51
|
Zhang RX, Ge S, He J, Li S, Hao Y, Du H, Liu Z, Cheng R, Feng YQ, Xiong L, Li C, Hetherington AM, Liang YK. BIG regulates stomatal immunity and jasmonate production in Arabidopsis. THE NEW PHYTOLOGIST 2019; 222:335-348. [PMID: 30372534 DOI: 10.1111/nph.15568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/19/2018] [Indexed: 05/26/2023]
Abstract
Plants have evolved an array of responses that provide them with protection from attack by microorganisms and other predators. Many of these mechanisms depend upon interactions between the plant hormones jasmonate (JA) and ethylene (ET). However, the molecular basis of these interactions is insufficiently understood. Gene expression and physiological assays with mutants were performed to investigate the role of Arabidopsis BIG gene in stress responses. BIG transcription is downregulated by methyl JA (MeJA), necrotrophic infection or mechanical injury. BIG deficiency promotes JA-dependent gene induction, increases JA production but restricts the accumulation of both ET and salicylic acid. JA-induced anthocyanin accumulation and chlorophyll degradation are enhanced and stomatal immunity is impaired by BIG disruption. Bacteria- and lipopolysaccaride (LPS)-induced stomatal closure is reduced in BIG gene mutants, which are hyper-susceptible to microbial pathogens with different lifestyles, but these mutants are less attractive to phytophagous insects. Our results indicate that BIG negatively and positively regulate the MYC2 and ERF1 arms of the JA signalling pathway. BIG warrants recognition as a new and distinct regulator that regulates JA responses, the synergistic interactions of JA and ET, and other hormonal interactions that reconcile the growth and defense dilemma in Arabidopsis.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shengchao Ge
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jingjing He
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuangchen Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yanhong Hao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongming Liu
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant, Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Alistair M Hetherington
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
52
|
Shapiguzov A, Vainonen JP, Hunter K, Tossavainen H, Tiwari A, Järvi S, Hellman M, Aarabi F, Alseekh S, Wybouw B, Van Der Kelen K, Nikkanen L, Krasensky-Wrzaczek J, Sipari N, Keinänen M, Tyystjärvi E, Rintamäki E, De Rybel B, Salojärvi J, Van Breusegem F, Fernie AR, Brosché M, Permi P, Aro EM, Wrzaczek M, Kangasjärvi J. Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife 2019; 8:43284. [PMID: 30767893 PMCID: PMC6414205 DOI: 10.7554/elife.43284] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 01/17/2023] Open
Abstract
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus. ROS alter the abundance, thiol redox state and oligomerization of the RCD1 protein in vivo, providing feedback control on its function. RCD1-dependent regulation is linked to chloroplast signaling by 3'-phosphoadenosine 5'-phosphate (PAP). Thus, RCD1 integrates organellar signaling from chloroplasts and mitochondria to establish transcriptional control over the metabolic processes in both organelles. Most plant cells contain two types of compartments, the mitochondria and the chloroplasts, which work together to supply the chemical energy required by life processes. Genes located in another part of the cell, the nucleus, encode for the majority of the proteins found in these compartments. At any given time, the mitochondria and the chloroplasts send specific, ‘retrograde’ signals to the nucleus to turn on or off the genes they need. For example, mitochondria produce molecules known as reactive oxygen species (ROS) if they are having problems generating energy. These molecules activate several regulatory proteins that move into the nucleus and switch on MDS genes, a set of genes which helps to repair the mitochondria. Chloroplasts also produce ROS that can act as retrograde signals. It is still unclear how the nucleus integrates signals from both chloroplasts and mitochondria to ‘decide’ which genes to switch on, but a protein called RCD1 may play a role in this process. Indeed, previous studies have found that Arabidopsis plants that lack RCD1 have defects in both their mitochondria and chloroplasts. In these mutant plants, the MDS genes are constantly active and the chloroplasts have problems making ROS. To investigate this further, Shapiguzov, Vainonen et al. use biochemical and genetic approaches to study RCD1 in Arabidopsis. The experiments confirm that this protein allows a dialog to take place between the retrograde signals of both mitochondria and chloroplasts. On one hand, RCD1 binds to and inhibits the regulatory proteins that usually activate the MDS genes under the control of mitochondria. This explains why, in the absence of RCD1, the MDS genes are always active, which is ultimately disturbing how these compartments work. On the other hand, RCD1 is also found to be sensitive to the ROS that chloroplasts produce. This means that chloroplasts may be able to affect when mitochondria generate energy by regulating the protein. Finally, further experiments show that MDS genes can affect both mitochondria and chloroplasts: by influencing how these genes are regulated, RCD1 therefore acts on the two types of compartments. Overall, the work by Shapiguzov, Vainonen et al. describes a new way Arabidopsis coordinates its mitochondria and chloroplasts. Further studies will improve our understanding of how plants regulate these compartments in different environments to produce the energy they need. In practice, this may also help plant breeders create new varieties of crops that produce energy more efficiently and which better resist to stress.
