51
|
De la Rosa C, Covarrubias AA, Reyes JL. A dicistronic precursor encoding miR398 and the legume-specific miR2119 coregulates CSD1 and ADH1 mRNAs in response to water deficit. PLANT, CELL & ENVIRONMENT 2019; 42:133-144. [PMID: 29626361 DOI: 10.1111/pce.13209] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 05/07/2023]
Abstract
Plant microRNAs are commonly encoded in transcripts containing a single microRNA precursor. Processing by DICER-LIKE 1 and associated factors results in the production of a small RNA, followed by its incorporation into an AGO-containing protein complex to guide silencing of an mRNA possessing a complementary target sequence. Certain microRNA loci contain more than one precursor stem-loop structure, thus encoding more than one microRNA in the same transcript. Here, we describe a unique case where the evolutionary conserved miR398a is encoded in the same transcript as the legume-specific miR2119. The dicistronic arrangement found in common bean was also observed in other legumes. In Phaseolus vulgaris, mature miR398 and miR2119 are repressed in response to water deficit, and we demonstrate that both are functional as they target the mRNAs for CSD1 and ADH1, respectively. Our results indicate that the repression of miR398 and miR2119 leads to coordinated up-regulation of CSD1 and ADH1 mRNAs in response to water deficit in common bean and possibly in other legumes. Furthermore, we show that miRNA directed CSD1 and ADH1 mRNAs up-regulation also occurs when common bean plants are exposed to flooding, suggesting that plant redox status and fermentation metabolism must be closely coordinated under different adverse conditions.
Collapse
Affiliation(s)
- Carlos De la Rosa
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - Alejandra Alicia Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| | - José Luis Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, Mexico
| |
Collapse
|
52
|
Huen A, Bally J, Smith P. Identification and characterisation of microRNAs and their target genes in phosphate-starved Nicotiana benthamiana by small RNA deep sequencing and 5'RACE analysis. BMC Genomics 2018; 19:940. [PMID: 30558535 PMCID: PMC6296076 DOI: 10.1186/s12864-018-5258-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/16/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Phosphorus is an important macronutrient that is severely lacking in soils. In plants, specific microRNAs (miRNAs) essential for nutrient management and the regulation of stress responses are responsible for the control of many phosphate starvation responses. Further understanding of conserved and species-specific microRNA species has potential implications for the development of crops tolerant to soils with low phosphate. RESULTS This study identified and characterised phosphate starvation-responsive miRNAs in the native Australian tobacco Nicotiana benthamiana. Small RNA libraries were constructed and sequenced from phosphate-starved plant leaves, stems and roots. Twenty-four conserved miRNA families and 36 species-specific miRNAs were identified. The majority of highly phosphate starvation-responsive miRNAs were highly conserved, comprising of members from the miR399, miR827, and miR2111 families. In addition, two miRNA-star species were identified to be phosphate starvation-responsive. A total of seven miRNA targets were confirmed using RLM-5'RACE to be cleaved by five miRNA families, including two confirmed cleavage targets for Nbe-miR399 species, one for Nbe-miR2111, and two for Nbe-miR398. A number of N. benthamiana-specific features for conserved miRNAs were identified, including species-specific miRNA targets predicted or confirmed for miR399, miR827, and miR398. CONCLUSIONS Our results give an insight into the phosphate starvation-responsive miRNAs of Nicotiana benthamiana, and indicate that the phosphate starvation response pathways in N. benthamiana contain both highly conserved and species-specific components.
Collapse
Affiliation(s)
- Amanda Huen
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Julia Bally
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, QLD, Brisbane, 4000, Australia
| | - Penelope Smith
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
53
|
Pandey P, Wang M, Baldwin IT, Pandey SP, Groten K. Complex regulation of microRNAs in roots of competitively-grown isogenic Nicotiana attenuata plants with different capacities to interact with arbuscular mycorrhizal fungi. BMC Genomics 2018; 19:937. [PMID: 30558527 PMCID: PMC6296096 DOI: 10.1186/s12864-018-5338-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 11/29/2018] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Nicotiana attenuata is an ecological model plant whose 2.57 Gb genome has recently been sequenced and assembled and for which miRNAs and their genomic locations have been identified. To understand how this plant's miRNAs are reconfigured during plant-arbuscular mycorrhizal fungal (AMF) interactions and whether hostplant calcium- and calmodulin dependent protein kinase (CCaMK) expression which regulates the AMF interaction also modulates miRNAs levels and regulation, we performed a large-scale miRNA analysis of this plant-AMF interaction. RESULTS Next generation sequencing of miRNAs in roots of empty vector (EV) N. attenuata plants and an isogenic line silenced in CCaMK expression (irCCaMK) impaired in AMF-interactions grown under competitive conditions with and without AMF inoculum revealed a total of 149 unique miRNAs: 67 conserved and 82 novel ones. The majority of the miRNAs had a length of 21 nucleotides. MiRNA abundances were highly variable ranging from 400 to more than 25,000 reads per million. The miRNA profile of irCCaMK plants impaired in AMF colonization was distinct from fully AMF-functional EV plants grown in the same pot. Six conserved miRNAs were present in all conditions and accumulated differentially depending on treatment and genotype; five (miR6153, miR403a-3p, miR7122a, miR167-5p and miR482d, but not miR399a-3p) showed the highest accumulation in AMF inoculated EV plants compared to inoculated irCCaMK plants. Furthermore, the accumulation patterns of sequence variants of selected conserved miRNAs showed a very distinct pattern related to AMF colonization - one variant of miR473-5p specifically accumulated in AMF-inoculated plants. Also abundances of miR403a-3p, miR171a-3p and one of the sequence variants of miR172a-3p increased in AMF-inoculated EV compared to inoculated irCCaMK plants and to non-inoculated EV plants, while miR399a-3p was most strongly enriched in AMF inoculated irCCaMK plants grown in competition with EV. The analysis of putative targets of selected miRNAs revealed an involvement in P starvation (miR399), phytohormone signaling (Nat-R-PN59, miR172, miR393) and defense (e.g. miR482, miR8667, Nat-R-PN-47). CONCLUSIONS Our study demonstrates (1) a large-scale reprograming of miRNAs induced by AMF colonization and (2) that the impaired AMF signaling due to CCaMK silencing and the resulting reduced competitive ability of irCCaMK plants play a role in modulating signal-dependent miRNA accumulation.
Collapse
Affiliation(s)
- Priyanka Pandey
- National Institute of Biomedical Genomics, Kalyani, West Bengal India
| | - Ming Wang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Shree P. Pandey
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
- Department of Biological Sciences, IISER Kolkata, Mohanpur, Nadia, West Bengal 741246 India
| | - Karin Groten
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
54
|
Qiu Z, He Y, Zhang Y, Guo J, Zhang L. Genome-wide identification and profiling of microRNAs in Paulownia tomentosa cambial tissues in response to seasonal changes. Gene 2018; 677:32-40. [PMID: 30036657 DOI: 10.1016/j.gene.2018.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
Abstract
MicroRNAs (miRNAs), a group of endogenous small non-coding RNAs, have been shown to play essential roles in the regulation of gene expression at the post-transcriptional level. Although Paulownia tomentosa is an ecologically and economically important timber species due to its rapid growth, few efforts have focused on small RNAs (sRNAs) in the cambial tissues during winter and summer transition. In the present study, we identified 33 known miRNA families and 29 novel miRNAs which include 20 putative novel miRNAs* in P. tomentosa cambial tissues during winter and summer transition. Through differential expression analysis, we showed that 15 known miRNAs and 8 novel miRNAs were preferentially abundant in certain stage of cambial tissues. Based on the P. tomentosa mRNA transcriptome database, 1667 and 78 potential targets were predicted for 29 known and 20 novel miRNAs, respectively and the predicted targets are mostly transcription factors and functional genes. The targets of these miRNAs were enriched in "metabolic process" and "transcription regulation" by using Gene Ontology enrichment analysis. In addition, KEGG pathway analyses revealed the involvement of miRNAs in starch and sucrose metabolism and plant-pathogen interaction metabolism pathways. Noticeably, qRT-PCR expression analysis demonstrated that 9 miRNAs and their targets were existed a negative correlation in P. tomentosa cambial tissues. This study is the first to examine known and novel miRNAs and their potential targets in P. tomentosa cambial tissues during winter and summer transition and identify several candidate genes potentially regulating cambial phase transition, and thus provide a framework for further understanding of miRNAs functions in the regulation of cambial phase transition and wood formation in trees.
Collapse
Affiliation(s)
- Zongbo Qiu
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China.
