51
|
Zhang H, Guo J, Chen X, Zhou Y, Pei Y, Chen L, ul Haq S, Lu M, Gong H, Chen R. Pepper bHLH transcription factor CabHLH035 contributes to salt tolerance by modulating ion homeostasis and proline biosynthesis. HORTICULTURE RESEARCH 2022; 9:uhac203. [PMID: 36349081 PMCID: PMC9634760 DOI: 10.1093/hr/uhac203] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Members of the bHLH family of transcription factors play important roles in multiple aspects of plant biological processes, for instance, abiotic stress responses. Previously, we characterized CaNAC035, a gene that positively regulates stress tolerance and identified CabHLH035, a CaNAC035-interacting protein in pepper (Capsicum annuum L.). In this study, we describe the role of CabHLH035 in the response to salt stress. Our results show that the expression of CabHLH035 increased following salt treatment. Transient expression of CabHLH035 (CabHLH035-To) in pepper enhanced salt tolerance, ectopic expression of CabHLH035 in Arabidopsis increased the salt stress tolerance, whereas knocking down the expression of CabHLH035 in pepper plants resulted in decreased salt tolerance. Homologs of the Salt Overly Sensitive 1 (SOS1) and pyrroline-5-carboxylate acid synthetase (P5CS) genes showed drastically increased expression in transgenic Arabidopsis plants expressing CabHLH035 and CabHLH035-To plants, but expression decreased in CabHLH035-silenced plants. Our results also showed that CabHLH035 can directly bind to the CaSOS1 and CaP5CS gene promoters and positively activate their expression. We found that transgenic Arabidopsis plants, ectopic expression of CabHLH035 and pepper plants transiently overexpressing CabHLH035 (CabHLH035-To) showed lower Na+ and higher proline contents in response to NaCl treatment, while CabHLH035-silenced plants had higher Na+ and lower proline concentrations. Overall, CabHLH035 plays important roles in salt tolerance through its effects on the intracellular Na+ : K+ ratio and proline biosynthesis.
Collapse
Affiliation(s)
| | | | | | - Yunyun Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Yingping Pei
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Lang Chen
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Saeed ul Haq
- College of Horticulture, Northwest A&F University, Yangling 712100, China
- Department of Horticulture, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | | | | |
Collapse
|
52
|
Lu S, He H, Wang P, Gou H, Cao X, Ma Z, Chen B, Mao J. Evolutionary relationship analysis of STARD gene family and VvSTARD5 improves tolerance of salt stress in transgenic tomatoes. PHYSIOLOGIA PLANTARUM 2022; 174:e13772. [PMID: 36054928 DOI: 10.1111/ppl.13772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The steroidogenic acute regulatory protein-related lipid transfer domain (STARD) forms a protein that can bind membrane-derived phospholipid second messengers and plasma membranes. Although it has been reported in many plants, the evolutionary relationship of the STARD gene family has not been systematically analyzed, and functions of the HD-START and HD-START-MEKHLA domain subgroup genes under hormone and abiotic stress are also unclear in grapes. This study identified and analyzed 23 VvSTARD genes, which were distinctly divided into five subgroups according to five conserved domain types. The analyses of codon preference, selective pressure, and synteny relationship revealed that grape had higher homology with Arabidopsis compared with rice. Interestingly, the expression levels of VvSTARD genes in subgroups 1, 2, and 3 exhibited significant upregulation under NaCl treatment at 24 h, but VvSTARD genes in subgroups 4 and 5 were upregulated under methyl jasmonate (MeJA) treatment at 24 h. The subcellular localization showed that VvSTARD5 was localized in the nucleus. Additionally, under NaCl treatment at 24 h, there were an obvious decrease in the relative electrical leakages and the content of malondialdehyde (MDA), while the relative expression level of VvSTARD5 and content of proline were obviously enhanced in three transgenic lines. Therefore, the overexpression of VvSTARD5 greatly increased the salt tolerance of transgenic tomatoes. Collectively, this study preliminarily explores the comprehensive function of the STARD gene family in grapes and verifies the function of VvSTARD5 in response to salt.
Collapse
Affiliation(s)
- Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Honghong He
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ping Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huiming Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xuejing Cao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
53
|
Zhang T, Sun K, Chang X, Ouyang Z, Meng G, Han Y, Shen S, Yao Q, Piao F, Wang Y. Comparative Physiological and Transcriptomic Analyses of Two Contrasting Pepper Genotypes under Salt Stress Reveal Complex Salt Tolerance Mechanisms in Seedlings. Int J Mol Sci 2022; 23:9701. [PMID: 36077098 PMCID: PMC9455954 DOI: 10.3390/ijms23179701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022] Open
Abstract
As a glycophyte plant, pepper (Capsicum annuum L.) is widely cultivated worldwide, but its growth is susceptible to salinity damage, especially at the seedling stage. Here, we conducted a study to determine the physiological and transcriptional differences between two genotype seedlings (P300 and 323F3) with contrasting tolerance under salt stress. The P300 seedlings were more salt-tolerant and had higher K+ contents, higher antioxidase activities, higher compatible solutes, and lower Na+ contents in both their roots and their leaves than the 323F3 seedlings. During RNA-seq analysis of the roots, more up-regulated genes and fewer down-regulated genes were identified between salt-treated P300 seedlings and the controls than between salt-treated 323F3 and the controls. Many ROS-scavenging genes and several SOS pathway genes were significantly induced by salt stress and exhibited higher expressions in the salt-treated roots of the P300 seedlings than those of 323F3 seedlings. Moreover, biosynthesis of the unsaturated fatty acids pathway and protein processing in the endoplasmic reticulum pathway were deeply involved in the responses of P300 to salt stress, and most of the differentially expressed genes involved in the two pathways, including the genes that encode mega-6 fatty acid desaturases and heat-shock proteins, were up-regulated. We also found differences in the hormone synthesis and signaling pathway genes in both the P300 and 323F3 varieties under salt stress. Overall, our results provide valuable insights into the physiological and molecular mechanisms that affect the salt tolerance of pepper seedlings, and present some candidate genes for improving salt tolerance in pepper.
Collapse
Affiliation(s)
- Tao Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Kaile Sun
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoke Chang
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhaopeng Ouyang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Geng Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanan Han
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shunshan Shen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| | - Qiuju Yao
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Fengzhi Piao
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
54
|
Ethylene Signaling under Stressful Environments: Analyzing Collaborative Knowledge. PLANTS 2022; 11:plants11172211. [PMID: 36079592 PMCID: PMC9460115 DOI: 10.3390/plants11172211] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/26/2022]
Abstract
Ethylene is a gaseous plant growth hormone that regulates various plant developmental processes, ranging from seed germination to senescence. The mechanisms underlying ethylene biosynthesis and signaling involve multistep mechanisms representing different control levels to regulate its production and response. Ethylene is an established phytohormone that displays various signaling processes under environmental stress in plants. Such environmental stresses trigger ethylene biosynthesis/action, which influences the growth and development of plants and opens new windows for future crop improvement. This review summarizes the current understanding of how environmental stress influences plants’ ethylene biosynthesis, signaling, and response. The review focuses on (a) ethylene biosynthesis and signaling in plants, (b) the influence of environmental stress on ethylene biosynthesis, (c) regulation of ethylene signaling for stress acclimation, (d) potential mechanisms underlying the ethylene-mediated stress tolerance in plants, and (e) summarizing ethylene formation under stress and its mechanism of action.
Collapse
|
55
|
Du X, Su M, Jiao Y, Xu S, Song J, Wang H, Li Q. A Transcription Factor SlNAC10 Gene of Suaeda liaotungensis Regulates Proline Synthesis and Enhances Salt and Drought Tolerance. Int J Mol Sci 2022; 23:ijms23179625. [PMID: 36077020 PMCID: PMC9455740 DOI: 10.3390/ijms23179625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) transcription factors are one of the largest families of transcription factors in plants and play an important role in plant development and the response to adversity. In this study, we cloned a new NAC gene, SlNAC10, from the halophyte Suaeda liaotungensis K. The gene has a total length of 1584 bp including a complete ORF of 1107 bp that encodes 369 amino acids. The SlNAC10-GFP fusion protein is located in the nucleus and SlNAC10 has a transcription activation structural domain at the C-terminus. We studied the expression characteristics of SlNAC10 and found that it was highest in the leaves of S. liaotungensis and induced by drought, salt, cold, and abscisic acid (ABA). To analyze the function of SlNAC10 in plants, we obtained SlNAC10 transgenic Arabidopsis. The growth characteristics and physiological indicators of transgenic Arabidopsis were measured under salt and drought stress. The transgenic Arabidopsis showed obvious advantages in the root length and survival rate; chlorophyll fluorescence levels; and the antioxidant enzyme superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and the proline content was higher than that of the wild-type (WT) Arabidopsis, whereas the relative electrolyte leakage and malondialdehyde (MDA) content were lower than those of the wild-type Arabidopsis. We explored the regulatory role of SlNAC10 on proline synthesis-related enzyme genes and found that SlNAC10 binds to the AtP5CS1, AtP5CS2, and AtP5CR promoters and regulates their downstream gene transcription. To sum up, SlNAC10 as a transcription factor improves salt and drought tolerance in plants possibly by regulating proline synthesis.
Collapse
|
56
|
Jin J, Essemine J, Xu Z, Duan J, Shan C, Mei Z, Zhu J, Cai W. Arabidopsis ETHYLENE INSENSITIVE 3 directly regulates the expression of PG1β-like family genes in response to aluminum stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4923-4940. [PMID: 35661874 DOI: 10.1093/jxb/erac161] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The genes in the subfamily PG1β (beta subunit of poly-galacturonase isoenzyme 1) have a clear effect on the biosynthesis pathway of pectin, a main component of the cell wall. However, the detailed functions of the PG1β-like gene members in Arabidopsis (AtPG1-3) have not yet been determined. In this study, we investigated their functional roles in response to aluminum (Al) stress. Our results indicate that the PG1β-like gene members are indeed involved in the Al-stress response and they can modulate its accumulation in roots to achieve optimum root elongation and hence better seedling growth. We found that transcription factor EIN3 (ETHYLENE INSENSITIVE 3) alters pectin metabolism and the EIN3 gene responds to Al stress to affect the pectin content in the root cell walls, leading to exacerbation of the inhibition of root growth, as reflected by the phenotypes of overexpressing lines. We determined that EIN3 can directly bind to the promoter regions of PG1-3, which act downstream of EIN3. Thus, our results show that EIN3 responds to Al stress in Arabidopsis directly through regulating the expression of PG1-3. Hence, EIN3 mediates their functions by acting as a biomarker in their molecular biosynthesis pathways, and consequently orchestrates their biological network in response to Al stress.