Collapse
Affiliation(s)
- Alexey Shapiguzov
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Plant Physiology, Russian Academy of Sciences, Moscow, Russia
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Kerri Hunter
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Helena Tossavainen
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Arjun Tiwari
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Sari Järvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Maarit Hellman
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Fayezeh Aarabi
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Brecht Wybouw
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Katrien Van Der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lauri Nikkanen
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Krasensky-Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Nina Sipari
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Metabolomics Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Markku Keinänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Eevi Rintamäki
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Bert De Rybel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.,VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alisdair R Fernie
- Max-Planck Institute for Molecular Plant Physiology, Potsdam, Germany.,Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Perttu Permi
- Program in Structural Biology and Biophysics, Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Chemistry, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland.,Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Eva-Mari Aro
- Department of Biochemistry / Molecular Plant Biology, University of Turku, Turku, Finland
| | - Michael Wrzaczek
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.,Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|
53
|
Batista-Silva W, Medeiros DB, Rodrigues-Salvador A, Daloso DM, Omena-Garcia RP, Oliveira FS, Pino LE, Peres LEP, Nunes-Nesi A, Fernie AR, Zsögön A, Araújo WL. Modulation of auxin signalling through DIAGETROPICA and ENTIRE differentially affects tomato plant growth via changes in photosynthetic and mitochondrial metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:448-465. [PMID: 30066402 DOI: 10.1111/pce.13413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 06/08/2023]
Abstract
Auxin modulates a range of plant developmental processes including embryogenesis, organogenesis, and shoot and root development. Recent studies have shown that plant hormones also strongly influence metabolic networks, which results in altered growth phenotypes. Modulating auxin signalling pathways may therefore provide an opportunity to alter crop performance. Here, we performed a detailed physiological and metabolic characterization of tomato (Solanum lycopersicum) mutants with either increased (entire) or reduced (diageotropica-dgt) auxin signalling to investigate the consequences of altered auxin signalling on photosynthesis, water use, and primary metabolism. We show that reduced auxin sensitivity in dgt led to anatomical and physiological modifications, including altered stomatal distribution along the leaf blade and reduced stomatal conductance, resulting in clear reductions in both photosynthesis and water loss in detached leaves. By contrast, plants with higher auxin sensitivity (entire) increased the photosynthetic capacity, as deduced by higher Vcmax and Jmax coupled with reduced stomatal limitation. Remarkably, our results demonstrate that auxin-sensitive mutants (dgt) are characterized by impairments in the usage of starch that led to lower growth, most likely associated with decreased respiration. Collectively, our findings suggest that mutations in different components of the auxin signalling pathway specifically modulate photosynthetic and respiratory processes.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - David B Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Acácio Rodrigues-Salvador
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Danilo M Daloso
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Rebeca P Omena-Garcia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franciele Santos Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lilian Ellen Pino
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Lázaro Eustáquio Pereira Peres
- Departmento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Alisdair R Fernie
- Central Metabolism Group, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
54
|