| | - Yanyan He
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Yimeng Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Junli Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, PR China
| |
Collapse
|
55
|
Salvador-Guirao R, Hsing YI, San Segundo B. The Polycistronic miR166k-166h Positively Regulates Rice Immunity via Post-transcriptional Control of EIN2. FRONTIERS IN PLANT SCIENCE 2018; 9:337. [PMID: 29616057 PMCID: PMC5869255 DOI: 10.3389/fpls.2018.00337] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 02/28/2018] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are small RNAs acting as regulators of gene expression at the post-transcriptional level. In plants, most miRNAs are generated from independent transcriptional units, and only a few polycistronic miRNAs have been described. miR166 is a conserved miRNA in plants targeting the HD-ZIP III transcription factor genes. Here, we show that a polycistronic miRNA comprising two miR166 family members, miR166k and miR166h, functions as a positive regulator of rice immunity. Rice plants with activated MIR166k-166h expression showed enhanced resistance to infection by the fungal pathogens Magnaporthe oryzae and Fusarium fujikuroi, the causal agents of the rice blast and bakanae disease, respectively. Disease resistance in rice plants with activated MIR166k-166h expression was associated with a stronger expression of defense responses during pathogen infection. Stronger induction of MIR166k-166h expression occurred in resistant but not susceptible rice cultivars. Notably, the ethylene-insensitive 2 (EIN2) gene was identified as a novel target gene for miR166k. The regulatory role of the miR166h-166k polycistron on the newly identified target gene results from the activity of the miR166k-5p specie generated from the miR166k-166h precursor. Collectively, our findings support a role for miR166k-5p in rice immunity by controlling EIN2 expression. Because rice blast is one of the most destructive diseases of cultivated rice worldwide, unraveling miR166k-166h-mediated mechanisms underlying blast resistance could ultimately help in designing appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Raquel Salvador-Guirao
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yue-ie Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics CSIC-IRTA-UAB-UB, Universitat Autònoma de Barcelona, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
56
|
Feng H, Wang L, Wuchty S, Wilson ACC. microRNA regulation in an ancient obligate endosymbiosis. Mol Ecol 2018; 27:1777-1793. [PMID: 29271121 DOI: 10.1111/mec.14464] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 01/03/2023]
Abstract
Although many insects are associated with obligate bacterial endosymbionts, the mechanisms by which these host/endosymbiont associations are regulated remain mysterious. While microRNAs (miRNAs) have been recently identified as regulators of host/microbe interactions, including host/pathogen and host/facultative endosymbiont interactions, the role miRNAs may play in mediating host/obligate endosymbiont interactions is virtually unknown. Here, we identified conserved miRNAs that potentially mediate symbiotic interactions between aphids and their obligate endosymbiont, Buchnera aphidicola. Using small RNA sequence data from Myzus persicae and Acyrthosiphon pisum, we annotated 93 M. persicae and 89 A. pisum miRNAs, among which 69 were shared. We found 14 miRNAs that were either highly expressed in aphid bacteriome, the Buchnera-housing tissue, or differentially expressed in bacteriome vs. gut, a non-Buchnera-housing tissue. Strikingly, 10 of these 14 miRNAs have been implicated previously in other host/microbe interaction studies. Investigating the interaction networks of these miRNAs using a custom computational pipeline, we identified 103 miRNA::mRNA interactions shared between M. persicae and A. pisum. Functional annotation of the shared mRNA targets revealed only two over-represented cluster of orthologous group categories: amino acid transport and metabolism, and signal transduction mechanisms. Our work supports a role for miRNAs in mediating host/symbiont interactions between aphids and their obligate endosymbiont Buchnera. In addition, our results highlight the probable importance of signal transduction mechanisms to host/endosymbiont coevolution.
Collapse
Affiliation(s)
- Honglin Feng
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Lingyu Wang
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Stefan Wuchty
- Department of Biology, University of Miami, Coral Gables, FL, USA.,Department of Computer Science, University of Miami, Coral Gables, FL, USA.,Center for Computational Science, University of Miami, Coral Gables, FL, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA
| | - Alex C C Wilson
- Department of Biology, University of Miami, Coral Gables, FL, USA
| |
Collapse
|
57
|
Computational investigation of small RNAs in the establishment of root nodules and arbuscular mycorrhiza in leguminous plants. SCIENCE CHINA-LIFE SCIENCES 2018; 61:706-717. [DOI: 10.1007/s11427-017-9203-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
|
58
|
Megha S, Basu U, Kav NNV. Regulation of low temperature stress in plants by microRNAs. PLANT, CELL & ENVIRONMENT 2018; 41:1-15. [PMID: 28346818 DOI: 10.1111/pce.12956] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 05/22/2023]
Abstract
Low temperature is one of the most common environmental stresses that seriously affect the growth and development of plants. However, plants have the plasticity in their defence mechanisms enabling them to tolerate and, sometimes, even survive adverse environmental conditions. MicroRNAs (miRNAs) are small non-coding RNAs, approximately 18-24 nucleotides in length, and are being increasingly recognized as regulators of gene expression at the post-transcriptional level and have the ability to influence a broad range of biological processes. There is growing evidence in the literature that reprogramming of gene expression mediated through miRNAs is a major defence mechanism in plants enabling them to respond to stresses. To date, numerous studies have established the importance of miRNA-based regulation of gene expression under low temperature stress. Individual miRNAs can modulate the expression of multiple mRNA targets, and, therefore, the manipulation of a single miRNA has the potential to affect multiple biological processes. Numerous functional studies have attempted to identify the miRNA-target interactions and have elaborated the role of several miRNAs in cold-stress regulation. This review summarizes the current understanding of miRNA-mediated modulation of the expression of key genes as well as genetic and regulatory pathways, involved in low temperature stress responses in plants.
Collapse
Affiliation(s)
- Swati Megha
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Nat N V Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
59
|
Proust H, Hartmann C, Crespi M, Lelandais-Brière C. Root Development in Medicago truncatula: Lessons from Genetics to Functional Genomics. Methods Mol Biol 2018; 1822:205-239. [PMID: 30043307 DOI: 10.1007/978-1-4939-8633-0_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This decade introduced "omics" approaches, such as genomics, transcriptomics, proteomics, and metabolomics in association with reverse and forward genetic approaches, developed earlier, to try to identify molecular pathways involved in the development or in the response to environmental conditions as well as in animals and plants. This review summarizes studies that utilized "omics" strategies to unravel the root development in the model legume Medicago truncatula and how external factors such as soil mineral status or the presence of bacteria and fungi affect root system architecture in this species. We also compare these "omics" data to the knowledges concerning the Arabidopsis thaliana root development, nowadays considered as the model of allorhiz root systems. However, unlike legumes, this species is unable to interact with soil nitrogen-fixing rhizobia and arbuscular-mycorrhizal (AM) fungi to develop novel root-derived symbiotic structures. Differences in root organization, development, and regulatory pathways between these two model species have been highlighted.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry Val d'Essonne, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
60
|
Grosche C, Genau AC, Rensing SA. Evolution of the Symbiosis-Specific GRAS Regulatory Network in Bryophytes. FRONTIERS IN PLANT SCIENCE 2018; 9:1621. [PMID: 30459800 PMCID: PMC6232258 DOI: 10.3389/fpls.2018.01621] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 10/18/2018] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza is one of the most common plant symbiotic interactions observed today. Due to their nearly ubiquitous occurrence and their beneficial impact on both partners it was suggested that this mutualistic interaction was crucial for plants to colonize the terrestrial habitat approximately 500 Ma ago. On the plant side the association is established via the common symbiotic pathway (CSP). This pathway allows the recognition of the fungal symbiotic partner, subsequent signaling to the nucleus, and initiation of the symbiotic program with respect to specific gene expression and cellular re-organization. The downstream part of the CSP is a regulatory network that coordinates the transcription of genes necessary to establish the symbiosis, comprising multiple GRAS transcription factors (TFs). These regulate their own expression as an intricate transcriptional network. Deduced from non-host genome data the loss of genes encoding CSP components coincides with the loss of the interaction itself. Here, we analyzed bryophyte species with special emphasis on the moss Physcomitrella patens, supposed to be a non-host, for the composition of the GRAS regulatory network components. We show lineage specific losses and expansions of several of these factors in bryophytes, potentially coinciding with the proposed host/non-host status of the lineages. We evaluate losses and expansions and infer clade-specific evolution of GRAS TFs.
Collapse
Affiliation(s)
- Christopher Grosche
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
| | | | - Stefan A. Rensing
- Plant Cell Biology, Faculty of Biology, University of Marburg, Marburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Stefan A. Rensing,
| |
Collapse
|
61
|
Križnik M, Petek M, Dobnik D, Ramšak Ž, Baebler Š, Pollmann S, Kreuze JF, Žel J, Gruden K. Salicylic Acid Perturbs sRNA-Gibberellin Regulatory Network in Immune Response of Potato to Potato virus Y Infection. FRONTIERS IN PLANT SCIENCE 2017; 8:2192. [PMID: 29312421 PMCID: PMC5744193 DOI: 10.3389/fpls.2017.02192] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/12/2017] [Indexed: 05/19/2023]
Abstract
Potato virus Y is the most economically important potato viral pathogen. We aimed at unraveling the roles of small RNAs (sRNAs) in the complex immune signaling network controlling the establishment of tolerant response of potato cv. Désirée to the virus. We constructed a sRNA regulatory network connecting sRNAs and their targets to link sRNA level responses to physiological processes. We discovered an interesting novel sRNAs-gibberellin regulatory circuit being activated as early as 3 days post inoculation (dpi) before viral multiplication can be detected. Two endogenous sRNAs, miR167 and phasiRNA931 were predicted to regulate gibberellin biosynthesis genes GA20-oxidase and GA3-oxidase. The increased expression of phasiRNA931 was also reflected in decreased levels of GA3-oxidase transcripts. Moreover, decreased concentration of gibberellin confirmed this regulation. The functional relation between lower activity of gibberellin signaling and reduced disease severity was previously confirmed in Arabidopsis-virus interaction using knockout mutants. We further showed that this regulation is salicylic acid-dependent as the response of sRNA network was attenuated in salicylic acid-depleted transgenic counterpart NahG-Désirée expressing severe disease symptoms. Besides downregulation of gibberellin signaling, regulation of immune receptor transcripts by miR6022 as well as upregulation of miR164, miR167, miR169, miR171, miR319, miR390, and miR393 in tolerant Désirée, revealed striking similarities to responses observed in mutualistic symbiotic interactions. The intertwining of different regulatory networks revealed, shows how developmental signaling, disease symptom development, and stress signaling can be balanced.
