus which are essential for maintaining correct tissue homeostasis. An increasing number of studies have identified dysregulation of mitochondria as a driver in cancer. However, which pathways support and promote this adapted mitochondrial function? A key hallmark of cancer is perturbation of kinase signalling pathways. These pathways include mitogen activated protein kinases (MAPK), lipid secondary messenger networks, cyclic-AMP-activated (cAMP)/AMP-activated kinases (AMPK), and Ca2+/calmodulin-dependent protein kinase (CaMK) networks. These signalling pathways have multiple substrates which support initiation and persistence of cancer. Many of these are involved in the regulation of mitochondrial morphology, mitochondrial apoptosis, mitochondrial calcium homeostasis, mitochondrial associated membranes (MAMs), and retrograde ROS signalling. This review will aim to both explore how kinase signalling integrates with these critical mitochondrial pathways and highlight how these systems can be usurped to support the development of disease. In addition, we will identify areas which require further investigation to fully understand the complexities of these regulatory interactions. Overall, this review will emphasize how studying the interaction between kinase signalling and mitochondria improves our understanding of mitochondrial homeostasis and can yield novel therapeutic targets to treat disease.
Collapse
Affiliation(s)
- George L. Skalka
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Mina Tsakovska
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Daniel J. Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- CRUK Scotland Institute, Glasgow, United Kingdom
| |
Collapse
|
87
|
Zhang Z, Huang R. Stronger stimulus triggers synaptic transmission faster through earlier started action potential. Cell Commun Signal 2024; 22:34. [PMID: 38217015 PMCID: PMC10785377 DOI: 10.1186/s12964-024-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024] Open
Abstract
Synaptic transmission plays an important and time-sensitive role in the nervous system. Although the amplitude of neurotransmission is positively related to the intensity of external stimulus, whether stronger stimulus could trigger synaptic transmission faster remains unsolved. Our present work in the primary sensory system shows that besides the known effect of larger amplitude, stronger stimulus triggers the synaptic transmission faster, which is regulated by the earlier started action potential (AP), independent of the AP's amplitude. More importantly, this model is further extended from the sensory system to the hippocampus, implying broad applicability in the nervous system. Together, we found that stronger stimulus induces AP faster, which suggests to trigger the neurotransmission faster, implying that the occurrence time of neurotransmission, as well as the amplitude, plays an important role in the timely and effective response of nervous system.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Neurological Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200333, China.
| | - Rong Huang
- Neuroscience Research Center, Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
88
|
Qi J, Li H, Yang Y, Sun X, Wang J, Han X, Chu X, Sun Z, Chu L. Mechanistic insights into the ameliorative effects of hypoxia-induced myocardial injury by Corydalis yanhusuo total alkaloids: based on network pharmacology and experiment verification. Front Pharmacol 2024; 14:1275558. [PMID: 38273838 PMCID: PMC10808789 DOI: 10.3389/fphar.2023.1275558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Corydalis yanhusuo total alkaloids (CYTA) are the primary active ingredients in yanhusuo, known for their analgesic and cardioprotective effects. However, the mechanisms underlying the treatment of Myocardial ischemia (MI) with CYTA have not been reported. The purpose of this study was to explore the protective effect of CYTA on MI and its related mechanisms. Methods: A network pharmacology was employed to shed light on the targets and mechanisms of CYTA's action on MI. The protective effect of CYTA against hypoxia damage was evaluated in H9c2 cells. Furthermore, the effects of CYTA on L-type Ca2+ current (ICa-L), contractile force, and Ca2+ transient in cardiomyocytes isolated from rats were investigated using the patch clamp technique and IonOptix system. The network pharmacology revealed that CYTA could regulate oxidative stress, apoptosis, and calcium signaling. Cellular experiments demonstrated that CYTA decreased levels of CK, LDH, and MDA, as well as ROS production and Ca2+ concentration. Additionally, CYTA improved apoptosis and increased the activities of SOD, CAT, and GSH-Px, along with the levels of ATP and Ca2+-ATPase content and mitochondrial membrane potential. Moreover, CYTA inhibited ICa-L, cell contraction, and Ca2+ transient in cardiomyocytes. Results: These findings suggest that CYTA has a protective effect on MI by inhibiting oxidative stress, mitochondrial damage, apoptosis and Ca2+ overload. Discussion: The results prove that CYTA might be a potential natural compound in the field of MI treatment, and also provide a new scientific basis for the its utilization.