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, Van Breusegem F, Whelan J, Wang Y. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:623-645. [PMID: 30537160 DOI: 10.1111/tpj.14183] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Plants respond to short- and long-term mechanical stimuli, via altered transcript abundance and growth respectively. Jasmonate, gibberellic acid and calcium have been implicated in mediating responses to mechanical stimuli. Previously it has been shown that the transcript abundance for the outer mitochondrial membrane protein of 66 kDa (OM66), is induced several fold after 30 min in response to touch. Therefore, the effect of mitochondrial function on the response to mechanical stimulation by touch at 30 min was investigated. Twenty-five mutants targeting mitochondrial function or regulators revealed that all affected the touch transcriptome. Double and triple mutants revealed synergistic or antagonistic effects following the observed responses in the single mutants. Changes in the touch-responsive transcriptome were localised, recurring with repeated rounds of stimulus. The gene expression kinetics after repeated touch were complex, displaying five distinct patterns. These transcriptomic responses were altered by some regulators of mitochondrial retrograde signalling, such as cyclic dependent protein kinase E1, a kinase protein in the mediator complex, and KIN10 (SnRK1 - sucrose non-fermenting related protein kinase 1), revealing an overlap between the touch response and mitochondrial stress signalling and alternative mitochondrial metabolic pathways. Regulatory network analyses revealed touch-induced stress responses and suppressed growth and biosynthetic processes. Interaction with the phytohormone signalling pathways indicated that ethylene and gibberellic acid had the greatest effect. Hormone measurements revealed that mutations of genes that encoded mitochondrial proteins altered hormone concentrations. Mitochondrial function modulates touch-induced changes in gene expression directly through altered regulatory networks, and indirectly via altering hormonal levels.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - Michelle Hooi
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
55
|
Cheng R, Gong L, Li Z, Liang YK. Rice BIG gene is required for seedling viability. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:39-50. [PMID: 30530202 DOI: 10.1016/j.jplph.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 05/07/2023]
Abstract
Arabidopsis BIG (AtBIG) gene encodes an enormous protein that is required for auxin transport. Loss of AtBIG function not only profoundly changes plant architecture but also alters plant adaptability to environmental stimuli. A putative homolog of AtBIG exists in the rice genome, but no function has been ascribed to it. In this study, we focus on the characterization of the gene structure and function of OsBIG. Sequence and phylogenetic analysis shows that the homologs of OsBIG have high amino acid conservation in several domains across species. Transgenic rice plants in which the expression of OsBIG was disrupted through the CRISPR/Cas9 system-mediated genome editing were used for phenotypic analysis. The Osbig/- plants show high levels of cell death, enhanced electrolyte leakage and membrane lipid peroxidation, and reduced chlorophyll content, which likely accounted for the seedling lethality. Moreover, gene expression between Osbig/- and wild-type plants analyzed by RNA-seq indicates that a number of metabolic and hormonal pathways including ribosome, DNA replication, photosynthesis, and chlorophyll metabolism were significantly perturbed by OsBIG deficiency. In summary, OsBIG gene is integral to the normal growth and development in rice.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhengzheng Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
56
|
Czarnocka W, Karpiński S. Friend or foe? Reactive oxygen species production, scavenging and signaling in plant response to environmental stresses. Free Radic Biol Med 2018; 122:4-20. [PMID: 29331649 DOI: 10.1016/j.freeradbiomed.2018.01.011] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/17/2017] [Accepted: 01/09/2018] [Indexed: 01/11/2023]
Abstract
In the natural environment, plants are exposed to a variety of biotic and abiotic stress conditions that trigger rapid changes in the production and scavenging of reactive oxygen species (ROS). The production and scavenging of ROS is compartmentalized, which means that, depending on stimuli type, they can be generated and eliminated in different cellular compartments such as the apoplast, plasma membrane, chloroplasts, mitochondria, peroxisomes, and endoplasmic reticulum. Although the accumulation of ROS is generally harmful to cells, ROS play an important role in signaling pathways that regulate acclimatory and defense responses in plants, such as systemic acquired acclimation (SAA) and systemic acquired resistance (SAR). However, high accumulations of ROS can also trigger redox homeostasis disturbance which can lead to cell death, and in consequence, to a limitation in biomass and yield production. Different ROS have various half-lifetimes and degrees of reactivity toward molecular components such as lipids, proteins, and nucleic acids. Thus, they play different roles in intra- and extra-cellular signaling. Despite their possible damaging effect, ROS should mainly be considered as signaling molecules that regulate local and systemic acclimatory and defense responses. Over the past two decades it has been proven that ROS together with non-photochemical quenching (NPQ), hormones, Ca2+ waves, and electrical signals are the main players in SAA and SAR, two physiological processes essential for plant survival and productivity in unfavorable conditions.