Collapse
Affiliation(s)
- Maja Križnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
- JoŽef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Marko Petek
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - David Dobnik
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Živa Ramšak
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Špela Baebler
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid UPM - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jan F. Kreuze
- Global Program of Integrated Crop and Systems Research, International Potato Center (CIP), Lima, Peru
| | - Jana Žel
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| |
Collapse
|
62
|
Wang C, He X, Wang X, Zhang S, Guo X. ghr-miR5272a-mediated regulation of GhMKK6 gene transcription contributes to the immune response in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5895-5906. [PMID: 29069454 PMCID: PMC5854127 DOI: 10.1093/jxb/erx373] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/28/2017] [Indexed: 05/20/2023]
Abstract
Fusarium wilt is a major biotic stress affecting the productivity of cotton (Gossypium hirsutum). Although mitogen-activated protein kinase (MAPK) cascades play critical roles in plant disease resistance, their intricate regulation under fungal stress remains unclear, especially with regards to microRNA-mediated regulation of MAPK gene expression. In this study, we report that the MAPK kinase gene GhMKK6 and ghr-miR5272a work together in cotton resistance to Fusarium wilt. Silencing GhMKK6 in cotton decreased resistance to F. oxysporum by repressing the expression of known disease-resistance genes. Furthermore, although GhMKK6 played a positive role in disease resistance, excessive GhMKK6 activation caused an excessive hypersensitive response. ghr-miR5272a, a major regulator, prevents this excessive response by regulating GhMKK6 expression. ghr-miR5272a targets the GhMKK6 3'-untranslated region in cotton. Overexpressing miR5272a decreased the expression of GhMKK6 and disease-resistance genes, and increased sensitivity to F. oxysporum, yielding a similar phenotype to GhMKK6-silenced cotton. Overall, these results demonstrate that the ghr-miR5272a-mediated regulation of GhMKK6 expression contributes to the immune response in cotton, and reveal a new feedback loop mechanism in plant disease response.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, PR China
| | - Xiaowen He
- State Key Laboratory of Crop Biology, Shandong Agricultural University, PR China
| | - Xinxin Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, PR China
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, PR China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, PR China
- Correspondence:
| |
Collapse
|
63
|
Xu L, Hu Y, Cao Y, Li J, Ma L, Li Y, Qi Y. An expression atlas of miRNAs in Arabidopsis thaliana. SCIENCE CHINA-LIFE SCIENCES 2017; 61:178-189. [PMID: 29197026 DOI: 10.1007/s11427-017-9199-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate a variety of biological processes. MiRNA expression often exhibits spatial and temporal specificity. However, genome-wide miRNA expression patterns in different organs during development of Arabidopsis thaliana have not yet been systemically investigated. In this study, we sequenced small RNA libraries generated from 27 different organ/tissue types, which cover the entire life cycle of Arabidopsis. Analysis of the sequencing data revealed that most miRNAs are ubiquitously expressed, whereas a small set of miRNAs display highly specific expression patterns. In addition, different miRNA members within the same family have distinct spatial and temporal expression patterns. Moreover, we found that some miRNAs are produced from different arms of their hairpin precursors at different developmental stages. This work provides new insights into the regulation of miRNA biogenesis and a rich resource for future investigation of miRNA functions in Arabidopsis.
Collapse
Affiliation(s)
- Le Xu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yugang Hu
- College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Ying Cao
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Jingrui Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Ligeng Ma
- College of Life Sciences-Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Capital Normal University, Beijing, 100048, China
| | - Yan Li
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Yijun Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| |
Collapse
|
64
|
Pentimone I, Lebrón R, Hackenberg M, Rosso LC, Colagiero M, Nigro F, Ciancio A. Identification of tomato miRNAs responsive to root colonization by endophytic Pochonia chlamydosporia. Appl Microbiol Biotechnol 2017; 102:907-919. [PMID: 29105020 DOI: 10.1007/s00253-017-8608-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms active during the endophytic phase of the fungus Pochonia chlamydosporia are still poorly understood. In particular, few data are available on the links between the endophyte and the root response, as modulated by noncoding small RNAs. In this study, we describe the microRNAs (miRNAs) that are differentially expressed (DE) in the roots of tomato, colonized by P. chlamydosporia. A genome-wide NGS expression profiling of small RNAs in roots, either colonized or not by the fungus, showed 26 miRNAs upregulated in inoculated roots. Their predicted target genes are involved in the plant information processing system, which recognizes, percepts, and transmits signals, with higher representations in processes such as apoptosis and plant defense regulation. RNAseq data showed that predicted miRNA target genes were downregulated in tomato roots after 4, 7, 10, and 21 days post P. chlamydosporia inoculation. The differential expression of four miRNAs was further validated using qPCR analysis. The P. chlamydosporia endophytic lifestyle in tomato roots included an intricate network of miRNAs and targets. Data provide a first platform of DE tomato miRNAs after P. chlamydosporia colonization. They indicated that several miRNAs are involved in the host response to the fungus, playing important roles for its recognition as a symbiotic microorganism, allowing endophytism by modulating the host defense reaction. Data also indicated that endophytism affects tRNA fragmentation. This is the first study on miRNAs induced by P. chlamydosporia endophytism and related development regulation effects in Solanum lycopersicum.
Collapse
Affiliation(s)
- Isabella Pentimone
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126, Bari, Italy.
| | - Ricardo Lebrón
- Genetics Department & Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Michael Hackenberg
- Genetics Department & Biotechnology Institute, Biomedical Research Center (CIBM), University of Granada, Granada, Spain
| | - Laura C Rosso
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126, Bari, Italy
| | - Mariantonietta Colagiero
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126, Bari, Italy
| | - Franco Nigro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari - Aldo Moro, Via G. Amendola 165/A, 70126, Bari, Italy
| | - Aurelio Ciancio
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via G. Amendola 122/D, 70126, Bari, Italy
| |
Collapse
|
65
|
Liu JY, Fan HY, Wang Y, Zhang YL, Li DW, Yu JL, Han CG. Characterization of microRNAs of Beta macrocarpa and their responses to Beet necrotic yellow vein virus infection. PLoS One 2017; 12:e0186500. [PMID: 29036205 PMCID: PMC5643120 DOI: 10.1371/journal.pone.0186500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/03/2017] [Indexed: 11/18/2022] Open
Abstract
Plant microRNAs (miRNAs) are a class of non-coding RNAs that play important roles in plant development, defense, and symptom development. Here, 547 known miRNAs representing 129 miRNA families, and 282 potential novel miRNAs were identified in Beta macrocarpa using small RNA deep sequencing. A phylogenetic analysis was performed, and 8 Beta lineage-specific miRNAs were identified. Through a differential expression analysis, miRNAs associated with Beet necrotic yellow vein virus (BNYVV) infection were identified and confirmed using a microarray analysis and stem-loop RT-qPCR. In total, 103 known miRNAs representing 38 miRNA families, and 45 potential novel miRNAs were differentially regulated, with at least a two-fold change, in BNYVV-infected plants compared with that of the mock-inoculated control. Targets of these differentially expressed miRNAs were also predicted by degradome sequencing. These differentially expressed miRNAs were involved in hormone biosynthesis and signal transduction pathways, and enhanced axillary bud development and plant defenses. This work is the first to describe miRNAs of the plant genus Beta and may offer a reference for miRNA research in other species in the genus. It provides valuable information on the pathogenicity mechanisms of BNYVV.
Collapse
Affiliation(s)
- Jun-Ying Liu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Hui-Yan Fan
- College of Pharmacy, Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, China
| | - Ying Wang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Yong-Liang Zhang
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
- * E-mail: (CGH); (YLZ)
| | - Da-Wei Li
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Jia-Lin Yu
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Cheng-Gui Han
- State Key Laboratory for Agro-Biotechnology and Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University, Beijing, P. R. China
- * E-mail: (CGH); (YLZ)
| |
Collapse
|
66
|
Huen AK, Rodriguez-Medina C, Ho AYY, Atkins CA, Smith PMC. Long-distance movement of phosphate starvation-responsive microRNAs in Arabidopsis. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:643-649. [PMID: 28322489 DOI: 10.1111/plb.12568] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/16/2017] [Indexed: 05/07/2023]
Abstract
Plant microRNAs are small RNAs that are important for genetic regulation of processes such as plant development or environmental responses. Specific microRNAs accumulate in the phloem during phosphate starvation, and may act as long-distance signalling molecules. We performed quantitative PCR on Arabidopsis hypocotyl micrograft tissues of wild-type and hen1-6 mutants to assess the mobility of several phosphate starvation-responsive microRNA species. In addition to the previously confirmed mobile species miR399d, the corresponding microRNA* (miR399d*) was identified for the first time as mobile between shoots and roots. Translocation by phosphate-responsive microRNAs miR827 and miR2111a between shoots and roots during phosphate starvation was evident, while their respective microRNA*s were not mobile. The results suggest that long-distance mobility of microRNA species is selective and can occur without the corresponding duplex strand. Movement of miR399d* and root-localised accumulation of miR2111a* opens the potential for persisting microRNA*s to be mobile and functional in novel pathways during phosphate starvation responses.
Collapse
Affiliation(s)
- A K Huen
- Plant Molecular Biology Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - C Rodriguez-Medina
- The Colombian Agricultural Research Corporation (Corpoica), Palmira, Valle del Cauca, Columbia
| | - A Y Y Ho
- Plant Molecular Biology Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| | - C A Atkins
- Centre for Plant Genetics and Breeding, The University of Western Australia, Crawley, Perth, WA, Australia
| | - P M C Smith
- Plant Molecular Biology Lab, School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
67
|
Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing. Gene 2017; 619:61-70. [PMID: 28377111 DOI: 10.1016/j.gene.2017.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/22/2022]
Abstract
Rapeseed (Brassica napus) is an important cash crop considered as the third largest oil crop worldwide. Rapeseed oil contains various saturation or unsaturation fatty acids, these fatty acids, whose could incorporation with TAG form into lipids stored in seeds play various roles in the metabolic activity. The different fatty acids in B. napus seeds determine oil quality, define if the oil is edible or must be used as industrial material. miRNAs are kind of non-coding sRNAs that could regulate gene expressions through post-transcriptional modification to their target transcripts playing important roles in plant metabolic activities. We employed high-throughput sequencing to identify the miRNAs and their target transcripts involved in fatty acids and lipids metabolism in different development of B. napus seeds. As a result, we identified 826 miRNA sequences, including 523 conserved and 303 newly miRNAs. From the degradome sequencing, we found 589 mRNA could be targeted by 236 miRNAs, it includes 49 novel miRNAs and 187 conserved miRNAs. The miRNA-target couple suggests that bna-5p-163957_18, bna-5p-396192_7, miR9563a-p3, miR9563b-p5, miR838-p3, miR156e-p3, miR159c and miR1134 could target PDP, LACS9, MFPA, ADSL1, ACO32, C0401, GDL73, PlCD6, OLEO3 and WSD1. These target transcripts are involving in acetyl-CoA generate and carbon chain desaturase, regulating the levels of very long chain fatty acids, β-oxidation and lipids transport and metabolism process. At the same, we employed the q-PCR to valid the expression of miRNAs and their target transcripts that involve in fatty acid and lipid metabolism, the result suggested that the miRNA and their transcript expression are negative correlation, which in accord with the expression of miRNA and its target transcript. The study findings suggest that the identified miRNA may play important role in the fatty acids and lipids metabolism in seeds of B. napus.