Collapse
Affiliation(s)
- Jiaying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Haoying Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xiaoqi Sun
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianxin Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenqing Sun
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
89
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
90
|
Varadi G. Mechanism of Analgesia by Gabapentinoid Drugs: Involvement of Modulation of Synaptogenesis and Trafficking of Glutamate-Gated Ion Channels. J Pharmacol Exp Ther 2024; 388:121-133. [PMID: 37918854 DOI: 10.1124/jpet.123.001669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/04/2023] Open
Abstract
Gabapentinoids have clinically been used for treating epilepsy, neuropathic pain, and several other neurologic disorders for >30 years; however, the definitive molecular mechanism responsible for their therapeutic actions remained uncertain. The conventional pharmacological observation regarding their efficacy in chronic pain modulation is the weakening of glutamate release at presynaptic terminals in the spinal cord. While the α2/δ-1 subunit of voltage-gated calcium channels (VGCCs) has been identified as the primary drug receptor for gabapentinoids, the lack of consistent effect of this drug class on VGCC function is indicative of a minor role in regulating this ion channel's activity. The current review targets the efficacy and mechanism of gabapentinoids in treating chronic pain. The discovery of interaction of α2/δ-1 with thrombospondins established this protein as a major synaptogenic neuronal receptor for thrombospondins. Other findings identified α2/δ-1 as a powerful regulator of N-methyl-D-aspartate receptor (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) by potentiating the synaptic expression, a putative pathophysiological mechanism of neuropathic pain. Further, the interdependent interactions between thrombospondin and α2/δ-1 contribute to chronic pain states, while gabapentinoid ligands efficaciously reverse such pain conditions. Gabapentin normalizes and even blocks NMDAR and AMPAR synaptic targeting and activity elicited by nerve injury. SIGNIFICANCE STATEMENT: Gabapentinoid drugs are used to treat various neurological conditions including chronic pain. In chronic pain states, gene expression of cacnα2/δ-1 and thrombospondins are upregulated and promote aberrant excitatory synaptogenesis. The complex trait of protein associations that involve interdependent interactions between α2/δ-1 and thrombospondins, further, association of N-methyl-D-aspartate receptor and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor with the C-tail of α2/δ-1, constitutes a macromolecular signaling complex that forms the crucial elements for the pharmacological mode of action of gabapentinoids.
Collapse
|
91
|
Mesirca P, Chemin J, Barrère C, Torre E, Gallot L, Monteil A, Bidaud I, Diochot S, Lazdunski M, Soong TW, Barrère-Lemaire S, Mangoni ME, Nargeot J. Selective blockade of Ca v1.2 (α1C) versus Ca v1.3 (α1D) L-type calcium channels by the black mamba toxin calciseptine. Nat Commun 2024; 15:54. [PMID: 38167790 PMCID: PMC10762068 DOI: 10.1038/s41467-023-43502-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 11/10/2023] [Indexed: 01/05/2024] Open
Abstract
L-type voltage-gated calcium channels are involved in multiple physiological functions. Currently available antagonists do not discriminate between L-type channel isoforms. Importantly, no selective blocker is available to dissect the role of L-type isoforms Cav1.2 and Cav1.3 that are concomitantly co-expressed in the heart, neuroendocrine and neuronal cells. Here we show that calciseptine, a snake toxin purified from mamba venom, selectively blocks Cav1.2 -mediated L-type calcium currents (ICaL) at concentrations leaving Cav1.3-mediated ICaL unaffected in both native cardiac myocytes and HEK-293T cells expressing recombinant Cav1.2 and Cav1.3 channels. Functionally, calciseptine potently inhibits cardiac contraction without altering the pacemaker activity in sino-atrial node cells, underscoring differential roles of Cav1.2- and Cav1.3 in cardiac contractility and automaticity. In summary, calciseptine is a selective L-type Cav1.2 Ca2+ channel blocker and should be a valuable tool to dissect the role of these L-channel isoforms.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
| | - Jean Chemin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Christian Barrère
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Eleonora Torre
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Laura Gallot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Sylvie Diochot
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), FHU InovPain (Fédération Hospitalo-Universitaire "Innovative Solutions in Refractory Chronic Pain"), F-06560, Valbonne, France
| | - Michel Lazdunski
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
- Université Côte d'Azur, CNRS, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), FHU InovPain (Fédération Hospitalo-Universitaire "Innovative Solutions in Refractory Chronic Pain"), F-06560, Valbonne, France
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094, Montpellier, France.