Collapse
Affiliation(s)
- Weronika Czarnocka
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences (SGGW), Nowoursynowska Street 159, 02-776 Warsaw, Poland; The Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland.
| |
Collapse
|
57
|
Selinski J, Scheibe R, Day DA, Whelan J. Alternative Oxidase Is Positive for Plant Performance. TRENDS IN PLANT SCIENCE 2018; 23:588-597. [PMID: 29665989 DOI: 10.1016/j.tplants.2018.03.012] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 05/02/2023]
Abstract
The alternative pathway of mitochondrial electron transport, which terminates in the alternative oxidase (AOX), uncouples oxidation of substrate from mitochondrial ATP production, yet plant performance is improved under adverse growth conditions. AOX is regulated at different levels. Identification of regulatory transcription factors shows that Arabidopsis thaliana AOX1a is under strong transcriptional suppression. At the protein level, the primary structure is not optimised for activity. Maximal activity requires the presence of various metabolites, such as tricarboxylic acid-cycle intermediates that act in an isoform-specific manner. In this opinion article we propose that the regulatory mechanisms that keep AOX activity suppressed, at both the gene and protein level, are positive for plant performance due to the flexible short- and long-term fine-tuning.
Collapse
Affiliation(s)
- Jennifer Selinski
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia.
| | - Renate Scheibe
- Division of Plant Physiology, Department of Biology/Chemistry, University of Osnabrueck, D-49069 Osnabrueck, Germany
| | - David A Day
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - James Whelan
- Department of Animal, Plant, and Soil Science, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University Bundoora, VIC 3083, Australia
| |
Collapse
|
58
|
Wang Y, Berkowitz O, Selinski J, Xu Y, Hartmann A, Whelan J. Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radic Biol Med 2018; 122:28-39. [PMID: 29555593 DOI: 10.1016/j.freeradbiomed.2018.03.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 03/05/2018] [Accepted: 03/16/2018] [Indexed: 12/27/2022]
Abstract
In the last decade plant mitochondria have emerged as a target, sensor and initiator of signalling cascades to a variety of stress and adverse growth conditions. A combination of various 'omic profiling approaches combined with forward and reverse genetic studies have defined how mitochondria respond to stress and the signalling pathways and regulators of these responses. Reactive oxygen species (ROS)-dependent and -independent pathways, specific metabolites, complex I dysfunction, and the mitochondrial unfolded protein response (UPR) pathway have been proposed to date. These pathways are regulated by kinases (sucrose non-fermenting response like kinase; cyclin dependent protein kinase E 1) and transcription factors from the abscisic acid-related, WRKY and NAC families. A number of independent studies have revealed that these mitochondrial signalling pathways interact with a variety of phytohormone signalling pathways. While this represents significant progress in the last decade there are more pathways to be uncovered. Post-transcriptional/translational regulation is also a likely determinant of the mitochondrial stress response. Unbiased analyses of the expression of genes encoding mitochondrial proteins in a variety of stress conditions reveal a modular network exerting a high degree of anterograde control. As abiotic and biotic stresses have significant impact on the yield of important crops such as rice, wheat and barley we will give an outlook of how knowledge gained in Arabidopsis may help to increase crop production and how emerging technologies may contribute.
Collapse
Affiliation(s)
- Yan Wang
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia.
| | - Jennifer Selinski
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Yue Xu
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Andreas Hartmann
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
59
|
Locato V, Cimini S, De Gara L. ROS and redox balance as multifaceted players of cross-tolerance: epigenetic and retrograde control of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3373-3391. [PMID: 29722828 DOI: 10.1093/jxb/ery168] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 04/27/2018] [Indexed: 05/07/2023]
Abstract
Retrograde pathways occurring between chloroplasts, mitochondria, and the nucleus involve oxidative and antioxidative signals that, working in a synergistic or antagonistic mode, control the expression of specific patterns of genes following stress perception. Increasing evidence also underlines the relevance of mitochondrion-chloroplast-nucleus crosstalk in modulating the whole cellular redox metabolism by a controlled and integrated flux of information. Plants can maintain the acquired tolerance by a stress memory, also operating at the transgenerational level, via epigenetic and miRNA-based mechanisms controlling gene expression. Data discussed in this review strengthen the idea that ROS, redox signals, and shifts in cellular redox balance permeate the signalling network leading to cross-tolerance. The identification of specific ROS/antioxidative signatures leading a plant to different fates under stress is pivotal for identifying strategies to monitor and increase plant fitness in a changing environment. This review provides an update of the plant redox signalling network implicated in stress responses, in particular in cross-tolerance acquisition. The interplay between reactive oxygen species (ROS), ROS-derived signals, and antioxidative pathways is also discussed in terms of plant acclimation to stress in the short and long term.