Collapse
Affiliation(s)
- Jing Jin
- Tongji University, Shanghai 200092, China
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jemaa Essemine
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhan Xu
- Guangzhou City Academy of Agricultural Sciences, Key Laboratory of Biology, Genetics and Breeding, Pazhou Dadao Rd. 17-19, Haizhu District, Guangzhou 510000, China
| | - Jianli Duan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi Shan
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiling Mei
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Zhu
- Tongji University, Shanghai 200092, China
| | - Weiming Cai
- Laboratory of Photosynthesis and Environment, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
57
|
Dong Y, Tang M, Huang Z, Song J, Xu J, Ahammed GJ, Yu J, Zhou Y. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:440-456. [PMID: 35569132 DOI: 10.1111/tpj.15807] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Because of a high sensitivity to cold, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by cold stress. The NAC transcription factor (TF) family has been characterized as an important player in plant growth, development, and the stress response, but the role of NAC TFs in cold stress and their interaction with other post-transcriptional regulators such as microRNAs in cold tolerance remains elusive. Here, we demonstrated that SlNAM3, the predicted target of Sl-miR164a/b-5p, improved cold tolerance as indicated by a higher maximum quantum efficiency of photosystem II (Fv/Fm), lower relative electrolyte leakage, and less wilting in SlNAM3-overexpression plants compared to wild-type. Further genetic and molecular confirmation revealed that Sl-miR164a/b-5p functioned upstream of SlNAM3 by inhibiting the expression of the latter, thus playing a negative role in cold tolerance. Interestingly, this role is partially mediated by an ethylene-dependent pathway because either Sl-miR164a/b-5p silencing or SlNAM3 overexpression improved cold tolerance in the transgenic lines by promoting ethylene production. Moreover, silencing of the ethylene synthesis genes, SlACS1A, SlACS1B, SlACO1, and SlACO4, resulted in a significant decrease in cold tolerance. Further experiments demonstrated that NAM3 activates SlACS1A, SlACS1B, SlACO1, and SlACO4 transcription by directly binding to their promoters. Taken together, the present study identified the miR164a-NAM3 module conferring cold tolerance in tomato plants via the direct regulation of SlACS1A, SlACS1B, SlACO1, and SlACO4 expression to induce ethylene synthesis.
Collapse
Affiliation(s)
- Yufei Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zelan Huang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
58
|
Wang X, Lei X, Zhang C, He P, Zhong J, Bai S, Li D, Deng X, Lin H. Physiological and molecular responses of Phalaris arundinacea under salt stress on the Tibet plateau. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153715. [PMID: 35609373 DOI: 10.1016/j.jplph.2022.153715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phalaris arundinacea, with its characteristics of rapid growth and high biological yield, is regarded as an excellent forage grass in the Qinghai-Tibetan Plateau region of China. To explore the physiological and molecular response mechanism of Phalaris arundinacea under salt stress, we monitored the biomass and physiological indexes of two locally grown strains under conditions of exposure to 150 and 300 mM NaCl solution. Z0611 exhibited better salt stress tolerance than YS. Transcriptome sequencing analysis showed that YS and Z0611 had 1713 and 4290 differentially expressed genes (DEGs), respectively, including on metabolic processes, single-organism process, catalytic activity, and plant hormone signal transduction in the GO and KEGG databases. We also identified a large number of genes involved in hormone signaling, antioxidant systems, ion homeostasis, and photosynthetic systems. Our study provides physiological and molecular insight for establishing a salt resistance database and mining salt tolerance genes in Phalaris arundinacea, and also provides theoretical guidance for the restoration of saline-alkali land on the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Changbing Zhang
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Peijian He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jialai Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China
| | - Shiqie Bai
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China
| | - Daxu Li
- Sichuan Academy of Grassland Science, Chengdu, Sichuan, 611731, China.
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Honghui Lin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
59
|
Tian Y, Zeng H, Wu J, Huang J, Gao Q, Tang D, Cai L, Liao Z, Wang Y, Liu X, Lin J. Screening DHHCs of S-acylated proteins using an OsDHHC cDNA library and bimolecular fluorescence complementation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1763-1780. [PMID: 35411551 DOI: 10.1111/tpj.15769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
S-acylation is an important lipid modification that primarily involves DHHC proteins (DHHCs) and associated S-acylated proteins. No DHHC-S-acylated protein pair has been reported so far in rice (Oryza sativa L.) and the molecular mechanisms underlying S-acylation in plants are largely unknown. We constructed an OsDHHC cDNA library for screening corresponding pairs of DHHCs and S-acylated proteins using bimolecular fluorescence complementation assays. Five DHHC-S-acylated protein pairs (OsDHHC30-OsCBL2, OsDHHC30-OsCBL3, OsDHHC18-OsNOA1, OsDHHC13-OsNAC9, and OsDHHC14-GSD1) were identified in rice. Among the pairs, OsCBL2 and OsCBL3 were S-acylated by OsDHHC30 in yeast and rice. The localization of OsCBL2 and OsCBL3 in the endomembrane depended on S-acylation mediated by OsDHHC30. Meanwhile, all four OsDHHCs screened complemented the thermosensitive phenotype of an akr1 yeast mutant, and their DHHC motifs were required for S-acyltransferase activity. Overexpression of OsDHHC30 in rice plants improved their salt and oxidative tolerance. Together, these results contribute to our understanding of the molecular mechanism underlying S-acylation in plants.
Collapse
Affiliation(s)
- Ye Tian
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Hui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jicai Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jian Huang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiang Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Lipeng Cai
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Zhaoyi Liao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Yan Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, National Center of Technology Innovation for Saline-Alkali Tolerant Rice, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| |
Collapse
|
60
|
Fedoreyeva LI, Baranova EN, Chaban IA, Dilovarova TA, Vanyushin BF, Kononenko NV. Elongating Effect of the Peptide AEDL on the Root of Nicotiana tabacum under Salinity. PLANTS 2022; 11:plants11101352. [PMID: 35631778 PMCID: PMC9147445 DOI: 10.3390/plants11101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
The overall survival of a plant depends on the development, growth, and functioning of the roots. Root development and growth are not only genetically programmed but are constantly influenced by environmental factors, with the roots adapting to such changes. The peptide AEDL (alanine–glutamine acid–asparagine acid–leucine) at a concentration of 10−7 M had an elongating effect on the root cells of Nicotiana tabacum seedlings. The action of this peptide at such a low concentration is similar to that of peptide phytohormones. In the presence of 150 mM NaCl, a strong distortion in the development and architecture of the tobacco roots was observed. However, the combined presence of AEDL and NaCl resulted in normal root development. In the presence of AEDL, reactive oxygen species (ROS) were detected in the elongation and root hair zones of the roots. The ROS marker fluorescence intensity in plant cells grown with AEDL was much lower than that of plant cells grown without the peptide. Thus, AEDL protected the root tissue from damage by oxidative stress caused by the toxic effects of NaCl. Localization and accumulation of AEDL at the root were tissue-specific. Fluorescence microscopy showed that FITC-AEDL predominantly localized in the zones of elongation and root hairs, with insignificant localization in the meristem zone. AEDL induced a change in the structural organization of chromatin. Structural changes in chromatin caused significant changes in the expression of numerous genes associated with the development and differentiation of the root system. In the roots of tobacco seedlings grown in the presence of AEDL, the expression of WOX family genes decreased, and differentiation of stem cells increased, which led to root elongation. However, in the presence of NaCl, elongation of the tobacco root occurred via a different mechanism involving genes of the expansin family that weaken the cell wall in the elongation zone. Root elongation of plants is of fundamental importance in biology and is especially relevant to crop production as it can affect crop yields.
Collapse
Affiliation(s)
- Larisa I. Fedoreyeva
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- Correspondence:
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| | - Inn A. Chaban
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| | - Tatyana A. Dilovarova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| | - Boris F. Vanyushin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Neonila V. Kononenko
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (E.N.B.); (I.A.C.); (T.A.D.); (B.F.V.); (N.V.K.)
| |
Collapse
|
61
|
Genetic Mechanisms of Cold Signaling in Wheat (Triticum aestivum L.). Life (Basel) 2022; 12:life12050700. [PMID: 35629367 PMCID: PMC9147279 DOI: 10.3390/life12050700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/06/2022] [Indexed: 11/28/2022] Open
Abstract
Cold stress is a major environmental factor affecting the growth, development, and productivity of various crop species. With the current trajectory of global climate change, low temperatures are becoming more frequent and can significantly decrease crop yield. Wheat (Triticum aestivum L.) is the first domesticated crop and is the most popular cereal crop in the world. Because of a lack of systematic research on cold signaling pathways and gene regulatory networks, the underlying molecular mechanisms of cold signal transduction in wheat are poorly understood. This study reviews recent progress in wheat, including the ICE-CBF-COR signaling pathway under cold stress and the effects of cold stress on hormonal pathways, reactive oxygen species (ROS), and epigenetic processes and elements. This review also highlights possible strategies for improving cold tolerance in wheat.
Collapse
|
62
|
Xia-Yu G, Meng Z, Ming-Dong Z, Ji-Rui L, Zhong-Wei W, Jian-Wu L, Bin Z, Zhi-Yong A, Hua-Feng D. Comparative transcriptomic analysis of the super hybrid rice Chaoyouqianhao under salt stress. BMC PLANT BIOLOGY 2022; 22:233. [PMID: 35525915 PMCID: PMC9077912 DOI: 10.1186/s12870-022-03586-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/06/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND Soil salinization is a threat to food security. China is rich in saline land resources for potential and current utilization. The cultivation and promotion of salt-tolerant rice varieties can greatly improve the utilization of this saline land. The super hybrid rice Chaoyouqianhao (CY1000) is one of the most salt-tolerant rice varieties and is widely used, but the molecular mechanism underlying its salt tolerance is not clear. RESULTS In this study, the characteristics of CY1000 and its parents were evaluated in the field and laboratory. The results showed that aboveground parts of CY1000 were barely influenced by salt stress, while the roots were less affected than those of its parents. A comparative transcriptomic strategy was used to analyze the differences in the response to salt stress among the male and female parents of CY1000 at the seedling stage and the model indica rice 93-11. We found that the salt tolerance of CY1000 was mainly inherited from its male parent R900, and its female parent GX24S showed hardly any salt tolerance. To adapt to salt stress, CY1000 and R900 upregulated the expression of genes associated with soluble component synthesis and cell wall synthesis and other related genes and downregulated the expression of most genes related to growth material acquisition and consumption. In CY1000 and R900, the expression of genes encoding some novel key proteins in the ubiquitination pathway was significantly upregulated. After treatment with MG-132, the salt tolerance of CY1000 and R900 was significantly decreased and was almost the same as that of the wild type after salt stress treatment, indicating that ubiquitination played an important role in the salt tolerance mechanism of CY1000. At the same time, we found that some transcription factors were also involved in the salt stress response, with some transcription factors responding only in hybrid CY1000, suggesting that salt tolerance heterosis might be regulated by transcription factors in rice. CONCLUSION Our results revealed that the ubiquitination pathway is important for salt tolerance in rice, and several novel candidate genes were identified to reveal a novel salt tolerance regulation network. Additionally, our work will help clarify the mechanism of heterosis in rice. Further exploration of the molecular mechanism underlying the salt tolerance of CY1000 can provide a theoretical basis for breeding new salt-tolerant rice varieties.