- Laboratory of Excellence Ion Channels, Science & Therapeutics, F-06560, Valbonne, France.
| |
Collapse
|
92
|
Javed A, Habib S, Ayub A. Evolution of protein domain repertoires of CALHM6. PeerJ 2024; 12:e16063. [PMID: 38188152 PMCID: PMC10768655 DOI: 10.7717/peerj.16063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/18/2023] [Indexed: 01/09/2024] Open
Abstract
Calcium (Ca2 +) homeostasis is essential in conducting various cellular processes including nerve transmission, muscular movement, and immune response. Changes in Ca2 + concentration in the cytoplasm are significant in bringing about various immune responses such as pathogen clearance and apoptosis. Various key players are involved in calcium homeostasis such as calcium binders, pumps, and channels. Sequence-based evolutionary information has recently been exploited to predict the biophysical behaviors of proteins, giving critical clues about their functionality. Ion channels are reportedly the first channels developed during evolution. Calcium homeostasis modulator protein 6 (CALHM6) is one such channel. Comprised of a single domain called Ca_hom_mod, CALHM6 is a stable protein interacting with various other proteins in calcium regulation. No previous attempt has been made to trace the exact evolutionary events in the domain of CALHM6, leaving plenty of room for exploring its evolution across a wide range of organisms. The current study aims to answer the questions by employing a computational-based strategy that used profile Hidden Markov Models (HMMs) to scan for the CALHM6 domain, integrated the data with a time-calibrated phylogenetic tree using BEAST and Mesquite, and visualized through iTOL. Around 4,000 domains were identified, and 14,000 domain gain, loss, and duplication events were observed at the end which also included various protein domains other than CALHM6. The data were analyzed concerning CALHM6 evolution as well as the domain gain, loss, and duplication of its interacting partners: Calpain, Vinculin, protein S100-A7, Thioredoxin, Peroxiredoxin, and Calmodulin-like protein 5. Duplication events of CALHM6 near higher eukaryotes showed its increasing complexity in structure and function. This in-silico phylogenetic approach applied to trace the evolution of CALHM6 was an effective approach to get a better understanding of the protein CALHM6.
Collapse
Affiliation(s)
- Aneela Javed
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sabahat Habib
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aaima Ayub
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
93
|
de Amorim Ferreira M, Ferreira J. Role of Cav2.3 (R-type) Calcium Channel in Pain and Analgesia: A Scoping Review. Curr Neuropharmacol 2024; 22:1909-1922. [PMID: 37581322 PMCID: PMC11284728 DOI: 10.2174/1570159x21666230811102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 02/15/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Voltage-gated calcium channels (VGCCs) play an important role in pain development and maintenance. As Cav2.2 and Cav3.2 channels have been identified as potential drug targets for analgesics, the participation of Cav2.3 (that gives rise to R-type calcium currents) in pain and analgesia remains incompletely understood. OBJECTIVE Identify the participation of Cav2.3 in pain and analgesia. METHODS To map research in this area as well as to identify any existing gaps in knowledge on the potential role of Cav2.3 in pain signalling, we conducted this scoping review. We searched PubMed and SCOPUS databases, and 40 articles were included in this study. Besides, we organized the studies into 5 types of categories within the broader context of the role of Cav2.3 in pain and analgesia. RESULTS Some studies revealed the expression of Cav2.3 in pain pathways, especially in nociceptive neurons at the sensory ganglia. Other studies demonstrated that Cav2.3-mediated currents could be inhibited by analgesic/antinociceptive drugs either indirectly or directly. Some articles indicated that Cav2.3 modulates nociceptive transmission, especially at the pre-synaptic level at spinal sites. There are studies using different rodent pain models and approaches to reduce Cav2.3 activity or expression and mostly demonstrated a pro-nociceptive role of Cav2.3, despite some contradictory findings and deficiencies in the description of study design quality. There are three studies that reported the association of single-nucleotide polymorphisms in the Cav2.3 gene (CACNA1E) with postoperative pain and opioid consumption as well as with the prevalence of migraine in patients. CONCLUSION Cav2.3 is a target for some analgesic drugs and has a pro-nociceptive role in pain.
Collapse
Affiliation(s)
| | - Juliano Ferreira
- Graduate Program of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
94
|
Li AH, Kuo YY, Yang SB, Chen PC. Central Channelopathies in Obesity. CHINESE J PHYSIOL 2024; 67:15-26. [PMID: 38780269 DOI: 10.4103/ejpi.ejpi-d-23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/18/2024] [Indexed: 05/25/2024] Open
Abstract
As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.