Collapse
|
68
|
Ning P, Zhou Y, Gao L, Sun Y, Zhou W, Liu F, Yao Z, Xie L, Wang J, Gong C. Unraveling the microRNA of Caragana korshinskii along a precipitation gradient on the Loess Plateau, China, using high-throughput sequencing. PLoS One 2017; 12:e0172017. [PMID: 28207805 PMCID: PMC5313209 DOI: 10.1371/journal.pone.0172017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 12/02/2022] Open
Abstract
Drought remains one of the main factors that negatively affect plant growth and development. Caragana korshinskii is widely distributed on the Loess Plateau, China, where it mediates soil and water loss and helps prevent desertification. However, little is known about the stress response mechanisms of C. korshinskii in water-starved environments. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several types of biotic and abiotic stress. Here, we describe the miRNAs of wild C. korshinskii from Huangling, Yulin, and Dalad Banner, which occur along a precipitation gradient. Using next-generation sequencing technology, we obtained a total of 13 710 681, 15 048 945, and 15 198 442 reads for each location, respectively; after filtering and BLAST analysis, 490 conserved miRNAs and 96 novel miRNAs were characterized from the sRNAome data, with key functions determined using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. We also designed stem-loop qRT-PCR to validate the expression patterns of 5 conserved miRNAs (miR390, miR398, miR530, miR2119, and miR5559) that obviously responded to water stress in plants grown both under natural and experimental water stress conditions and found that the expression levels of miR2119 and miR5559 were negatively correlated with their predicted target genes. This study is the first to identify miRNAs from wild C. korshinskii and provides a basis for future studies of miRNA-mediated gene regulation of stress responses in C. korshinskii.
Collapse
Affiliation(s)
- Pengbo Ning
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | - Yulu Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Gao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingying Sun
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenfei Zhou
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Furong Liu
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhenye Yao
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Lifang Xie
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Junhui Wang
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| | - Chunmei Gong
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
69
|
Liu WW, Meng J, Cui J, Luan YS. Characterization and Function of MicroRNA ∗s in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:2200. [PMID: 29312425 PMCID: PMC5744440 DOI: 10.3389/fpls.2017.02200] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
MicroRNAs, a group of non-coding RNA molecules, play essential roles in a wide range of cellular processes in different molecules, cells, and organisms. In plants, microRNAs are a class of 20- to 24-nucleotides endogenous small RNAs that repress gene expression. The microRNA guide strand (miRNA) and its complementary strand (miRNA∗) both originate from the miRNA/miRNA∗ duplex. Generally, the guide strands act as post-transcriptional regulators that suppress gene expression by cleaving their target mRNA transcripts, whereas the complementary strands were thought to be degraded as 'passenger strands.' However, the complementary strand has been confirmed to possess significant biological functionality in recent reports. In this review, we summarized the binding characteristics of the miRNA∗ strands with ARGONAUTE proteins, their tissue-specific accumulations and their biological functions, illustrating the essential roles of miRNA∗s in biological processes and therefore providing directions for further exploration.
Collapse
Affiliation(s)
- Wei-wei Liu
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| | - Jun Cui
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
| | - Yu-shi Luan
- School of Life Sciences and Biotechnology, Dalian University of Technology, Dalian, China
- *Correspondence: Jun Meng, Yu-shi Luan,
| |
Collapse
|
70
|
Penha LL, Hoffmann L, Souza SSD, Martins ACDA, Bottaro T, Prosdocimi F, Faffe DS, Motta MCM, Ürményi TP, Silva R. Symbiont modulates expression of specific gene categories in Angomonas deanei. Mem Inst Oswaldo Cruz 2016; 111:686-691. [PMID: 27706380 PMCID: PMC5125052 DOI: 10.1590/0074-02760160228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatids are parasites that cause disease in humans, animals, and plants. Most
are non-pathogenic and some harbor a symbiotic bacterium. Endosymbiosis is part of
the evolutionary process of vital cell functions such as respiration and
photosynthesis. Angomonas deanei is an example of a
symbiont-containing trypanosomatid. In this paper, we sought to investigate how
symbionts influence host cells by characterising and comparing the transcriptomes of
the symbiont-containing A. deanei (wild type) and the symbiont-free
aposymbiotic strains. The comparison revealed that the presence of the symbiont
modulates several differentially expressed genes. Empirical analysis of differential
gene expression showed that 216 of the 7625 modulated genes were significantly
changed. Finally, gene set enrichment analysis revealed that the largest categories
of genes that downregulated in the absence of the symbiont were those involved in
oxidation-reduction process, ATP hydrolysis coupled proton transport and glycolysis.
In contrast, among the upregulated gene categories were those involved in
proteolysis, microtubule-based movement, and cellular metabolic process. Our results
provide valuable information for dissecting the mechanism of endosymbiosis in
A. deanei.
Collapse
Affiliation(s)
- Luciana Loureiro Penha
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Luísa Hoffmann
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Silvanna Sant'Anna de Souza
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | | | - Thayane Bottaro
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Francisco Prosdocimi
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Débora Souza Faffe
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | | | - Turán Péter Ürményi
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| | - Rosane Silva
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
71
|
Couzigou JM, Combier JP. Plant microRNAs: key regulators of root architecture and biotic interactions. THE NEW PHYTOLOGIST 2016; 212:22-35. [PMID: 27292927 DOI: 10.1111/nph.14058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/08/2016] [Indexed: 05/24/2023]
Abstract
Contents 22 I. 22 II. 24 III. 25 IV. 27 V. 29 VI. 10 31 References 32 SUMMARY: Plants have evolved a remarkable faculty of adaptation to deal with various and changing environmental conditions. In this context, the roots have taken over nutritional aspects and the root system architecture can be modulated in response to nutrient availability or biotic interactions with soil microorganisms. This adaptability requires a fine tuning of gene expression. Indeed, root specification and development are highly complex processes requiring gene regulatory networks involved in hormonal regulations and cell identity. Among the different molecular partners governing root development, microRNAs (miRNAs) are key players for the fast regulation of gene expression. miRNAs are small RNAs involved in most developmental processes and are required for the normal growth of organisms, by the negative regulation of key genes, such as transcription factors and hormone receptors. Here, we review the known roles of miRNAs in root specification and development, from the embryonic roots to the establishment of root symbioses, highlighting the major roles of miRNAs in these processes.
Collapse
Affiliation(s)
- Jean-Malo Couzigou
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| | - Jean-Philippe Combier
- UMR5546, Laboratoire de Recherche en Sciences Végétales, UPS, CNRS, Université de Toulouse, Castanet-Tolosan, 31326, France
| |
Collapse
|
72
|
Mutum RD, Kumar S, Balyan S, Kansal S, Mathur S, Raghuvanshi S. Identification of novel miRNAs from drought tolerant rice variety Nagina 22. Sci Rep 2016; 6:30786. [PMID: 27499088 PMCID: PMC4976344 DOI: 10.1038/srep30786] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 07/11/2016] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs regulate a spectrum of developmental and biochemical processes in plants and animals. Thus, knowledge of the entire miRNome is essential to understand the complete regulatory schema of any organism. The current study attempts to unravel yet undiscovered miRNA genes in rice. Analysis of small RNA libraries from various tissues of drought-tolerant ‘aus’ rice variety Nagina 22 (N22) identified 71 novel miRNAs. These were validated based on precursor hairpin structure, small RNA mapping pattern, ‘star’ sequence, conservation and identification of targets based on degradome data. While some novel miRNAs were conserved in other monocots and dicots, most appear to be lineage-specific. They were segregated into two different classes based on the closeness to the classical miRNA definition. Interestingly, evidence of a miRNA-like cleavage was found even for miRNAs that lie beyond the classical definition. Several novel miRNAs displayed tissue-enriched and/or drought responsive expression. Generation and analysis of the degradome data from N22 along with publicly available degradome identified several high confidence targets implicated in regulation of fundamental processes such as flowering and stress response. Thus, discovery of these novel miRNAs considerably expands the dimension of the miRNA-mediated regulation in rice.
Collapse
Affiliation(s)
- Roseeta Devi Mutum
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Santosh Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Sonia Balyan
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Shivani Kansal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Saurabh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi - 110021, India
| |
Collapse
|
73
|
Wang Y, Liu J, Wang X, Liu S, Wang G, Zhou J, Yuan Y, Chen T, Jiang C, Zha L, Huang L. Validation of Suitable Reference Genes for Assessing Gene Expression of MicroRNAs in Lonicera japonica. FRONTIERS IN PLANT SCIENCE 2016; 7:1101. [PMID: 27507983 PMCID: PMC4961011 DOI: 10.3389/fpls.2016.01101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
MicroRNAs (miRNAs), which play crucial regulatory roles in plant secondary metabolism and responses to the environment, could be developed as promising biomarkers for different varieties and production areas of herbal medicines. However, limited information is available for miRNAs from Lonicera japonica, which is widely used in East Asian countries owing to various pharmaceutically active secondary metabolites. Selection of suitable reference genes for quantification of target miRNA expression through quantitative real-time (qRT)-PCR is important for elucidating the molecular mechanisms of secondary metabolic regulation in different tissues and varieties of L. japonica. For precise normalization of gene expression data in L. japonica, 16 candidate miRNAs were examined in three tissues, as well as 21 cultivated varieties collected from 16 production areas, using GeNorm, NormFinder, and RefFinder algorithms. Our results revealed combination of u534122 and u3868172 as the best reference genes across all samples. Their specificity was confirmed by detecting the cycling threshold (C t) value ranges in different varieties of L. japonica collected from diverse production areas, suggesting the use of these two reference miRNAs is sufficient for accurate transcript normalization with different tissues, varieties, and production areas. To our knowledge, this is the first report on validation of reference miRNAs in honeysuckle (Lonicera spp.). Restuls from this study can further facilitate discovery of functional regulatory miRNAs in different varieties of L. japonica.