Collapse
Affiliation(s)
- Guo Xia-Yu
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhang Meng
- Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082 P. R. China
| | - Zhu Ming-Dong
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Long Ji-Rui
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Wei Zhong-Wei
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Li Jian-Wu
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Zhou Bin
- Key Laboratory of Indica Rice Genetics and Breeding in the Middle and Lower Reaches of Yangtze River Valley, Hunan Rice Research Institute, Changsha, 410125 P. R. China
| | - Ai Zhi-Yong
- National Innovation Center of Saline-Alkali Tolerant Rice in Sanya, Sanya, 572000 P. R. China
- Hunan Hybrid Rice Research Center, Changsha, 410125 P. R. China
| | - Deng Hua-Feng
- College of Agronomy, Hunan Agricultural University, Changsha, 410125 P. R. China
- Hunan Academy of Agricultural Sciences, Changsha, 410125 P. R. China
| |
Collapse
|
63
|
Yuan JQ, Sun DW, Lu Q, Yang L, Wang HW, Fu XX. Responses of Physiology, Photosynthesis, and Related Genes to Saline Stress in Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang. PLANTS 2022; 11:plants11070940. [PMID: 35406920 PMCID: PMC9002922 DOI: 10.3390/plants11070940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
Cornus hongkongensis subsp. tonkinensis (W. P. Fang) Q. Y. Xiang is a native evergreen species with high ornamental value for abundant variations in leaf, bract, fruit, and tree gesture. To broaden its cultivation in coastal saline soil, salt damage and survival rate, physiological responses, photosynthetic performance, and related genes were evaluated for annual seedlings exposed to 0.3% salt (ST) concentrations for 60 days. Syndromes of salt damage were aggravated, and the survival rate decreased with prolonged stress duration; all stressed seedlings displayed salt damage, and 58.3% survived. Under short-term saline stress (5 d), marked increases in malondialdehyde (MDA), relative electrical conductivity (REC), and decreases in superoxide dismutase (SOD), photosynthetic rate (Pn), stomatal conductance (gs), and internal carbon dioxide concentration (Ci) were recorded. The stable leaf water use efficiency (WUE) and chlorophyll content were positive physiological responses to ensure photosynthetic performance. Meanwhile, the expression levels of genes related to photosystem II (psbA) and photorespiration (SGAT and GGAT) were upregulated, indicating the role of photorespiration in protecting photosynthesis from photoinhibition. After 30 days of stress (≥30 d), there was a significant increase in MDA, REC, soluble sugar (SS), soluble protein (SP), and Ci, whereas descending patterns in Pn, gs, WUE, the maximal photochemical efficiency of photosystem II (Fv/Fm), and potential activities of PSII (Fv/F0) occurred in salt-stressed seedlings, compared with CK. Meanwhile, the expression levels of related genes significantly dropped, such as psbA, LFNR, GGAT, GLYK, and PGK, indicating photoinhibition and worse photosynthetic performance. Our results suggest that the moderate salt tolerance of C. hongkongensis subsp. tonkinensis mostly lies in a better photosynthetic system influenced by active photorespiration. Hence, these results provide a framework for better understanding the photosynthetic responses of C. hongkongensis subsp. tonkinensis to salt stress.
Collapse
Affiliation(s)
- Jia-Qiu Yuan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Da-Wei Sun
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Lu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Yang
- Shanghai Wildlife and Protected Natural Areas Research Center, Shanghai 200336, China;
| | | | - Xiang-Xiang Fu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (J.-Q.Y.); (D.-W.S.); (Q.L.)
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: ; Tel.: +86-025-8542-7403
| |
Collapse
|
64
|
Naing AH, Campol JR, Kang H, Xu J, Chung MY, Kim CK. Role of Ethylene Biosynthesis Genes in the Regulation of Salt Stress and Drought Stress Tolerance in Petunia. FRONTIERS IN PLANT SCIENCE 2022; 13:844449. [PMID: 35283920 PMCID: PMC8906779 DOI: 10.3389/fpls.2022.844449] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 06/12/2023]
Abstract
Ethylene plays a critical signaling role in the abiotic stress tolerance mechanism. However, the role of ethylene in regulating abiotic stress tolerance in petunia has not been well-investigated, and the underlying molecular mechanism by which ethylene regulates abiotic stress tolerance is still unknown. Therefore, we examined the involvement of ethylene in salt and drought stress tolerance of petunia using the petunia wild type cv. "Merage Rose" and the ethylene biosynthesis genes (PhACO1 and PhACO3)-edited mutants (phaco1 and phaco3). Here, we discovered that editing PhACO1 and PhACO3 reduced ethylene production in the mutants, and mutants were more sensitive to salt and drought stress than the wild type (WT). This was proven by the better outcomes of plant growth and physiological parameters and ion homeostasis in WT over the mutants. Molecular analysis revealed that the expression levels of the genes associated with antioxidant, proline synthesis, ABA synthesis and signaling, and ethylene signaling differed significantly between the WT and mutants, indicating the role of ethylene in the transcriptional regulation of the genes associated with abiotic stress tolerance. This study highlights the involvement of ethylene in abiotic stress adaptation and provides a physiological and molecular understanding of the role of ethylene in abiotic stress response in petunia. Furthermore, the finding alerts researchers to consider the negative effects of ethylene reduction on abiotic stress tolerance when editing the ethylene biosynthesis genes to improve the postharvest quality of horticultural crops.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Jova Riza Campol
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Hyunhee Kang
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Junping Xu
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Mi Young Chung
- Department of Agricultural Education, Sunchon National University, Suncheon, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
65
|
Yue ZL, Tian ZJ, Zhang JW, Zhang SW, Li YD, Wu ZM. Overexpression of Lectin Receptor-Like Kinase 1 in Tomato Confers Resistance to Fusarium oxysporum f. sp. Radicis-Lycopersici. FRONTIERS IN PLANT SCIENCE 2022; 13:836269. [PMID: 35185997 PMCID: PMC8850989 DOI: 10.3389/fpls.2022.836269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
The disease Fusarium crown and root rot (FCRR), caused mainly by Fusarium oxysporum f. sp. radicis-lycopersici (FORL), seriously affects commercial tomato [Solanum lycopersicum (Sl)] yields. However, the genes that offer resistance to FORL are limited and the mechanism of resistance to FCRR is poorly understood. Lectin receptor-like kinases (LecRKs) play critical roles in defensive responses and immunity in many plant species; however, whether specific LecRKs are involved in the response of tomato plants to FORL is unclear. Here, we report that the expression of SlLecRK1/Solyc09g011070.1 was obviously induced by the infection of FORL. Biochemical and cell biological data revealed that SlLecRK1 is an active kinase that is located at the cell membrane, while real-time quantitative PCR data suggested that SlLecRK1 is mainly expressed in stems and roots. Genetic studies showed that overexpression of SlLecRK1 significantly improved the resistance of tomato plants to FORL but did not cause visible changes in plant growth and development compared with wild-type control plants. RNA-Seq data suggested that the positive effects of SlLecRK1 on the resistance of tomato plants to FORL occur mainly by triggering the expression of ethylene-responsive transcription factor (ERF) genes. Together, our findings not only identify a new target for the development of FCRR-resistant tomato varieties, they also demonstrate a molecular mechanism linking SlLecRK1 and ERFs in regulating the immune responses of tomato plants to FORL.
Collapse
Affiliation(s)
- Zhi-Liang Yue
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhe-Juan Tian
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Jun-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Sheng-Wei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Ya-Dong Li
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| | - Zhi-Ming Wu
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, China
| |
Collapse
|
66
|
Lei S, Wang Q, Chen Y, Song Y, Zheng M, Hsu YF. Capsicum SIZ1 contributes to ABA-induced SUMOylation in pepper. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 314:111099. [PMID: 34895537 DOI: 10.1016/j.plantsci.2021.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 10/19/2021] [Indexed: 06/14/2023]
Abstract
Abiotic and biotic stresses are the major factors limiting plant growth. Arabidopsis E3 SUMO ligase SIZ1 plays an essential role in plant stress tolerance. Herein, we identified a SIZ/PAIS-type protein in pepper (Capsicum annuum), namely CaSIZ1, which shares 60 % sequence identity with AtSIZ1. The stems and flowers of pepper had a relatively higher expression of CaSIZ1 than the fruits, leaves, and roots. ABA and NaCl treatments induced CaSIZ1. CaSIZ1 protein was localized in the nucleus and partially rescued the dwarf and ABA-sensitive phenotypes of Atsiz1-2, suggesting the functional replacement of CaSIZ1 with AtSIZ1. We found that CaSIZ1 interacted with CaABI5, and ABA promoted the accumulation of SUMO conjugates in pepper. CaSIZ1 knockdown did not only reduce ABA-induced SUMOylation, but also attenuated the salt tolerance of pepper. Overall, the results of this study suggest that CaSIZ1 has a significant role in ABA-induced SUMOylation and stress response.
Collapse
Affiliation(s)
- Shikang Lei
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Qingzhu Wang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yang Chen
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Yu Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China
| | - Min Zheng
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| | - Yi-Feng Hsu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China.
| |
Collapse
|
67
|
Bhuria M, Goel P, Kumar S, Singh AK. AtUSP17 negatively regulates salt stress tolerance through modulation of multiple signaling pathways in Arabidopsis. PHYSIOLOGIA PLANTARUM 2022; 174:e13635. [PMID: 35080785 DOI: 10.1111/ppl.13635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/23/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
AtUSP17 is a multiple stress-inducible gene that encodes a universal stress protein (USP) in Arabidopsis thaliana. In the present study, we functionally characterized AtUSP17 using its knock-down mutant, Atusp17, and AtUSP17-overexpression lines (WTOE). The overexpression of AtUSP17 in wild-type and Atusp17 mutant Arabidopsis plants resulted in higher sensitivity to salt stress during seed germination than WT and Atusp17 mutant lines. In addition, the WTOE and FC lines exhibited higher abscisic acid (ABA) sensitivity than Atusp17 mutant during germination. The exogenous application of ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) was able to rescue the salt hypersensitive phenotype of WTOE lines. In contrast, AgNO3 , an ethylene action inhibitor, further blocked the effect of ACC during germination. The addition of ACC under salt stress resulted in reduced reactive oxygen species (ROS) accumulation, expression of ABA-responsive genes, improved proline synthesis, increased expression of positive regulators of ethylene signaling and antioxidant defense genes with enhanced antioxidant enzyme activities. The WTOE lines exhibited salt sensitivity even at the adult plant stage, while Atusp17 mutant exhibited higher salt tolerance with higher chlorophyll, relative water content and lower electrolyte leakage as compared with WT. The BAR interaction viewer database and available literature mining identified AtUSP17-interacting proteins, which include RGS1, RACK1C and PRN1 involved in G-protein signaling, which play a crucial role in salt stress responses. Based on the present study and available literature, we proposed a model in which AtUSP17 negatively mediates salt tolerance in Arabidopsis through modulation of ethylene, ABA, ROS, and G-protein signaling and responses.