Collapse
Affiliation(s)
- Athena Hsu Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ying Kuo
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shi-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pei-Chun Chen
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
95
|
Souza Bomfim GH, Mitaishvili E, Schnetkamp PP, Lacruz RS. Na+/Ca2+ exchange in enamel cells is dominated by the K+-dependent NCKX exchanger. J Gen Physiol 2024; 156:e202313372. [PMID: 37947795 PMCID: PMC10637953 DOI: 10.1085/jgp.202313372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/15/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Calcium (Ca2+) extrusion is an essential function of the enamel-forming ameloblasts, providing Ca2+ for extracellular mineralization. The plasma membrane Ca2+ ATPases (PMCAs) remove cytosolic Ca2+ (cCa2+) and were recently shown to be efficient when ameloblasts experienced low cCa2+ elevation. Sodium-calcium (Na+/Ca2+) exchange has higher capacity to extrude cCa2+, but there is limited evidence on the function of the two main families of Na+/Ca2+ exchangers in enamel formation. The purpose of this study was to analyze the function of the NCX (coded by SLC8) and the K+-dependent NCKX (coded by SLC24) exchangers in rat ameloblasts and to compare their efficacy in the two main stages of enamel formation: the enamel forming secretory stage and the mineralizing or maturation stage. mRNA expression profiling confirmed the expression of Slc8 and Slc24 genes in enamel cells, Slc24a4 being the most highly upregulated transcript during the maturation stage, when Ca2+ transport increases. Na+/Ca2+ exchange was analyzed in the Ca2+ influx mode in Fura-2 AM-loaded ameloblasts. We show that maturation-stage ameloblasts have a higher Na+/Ca2+ exchange capacity than secretory-stage cells. We also show that Na+/Ca2+ exchange in both stages is dominated by NCKX over NCX. The importance of NCKX function in ameloblasts may partly explain why mutations in the SLC24A4 gene, but not in SLC8 genes, result in enamel disease. Our results demonstrate that Na+/Ca2+ exchangers are fully operational in ameloblasts and that their contribution to Ca2+ homeostasis increases in the maturation stage, when Ca2+ transport need is higher.
Collapse
Affiliation(s)
| | - Erna Mitaishvili
- Department of Chemistry, Herbert H. Lehman College, City University of New York. PhD Program in Biology, The Graduate Center of The City University of New York, New York, NY, USA
| | - Paul P.M. Schnetkamp
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Rodrigo S. Lacruz
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
96
|
Deng C, Chen H. Brain-derived neurotrophic factor/tropomyosin receptor kinase B signaling in spinal muscular atrophy and amyotrophic lateral sclerosis. Neurobiol Dis 2024; 190:106377. [PMID: 38092270 DOI: 10.1016/j.nbd.2023.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/15/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
Tropomyosin receptor kinase B (TrkB) and its primary ligand brain-derived neurotrophic factor (BDNF) are expressed in the neuromuscular system, where they affect neuronal survival, differentiation, and functions. Changes in BDNF levels and full-length TrkB (TrkB-FL) signaling have been revealed in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS), two common forms of motor neuron diseases that are characterized by defective neuromuscular junctions in early disease stages and subsequently progressive muscle weakness. This review summarizes the current understanding of BDNF/TrkB-FL-related research in SMA and ALS, with an emphasis on their alterations in the neuromuscular system and possible BDNF/TrkB-FL-targeting therapeutic strategies. The limitations of current studies and future directions are also discussed, giving the hope of discovering novel and effective treatments.