Collapse
Affiliation(s)
- Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Sara Cimini
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
60
|
He J, Zhang R, Peng K, Tagliavia C, Li S, Xue S, Liu A, Hu H, Zhang J, Hubbard KE, Held K, McAinsh MR, Gray JE, Kudla J, Schroeder JI, Liang Y, Hetherington AM. The BIG protein distinguishes the process of CO 2 -induced stomatal closure from the inhibition of stomatal opening by CO 2. THE NEW PHYTOLOGIST 2018; 218:232-241. [PMID: 29292834 PMCID: PMC5887946 DOI: 10.1111/nph.14957] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/12/2017] [Indexed: 05/09/2023]
Abstract
We conducted an infrared thermal imaging-based genetic screen to identify Arabidopsis mutants displaying aberrant stomatal behavior in response to elevated concentrations of CO2 . This approach resulted in the isolation of a novel allele of the Arabidopsis BIG locus (At3g02260) that we have called CO2 insensitive 1 (cis1). BIG mutants are compromised in elevated CO2 -induced stomatal closure and bicarbonate activation of S-type anion channel currents. In contrast with the wild-type, they fail to exhibit reductions in stomatal density and index when grown in elevated CO2 . However, like the wild-type, BIG mutants display inhibition of stomatal opening when exposed to elevated CO2 . BIG mutants also display wild-type stomatal aperture responses to the closure-inducing stimulus abscisic acid (ABA). Our results indicate that BIG is a signaling component involved in the elevated CO2 -mediated control of stomatal development. In the control of stomatal aperture by CO2 , BIG is only required in elevated CO2 -induced closure and not in the inhibition of stomatal opening by this environmental signal. These data show that, at the molecular level, the CO2 -mediated inhibition of opening and promotion of stomatal closure signaling pathways are separable and BIG represents a distinguishing element in these two CO2 -mediated responses.
Collapse
Affiliation(s)
- Jingjing He
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Ruo‐Xi Zhang
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Kai Peng
- School of Biological SciencesLife Sciences Building24 Tyndall AvenueBristolBS8 1TQUK
| | | | - Siwen Li
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Shaowu Xue
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Amy Liu
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Honghong Hu
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Jingbo Zhang
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Katharine E. Hubbard
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
- School of Environmental SciencesUniversity of HullHullHU6 7RXUK
| | - Katrin Held
- Institut für Biologie und Biotechnologie der PflanzenUniversität MünsterSchlossplatz 7Münster48149Germany
| | | | - Julie E. Gray
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldFirth Court, Western BankSheffieldS10 2TNUK
| | - Jörg Kudla
- Institut für Biologie und Biotechnologie der PflanzenUniversität MünsterSchlossplatz 7Münster48149Germany
| | - Julian I. Schroeder
- Cell and Developmental Biology SectionDivision of Biological SciencesUniversity of California at San DiegoLa JollaCA92093USA
| | - Yun‐Kuan Liang
- State Key Laboratory of Hybrid RiceDepartment of Plant SciencesCollege of Life SciencesWuhan UniversityWuhan430072China
| | | |
Collapse
|
61
|
Ditengou FA, Gomes D, Nziengui H, Kochersperger P, Lasok H, Medeiros V, Paponov IA, Nagy SK, Nádai TV, Mészáros T, Barnabás B, Ditengou BI, Rapp K, Qi L, Li X, Becker C, Li C, Dóczi R, Palme K. Characterization of auxin transporter PIN6 plasma membrane targeting reveals a function for PIN6 in plant bolting. THE NEW PHYTOLOGIST 2018; 217:1610-1624. [PMID: 29218850 DOI: 10.1111/nph.14923] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/23/2017] [Indexed: 05/25/2023]
Abstract
Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.