Collapse
Affiliation(s)
- Monika Bhuria
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Parul Goel
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sanjay Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Anil Kumar Singh
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| |
Collapse
|
68
|
Chen H, Bullock DA, Alonso JM, Stepanova AN. To Fight or to Grow: The Balancing Role of Ethylene in Plant Abiotic Stress Responses. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010033. [PMID: 35009037 PMCID: PMC8747122 DOI: 10.3390/plants11010033] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/04/2023]
Abstract
Plants often live in adverse environmental conditions and are exposed to various stresses, such as heat, cold, heavy metals, salt, radiation, poor lighting, nutrient deficiency, drought, or flooding. To adapt to unfavorable environments, plants have evolved specialized molecular mechanisms that serve to balance the trade-off between abiotic stress responses and growth. These mechanisms enable plants to continue to develop and reproduce even under adverse conditions. Ethylene, as a key growth regulator, is leveraged by plants to mitigate the negative effects of some of these stresses on plant development and growth. By cooperating with other hormones, such as jasmonic acid (JA), abscisic acid (ABA), brassinosteroids (BR), auxin, gibberellic acid (GA), salicylic acid (SA), and cytokinin (CK), ethylene triggers defense and survival mechanisms thereby coordinating plant growth and development in response to abiotic stresses. This review describes the crosstalk between ethylene and other plant hormones in tipping the balance between plant growth and abiotic stress responses.
Collapse
|
69
|
Roy Choudhury A, Choi J, Walitang DI, Trivedi P, Lee Y, Sa T. ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153544. [PMID: 34700019 DOI: 10.1016/j.jplph.2021.153544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Salinity induces myriad of physiological and biochemical perturbations in plants and its amelioration can be attained by the use of potential bacterial synthetic communities. The use of microbial consortia in contrast to single bacterial inoculation can additively enhance stress tolerance and productivity of agricultural crops. In this study, co-inoculation of Pseudomonas koreensis S2CB45 and Microbacterium hydrothermale IC37-36 isolated from arbuscular mycorrhizal fungi (AMF) spore and rice seed endosphere, respectively, were used to evaluate the physiological and biochemical effects on red pepper at two salt concentrations (75 mM and 150 mM). Plant growth promoting characteristics particularly 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, indole acetic acid (IAA) and cytokinin production were higher during co-culturing compared to the individual bacterial culture. The higher ACC deaminase activity had resulted in 20% and 22% decrease in stress ethylene emission compared to the non-inoculated plants at 75 mM and 150 mM salt stress, respectively. The decline in ethylene emission had eventually reduced ROS accumulation, and the co-inoculated plants had also harbored enhanced antioxidant enzyme activities and higher sugar accumulation compared to the other treatments suggesting enhanced tolerance to salinity. Collectively, these results put forward a novel consortium of bacterial strains that can be used for sustainable agricultural practices against salinity.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; College of Agriculture, Fisheries and Forestry, Romblon State University, Romblon, Philippines
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Yi Lee
- Department of Industrial Plant Science and Technology, Chungbuk National University, Cheongju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea; The Korean Academy of Science and Technology, Seongnam, Republic of Korea.
| |
Collapse
|
70
|
A Novel Role of Pipecolic Acid Biosynthetic Pathway in Drought Tolerance through the Antioxidant System in Tomato. Antioxidants (Basel) 2021; 10:antiox10121923. [PMID: 34943026 PMCID: PMC8750784 DOI: 10.3390/antiox10121923] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/28/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
With global warming and water shortage, drought stress is provoking an increasing impact on plant growth, development, and crop productivity worldwide. Pipecolic acid (Pip) is an emerging lysine catabolite in plants, acting as a critical element in disease resistance with a related signal pathway of phytohormone salicylic acid (SA). While SA plays a vital role in various abiotic stresses, the role of Pip in plant response to abiotic stresses, especially drought, remains largely unknown. To address this issue, Pip biosynthetic gene Slald1 mutants and hydroxylated modification gene Slfmo1 mutants were generated using CRISPR-Cas9 gene-editing approaches. Drought resistance dramatically increased in Slald1 mutants compared with wild-type, which was associated with increased CO2 assimilation, photosystems activities, antioxidant enzymes activities, ascorbate and glutathione content, and reduced reactive oxygen species accumulation, lipid peroxidation and protein oxidation. On the contrary, Slfmo1 mutants were more sensitive to drought, showing damaged photosystems and impaired antioxidant systems, which were significantly alleviated by exogenous ascorbate. Our results demonstrate that Pip biosynthesis and hydroxylated modification pathways play a critical role in drought tolerance through the antioxidant system in tomato. This knowledge can be helpful to breed improved crop cultivars that are better equipped with drought resistance.
Collapse
|
71
|
Defective cytokinin signaling reprograms lipid and flavonoid gene-to-metabolite networks to mitigate high salinity in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2105021118. [PMID: 34815339 PMCID: PMC8640937 DOI: 10.1073/pnas.2105021118] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Cytokinin (CK) in plants regulates both developmental processes and adaptation to environmental stresses. Arabidopsis histidine phosphotransfer ahp2,3,5 and type-B Arabidopsis response regulator arr1,10,12 triple mutants are almost completely defective in CK signaling, and the ahp2,3,5 mutant was reported to be salt tolerant. Here, we demonstrate that the arr1,10,12 mutant is also more tolerant to salt stress than wild-type (WT) plants. A comprehensive metabolite profiling coupled with transcriptome analysis of the ahp2,3,5 and arr1,10,12 mutants was conducted to elucidate the salt tolerance mechanisms mediated by CK signaling. Numerous primary (e.g., sugars, amino acids, and lipids) and secondary (e.g., flavonoids and sterols) metabolites accumulated in these mutants under nonsaline and saline conditions, suggesting that both prestress and poststress accumulations of stress-related metabolites contribute to improved salt tolerance in CK-signaling mutants. Specifically, the levels of sugars (e.g., trehalose and galactinol), amino acids (e.g., branched-chain amino acids and γ-aminobutyric acid), anthocyanins, sterols, and unsaturated triacylglycerols were higher in the mutant plants than in WT plants. Notably, the reprograming of flavonoid and lipid pools was highly coordinated and concomitant with the changes in transcriptional levels, indicating that these metabolic pathways are transcriptionally regulated by CK signaling. The discovery of the regulatory role of CK signaling on membrane lipid reprogramming provides a greater understanding of CK-mediated salt tolerance in plants. This knowledge will contribute to the development of salt-tolerant crops with the ability to withstand salinity as a key driver to ensure global food security in the era of climate crisis.
Collapse
|
72
|
Chi C, Xu X, Wang M, Zhang H, Fang P, Zhou J, Xia X, Shi K, Zhou Y, Yu J. Strigolactones positively regulate abscisic acid-dependent heat and cold tolerance in tomato. HORTICULTURE RESEARCH 2021; 8:237. [PMID: 34719688 PMCID: PMC8558334 DOI: 10.1038/s41438-021-00668-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/21/2021] [Accepted: 07/04/2021] [Indexed: 05/07/2023]
Abstract
Strigolactones are carotenoid-derived phytohormones that impact plant growth and development in diverse ways. However, the roles of strigolactones in the responses to temperature stresses are largely unknown. Here, we demonstrated that strigolactone biosynthesis is induced in tomato (Solanum lycopersicum) by heat and cold stresses. Compromised strigolactone biosynthesis or signaling negatively affected heat and cold tolerance, while application of the synthetic strigolactone analog GR245DS enhanced heat and cold tolerance. Strigolactone-mediated heat and cold tolerance was associated with the induction of abscisic acid (ABA), heat shock protein 70 (HSP70) accumulation, C-REPEAT BINDING FACTOR 1 (CBF1) transcription, and antioxidant enzyme activity. Importantly, a deficiency in ABA biosynthesis compromised the GR245DS effects on heat and cold stresses and abolished the GR245DS-induced transcription of HSP70, CBF1, and antioxidant-related genes. These results support that strigolactones positively regulate tomato heat and cold tolerance and that they do so at least partially by the induction of CBFs and HSPs and the antioxidant response in an ABA-dependent manner.
Collapse
Affiliation(s)
- Cheng Chi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xuechen Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Mengqi Wang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Hui Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Pingping Fang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Xiaojian Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
- Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
| |
Collapse
|
73
|
Kumar N, Bharadwaj C, Sahu S, Shiv A, Shrivastava AK, Reddy SPP, Soren KR, Patil BS, Pal M, Soni A, Roorkiwal M, Varshney RK. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2605-2619. [PMID: 34916736 PMCID: PMC8639897 DOI: 10.1007/s12298-021-01093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01093-0.
Collapse
Affiliation(s)
- Neeraj Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110012 India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
- Present Address: ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | | | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 282 004 India
| | | | - Madan Pal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Anjali Soni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics, ICRISAT, Hyderabad, 502324 India
| | | |
Collapse
|
74
|
Chatterjee A, Mridha D, Banerjee J, Chanda S, Ray K, Acharya K, Das M, Roychowdhury T, Sarkar J. Green synthesis of iron oxide nanoparticles and their ameliorative effect on arsenic stress relief in Oryza sativa seedlings. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
75
|
Gao H, Huang H, Lu K, Wang C, Liu X, Song Z, Zhou H, Yang L, Li B, Yu C, Zhang H. OsCYP714D1 improves plant growth and salt tolerance through regulating gibberellin and ion homeostasis in transgenic poplar. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:447-456. [PMID: 34715569 DOI: 10.1016/j.plaphy.2021.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 05/20/2023]
Abstract
Cytochrome P450 monooxygenases (CYP450s) play crucial roles in the regulation of plant growth and response to abiotic stress. However, their functions in woody trees are still largely unknown. Previously, we reported that expression of the rice cytochrome P450 monooxygenase gene OsCYP714D1 increased gibberellic acid (GA) accumulation and shoot growth in transgenic poplar. In this work, we demonstrate that expression of OsCYP714D1 improved the salt tolerance of transgenic poplar plants. Compared to wild type, plant height and K+ content were significantly higher, whereas plant growth inhibition and Na+ content were significantly lower, in transgenic plants grown under high salt stress condition. Transcriptomic analyses revealed that OsCYP714D1 expression up-regulated the expressions of GA biosynthesis, signaling and stress responsive genes in transgenic plants under both normal and high salt stress conditions. Further gene ontology (GO) analyses indicated that genes involved in plant hormone and ion metabolic activities were significantly enriched in transgenic plants. Our findings imply that OsCYP714D1 participated in the regulation of both shoot growth and salt resistance through regulating gibberellin and ion homeostasis in transgenic poplar, and it can be used as a candidate gene for the engineering of new tree varieties with improved biomass production and salt stress resistance.