Collapse
Affiliation(s)
- Chunchu Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Chen
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
97
|
Rodrigues TCML, Dias AL, dos Santos AMF, Messias Monteiro AF, Oliveira MCN, Oliveira Pires HF, de Sousa NF, Salvadori MGDSS, Scotti MT, Scotti L. Multi-target Phenylpropanoids Against Epilepsy. Curr Neuropharmacol 2024; 22:2168-2190. [PMID: 38847378 PMCID: PMC11337686 DOI: 10.2174/1570159x22666240524160126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 06/13/2024] Open
Abstract
Epilepsy is a neurological disease with no defined cause, characterized by recurrent epileptic seizures. These occur due to the dysregulation of excitatory and inhibitory neurotransmitters in the central nervous system (CNS). Psychopharmaceuticals have undesirable side effects; many patients require more than one pharmacotherapy to control crises. With this in mind, this work emphasizes the discovery of new substances from natural products that can combat epileptic seizures. Using in silico techniques, this review aims to evaluate the antiepileptic and multi-target activity of phenylpropanoid derivatives. Initially, ligand-based virtual screening models (LBVS) were performed with 468 phenylpropanoid compounds to predict biological activities. The LBVS were developed for the targets alpha- amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), voltage-gated calcium channel Ttype (CaV), gamma-aminobutyric acid A (GABAA), gamma-aminobutyric acid transporter type 1 (GAT-1), voltage-gated potassium channel of the Q family (KCNQ), voltage-gated sodium channel (NaV), and N-methyl D-aspartate (NMDA). The compounds that had good results in the LBVS were analyzed for the absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, and later, the best molecules were evaluated in the molecular docking consensus. The TR430 compound showed the best results in pharmacokinetic parameters; its oral absorption was 99.03%, it did not violate any Lipinski rule, it showed good bioavailability, and no cytotoxicity was observed either from the molecule or from the metabolites in the evaluated parameters. TR430 was able to bind with GABAA (activation) and AMPA (inhibition) targets and demonstrated good binding energy and significant interactions with both targets. The studied compound showed to be a promising molecule with a possible multi-target activity in both fundamental pharmacological targets for the treatment of epilepsy.
Collapse
Affiliation(s)
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Aline Matilde Ferreira dos Santos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Alex France Messias Monteiro
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Mayara Cecile Nascimento Oliveira
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-085, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | | | - Marcus Tullius Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, João Pessoa, Paraíba, Brazil
- Teaching and Research Management, University Hospital Lauro Wanderley, Federal University of Paraíba, 58050-585, João Pessoa, PB, Brazil
| |
Collapse
|
98
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
99
|
Karmakar S, Basak HK, Paswan U, Saha S, Mandal SK, Chatterjee A. Design, In silico Screening, Synthesis, Characterisation and DFT-based Electronic Properties of Dihydropyridine-based Molecule as L-type Calcium Channel Blocker. Curr Comput Aided Drug Des 2024; 20:1130-1146. [PMID: 39354859 DOI: 10.2174/0115734099273719231005062524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2024]
Abstract
BACKGROUND People of all nationalities and social classes are now affected by the growing issue of hypertension. Over time, there has been a consistent rise in the fatality rate. A range of therapeutic compounds, on the other hand, are often used to handle hypertension. OBJECTIVES The objectives of this study are first to design potential antihypertensive drugs based on the DHP scaffold, secondly, to analyse drug-likeness properties of the ligands and investigate their molecular mechanisms of binding to the model protein Cav1.2 and finally to synthesise the best ligand. MATERIALS AND METHODS Due to the lack of 3D structures for human Cav1.2, the protein structure was modelled using a homology modelling approach. A protein-ligand complex's strength and binding interaction were investigated using molecular docking and molecular dynamics techniques. DFT-based electronic properties of the ligand were calculated using the M06-2X/ def2- TZVP level of theory. The SwissADME website was used to study the ADMET properties. RESULTS In this study, a series of DHP compounds (19 compounds) were properly designed to act as calcium channel blockers. Among these compounds, compound 16 showed excellent binding scores (-11.6 kcal/mol). This compound was synthesised with good yield and characterised. To assess the structural features of the synthesised molecule quantum chemical calculations were performed. CONCLUSION Based on molecular docking, molecular dynamics simulations, and drug-likeness properties of compound 16 can be used as a potential calcium channel blocker.
Collapse
Affiliation(s)
- Sujoy Karmakar
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| | - Hriday Kumar Basak
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
- Department of Chemistry, Government General Degree College at Kushmandi, Dakhin Dinajpur, 733121, West Bengal, India
| | - Uttam Paswan
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| | - Soumen Saha
- Department of Chemistry, TDB College, Raniganj, Paschim Bardhaman, 713347, WB, India
| | - Samir Kumar Mandal
- Department of Chemistry, Saldiha College, Saldiha, Bankura, 722173, WB, India
| | - Abhik Chatterjee
- Design, Synthesis and Simulation Laboratory, Department of Chemistry, Raiganj University, 733134, WB, India
| |
Collapse
|
100
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated Ca 2+ channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.23.573183. [PMID: 38187530 PMCID: PMC10769351 DOI: 10.1101/2023.12.23.573183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify the mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not of CaV1.3, restores neurotransmitter release. Chimeric CaV1.3 channels with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release fully sensitive to blockade of CaV1 channels. This dominant targeting function of the CaV2.1 C-terminus requires an EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization. We conclude that the intracellular C-termini mediate compartment-specific CaV targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|