Collapse
Affiliation(s)
- Franck Anicet Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Dulceneia Gomes
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Hugues Nziengui
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Philip Kochersperger
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Hanna Lasok
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Violante Medeiros
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Ivan A Paponov
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- NIBIO, Norwegian Institute for Bioeconomy Research, Postvegen 213, 4353, Klepp Stasjon, Norway
| | - Szilvia Krisztina Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
| | - Tímea Virág Nádai
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Tamás Mészáros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Tűzoltó u. 37-47, H-1094, Budapest, Hungary
- Research Group for Technical Analytical Chemistry, Hungarian Academy of Sciences, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111, Budapest, Hungary
| | - Beáta Barnabás
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Beata Izabela Ditengou
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Katja Rapp
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Linlin Qi
- VIB-UGent, Center for Plant Systems Biology, Gent, Belgium
| | - Xugang Li
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Daizong Street 61, Tai'an, 271018, China
| | - Claude Becker
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
| | - Chuanyou Li
- VIB-UGent, Center for Plant Systems Biology, Gent, Belgium
| | - Róbert Dóczi
- Department of Plant Cell Biology, Centre for Agricultural Research of the Hungarian Academy of Sciences, Brunszvik u. 2, H-2462, Martonvásár, Hungary
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030, Vienna, Austria
- Centre for Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstrasse 49, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 18, 79104, Freiburg, Germany
| |
Collapse
|
62
|
AOX1-Subfamily Gene Members in Olea europaea cv. "Galega Vulgar"-Gene Characterization and Expression of Transcripts during IBA-Induced in Vitro Adventitious Rooting. Int J Mol Sci 2018; 19:ijms19020597. [PMID: 29462998 PMCID: PMC5855819 DOI: 10.3390/ijms19020597] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/21/2022] Open
Abstract
Propagation of some Olea europaea L. cultivars is strongly limited due to recalcitrant behavior in adventitious root formation by semi-hardwood cuttings. One example is the cultivar ”Galega vulgar”. The formation of adventitious roots is considered a morphological response to stress. Alternative oxidase (AOX) is the terminal oxidase of the alternative pathway of the plant mitochondrial electron transport chain. This enzyme is well known to be induced in response to several biotic and abiotic stress situations. This work aimed to characterize the alternative oxidase 1 (AOX1)-subfamily in olive and to analyze the expression of transcripts during the indole-3-butyric acid (IBA)-induced in vitro adventitious rooting (AR) process. OeAOX1a (acc. no. MF410318) and OeAOX1d (acc. no. MF410319) were identified, as well as different transcript variants for both genes which resulted from alternative polyadenylation events. A correlation between transcript accumulation of both OeAOX1a and OeAOX1d transcripts and the three distinct phases (induction, initiation, and expression) of the AR process in olive was observed. Olive AOX1 genes seem to be associated with the induction and development of adventitious roots in IBA-treated explants. A better understanding of the molecular mechanisms underlying the stimulus needed for the induction of adventitious roots may help to develop more targeted and effective rooting induction protocols in order to improve the rooting ability of difficult-to-root cultivars.
Collapse
|
63
|
Sun Y, Huang J, Zhong S, Gu H, He S, Qu LJ. Novel DYW-type pentatricopeptide repeat (PPR) protein BLX controls mitochondrial RNA editing and splicing essential for early seed development of Arabidopsis. J Genet Genomics 2018; 45:155-168. [PMID: 29580769 DOI: 10.1016/j.jgg.2018.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/20/2018] [Indexed: 01/01/2023]
Abstract
In plants, RNA editing is a post-transcriptional process that changes specific cytidine to uridine in both mitochondria and plastids. Most pentatricopeptide repeat (PPR) proteins are involved in organelle RNA editing by recognizing specific RNA sequences. We here report the functional characterization of a PPR protein from the DYW subclass, Baili Xi (BLX), which contains five PPR motifs and a DYW domain. BLX is essential for early seed development, as plants lacking the BLX gene was embryo lethal and the endosperm failed to initiate cellularization. BLX was highly expressed in the embryo and endosperm, and the BLX protein was specifically localized in mitochondria, which is essential for BLX function. We found that BLX was required for the efficient editing of 36 editing sites in mitochondria. Moreover, BLX was involved in the splicing regulation of the fourth intron of nad1 and the first intron of nad2. The loss of BLX function impaired the mitochondrial function and increased the reactive oxygen species (ROS) level. Genetic complementation with truncated variants of BLX revealed that, in addition to the DYW domain, only the fifth PPR motif was essential for BLX function. The upstream sequences of the BLX-targeted editing sites are not conserved, suggesting that BLX serves as a novel and major mitochondrial editing factor (MEF) via a new non-RNA-interacting manner. This finding provides new insights into how a DYW-type PPR protein with fewer PPR motifs regulates RNA editing in plants.