Collapse
Affiliation(s)
- Yaolong Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Juan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Xumin Wang
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Shuang Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Guoliang Wang
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijing, China
| | - Junhui Zhou
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Yuan Yuan
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Tiying Chen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Chao Jiang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Liangping Zha
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical SciencesBeijing, China
| |
Collapse
|
74
|
Wu P, Wu Y, Liu CC, Liu LW, Ma FF, Wu XY, Wu M, Hang YY, Chen JQ, Shao ZQ, Wang B. Identification of Arbuscular Mycorrhiza (AM)-Responsive microRNAs in Tomato. FRONTIERS IN PLANT SCIENCE 2016; 7:429. [PMID: 27066061 PMCID: PMC4814767 DOI: 10.3389/fpls.2016.00429] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/18/2016] [Indexed: 05/25/2023]
Abstract
A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi. MicroRNAs (miRNAs) have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Cheng-Chen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Li-Wei Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Fang-Fang Ma
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Xiao-Yi Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Mian Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Yue-Yu Hang
- Institute of Botany, Jiangsu Province and Chinese Academy of SciencesNanjing, China
| | - Jian-Qun Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Zhu-Qing Shao
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| | - Bin Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing UniversityNanjing, China
| |
Collapse
|
75
|
Ma X, Tang Z, Qin J, Meng Y. The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 2016; 12:709-19. [PMID: 26016494 DOI: 10.1080/15476286.2015.1053686] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
MicroRNA (miRNA) acts as a critical regulator of gene expression at post-transcriptional and occasionally transcriptional levels in plants. Identification of reliable miRNA genes, monitoring the procedures of transcription, processing and maturation of the miRNAs, quantification of the accumulation levels of the miRNAs in specific biological samples, and validation of miRNA-target interactions become the basis for thoroughly understanding of the miRNA-mediated regulatory networks and the underlying mechanisms. Great progresses have been achieved for sequencing technology. Based on the high degree of sequencing depth and coverage, the high-throughput sequencing (HTS, also called next-generation sequencing) technology provides unprecedentedly efficient way for genome-wide or transcriptome-wide studies. In this review, we will introduce several HTS platform-based methods useful for plant miRNA research, including RNA-seq (RNA sequencing), RNA-PET-seq (paired end tag sequencing of RNAs), sRNA-seq (small RNA sequencing), dsRNA-seq (double-stranded RNA sequencing), ssRNA-seq (single-stranded RNA sequencing) and degradome-seq (degradome sequencing). In particular, we will provide some special cases to illustrate the novel use of HTS methods for investigation of the processing modes of the miRNA precursors, identification of the RNA editing sites on miRNA precursors, mature miRNAs and target transcripts, re-examination of the current miRNA registries, and discovery of novel miRNA species and novel miRNA-target interactions. Summarily, we opinioned that integrative use of the above mentioned HTS methods could make the studies on miRNAs more efficient.
Collapse
Affiliation(s)
- Xiaoxia Ma
- a College of Life and Environmental Sciences; Hangzhou Normal University ; Hangzhou , PR China
| | | | | | | |
Collapse
|
76
|
Lelandais-Brière C, Moreau J, Hartmann C, Crespi M. Noncoding RNAs, Emerging Regulators in Root Endosymbioses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:170-80. [PMID: 26894282 DOI: 10.1094/mpmi-10-15-0240-fi] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Endosymbiosis interactions allow plants to grow in nutrient-deficient soil environments. The arbuscular mycorrhizal (AM) symbiosis is an ancestral interaction between land plants and fungi, whereas nitrogen-fixing symbioses are highly specific for certain plants, notably major crop legumes. The signaling pathways triggered by specific lipochitooligosaccharide molecules involved in these interactions have common components that also overlap with plant root development. These pathways include receptor-like kinases, transcription factors (TFs), and various intermediate signaling effectors, including noncoding (nc)RNAs. These latter molecules have emerged as major regulators of gene expression and small ncRNAs, composed of micro (mi)RNAs and small interfering (si)RNAs, are known to control gene expression at transcriptional (chromatin) or posttranscriptional levels. In this review, we describe exciting recent data connecting variants of conserved si/miRNAs with the regulation of TFs, such as NSP2, NFY-A1, auxin-response factors, and AP2-like proteins, known to be involved in symbiosis. The link between hormonal regulations and these si- and miRNA-TF nodes is proposed in a model in which different feedback loops or regulations controlling endosymbiosis signaling are integrated. The diversity and emerging regulatory networks of young legume miRNAs are also highlighted.
Collapse
Affiliation(s)
- Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Jérémy Moreau
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbone Paris-Cité, University of Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
77
|
Roy S, Tripathi AM, Yadav A, Mishra P, Nautiyal CS. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing. PLoS One 2016; 11:e0147499. [PMID: 26799570 PMCID: PMC4723037 DOI: 10.1371/journal.pone.0147499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.
Collapse
Affiliation(s)
- Sribash Roy
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Abhinandan Mani Tripathi
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Amrita Yadav
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Parneeta Mishra
- Division of Genetics and Molecular Biology, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Botanical Research Institute campus, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Chandra Shekhar Nautiyal
- Division of Plant Microbe Interaction, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
78
|
Kulcheski FR, Molina LG, da Fonseca GC, de Morais GL, de Oliveira LFV, Margis R. Novel and conserved microRNAs in soybean floral whorls. Gene 2016; 575:213-23. [PMID: 26341053 DOI: 10.1016/j.gene.2015.08.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/23/2015] [Accepted: 08/28/2015] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) correspond to a class of endogenous small non-coding RNAs (19-24 nt) that regulates the gene expression, through mRNA target cleavage or translation inhibition. In plants, miRNAs have been shown to play pivotal roles in a wide variety of metabolic and biological processes like plant growth, development, and response to biotic and abiotic stress. Soybean is one of the most important crops worldwide, due to the production of oil and its high protein content. The reproductive phase is considered the most important for soybean yield, which is mainly intended to produce the grains. The identification of miRNAs is not yet saturated in soybean, and there are no studies linking them to the different floral organs. In this study, three different mature soybean floral whorls were used in the construction of sRNA libraries. The sequencing of petal, carpel and stamen libraries generated a total of 10,165,661 sequences. Subsequent analyses identified 200 miRNAs sequences, among which, 41 were novel miRNAs, 80 were conserved soybean miRNAs, 31 were new antisense conserved soybean miRNAs and 46 were soybean miRNAs isoforms. We also found a new miRNA conserved in other plant species, and finally one miRNA-sibling of a soybean conserved miRNA. Conserved and novel miRNAs were evaluated by RT-qPCR. We observed a differential expression across the three whorls for six miRNAs. Computational predicted targets for miRNAs analyzed by RT-qPCR were identified and present functions related to reproductive process in plants. In summary, the increased accumulation of specific and novel miRNAs in different whorls indicates that miRNAs are an important part of the regulatory network in soybean flower.
Collapse
Affiliation(s)
- F R Kulcheski
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - L G Molina
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - G C da Fonseca
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - G L de Morais
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; LNCC, Laboratorio Nacional de Ciência da Computação, Petrópolis, RJ, Brazil
| | - L F V de Oliveira
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil
| | - R Margis
- PPGBCM, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil; PPGGBM, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, RS, Brazil.
| |
Collapse
|
79
|
Meng Y, Yu D, Xue J, Lu J, Feng S, Shen C, Wang H. A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep 2016; 6:18864. [PMID: 26732614 PMCID: PMC4702150 DOI: 10.1038/srep18864] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023] Open
Abstract
Dendrobium officinale is an important traditional Chinese herb. Here, we did a transcriptome-wide, organ-specific study on this valuable plant by combining RNA, small RNA (sRNA) and degradome sequencing. RNA sequencing of four organs (flower, root, leaf and stem) of Dendrobium officinale enabled us to obtain 536,558 assembled transcripts, from which 2,645, 256, 42 and 54 were identified to be highly expressed in the four organs respectively. Based on sRNA sequencing, 2,038, 2, 21 and 24 sRNAs were identified to be specifically accumulated in the four organs respectively. A total of 1,047 mature microRNA (miRNA) candidates were detected. Based on secondary structure predictions and sequencing, tens of potential miRNA precursors were identified from the assembled transcripts. Interestingly, phase-distributed sRNAs with degradome-based processing evidences were discovered on the long-stem structures of two precursors. Target identification was performed for the 1,047 miRNA candidates, resulting in the discovery of 1,257 miRNA--target pairs. Finally, some biological meaningful subnetworks involving hormone signaling, development, secondary metabolism and Argonaute 1-related regulation were established. All of the sequencing data sets are available at NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/sra/). Summarily, our study provides a valuable resource for the in-depth molecular and functional studies on this important Chinese orchid herb.
Collapse
Affiliation(s)
- Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Dongliang Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China
| | - Jie Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Jiangjie Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Shangguo Feng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, PR China.,Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
80
|
Akpinar BA, Budak H. Dissecting miRNAs in Wheat D Genome Progenitor, Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2016; 7:606. [PMID: 27200073 PMCID: PMC4855405 DOI: 10.3389/fpls.2016.00606] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/20/2016] [Indexed: 05/09/2023]
Abstract
As the post-transcriptional regulators of gene expression, microRNAs or miRNAs comprise an integral part of understanding how genomes function. Although miRNAs have been a major focus of recent efforts, miRNA research is still in its infancy in most plant species. Aegilops tauschii, the D genome progenitor of bread wheat, is a wild diploid grass exhibiting remarkable population diversity. Due to the direct ancestry and the diverse gene pool, A. tauschii is a promising source for bread wheat improvement. In this study, a total of 87 Aegilops miRNA families, including 51 previously unknown, were computationally identified both at the subgenomic level, using flow-sorted A. tauschii 5D chromosome, and at the whole genome level. Predictions at the genomic and subgenomic levels suggested A. tauschii 5D chromosome as rich in pre-miRNAs that are highly associated with Class II DNA transposons. In order to gain insights into miRNA evolution, putative 5D chromosome miRNAs were compared to its modern ortholog, Triticum aestivum 5D chromosome, revealing that 48 of the 58 A. tauschii 5D miRNAs were conserved in orthologous T. aestivum 5D chromosome. The expression profiles of selected miRNAs (miR167, miR5205, miR5175, miR5523) provided the first experimental evidence for miR5175, miR5205 and miR5523, and revealed differential expressional changes in response to drought in different genetic backgrounds for miR167 and miR5175. Interestingly, while miR5523 coding regions were present and expressed as pre-miR5523 in both T. aestivum and A. tauschii, the expression of mature miR5523 was observed only in A. tauschii under normal conditions, pointing out to an interference at the downstream processing of pre-miR5523 in T. aestivum. Overall, this study expands our knowledge on the miRNA catalog of A. tauschii, locating a subset specifically to the 5D chromosome, with ample functional and comparative insight which should contribute to and complement efforts to develop drought tolerant wheat varieties.