Collapse
Affiliation(s)
- Hongsheng Gao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Huiqing Huang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Kaifeng Lu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Cuiting Wang
- Shanghai OE Biotech Co., Ltd, 1505 Zuchongzhi Road, Shanghai, 201210, China
| | - Xiaohua Liu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zhizhong Song
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Houjun Zhou
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lei Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Bei Li
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| |
Collapse
|
76
|
Bomle DV, Kiran A, Kumar JK, Nagaraj LS, Pradeep CK, Ansari MA, Alghamdi S, Kabrah A, Assaggaf H, Dablool AS, Murali M, Amruthesh KN, Udayashankar AC, Niranjana SR. Plants Saline Environment in Perception with Rhizosphere Bacteria Containing 1-Aminocyclopropane-1-Carboxylate Deaminase. Int J Mol Sci 2021; 22:ijms222111461. [PMID: 34768893 PMCID: PMC8584133 DOI: 10.3390/ijms222111461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinity stress has become a serious roadblock for food production worldwide since it is one of the key factors affecting agricultural productivity. Salinity and drought are predicted to cause considerable loss of crops. To deal with this difficult situation, a variety of strategies have been developed, including plant breeding, plant genetic engineering, and a wide range of agricultural practices, including the use of plant growth-promoting rhizobacteria (PGPR) and seed biopriming techniques, to improve the plants' defenses against salinity stress, resulting in higher crop yields to meet future human food demand. In the present review, we updated and discussed the negative effects of salinity stress on plant morphological parameters and physio-biochemical attributes via various mechanisms and the beneficial roles of PGPR with 1-Aminocyclopropane-1-Carboxylate(ACC) deaminase activity as green bio-inoculants in reducing the impact of saline conditions. Furthermore, the applications of ACC deaminase-producing PGPR as a beneficial tool in seed biopriming techniques are updated and explored. This strategy shows promise in boosting quick seed germination, seedling vigor and plant growth uniformity. In addition, the contentious findings of the variation of antioxidants and osmolytes in ACC deaminase-producing PGPR treated plants are examined.
Collapse
Affiliation(s)
- Dhanashree Vijayrao Bomle
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Asha Kiran
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Jeevitha Kodihalli Kumar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Lavanya Senapathyhalli Nagaraj
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Chamanahalli Kyathegowda Pradeep
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institutes for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Ahmed Kabrah
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Hamza Assaggaf
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah P.O. Box 715, Saudi Arabia; (S.A.); (A.K.); (H.A.)
| | - Anas S. Dablool
- Department of Public Health, Health Science College Al-Leith, Umm Al-Qura University, Makkah 21961, Saudi Arabia;
| | - Mahadevamurthy Murali
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Kestur Nagaraj Amruthesh
- Applied Plant Pathology Laboratory, Department of Studies in Botany, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (M.M.); (K.N.A.)
| | - Arakere Chunchegowda Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| | - Siddapura Ramachandrappa Niranjana
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, Karnataka, India; (D.V.B.); (A.K.); (J.K.K.); (L.S.N.); (C.K.P.)
- Correspondence: (M.A.A.); (A.C.U.); (S.R.N.)
| |
Collapse
|
77
|
Vaseva II, Simova-Stoilova L, Kirova E, Mishev K, Depaepe T, Van Der Straeten D, Vassileva V. Ethylene signaling in salt-stressed Arabidopsis thaliana ein2-1 and ctr1-1 mutants - A dissection of molecular mechanisms involved in acclimation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:999-1010. [PMID: 34592706 DOI: 10.1016/j.plaphy.2021.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/10/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
To pinpoint ethylene-mediated molecular mechanisms involved in the adaptive response to salt stress we conducted a comparative study of Arabidopsis thaliana wild type (Col-0), ethylene insensitive (ein2-1), and constitutive signaling (ctr1-1) mutant plants. Reduced germination and survival rates were observed in ein2-1 plants at increasing NaCl concentrations. By contrast, ctr1-1 mutation conferred salt stress tolerance during early vegetative development, corroborating earlier studies. Аll genotypes experienced strong stress as evidenced by the accumulation of reactive oxygen species (ROS) and increased membrane lipid peroxidation. However, the isoenzyme profiles of ROS scavenging enzymes demonstrated a higher peroxidase (POX) activity in ctr1-1 individuals under control and salt stress conditions. A markedly elevated free L-Proline (L-Pro) content was detected in the ethylene constitutive mutant. This coincided with the increased levels of Delta-1-Pyrroline-5-Carboxylate Synthase (P5CS) which is the rate-limiting enzyme from the proline biosynthetic pathway. A stabilized upregulation of a stress-induced P5CS1 splice variant was observed in the ctr1-1 background, which was not documented in the ethylene insensitive mutant ein2-1. Transcript profiling of the major SALT OVERLY SENSITIVE (SOS) pathway players (SOS1, SOS2, and SOS3) revealed altered gene expression in the organs of the ethylene signaling mutants. Overall suppressed SOS expression was observed in the ein2-1 mutants while only the SOS transcript profiles in the ctr1-1 roots were similar to the wild type. Altogether, we provide experimental evidence for ethylene-mediated molecular mechanisms implicated in the acclimation response to salt stress in Arabidopsis, which operate mainly through the regulation of free proline accumulation and enhanced ROS scavenging.
Collapse
Affiliation(s)
- Irina I Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria.
| | - Lyudmila Simova-Stoilova
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Elisaveta Kirova
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000, Ghent, Belgium
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113, Sofia, Bulgaria
| |
Collapse
|
78
|
Xu Y, Liu H, Gao Y, Xiong R, Wu M, Zhang K, Xiang Y. The TCP transcription factor PeTCP10 modulates salt tolerance in transgenic Arabidopsis. PLANT CELL REPORTS 2021; 40:1971-1987. [PMID: 34392380 DOI: 10.1007/s00299-021-02765-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Huanlong Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yameng Gao
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Rui Xiong
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Kaimei Zhang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
79
|
Wang S, Zhang R, Zhang Z, Zhao T, Zhang D, Sofkova S, Wu Y, Wang Y. Genome-wide analysis of the bZIP gene lineage in apple and functional analysis of MhABF in Malus halliana. PLANTA 2021; 254:78. [PMID: 34536142 DOI: 10.1007/s00425-021-03724-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/06/2021] [Indexed: 05/23/2023]
Abstract
51 MdbZIP genes were identified from the apple genome by bioinformatics methods. MhABF-OE improved tolerance to saline-alkali stress in Arabidopsis, indicating it is involved in positive regulation of saline-alkali stress response. Saline-alkali stress is a major abiotic stress limiting plant growth all over the world. Members of the bZIP family play an important role in regulating gene expression in response to many kinds of biotic and abiotic stress, including salt stress. According to the transcriptome data, 51 MdbZIP genes responding to saline-alkali stress were identified in apple genome, and their gene structures, conserved protein motifs, phylogenetic analysis, chromosome localization, and promoter cis-acting elements were analyzed. Based on transcriptome data analysis, a MdbZIP family gene (MD15G1081800), which was highly expressed under stress, was selected to isolate and named as MhABF. Expression profile analysis by quantitative real-time PCR confirmed that the expression of MhABF in the leaves of Malus halliana was 10.6-fold higher than that of the control (0 days) after 2 days of stress. Then an MhABF gene was isolated from apple rootstock M. halliana. CaMV35S promoter drived MhABF gene expression vector was constructed to infect Arabidopsis with Agrobacterium-mediated infection. And overexpression MhABF gene plants were obtained. Compared with wild type, transgenic plants grew better under saline-alkali stress and the MhABF-OE lines showed higher chlorophyll content, POD, SOD and CAT activity, which indicated that they had strong resistance to stress. These results indicate that MhABF plays an important role in plant resistance to saline-alkali stress, which lays a foundation for further study on the functions in apple.
Collapse
Affiliation(s)
- Shuangcheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Rui Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Ting Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - De Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Svetla Sofkova
- Institute of Agriculture and Environment, Massey University, Palmerston North, 4442, New Zealand
| | - Yuxia Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
80
|
Analysis of Phytohormone Signal Transduction in Sophora alopecuroides under Salt Stress. Int J Mol Sci 2021; 22:ijms22147313. [PMID: 34298928 PMCID: PMC8304577 DOI: 10.3390/ijms22147313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/23/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022] Open
Abstract
Salt stress seriously restricts crop yield and quality, leading to an urgent need to understand its effects on plants and the mechanism of plant responses. Although phytohormones are crucial for plant responses to salt stress, the role of phytohormone signal transduction in the salt stress responses of stress-resistant species such as Sophora alopecuroides has not been reported. Herein, we combined transcriptome and metabolome analyses to evaluate expression changes of key genes and metabolites associated with plant hormone signal transduction in S. alopecuroides roots under salt stress for 0 h to 72 h. Auxin, cytokinin, brassinosteroid, and gibberellin signals were predominantly involved in regulating S. alopecuroides growth and recovery under salt stress. Ethylene and jasmonic acid signals may negatively regulate the response of S. alopecuroides to salt stress. Abscisic acid and salicylic acid are significantly upregulated under salt stress, and their signals may positively regulate the plant response to salt stress. Additionally, salicylic acid (SA) might regulate the balance between plant growth and resistance by preventing reduction in growth-promoting hormones and maintaining high levels of abscisic acid (ABA). This study provides insight into the mechanism of salt stress response in S. alopecuroides and the corresponding role of plant hormones, which is beneficial for crop resistance breeding.
Collapse
|
81
|
Jiang C, Wang D, Zhang J, Xu Y, Zhang C, Zhang J, Wang X, Wang Y. VqMYB154 promotes polygene expression and enhances resistance to pathogens in Chinese wild grapevine. HORTICULTURE RESEARCH 2021; 8:151. [PMID: 34193849 PMCID: PMC8245564 DOI: 10.1038/s41438-021-00585-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 05/23/2023]
Abstract
Resveratrol plays a crucial phytoalexin role in the grapevine and is beneficial to human health. However, the molecular mechanism of resveratrol accumulation in the enhancement of disease resistance is unclear. Here, we report that the transcription factor VqMYB154 from Vitis quinquangularis accession Danfeng-2 is strongly expressed under artificial inoculation with Uncinula necator and regulates resveratrol accumulation. Unlike its homolog, VqMYB154 has a pathogen-induced promoter and responds to stimulation by U. necator, Pseudomonas syringae, and other treatments. Yeast one-hybrid and GUS activity assays confirmed that VqMYB154 can activate the stilbene synthase genes VqSTS9, VqSTS32, and VqSTS42 by directly binding to their promoters. Overexpression of VqMYB154 in grape leaves resulted in activation of the stilbene pathway, upregulation of STS genes, and accumulation of stilbenoids. In addition, heterologous overexpression of VqMYB154 in Arabidopsis activated resistance-related genes and resulted in greater programmed cell death and accumulation of reactive oxygen species, which led to resistance against P. syringae. These results suggest that the transcription factor VqMYB154 from V. quinquangularis accession Danfeng-2 participates in the regulatory mechanism that improves the biosynthesis and accumulation of stilbenes and enhances resistance to disease in grapevine.