Collapse
Affiliation(s)
- Yan Sun
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Sheng Zhong
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Hongya Gu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China
| | - Shan He
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China; The National Plant Gene Research Center (Beijing), Beijing 100101, China.
| |
Collapse
|
64
|
Wagner S, Van Aken O, Elsässer M, Schwarzländer M. Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. PLANT PHYSIOLOGY 2018; 176:1156-1170. [PMID: 29298823 PMCID: PMC5813528 DOI: 10.1104/pp.17.01387] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 05/07/2023]
Abstract
Cellular responses to low-oxygen stress and to respiratory inhibitors share common mitochondrial energy signaling pathways.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | | | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
65
|
Zhang X, Ivanova A, Vandepoele K, Radomiljac J, Van de Velde J, Berkowitz O, Willems P, Xu Y, Ng S, Van Aken O, Duncan O, Zhang B, Storme V, Chan KX, Vaneechoutte D, Pogson BJ, Van Breusegem F, Whelan J, De Clercq I. The Transcription Factor MYB29 Is a Regulator of ALTERNATIVE OXIDASE1a. PLANT PHYSIOLOGY 2017; 173:1824-1843. [PMID: 28167700 PMCID: PMC5338668 DOI: 10.1104/pp.16.01494] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/30/2017] [Indexed: 05/18/2023]
Abstract
Plants sense and integrate a variety of signals from the environment through different interacting signal transduction pathways that involve hormones and signaling molecules. Using ALTERNATIVE OXIDASE1a (AOX1a) gene expression as a model system of retrograde or stress signaling between mitochondria and the nucleus, MYB DOMAIN PROTEIN29 (MYB29) was identified as a negative regulator (regulator of alternative oxidase1a 7 [rao7] mutant) in a genetic screen of Arabidopsis (Arabidopsis thaliana). rao7/myb29 mutants have increased levels of AOX1a transcript and protein compared to wild type after induction with antimycin A. A variety of genes previously associated with the mitochondrial stress response also display enhanced transcript abundance, indicating that RAO7/MYB29 negatively regulates mitochondrial stress responses in general. Meta-analysis of hormone-responsive marker genes and identification of downstream transcription factor networks revealed that MYB29 functions in the complex interplay of ethylene, jasmonic acid, salicylic acid, and reactive oxygen species signaling by regulating the expression of various ETHYLENE RESPONSE FACTOR and WRKY transcription factors. Despite an enhanced induction of mitochondrial stress response genes, rao7/myb29 mutants displayed an increased sensitivity to combined moderate light and drought stress. These results uncover interactions between mitochondrial retrograde signaling and the regulation of glucosinolate biosynthesis, both regulated by RAO7/MYB29. This common regulator can explain why perturbation of the mitochondrial function leads to transcriptomic responses overlapping with responses to biotic stress.