Collapse
Affiliation(s)
- Bala A. Akpinar
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci UniversityIstanbul, Turkey
- Department of Plant Sciences and Plant Pathology, Montana State UniversityBozeman, MT, USA
- *Correspondence: Hikmet Budak,
| |
Collapse
|
81
|
Hivrale V, Zheng Y, Puli COR, Jagadeeswaran G, Gowdu K, Kakani VG, Barakat A, Sunkar R. Characterization of drought- and heat-responsive microRNAs in switchgrass. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 242:214-223. [PMID: 26566839 DOI: 10.1016/j.plantsci.2015.07.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/17/2015] [Accepted: 07/25/2015] [Indexed: 05/21/2023]
Abstract
Recent investigations revealed that microRNAs (miRNAs) play crucial roles in plant acclimation to stress conditions. Switchgrass, one of the important biofuel crop species can withstand hot and dry climates but the molecular basis of stress tolerance is relatively unknown. To identify miRNAs that are important for tolerating drought or heat, small RNAs were profiled in leaves of adult plants exposed to drought or heat. Sequence analysis enabled the identification of 29 conserved and 62 novel miRNA families. Notably, the abundances of several conserved and novel miRNAs were dramatically altered following drought or heat. Using at least one fold (log2) change as cut off, we observed that 13 conserved miRNA families were differentially regulated by both stresses, and, five and four families were specifically regulated by drought and heat, respectively. Similarly, using a more stringent cut off of two fold (log2) regulation, we found 5 and 16 novel miRNA families were upregulated but 6 and 7 families were downregulated under drought and heat, respectively. The stress-altered expression of a subset of miRNAs and their targets was confirmed using quantitative PCR. Overall, the switchgrass plants exposed to drought or heat revealed similarities as well as differences with respect to miRNA regulation, which could be important for enduring different stress conditions.
Collapse
Affiliation(s)
- Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727 South Jingming Road, Kunming, Yunnan 650500, China
| | - Chandra Obul Reddy Puli
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Kanchana Gowdu
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Abdelali Barakat
- Department of Biology, University of South Dakota, Vermillion, SD 57069, USA
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
82
|
Yan Z, Hossain MS, Valdés-López O, Hoang NT, Zhai J, Wang J, Libault M, Brechenmacher L, Findley S, Joshi T, Qiu L, Sherrier DJ, Ji T, Meyers BC, Xu D, Stacey G. Identification and functional characterization of soybean root hair microRNAs expressed in response to Bradyrhizobium japonicum infection. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:332-41. [PMID: 25973713 DOI: 10.1111/pbi.12387] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 05/25/2023]
Abstract
Three soybean [Glycine max (L) Merr.] small RNA libraries were generated and sequenced using the Illumina platform to examine the role of miRNAs during soybean nodulation. The small RNA libraries were derived from root hairs inoculated with Bradyrhizobium japonicum (In_RH) or mock-inoculated with water (Un_RH), as well as from the comparable inoculated stripped root samples (i.e. inoculated roots with the root hairs removed). Sequencing of these libraries identified a total of 114 miRNAs, including 22 novel miRNAs. A comparison of miRNA abundance among the 114 miRNAs identified 66 miRNAs that were differentially expressed between root hairs and stripped roots, and 48 miRNAs that were differentially regulated in infected root hairs in response to B. japonicum when compared to uninfected root hairs (P ≤ 0.05). A parallel analysis of RNA ends (PARE) library was constructed and sequenced to reveal a total of 405 soybean miRNA targets, with most predicted to encode transcription factors or proteins involved in protein modification, protein degradation and hormone pathways. The roles of gma-miR4416 and gma-miR2606b during nodulation were further analysed. Ectopic expression of these two miRNAs in soybean roots resulted in significant changes in nodule numbers. miRNA target information suggested that gma-miR2606b regulates a Mannosyl-oligosaccharide 1, 2-alpha-mannosidase gene, while gma-miR4416 regulates the expression of a rhizobium-induced peroxidase 1 (RIP1)-like peroxidase gene, GmRIP1, during nodulation.
Collapse
Affiliation(s)
- Zhe Yan
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Oswaldo Valdés-López
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Nhung T Hoang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Jun Wang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Laurent Brechenmacher
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Seth Findley
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Trupti Joshi
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - D Janine Sherrier
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO, USA
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, USA
| | - Dong Xu
- Department of Computer Science, Informatics Institute and Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
83
|
Zhao J, He Q, Chen G, Wang L, Jin B. Regulation of Non-coding RNAs in Heat Stress Responses of Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1213. [PMID: 27588021 PMCID: PMC4988968 DOI: 10.3389/fpls.2016.01213] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 07/29/2016] [Indexed: 05/18/2023]
Abstract
Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants.
Collapse
Affiliation(s)
- Jianguo Zhao
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Qingsong He
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Gang Chen
- College of Bio-Science and Bio-Technology, Yangzhou UniversityYangzhou, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou UniversityYangzhou, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou, China
- *Correspondence: Biao Jin
| |
Collapse
|
84
|
Park HJ, Floss DS, Levesque-Tremblay V, Bravo A, Harrison MJ. Hyphal Branching during Arbuscule Development Requires Reduced Arbuscular Mycorrhiza1. PLANT PHYSIOLOGY 2015; 169:2774-88. [PMID: 26511916 PMCID: PMC4677905 DOI: 10.1104/pp.15.01155] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/28/2015] [Indexed: 05/04/2023]
Abstract
During arbuscular mycorrhizal symbiosis, arbuscule development in the root cortical cell and simultaneous deposition of the plant periarbuscular membrane generate the interface for symbiotic nutrient exchange. The transcriptional changes that accompany arbuscule development are extensive and well documented. By contrast, the transcriptional regulators that control these programs are largely unknown. Here, we provide a detailed characterization of an insertion allele of Medicago truncatula Reduced Arbuscular Mycorrhiza1 (RAM1), ram1-3, which reveals that RAM1 is not necessary to enable hyphopodium formation or hyphal entry into the root but is essential to support arbuscule branching. In ram1-3, arbuscules consist only of the arbuscule trunk and in some cases, a few initial thick hyphal branches. ram1-3 is also insensitive to phosphate-mediated regulation of the symbiosis. Transcript analysis of ram1-3 and ectopic expression of RAM1 indicate that RAM1 regulates expression of EXO70I and Stunted Arbuscule, two genes whose loss of function impacts arbuscule branching. Furthermore, RAM1 regulates expression of a transcription factor Required for Arbuscule Development (RAD1). RAD1 is also required for arbuscular mycorrhizal symbiosis, and rad1 mutants show reduced colonization. RAM1 itself is induced in colonized root cortical cells, and expression of RAM1 and RAD1 is modulated by DELLAs. Thus, the data suggest that DELLAs regulate arbuscule development through modulation of RAM1 and RAD1 and that the precise transcriptional control essential to place proteins in the periarbuscular membrane is controlled, at least in part, by RAM1.
Collapse
Affiliation(s)
- Hee-Jin Park
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Daniela S Floss
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Armando Bravo
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Maria J Harrison
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| |
Collapse
|
85
|
Ahmed F, Senthil-Kumar M, Lee S, Dai X, Mysore KS, Zhao PX. Comprehensive analysis of small RNA-seq data reveals that combination of miRNA with its isomiRs increase the accuracy of target prediction in Arabidopsis thaliana. RNA Biol 2015; 11:1414-29. [PMID: 25629686 PMCID: PMC4615835 DOI: 10.1080/15476286.2014.996474] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Along with the canonical miRNA, distinct miRNA-like sequences called sibling miRNAs (sib-miRs) are generated from the same pre-miRNA. Among them, isomeric sequences featuring slight variations at the terminals, relative to the canonical miRNA, constitute a pool of isomeric sibling miRNAs (isomiRs). Despite the high prevalence of isomiRs in eukaryotes, their features and relevance remain elusive. In this study, we performed a comprehensive analysis of mature precursor miRNA (pre-miRNA) sequences from Arabidopsis to understand their features and regulatory targets. The influence of isomiR terminal heterogeneity in target binding was examined comprehensively. Our comprehensive analyses suggested a novel computational strategy that utilizes miRNA and its isomiRs to enhance the accuracy of their regulatory target prediction in Arabidopsis. A few targets are shared by several members of isomiRs; however, this phenomenon was not typical. Gene Ontology (GO) enrichment analysis showed that commonly targeted mRNAs were enriched for certain GO terms. Moreover, comparison of these commonly targeted genes with validated targets from published data demonstrated that the validated targets are bound by most isomiRs and not only the canonical miRNA. Furthermore, the biological role of isomiRs in target cleavage was supported by degradome data. Incorporating this finding, we predicted potential target genes of several miRNAs and confirmed them by experimental assays. This study proposes a novel strategy to improve the accuracy of predicting miRNA targets through combined use of miRNA with its isomiRs.