Collapse
Affiliation(s)
- Changyue Jiang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Dan Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Jie Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Chaohong Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Jianxia Zhang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Xiping Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, 712100, Yangling, Shaanxi, The People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A & F University, 712100, Yangling, Shaanxi, The People's Republic of China.
| |
Collapse
|
82
|
Sehar Z, Iqbal N, Khan MIR, Masood A, Rehman MT, Hussain A, AlAjmi MF, Ahmad A, Khan NA. Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Sci Rep 2021; 11:12650. [PMID: 34135422 PMCID: PMC8209215 DOI: 10.1038/s41598-021-92086-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/04/2021] [Indexed: 02/05/2023] Open
Abstract
Ethylene plays a crucial role throughout the life cycle of plants under optimal and stressful environments. The present study reports the involvement of exogenously sourced ethylene (as ethephon; 2-chloroethyl phosphonic acid) in the protection of the photosynthetic activity from glucose (Glu) sensitivity through its influence on the antioxidant system for adaptation of wheat (Triticum aestivum L.) plants under salt stress. Ten-day-old plants were subjected to control and 100 mM NaCl and treated with 200 µl L-1 ethephon on foliage at 20 days after seed sowing individually or in combination with 6% Glu. Plants receiving ethylene exhibited higher growth and photosynthesis through reduced Glu sensitivity in the presence of salt stress. Moreover, ethylene-induced reduced glutathione (GSH) production resulted in increased psbA and psbB expression to protect PSII activity and photosynthesis under salt stress. The use of buthionine sulfoximine (BSO), GSH biosynthesis inhibitor, substantiated the involvement of ethylene-induced GSH in the reversal of Glu-mediated photosynthetic repression in salt-stressed plants. It was suggested that ethylene increased the utilization of Glu under salt stress through its influence on photosynthetic potential and sink strength and reduced the Glu-mediated repression of photosynthesis.
Collapse
Affiliation(s)
- Zebus Sehar
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Noushina Iqbal
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - M. Iqbal R. Khan
- grid.411816.b0000 0004 0498 8167Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062 India
| | - Asim Masood
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Md. Tabish Rehman
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Afzal Hussain
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Mohamed F. AlAjmi
- grid.56302.320000 0004 1773 5396Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451 Kingdom of Saudi Arabia
| | - Altaf Ahmad
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| | - Nafees A. Khan
- grid.411340.30000 0004 1937 0765Department of Botany, Aligarh Muslim University, Aligarh, 202002 India
| |
Collapse
|
83
|
Yong Y, Zhang Y, Lyu Y. Functional characterization of Lilium lancifolium cold-responsive Zinc Finger Homeodomain ( ZFHD) gene in abscisic acid and osmotic stress tolerance. PeerJ 2021; 9:e11508. [PMID: 34113493 PMCID: PMC8162235 DOI: 10.7717/peerj.11508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/03/2021] [Indexed: 12/01/2022] Open
Abstract
Background. We have previously performed an analysis of the cold-responsive transcriptome in the mature leaves of tiger lily (Lilium lancifolium) by gene co-expression network identification. The results has revealed that a ZFHD gene, notated as encoding zinc finger homeodomain protein, may play an essential regulating role in tiger lily response to cold stress. Methods. A further investigation of the ZFHD gene (termed as LlZFHD4) responding to osmotic stresses, including cold, salt, water stresses, and abscisic acid (ABA) was performed in this study. Based on the transcriptome sequences, the coding region and 5′ promoter region of LlZFHD4 were cloned from mature tiger lily leaves. Stress response analysis was performed under continuous 4 °C, NaCl, PEG, and ABA treatments. Functional characterization of LlZFHD4 was conducted in transgenic Arabidopsis, tobacco, and yeast. Results. LlZFHD4 encodes a nuclear-localized protein consisting of 180 amino acids. The N-terminal region of LlZFHD4 has transcriptional activation activity in yeast. The 4 °C, NaCl, PEG, and ABA treatments induced the expression of LlZFHD4. Several stress- or hormone-responsive cis-acting regulatory elements (T-Box, BoxI. and ARF) and binding sites of transcription factors (MYC, DRE and W-box) were found in the core promoter region (789 bp) of LlZFHD4. Also, the GUS gene driven by LlZFHD4 promoter was up-regulated by cold, NaCl, water stresses, and ABA in Arabidopsis. Overexpression of LlZFHD4 improved cold and drought tolerance in transgenic Arabidopsis; higher survival rate and better osmotic adjustment capacity were observed in LlZFHD4 transgenic plants compared to wild type (WT) plants under 4 °C and PEG conditions. However, LlZFHD4 transgenic plants were less tolerant to salinity and more hypersensitive to ABA compared to WT plants. The transcript levels of stress- and ABA-responsive genes were much more up-regulated in LlZFHD4 transgenic Arabidopsis than WT. These results indicate LlZFHD4 is involved in ABA signaling pathway and plays a crucial role in regulating the response of tiger lily to cold, salt and water stresses.
Collapse
Affiliation(s)
- Yubing Yong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China.,College of Landscape Architecture, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yue Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestory University, Beijing, Haidian, China
| |
Collapse
|
84
|
Zhao Y, Xie J, Wang S, Xu W, Chen S, Song X, Lu M, El-Kassaby YA, Zhang D. Synonymous mutation in Growth Regulating Factor 15 of miR396a target sites enhances photosynthetic efficiency and heat tolerance in poplar. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4502-4519. [PMID: 34865000 DOI: 10.1093/jxb/erab120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Abstract
Heat stress damages plant tissues and induces multiple adaptive responses. Complex and spatiotemporally specific interactions among transcription factors (TFs), microRNAs (miRNAs), and their targets play crucial roles in regulating stress responses. To explore these interactions and to identify regulatory networks in perennial woody plants subjected to heat stress, we integrated time-course RNA-seq, small RNA-seq, degradome sequencing, weighted gene correlation network analysis, and multi-gene association approaches in poplar. Results from Populus trichocarpa enabled us to construct a three-layer, highly interwoven regulatory network involving 15 TFs, 45 miRNAs, and 77 photosynthetic genes. Candidate gene association studies in a population of P. tomentosa identified 114 significant associations and 696 epistatic SNP–SNP pairs that were linked to 29 photosynthetic and growth traits (P<0.0001, q<0.05). We also identified miR396a and its target, Growth-Regulating Factor 15 (GRF15) as an important regulatory module in the heat-stress response. Transgenic plants of hybrid poplar (P. alba × P. glandulosa) overexpressing a GRF15 mRNA lacking the miR396a target sites exhibited enhanced heat tolerance and photosynthetic efficiency compared to wild-type plants. Together, our observations demonstrate that GRF15 plays a crucial role in responding to heat stress, and they highlight the power of this new, multifaceted approach for identifying regulatory nodes in plants.
Collapse
Affiliation(s)
- Yiyang Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianbo Xie
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sha Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Weijie Xu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sisi Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
- Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, Forest Sciences Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Deqiang Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, P. R. China
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
85
|
Quamruzzaman M, Manik SMN, Shabala S, Zhou M. Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules 2021; 11:788. [PMID: 34073871 PMCID: PMC8225067 DOI: 10.3390/biom11060788] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/31/2022] Open
Abstract
Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants' adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow "window" in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost-benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.
Collapse
Affiliation(s)
- Md. Quamruzzaman
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - S. M. Nuruzzaman Manik
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect 7250, Australia; (M.Q.); (S.M.N.M.); (S.S.)
- College of Agronomy, Shanxi Agricultural University, Taigu 030801, China
| |
Collapse
|
86
|
Sako K, Van Ha C, Matsui A, Tanaka M, Sato A, Seki M. Transcriptome Analysis of Arabidopsis thaliana Plants Treated with a New Compound Natolen128, Enhancing Salt Stress Tolerance. PLANTS 2021; 10:plants10050978. [PMID: 34068843 PMCID: PMC8153642 DOI: 10.3390/plants10050978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/06/2023]
Abstract
Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.
Collapse
Affiliation(s)
- Kaori Sako
- Department of Advanced Bioscience, Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Correspondence: (K.S.); (M.S.)
| | - Chien Van Ha
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
| | - Ayato Sato
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Nagoya 464-8601, Japan;
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan; (C.V.H.); (A.M.); (M.T.)
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Correspondence: (K.S.); (M.S.)
| |
Collapse
|
87
|
Singh N, Gaddam SR, Singh D, Trivedi PK. Regulation of arsenic stress response by ethylene biosynthesis and signaling in Arabidopsis thaliana. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 185:104408. [PMID: 0 DOI: 10.1016/j.envexpbot.2021.104408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
88
|
Huang J, Zhao X, Bürger M, Wang Y, Chory J. Two interacting ethylene response factors regulate heat stress response. THE PLANT CELL 2021; 33:338-357. [PMID: 33793870 PMCID: PMC8136883 DOI: 10.1093/plcell/koaa026] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/06/2020] [Indexed: 05/05/2023]
Abstract
The ethylene response factor (ERF) transcription factors are integral components of environmental stress signaling cascades, regulating a wide variety of downstream genes related to stress responses and plant development. However, the mechanisms by which ERF genes regulate the heat stress response are not well understood. Here, we uncover the positive role of ethylene signaling, ERF95 and ERF97 in basal thermotolerance of Arabidopsis thaliana. We demonstrate that ethylene signaling-defective mutants exhibit compromised basal thermotolerance, whereas plants with constitutively activated ethylene response show enhanced basal thermotolerance. EIN3 physically binds to the promoters of ERF95 and ERF97. Ectopic constitutive expression of ERF95 or ERF97 increases the basal thermotolerance of plants. In contrast, erf95 erf96 erf97 erf98 quadruple mutants exhibit decreased basal thermotolerance. ERF95 and ERF97 genetically function downstream of EIN3. ERF95 can physically interact with ERF97, and this interaction is heat inducible. ERF95 and ERF97 regulate a common set of target genes, including known heat-responsive genes and directly bind to the promoter of HSFA2. Thus, our study reveals that the EIN3-ERF95/ERF97-HSFA2 transcriptional cascade may play an important role in the heat stress response, thereby establishing a connection between ethylene and its downstream regulation in basal thermotolerance of plants.
Collapse
Affiliation(s)
- Jianyan Huang
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Authors for correspondence: ,
| | - Xiaobo Zhao
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Marco Bürger
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Yurong Wang
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Division of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Authors for correspondence: ,
| |
Collapse
|
89
|
Yan L, Gong Y, Luo Q, Dai GX, Teng Z, He Y, Wu X, Liu C, Tang D, Ye N, Deng G, Lin J, Liu X. Heterologous expression of fungal AcGDH alleviates ammonium toxicity and suppresses photorespiration, thereby improving drought tolerance in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110769. [PMID: 33691974 DOI: 10.1016/j.plantsci.2020.110769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Drought stress can significantly affect plant growth and agricultural productivity. Thus, it is essential to explore and identify the optimal genes for the improvement of crop drought tolerance. Here, a fungal NADP(H)-dependent glutamate dehydrogenase gene (AcGDH) was isolated from Aspergillus candidus, and heterologously expressed in rice. AcGDH has a high affinity for NH4+ and increases the ammonium assimilation in rice. AcGDH transgenic plants exhibited a tolerance to drought and alkali stresses, and their photorespiration was significantly suppressed. Our findings demonstrate that AcGDH alleviates ammonium toxicity and suppresses photorespiration by assimilating excess NH4+ and disturbing the delicate balance of carbon and nitrogen metabolism, thereby improving drought tolerance in rice. Moreover, AcGDH not only improved drought tolerance at the seedling stage but also increased the grain yield under drought stress. Thus, AcGDH is a promising candidate gene for maintaining rice grain yield, and offers an opportunity for improving crop yield under drought stress.