Collapse
Affiliation(s)
- Firoz Ahmed
- a Plant Biology Division; Samuel Roberts Noble Foundation ; Ardmore , OK USA
| | | | | | | | | | | |
Collapse
|
86
|
Holt DB, Gupta V, Meyer D, Abel NB, Andersen SU, Stougaard J, Markmann K. micro RNA 172 (miR172) signals epidermal infection and is expressed in cells primed for bacterial invasion in Lotus japonicus roots and nodules. THE NEW PHYTOLOGIST 2015; 208:241-56. [PMID: 25967282 DOI: 10.1111/nph.13445] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/26/2015] [Indexed: 05/13/2023]
Abstract
Legumes interact with rhizobial bacteria to form nitrogen-fixing root nodules. Host signalling following mutual recognition ensures a specific response, but is only partially understood. Focusing on the stage of epidermal infection with Mesorhizobium loti, we analysed endogenous small RNAs (sRNAs) of the model legume Lotus japonicus to investigate their involvement in host response regulation. We used Illumina sequencing to annotate the L. japonicus sRNA-ome and isolate infection-responsive sRNAs, followed by candidate-based functional characterization. Sequences from four libraries revealed 219 novel L. japonicus micro RNAs (miRNAs) from 114 newly assigned families, and 76 infection-responsive sRNAs. Unlike infection-associated coding genes such as NODULE INCEPTION (NIN), a micro RNA 172 (miR172) isoform showed strong accumulation in dependency of both Nodulation (Nod) factor and compatible rhizobia. The genetics of miR172 induction support the existence of distinct epidermal and cortical signalling events. MIR172a promoter activity followed a previously unseen pattern preceding infection thread progression in epidermal and cortical cells. Nodule-associated miR172a expression was infection-independent, representing the second of two genetically separable activity waves. The combined data provide a valuable resource for further study, and identify miR172 as an sRNA marking successful epidermal infection. We show that miR172 acts upstream of several APETALA2-type (AP2) transcription factors, and suggest that it has a role in fine-tuning AP2 levels during bacterial symbiosis.
Collapse
Affiliation(s)
- Dennis B Holt
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Vikas Gupta
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Dörte Meyer
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Nikolaj B Abel
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Jens Stougaard
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Katharina Markmann
- Department of Molecular Biology and Genetics, Centre for Carbohydrate Recognition and Signalling (CARB), Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| |
Collapse
|
87
|
Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. THE NEW PHYTOLOGIST 2015; 208:224-240. [PMID: 25919491 DOI: 10.1111/nph.13427] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/25/2015] [Indexed: 06/04/2023]
Abstract
Myc-LCOs are newly identified symbiotic signals produced by arbuscular mycorrhizal (AM) fungi. Like rhizobial Nod factors, they are lipo-chitooligosaccharides that activate the common symbiotic signalling pathway (CSSP) in plants. To increase our limited understanding of the roles of Myc-LCOs we aimed to analyse Myc-LCO-induced transcriptional changes and their genetic control. Whole genome RNA sequencing (RNA-seq) was performed on roots of Medicago truncatula wild-type plants, and dmi3 and nsp1 symbiotic mutants affected in nodulation and mycorrhizal signalling. Plants were treated separately with the two major types of Myc-LCOs, sulphated and nonsulphated. Generalized linear model analysis identified 2201 differentially expressed genes and classified them according to genotype and/or treatment effects. Three genetic pathways for Myc-LCO-regulation of transcriptomic reprogramming were highlighted: DMI3- and NSP1-dependent; DMI3-dependent and NSP1-independent; and DMI3- and NSP1-independent. Comprehensive analysis revealed overlaps with previous AM studies, and highlighted certain functions, especially signalling components and transcription factors. These data provide new insights into mycorrhizal signalling mechanisms, supporting a role for NSP1, and specialisation for NSP1-dependent and -independent pathways downstream of DMI3. Our data also indicate significant Myc-LCO-activated signalling upstream of DMI3 and/or parallel to the CSSP and some constitutive activity of the CSSP.
Collapse
Affiliation(s)
- Céline Camps
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Marie-Françoise Jardinaud
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
- INPT-Université de Toulouse, ENSAT, Avenue de l'Agrobiopole, Auzeville-Tolosane, F-31326, Castanet-Tolosan, France
| | - David Rengel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Sébastien Carrère
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Christine Hervé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Frédéric Debellé
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Pascal Gamas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Sandra Bensmihen
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | - Clare Gough
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| |
Collapse
|
88
|
Aung B, Gruber MY, Hannoufa A. The MicroRNA156 system: A tool in plant biotechnology. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2015. [DOI: 10.1016/j.bcab.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
89
|
Glyan’ko AK. Signaling systems of rhizobia (Rhizobiaceae) and leguminous plants (Fabaceae) upon the formation of a legume-rhizobium symbiosis (Review). APPL BIOCHEM MICRO+ 2015. [DOI: 10.1134/s0003683815050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
90
|
Aung B, Gruber MY, Amyot L, Omari K, Bertrand A, Hannoufa A. MicroRNA156 as a promising tool for alfalfa improvement. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:779-90. [PMID: 25532560 DOI: 10.1111/pbi.12308] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/17/2014] [Accepted: 11/04/2014] [Indexed: 05/20/2023]
Abstract
A precursor of miR156 (MsmiR156d) was cloned and overexpressed in alfalfa (Medicago sativa L.) as a means to enhance alfalfa biomass yield. Of the five predicted SPL genes encoded by the alfalfa genome, three (SPL6, SPL12 and SPL13) contain miR156 cleavage sites and their expression was down-regulated in transgenic alfalfa plants overexpressing miR156. These transgenic plants had reduced internode length and stem thickness, enhanced shoot branching, increased trichome density, a delay in flowering time and elevated biomass production. Minor effects on sugar, starch, lignin and cellulose contents were also observed. Moreover, transgenic alfalfa plants had increased root length, while nodulation was maintained. The multitude of traits affected by miR156 may be due to the network of genes regulated by the three target SPLs. Our results show that the miR156/SPL system has strong potential as a tool to substantially improve quality and yield traits in alfalfa.
Collapse
Affiliation(s)
- Banyar Aung
- Agriculture and Agri-Food Canada, London, ON, Canada
- Biology Department, Western University, London, ON, Canada
| | | | - Lisa Amyot
- Agriculture and Agri-Food Canada, London, ON, Canada
| | - Khaled Omari
- Agriculture and Agri-Food Canada, London, ON, Canada
| | | | - Abdelali Hannoufa
- Agriculture and Agri-Food Canada, London, ON, Canada
- Biology Department, Western University, London, ON, Canada
| |
Collapse
|
91
|
Yan Z, Hossain MS, Arikit S, Valdés-López O, Zhai J, Wang J, Libault M, Ji T, Qiu L, Meyers BC, Stacey G. Identification of microRNAs and their mRNA targets during soybean nodule development: functional analysis of the role of miR393j-3p in soybean nodulation. THE NEW PHYTOLOGIST 2015; 207:748-59. [PMID: 25783944 DOI: 10.1111/nph.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 05/25/2023]
Abstract
Plant microRNAs (miRNAs) play important regulatory roles in a number of developmental processes. The present work investigated the roles of miRNAs during nodule development in the crop legume soybean (Glycine max). Fifteen soybean small RNA libraries were sequenced from different stages of nodule development, including young nodules, mature nodules and senescent nodules. In order to identify the regulatory targets of the miRNAs, five parallel analysis of RNA ends (PARE) libraries were also sequenced from the same stages of nodule development. Sequencing identified 284 miRNAs, including 178 novel soybean miRNAs. Analysis of miRNA abundance identified 139 miRNAs whose expression was significantly regulated during nodule development, including 12 miRNAs whose expression changed > 10-fold. Analysis of the PARE libraries identified 533 miRNA targets, including three nodulation-related genes and eight nodule-specific genes. miR393j-3p was selected for detailed analysis as its expression was significantly regulated during nodule formation, and it targeted a nodulin gene, Early Nodulin 93 (ENOD93). Strong, ectopic expression of miR393j-3p, as well as RNAi silencing of ENOD93 expression, significantly reduced nodule formation. The data indicate that miR393j-3p regulation of ENOD93 mRNA abundance is a key control point for soybean nodule formation.
Collapse
Affiliation(s)
- Zhe Yan
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Md Shakhawat Hossain
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Siwaret Arikit
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Oswaldo Valdés-López
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Jixian Zhai
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Jun Wang
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Marc Libault
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, 209D Middlebush Hall, Columbia, MO, 65211, USA
| | - Lijuan Qiu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Blake C Meyers
- Department of Plant and Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE, 19711, USA
| | - Gary Stacey
- Divisions of Plant Science and Biochemistry, National Center for Soybean Biotechnology, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
92
|
Zhu X, Leng X, Sun X, Mu Q, Wang B, Li X, Wang C, Fang J. Discovery of Conservation and Diversification of miR171 Genes by Phylogenetic Analysis based on Global Genomes. THE PLANT GENOME 2015; 8:eplantgenome2014.10.0076. [PMID: 33228325 DOI: 10.3835/plantgenome2014.10.0076] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/03/2015] [Indexed: 05/24/2023]
Abstract
The microRNA171 (miR171) family is widely distributed and highly conserved in a range of species and plays critical roles in regulating plant growth and development through repressing expression of SCARECROW-LIKE (SCL) transcription factors. However, information on the evolutionary conservation and functional diversification of the miRNA171 family members remains scanty. We reconstructed the phylogenetic relationships among miR171 precursor and mature sequences so as to investigate the extent and degree of evolutionary conservation of miR171 in Arabidopsis thaliana (L.) Heynh. (ath), grape (Vitis vinifera L.) (vvi), poplar (Populus trichocarpa Torr. & A.Gray ex Hook.) (ptc), and rice (Oryza sativa L.) (osa). Despite strong conservation of over 80%, some mature miR171 sequences, such as ptc-miR171j -l, and -m and osa-miR171g, -h, and -i, have undergone critical sequence variation, leading to functional diversification, since they target non-SCL gene transcript(s). Phylogenetic analyses revealed a combination of old ancestral relationships and recent lineage-specific diversification in the miR171 family within the four model plants. The cis-regulatory motifs on the upstream promoter sequences of miR171 genes were highly divergent and shared some similar elements, indicating their possible contribution to the functional variation observed within the miR171 family. This study will buttress our understanding of the functional differentiation of miRNAs and the relationships of miRNA-target pairs based on the evolutionary history of miRNA genes.
Collapse
Affiliation(s)
- Xudong Zhu
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Xiangpeng Leng
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Xin Sun
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Baoju Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Xiaopeng Li
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, Weigang 1 Hao, China
| |
Collapse
|
93
|
Srivastava S, Zheng Y, Kudapa H, Jagadeeswaran G, Hivrale V, Varshney RK, Sunkar R. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 235:46-57. [PMID: 25900565 DOI: 10.1016/j.plantsci.2015.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 05/04/2023]
Abstract
Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes.