Collapse
Affiliation(s)
- Lu Yan
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China; Long Ping Branch, Graduate School of Hunan University, Changsha, 410125, Hunan, China
| | - Yinyin Gong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Qiong Luo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Gao-Xing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Zhenning Teng
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yong He
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Xiangxia Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Cong Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Dongying Tang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China
| | - Nenghui Ye
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Jianzhong Lin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, 410082, Hunan, China.
| |
Collapse
|
90
|
Effects of Maternal Environment on Seed Germination and Seedling Vigor of Petunia × hybrida under Different Abiotic Stresses. PLANTS 2021; 10:plants10030581. [PMID: 33808598 PMCID: PMC8003445 DOI: 10.3390/plants10030581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/05/2023]
Abstract
Seed germination and seedling vigor can be affected by environmental cues experienced by the mother plant. However, information about how the maternal environment affects seed quality is scarce in ornamental plants. This study aimed to investigate the effects of two different maternal environments on the seed germination and seedling vigor of Petunia × hybrida under a variety of abiotic stresses. Petunia mother plants were grown in either a greenhouse during the summer months or an indoor controlled-temperature-and-light environment. Collected seeds were subjected to external stressors, including polyethylene glycol (PEG), sodium chloride (NaCl), high temperature, and abscisic acid (ABA), to determine seed germination percentage and seedling vigor. Results indicated that seeds harvested from the mother plants grown in a controlled environment germinated better than seeds harvested from the mother plants grown in the greenhouse when suboptimal germination conditions were applied. Additionally, the seedlings from the controlled maternal environment performed better in both ABA and salinity stress tests than the greenhouse seedlings. Interestingly, the greenhouse seedlings displayed less reactive oxygen species (ROS) damage and lower electrolyte leakage than the controlled environment seedlings under dehydration stress. The difference in germination and seedling vigor of seeds from the two different maternal environments might be due to the epigenetic memory inherited from the mother plants. This study highlighted the strong impact of the maternal environment on seed germination and seedling vigor in Petunia and may assist in high-quality seed production in ornamental plants.
Collapse
|
91
|
Sepehri M, Ghaffari MR, Khayam Nekoui M, Sarhadi E, Moghadam A, Khatabi B, Hosseini Salekdeh G. Root endophytic fungus Serendipita indica modulates barley leaf blade proteome by increasing the abundance of photosynthetic proteins in response to salinity. J Appl Microbiol 2021; 131:1870-1889. [PMID: 33694234 DOI: 10.1111/jam.15063] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
AIMS The present study aimed at analysing the proteome pattern of the leaf blade of barley (Hordeum vulgare L.) in Serendipita indica-colonised plants to decipher the molecular mechanism of S. indica-mediated salt stress. This work is aligned with our previous research on barley leaf sheath to study proteomic pattern variability in leaf blade and sheath of barley plant in response to salinity and S. indica inoculation. METHODS AND RESULTS The experiment was conducted using a completely randomised factorial design with four replications and two treatments: salinity (0 and 300 mmol l-1 NaCl) and fungus (noninoculated and S. indica-inoculated). The leaf blades of the salt-treated S. indica-colonised and noninoculated plants were harvested after 2 weeks of salt treatment for the physiological and proteomic analyses. After exposure to 300 mmol l-1 NaCl, shoot dry matter production in noninoculated control plants decreased 84% which was about twofold higher than inoculated plants with S. indica. However, the accumulation of sodium in the shoot of S. indica-inoculated plants was significantly lower than the control plants. Analysis of the proteome profile revealed a high number of significantly up-regulated proteins involved in photosynthesis (26 out of 42 identified proteins). CONCLUSIONS The results demonstrated how the enhanced plant growth and salt stress resistance induced by S. indica was positively associated with the up-regulation of several proteins involved in photosynthesis and carbohydrate metabolism. In fact, S. indica improved photosynthesis in order to reach the best possible performance of the host plant under salt stress. SIGNIFICANCE AND IMPACT OF THE STUDY Current research provides new insight into the mechanism applied by S. indica in reducing the negative impacts of salt stress in barley at physiological and molecular levels.
Collapse
Affiliation(s)
- M Sepehri
- Department of Soil Science, School of Agriculture, Shiraz University, Shiraz, Iran
| | - M R Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran
| | - M Khayam Nekoui
- Faculty of Biological Science, Research Center of Biotechnology Development, Tarbiat Modares University, Tehran, Iran
| | - E Sarhadi
- Research Institute of Forests and Rangelands, Tehran, Iran
| | - A Moghadam
- Institute of Biotechnology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - B Khatabi
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, USA
| | - G Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education, and Extension Organization (AREEO), Karaj, Iran.,Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
92
|
Vaseva II, Mishev K, Depaepe T, Vassileva V, Van Der Straeten D. The Diverse Salt-Stress Response of Arabidopsis ctr1-1 and ein2-1Ethylene Signaling Mutants Is Linked to Altered Root Auxin Homeostasis. PLANTS 2021; 10:plants10030452. [PMID: 33673672 PMCID: PMC7997360 DOI: 10.3390/plants10030452] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/21/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
We explored the interplay between ethylene signals and the auxin pool in roots exposed to high salinity using Arabidopsisthaliana wild-type plants (Col-0), and the ethylene-signaling mutants ctr1-1 (constitutive) and ein2-1 (insensitive). The negative effect of salt stress was less pronounced in ctr1-1 individuals, which was concomitant with augmented auxin signaling both in the ctr1-1 controls and after 100 mM NaCl treatment. The R2D2 auxin sensorallowed mapping this active auxin increase to the root epidermal cells in the late Cell Division (CDZ) and Transition Zone (TZ). In contrast, the ethylene-insensitive ein2-1 plants appeared depleted in active auxins. The involvement of ethylene/auxin crosstalk in the salt stress response was evaluated by introducing auxin reporters for local biosynthesis (pTAR2::GUS) and polar transport (pLAX3::GUS, pAUX1::AUX1-YFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP, pPIN3::GUS) in the mutants. The constantly operating ethylene-signaling pathway in ctr1-1 was linked to increased auxin biosynthesis. This was accompanied by a steady expression of the auxin transporters evaluated by qRT-PCR and crosses with the auxin transport reporters. The results imply that the ability of ctr1-1 mutant to tolerate high salinity could be related to the altered ethylene/auxin regulatory loop manifested by a stabilized local auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Irina I. Vaseva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
- Correspondence: or
| | - Kiril Mishev
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Thomas Depaepe
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria; (K.M.); (V.V.)
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckststraat 35, B-9000 Ghent, Belgium; (T.D.); (D.V.D.S.)
| |
Collapse
|
93
|
Rathor P, Borza T, Stone S, Tonon T, Yurgel S, Potin P, Prithiviraj B. A Novel Protein from Ectocarpus sp. Improves Salinity and High Temperature Stress Tolerance in Arabidopsis thaliana. Int J Mol Sci 2021; 22:1971. [PMID: 33671243 PMCID: PMC7922944 DOI: 10.3390/ijms22041971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
Brown alga Ectocarpus sp. belongs to Phaeophyceae, a class of macroalgae that evolved complex multicellularity. Ectocarpus sp. is a dominant seaweed in temperate regions, abundant mostly in the intertidal zones, an environment with high levels of abiotic stresses. Previous transcriptomic analysis of Ectocarpus sp. revealed several genes consistently induced by various abiotic stresses; one of these genes is Esi0017_0056, which encodes a protein with unknown function. Bioinformatics analyses indicated that the protein encoded by Esi0017_0056 is soluble and monomeric. The protein was successfully expressed in Escherichia coli,Arabidopsis thaliana and Nicotiana benthamiana. In A. thaliana the gene was expressed under constitutive and stress inducible promoters which led to improved tolerance to high salinity and temperature stresses. The expression of several key abiotic stress-related genes was studied in transgenic and wild type A. thaliana by qPCR. Expression analysis revealed that genes involved in ABA-induced abiotic stress tolerance, K+ homeostasis, and chaperon activities were significantly up-regulated in the transgenic line. This study is the first report in which an unknown function Ectocarpus sp. gene, highly responsive to abiotic stresses, was successfully expressed in A. thaliana, leading to improved tolerance to salt and temperature stress.
Collapse
Affiliation(s)
- Pramod Rathor
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Tudor Borza
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Sophia Stone
- Department of Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| | - Thierry Tonon
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, UK;
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Svetlana Yurgel
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| | - Philippe Potin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, UMR 8227, 29680 Roscoff, France;
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS B2N 5E3, Canada; (P.R.); (T.B.); (S.Y.)
| |
Collapse
|
94
|
Ye Y, Wang S, Wu K, Ren Y, Jiang H, Chen J, Tao L, Fu X, Liu B, Wu Y. A Semi-Dominant Mutation in OsCESA9 Improves Salt Tolerance and Favors Field Straw Decay Traits by Altering Cell Wall Properties in Rice. RICE (NEW YORK, N.Y.) 2021; 14:19. [PMID: 33595759 PMCID: PMC7889784 DOI: 10.1186/s12284-021-00457-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Cellulose synthase (CESA) mutants have potential use in straw processing due to their lower cellulose content, but almost all of the mutants exhibit defective phenotypes in plant growth and development. Balancing normal plant growth with reduced cellulose content remains a challenge, as cellulose content and normal plant growth are typically negatively correlated with one another. RESULT Here, the rice (Oryza sativa) semi-dominant brittle culm (sdbc) mutant Sdbc1, which harbors a substitution (D387N) at the first conserved aspartic acid residue of OsCESA9, exhibits lower cellulose content and reduced secondary wall thickness as well as enhanced biomass enzymatic saccharification compared with the wild type (WT). Further experiments indicated that the OsCESA9D387N mutation may compete with the wild-type OsCESA9 for interacting with OsCESA4 and OsCESA7, further forming non-functional or partially functional CSCs. The OsCESA9/OsCESA9D387N heterozygous plants increase salt tolerance through scavenging and detoxification of ROS and indirectly affecting related gene expression. They also improve rice straw return to the field due to their brittle culms and lower cellulose content without any negative effects in grain yield and lodging. CONCLUSION Hence, OsCESA9D387N allele can improve rice salt tolerance and provide the prospect of the rice straw for biofuels and bioproducts due to its improved enzymatic saccharification.
Collapse
Affiliation(s)
- Yafeng Ye
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Shuoxun Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Ren
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Hongrui Jiang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Jianfeng Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liangzhi Tao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Binmei Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| | - Yuejin Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China.
| |
Collapse
|
95
|
Li M, Chen R, Jiang Q, Sun X, Zhang H, Hu Z. GmNAC06, a NAC domain transcription factor enhances salt stress tolerance in soybean. PLANT MOLECULAR BIOLOGY 2021; 105:333-345. [PMID: 33155154 PMCID: PMC7858558 DOI: 10.1007/s11103-020-01091-y] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/25/2020] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE We found GmNAC06 plays an important role in salt stress responses through the phenotypic, physiological and molecular analyses of OE, VC, and Mutant composite soybean. Salinization affects 20% of all cultivated land worldwide because of the high salinity of irrigation water and the excessive use of water, and this amount is increasing daily. NAC (NAM, ATAF, and CUC) have been found to be involved in salt stress. In this study, a soybean NAC gene, GmNAC06 (Glyma06g21020.1), was cloned and functionally characterized. The results of expression analysis suggested that salt stress could influence the expression level of GmNAC06. The subcellular localization analysis results suggested that GmNAC06 may function as a transcription factor. Under salt stress, the overexpression technology combined with CRISPR-Cas9 system found that GmNAC06 could cause the accumulation of proline and glycine betaine to alleviate or avoid the negative effects of ROS; similarly, it could control the Na+/K+ ratios in hairy roots to maintain ionic homeostasis. The fresh weight of the transgenic hairy roots and the histochemical ROS staining of wild leaves suggested that transgenic hairy roots influence the function of wild leaves under salt stress conditions. Moreover, the expression levels of GmUBC2 and GmHKT1 were higher in the GmNAC06 hairy roots than in the control. Thus, the overexpression of GmNAC06 in hairy roots notably causes an entire composite plant to exhibit salt tolerance. The phenotype of composite soybean plants and transgenic Arabidopsis plants suggest that GmNAC06 plays a role in response to salt stress and could be useful in generating salt tolerant transgenic crops.
Collapse
Affiliation(s)
- Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Rui Chen
- Biotechnology Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qiyan Jiang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xianjun Sun
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zheng Hu
- National Key Facilities for Crop Genetic Resources and Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
96
|
Wei H, Wang X, He Y, Xu H, Wang L. Clock component OsPRR73 positively regulates rice salt tolerance by modulating OsHKT2;1-mediated sodium homeostasis. EMBO J 2021; 40:e105086. [PMID: 33347628 PMCID: PMC7849171 DOI: 10.15252/embj.2020105086] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 11/09/2022] Open
Abstract
The roles of clock components in salt stress tolerance remain incompletely characterized in rice. Here, we show that, among OsPRR (Oryza sativa Pseudo-Response Regulator) family members, OsPRR73 specifically confers salt tolerance in rice. Notably, the grain size and yield of osprr73 null mutants were significantly decreased in the presence of salt stress, with accumulated higher level of reactive oxygen species and sodium ions. RNA sequencing and biochemical assays identified OsHKT2;1, encoding a plasma membrane-localized Na+ transporter, as a transcriptional target of OsPRR73 in mediating salt tolerance. Correspondingly, null mutants of OsHKT2;1 displayed an increased tolerance to salt stress. Immunoprecipitation-mass spectrometry (IP-MS) assays further identified HDAC10 as nuclear interactor of OsPRR73 and co-repressor of OsHKT2;1. Consistently, H3K9ac histone marks at OsHKT2;1 promoter regions were significantly reduced in osprr73 mutant. Together, our findings reveal that salt-induced OsPRR73 expression confers salt tolerance by recruiting HDAC10 to transcriptionally repress OsHKT2;1, thus reducing cellular Na+ accumulation. This exemplifies a new molecular link between clock components and salt stress tolerance in rice.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiling Wang
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yuqing He
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hang Xu
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lei Wang
- Key Laboratory of Plant Molecular PhysiologyCAS Center for Excellence in Molecular Plant SciencesInstitute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
97
|
Lei P, Liu Z, Hu Y, Kim H, Liu S, Liu J, Xu L, Li J, Zhao Y, Yu Z, Qu Y, Huang F, Meng F. Transcriptome analysis of salt stress responsiveness in the seedlings of wild and cultivated Ricinus communis L. J Biotechnol 2021; 327:106-116. [PMID: 33421510 DOI: 10.1016/j.jbiotec.2020.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/30/2022]
Abstract
Soil salinity is one of the major environmental factors, influencing agricultural productivity of crops. As a non-edible and ideal oilseed crop, castor (Ricinus communis L.) has great industrial value in biofuel, but molecular mechanisms of salt stress regulation are still unknown. In this study, the differentially expressed genes (DEGs) for differential salt tolerance in two castor cultivar (wild castor : Y, cultivated castor 'Tongbi 5': Z) were identified. 12 libraries were sampled for Illumina high-throughput sequencing to consider 132,426 nonredundant unigenes and 31,221 gene loci. Multiple phytohormones and transcription factors (TFs) were correlated with salt-tolerance and differently enriched in these two genotypes. The type 2C protein phosphatases (PP2C) homologs were all upregulated under salt stress. Importantly, IAA (1), DELLA (1) and Jasmonate zim domain (JAZ) (1) were also identified and found to be differentially expressed. Based on the co-expressed module by regulatory networks and heatmap analysis, ERF/AP2, WRKY and bHLH families were prominently participate in high salt stress response of wild and cultivated castor. Finally, these results highlight that the hub DEGs and families were more accumulated in cultivated castor than those in wild castor, providing novel insights into the salinity adaptive mechanisms and genetic improvement in castor.
Collapse
Affiliation(s)
- Pei Lei
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Zhi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yanbo Hu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - HyokChol Kim
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Shuo Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jiaqi Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Liping Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| | - Yong Zhao
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Zhenliang Yu
- Heilongjiang Hydraulic Research Institute, Harbin, 150080, China.
| | - Yanting Qu
- Institute of Natural Resources and Ecology, Heilongjiang Academy of Sciences (HAS), Harbin, 150040, China.
| | - Fenglang Huang
- College of Life Science, Inner Mongolia University for Nationalities, Tongliao, 028043, China; Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, 028043, China.
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
98
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
99
|
Bu X, Wang X, Yan J, Zhang Y, Zhou S, Sun X, Yang Y, Ahammed GJ, Liu Y, Qi M, Wang F, Li T. Genome-Wide Characterization of B-Box Gene Family and Its Roles in Responses to Light Quality and Cold Stress in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:698525. [PMID: 34290726 PMCID: PMC8287887 DOI: 10.3389/fpls.2021.698525] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/28/2021] [Indexed: 05/17/2023]
Abstract
Perceiving incoming environmental information is critical for optimizing plant growth and development. Multiple B-box proteins (BBXs) play essential roles in light-dependent developmental processes in plants. However, whether BBXs function as a signal integrator between light and temperature in tomato plants remains elusive. In this study, 31 SlBBX genes were identified from the newly released tomato (Solanum lycopersicum) genome sequences and were clustered into five subgroups. Gene structure and protein motif analyses showed relatively high conservation of closely clustered SlBBX genes within each subgroup; however, genome mapping analysis indicated the uneven distribution of the SlBBX genes on tomato chromosomes. Promoter cis-regulatory elements prediction and gene expression indicated that SlBBX genes were highly responsive to light, hormones, and stress conditions. Reverse genetic approaches revealed that disruption of SlBBX7, SlBBX9, and SlBBX20 largely suppressed the cold tolerance of tomato plants. Furthermore, the impairment of SlBBX7, SlBBX9, and SlBBX20 suppressed the photosynthetic response immediately after cold stress. Due to the impairment of non-photochemical quenching (NPQ), the excess photon energy and electron flow excited by low temperature were not consumed in SlBBX7-, SlBBX9-, and SlBBX20- silenced plants, leading to the over reduction of electron carriers and damage of the photosystem. Our study emphasized the positive roles of light signaling transcription factors SlBBXs in cold tolerance in tomato plants, which may improve the current understanding of how plants integrate light and temperature signals to adapt to adverse environments.
Collapse
Affiliation(s)
- Xin Bu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Xiujie Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jiarong Yan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shunyuan Zhou
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xin Sun
- College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Youxin Yang
- College of Agronomy, Jiangxi Agricultural University, Nanchang, China
| | - Golam Jalal Ahammed
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Yufeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Feng Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- *Correspondence: Feng Wang orcid.org/0000-0001-5351-1531
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
- Tianlai Li
| |
Collapse
|
100
|
Shi P, Gu M. Transcriptome analysis and differential gene expression profiling of two contrasting quinoa genotypes in response to salt stress. BMC PLANT BIOLOGY 2020; 20:568. [PMID: 33380327 PMCID: PMC7774241 DOI: 10.1186/s12870-020-02753-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/24/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Soil salinity is one of the major abiotic stress factors that affect crop growth and yield, which seriously restricts the sustainable development of agriculture. Quinoa is considered as one of the most promising crops in the future for its high nutrition value and strong adaptability to extreme weather and soil conditions. However, the molecular mechanisms underlying the adaptive response to salinity stress of quinoa remain poorly understood. To identify candidate genes related to salt tolerance, we performed reference-guided assembly and compared the gene expression in roots treated with 300 mM NaCl for 0, 0.5, 2, and 24 h of two contrasting quinoa genotypes differing in salt tolerance. RESULTS The salt-tolerant (ST) genotype displayed higher seed germination rate and plant survival rate, and stronger seedling growth potential as well than the salt-sensitive (SS) genotype under salt stress. An average of 38,510,203 high-quality clean reads were generated. Significant Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were identified to deeper understand the differential response. Transcriptome analysis indicated that salt-responsive genes in quinoa were mainly related to biosynthesis of secondary metabolites, alpha-Linolenic acid metabolism, plant hormone signal transduction, and metabolic pathways. Moreover, several pathways were significantly enriched amongst the differentially expressed genes (DEGs) in ST genotypes, such as phenylpropanoid biosynthesis, plant-pathogen interaction, isoquinoline alkaloid biosynthesis, and tyrosine metabolism. One hundred seventeen DEGs were common to various stages of both genotypes, identified as core salt-responsive genes, including some transcription factor members, like MYB, WRKY and NAC, and some plant hormone signal transduction related genes, like PYL, PP2C and TIFY10A, which play an important role in the adaptation to salt conditions of this species. The expression patterns of 21 DEGs were detected by quantitative real-time PCR (qRT-PCR) and confirmed the reliability of the RNA-Seq results. CONCLUSIONS We identified candidate genes involved in salt tolerance in quinoa, as well as some DEGs exclusively expressed in ST genotype. The DEGs common to both genotypes under salt stress may be the key genes for quinoa to adapt to salinity environment. These candidate genes regulate salt tolerance primarily by participating in reactive oxygen species (ROS) scavenging system, protein kinases biosynthesis, plant hormone signal transduction and other important biological processes. These findings provide theoretical basis for further understanding the regulation mechanism underlying salt tolerance network of quinoa, as well establish foundation for improving its tolerance to salinity in future breeding programs.
Collapse
Affiliation(s)
- Pibiao Shi
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China
| | - Minfeng Gu
- Xinyang Agricultural Experiment Station of Yancheng City, Yancheng, 224049, Jiangsu, China.
| |
Collapse
|