Collapse
Affiliation(s)
- Sangeeta Srivastava
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Yun Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, 727, South Jingming Road, Kunming, Yunnan 650500, China
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, India
| | - Guru Jagadeeswaran
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Vandana Hivrale
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502324, India; School of Plant Biology and Institute of Agriculture, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078 USA.
| |
Collapse
|
94
|
Belli Kullan J, Lopes Paim Pinto D, Bertolini E, Fasoli M, Zenoni S, Tornielli GB, Pezzotti M, Meyers BC, Farina L, Pè ME, Mica E. miRVine: a microRNA expression atlas of grapevine based on small RNA sequencing. BMC Genomics 2015; 16:393. [PMID: 25981679 PMCID: PMC4434875 DOI: 10.1186/s12864-015-1610-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
Background miRNAs are the most abundant class of small non-coding RNAs, and they are involved in post-transcriptional regulations, playing a crucial role in the refinement of genetic programming during plant development. Here we present a comprehensive picture of miRNA regulation in Vitis vinifera L. plant during its complete life cycle. Furthering our knowledge about the post-transcriptional regulation of plant development is fundamental to understand the biology of such an important crop. Results We analyzed 70 small RNA libraries, prepared from berries, inflorescences, tendrils, buds, carpels, stamens and other samples at different developmental stages. One-hundred and ten known and 175 novel miRNAs have been identified and a wide grapevine expression atlas has been described. The distribution of miRNA abundance reveals that 22 novel miRNAs are specific to stamen, and two of them are, interestingly, involved in ethylene biosynthesis, while only few miRNAs are highly specific to other organs. Thirty-eight miRNAs are present in all our samples, suggesting a role in key regulatory circuit. On the basis of miRNAs abundance and distribution across samples and on the estimated correlation, we suggest that miRNA expression define organ identity. We performed target prediction analysis and focused on miRNA expression analysis in berries and inflorescence during their development, providing an initial functional description of the identified miRNAs. Conclusions Our findings represent a very extensive miRNA expression atlas in grapevine, allowing the definition of how the spatio-temporal distribution of miRNAs defines organ identity. We describe miRNAs abundance in specific tissues not previously described in grapevine and contribute to future targeted functional analyses. Finally, we present a deep characterization of miRNA involvement in berry and inflorescence development, suggesting a role for miRNA-driven hormonal regulation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1610-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jayakumar Belli Kullan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Daniela Lopes Paim Pinto
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Edoardo Bertolini
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Marianna Fasoli
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Sara Zenoni
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | | | - Mario Pezzotti
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Blake C Meyers
- Department of Plant and Soil Sciences, University of Delaware, 15 Innovation Way, 19711, Newark, DE, USA.
| | - Lorenzo Farina
- Department of Computer, Control and Management Engineering, University of Rome "La Sapienza", Via Ariosto 25, 00185, Rome, Italy.
| | - Mario Enrico Pè
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy.
| | - Erica Mica
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127, Pisa, Italy. .,Genomics Research Centre, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Via S. Protaso 302, 29017, Fiorenzuola d'Arda (PC), Italy.
| |
Collapse
|
95
|
Xue L, Cui H, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M. Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. PLANT PHYSIOLOGY 2015; 167:854-71. [PMID: 25560877 PMCID: PMC4348782 DOI: 10.1104/pp.114.255430] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 12/30/2014] [Indexed: 05/18/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi, in symbiosis with plants, facilitate acquisition of nutrients from the soil to their host. After penetration, intracellular hyphae form fine-branched structures in cortical cells termed arbuscules, representing the major site where bidirectional nutrient exchange takes place between the host plant and fungus. Transcriptional mechanisms underlying this cellular reprogramming are still poorly understood. GRAS proteins are an important family of transcriptional regulators in plants, named after the first three members: GIBBERELLIC ACID-INSENSITIVE, REPRESSOR of GAI, and SCARECROW. Here, we show that among 45 transcription factors up-regulated in mycorrhizal roots of the legume Lotus japonicus, expression of a unique GRAS protein particularly increases in arbuscule-containing cells under low phosphate conditions and displays a phylogenetic pattern characteristic of symbiotic genes. Allelic rad1 mutants display a strongly reduced number of arbuscules, which undergo accelerated degeneration. In further studies, two RAD1-interacting proteins were identified. One of them is the closest homolog of Medicago truncatula, REDUCED ARBUSCULAR MYCORRHIZATION1 (RAM1), which was reported to regulate a glycerol-3-phosphate acyl transferase that promotes cutin biosynthesis to enhance hyphopodia formation. As in M. truncatula, the L. japonicus ram1 mutant lines show compromised AM colonization and stunted arbuscules. Our findings provide, to our knowledge, new insight into the transcriptional program underlying the host's response to AM colonization and propose a function of GRAS transcription factors including RAD1 and RAM1 during arbuscule development.
Collapse
Affiliation(s)
- Li Xue
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Haitao Cui
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Benjamin Buer
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Vinod Vijayakumar
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Pierre-Marc Delaux
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Stefanie Junkermann
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, Cluster of Excellence on Plant Sciences, University of Cologne, D-50674 Cologne, Germany (L.X., B.B.,V.V., S.J., M.B.);Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, D-50829 Cologne, Germany (H.C.); andDepartment of Agronomy, University of Wisconsin, Madison, Wisconsin 53706 (P.-M.D.)
| |
Collapse
|
96
|
Smith LM, Burbano HA, Wang X, Fitz J, Wang G, Ural-Blimke Y, Weigel D. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:597-610. [PMID: 25557441 DOI: 10.1111/tpj.12754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences.
Collapse
Affiliation(s)
- Lisa M Smith
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK; Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
97
|
Profiling microRNA expression during multi-staged date palm (Phoenix dactylifera L.) fruit development. Genomics 2015; 105:242-51. [PMID: 25638647 DOI: 10.1016/j.ygeno.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 12/29/2022]
Abstract
MicroRNAs (miRNAs) play crucial roles in multiple stages of plant development and regulate gene expression at posttranscriptional and translational levels. In this study, we first identified 238 conserved miRNAs in date palm (Phoenix dactylifera) based on a high-quality genome assembly and defined 78 fruit-development-associated (FDA) miRNAs, whose expression profiles are variable at different fruit development stages. Using experimental data, we subsequently detected 276 novel P. dactylifera-specific FDA miRNAs and predicted their targets. We also revealed that FDA miRNAs function mainly in regulating genes involved in starch/sucrose metabolisms and other carbon metabolic pathways; among them, 221 FDA miRNAs exhibit negative correlation with their corresponding targets, which suggests their direct regulatory roles on mRNA targets. Our data define a comprehensive set of conserved and novel FDA miRNAs along with their expression profiles, which provide a basis for further experimentation in assigning discrete functions of these miRNAs in P. dactylifera fruit development.
Collapse
|
98
|
Identification of microRNAs differentially expressed involved in male flower development. Funct Integr Genomics 2015; 15:225-32. [PMID: 25576251 DOI: 10.1007/s10142-014-0409-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 10/29/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.
Collapse
|
99
|
Kulcheski FR, Côrrea R, Gomes IA, de Lima JC, Margis R. NPK macronutrients and microRNA homeostasis. FRONTIERS IN PLANT SCIENCE 2015; 6:451. [PMID: 26136763 PMCID: PMC4468412 DOI: 10.3389/fpls.2015.00451] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/02/2015] [Indexed: 05/02/2023]
Abstract
Macronutrients are essential elements for plant growth and development. In natural, non-cultivated systems, the availability of macronutrients is not a limiting factor of growth, due to fast recycling mechanisms. However, their availability might be an issue in modern agricultural practices, since soil has been frequently over exploited. From a crop management perspective, the nitrogen (N), phosphorus (P), and potassium (K) are three important limiting factors and therefore frequently added as fertilizers. NPK are among the nutrients that have been reported to alter post-embryonic root developmental processes and consequently, impairs crop yield. To cope with nutrients scarcity, plants have evolved several mechanisms involved in metabolic, physiological, and developmental adaptations. In this scenario, microRNAs (miRNAs) have emerged as additional key regulators of nutrients uptake and assimilation. Some studies have demonstrated the intrinsic relation between miRNAs and their targets, and how they can modulate plants to deal with the NPK availability. In this review, we focus on miRNAs and their regulation of targets involved in NPK metabolism. In general, NPK starvation is related with miRNAs that are involved in root-architectural changes and uptake activity modulation. We further show that several miRNAs were discovered to be involved in plant-microbe symbiosis during N and P uptake, and in this way we present a global view of some studies that were conducted in the last years. The integration of current knowledge about miRNA-NPK signaling may help future studies to focus in good candidates genes for the development of important tools for plant nutritional breeding.
Collapse
Affiliation(s)
- Franceli R. Kulcheski
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
| | - Régis Côrrea
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Igor A. Gomes
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de JaneiroBrazil
| | - Júlio C. de Lima
- Laboratório de Genética Molecular, Instituto de Ciências Biológicas, Universidade de Passo Fundo, Passo FundoBrazil
| | - Rogerio Margis
- Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto AlegreBrazil
- *Correspondence: Rogerio Margis, Departamento de Biofísica, Laboratório de Genomas e Populações de Plantas, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, Setor IV, Prédio 43431, Sala 213, Porto Alegre, RS, CEP, Brazil
| |
Collapse
|
100
|
Wang Y, Wang L, Zou Y, Chen L, Cai Z, Zhang S, Zhao F, Tian Y, Jiang Q, Ferguson BJ, Gresshoff PM, Li X. Soybean miR172c targets the repressive AP2 transcription factor NNC1 to activate ENOD40 expression and regulate nodule initiation. THE PLANT CELL 2014; 26:4782-801. [PMID: 25549672 PMCID: PMC4311200 DOI: 10.1105/tpc.114.131607] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 05/18/2023]
Abstract
MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean.
Collapse
Affiliation(s)
- Youning Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Lixiang Wang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yanmin Zou
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Liang Chen
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Zhaoming Cai
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Senlei Zhang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhao
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Yinping Tian
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| | - Qiong Jiang
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Brett J Ferguson
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Peter M Gresshoff
- Centre for Integrative Legume Research, University of Queensland, Brisbane St. Lucia, Queensland 4072, Australia
| | - Xia Li
- Key State Laboratory of Plant Cell and Chromosome Engineering, Center of Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050021, China
| |
Collapse
|