Collapse
|
66
|
Schultz ER, Zupanska AK, Sng NJ, Paul AL, Ferl RJ. Skewing in Arabidopsis roots involves disparate environmental signaling pathways. BMC PLANT BIOLOGY 2017; 17:31. [PMID: 28143395 PMCID: PMC5286820 DOI: 10.1186/s12870-017-0975-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 01/12/2017] [Indexed: 05/20/2023]
Abstract
BACKGROUND Skewing root patterns provide key insights into root growth strategies and mechanisms that produce root architectures. Roots exhibit skewing and waving when grown on a tilted, impenetrable surface. The genetics guiding these morphologies have been examined, revealing that some Arabidopsis ecotypes skew and wave (e.g. WS), while others skew insignificantly but still wave (e.g. Col-0). The underlying molecular mechanisms of skewing and waving remain unclear. In this study, transcriptome data were derived from two Arabidopsis ecotypes, WS and Col-0, under three tilted growth conditions in order to identify candidate genes involved in skewing. RESULTS This work identifies a number of genes that are likely involved in skewing, using growth conditions that differentially affect skewing and waving. Comparing the gene expression profiles of WS and Col-0 in different tilted growth conditions identified 11 candidate genes as potentially involved in the control of skewing. These 11 genes are involved in several different cellular processes, including sugar transport, salt signaling, cell wall organization, and hormone signaling. CONCLUSIONS This study identified 11 genes whose change in expression level is associated with root skewing behavior. These genes are involved in signaling and perception, rather than the physical restructuring of root. Future work is needed to elucidate the potential role of these candidate genes during root skewing.
Collapse
Affiliation(s)
- Eric R. Schultz
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
- Present address: Department of Biology, Washington University in St. Louis, St. Louis, MO 63130 USA
| | - Agata K. Zupanska
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Natasha J. Sng
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
| | - Robert J. Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL 32611 USA
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL 32610 USA
| |
Collapse
|
67
|
Chrobok D, Law SR, Brouwer B, Lindén P, Ziolkowska A, Liebsch D, Narsai R, Szal B, Moritz T, Rouhier N, Whelan J, Gardeström P, Keech O. Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. PLANT PHYSIOLOGY 2016; 172:2132-2153. [PMID: 27744300 PMCID: PMC5129728 DOI: 10.1104/pp.16.01463] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 10/13/2016] [Indexed: 05/20/2023]
Abstract
The functions of mitochondria during leaf senescence, a type of programmed cell death aimed at the massive retrieval of nutrients from the senescing organ to the rest of the plant, remain elusive. Here, combining experimental and analytical approaches, we showed that mitochondrial integrity in Arabidopsis (Arabidopsis thaliana) is conserved until the latest stages of leaf senescence, while their number drops by 30%. Adenylate phosphorylation state assays and mitochondrial respiratory measurements indicated that the leaf energy status also is maintained during this time period. Furthermore, after establishing a curated list of genes coding for products targeted to mitochondria, we analyzed in isolation their transcript profiles, focusing on several key mitochondrial functions, such as the tricarboxylic acid cycle, mitochondrial electron transfer chain, iron-sulfur cluster biosynthesis, transporters, as well as catabolic pathways. In tandem with a metabolomic approach, our data indicated that mitochondrial metabolism was reorganized to support the selective catabolism of both amino acids and fatty acids. Such adjustments would ensure the replenishment of α-ketoglutarate and glutamate, which provide the carbon backbones for nitrogen remobilization. Glutamate, being the substrate of the strongly up-regulated cytosolic glutamine synthase, is likely to become a metabolically limiting factor in the latest stages of developmental leaf senescence. Finally, an evolutionary age analysis revealed that, while branched-chain amino acid and proline catabolism are very old mitochondrial functions particularly enriched at the latest stages of leaf senescence, auxin metabolism appears to be rather newly acquired. In summation, our work shows that, during developmental leaf senescence, mitochondria orchestrate catabolic processes by becoming increasingly central energy and metabolic hubs.
Collapse
Affiliation(s)
- Daria Chrobok
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bastiaan Brouwer
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Pernilla Lindén
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Agnieszka Ziolkowska
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Daniela Liebsch
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Reena Narsai
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Bozena Szal
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Thomas Moritz
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Nicolas Rouhier
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - James Whelan
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Per Gardeström
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.)
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.)
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.)
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umea, Sweden (D.C., S.R.L., B.B., A.Z., D.L., P.G., O.K.);
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umea, Sweden (P.L., T.M.);
- Department of Animal, Plant, and Soil Science, School of Life Science, Australian Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria 3086, Australia (R.N., J.W.);
- Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw I, 02-096 Warsaw, Poland (B.S.); and
- Unité Mixte de Recherche 1136 Interactions Arbres/Microorganismes, Université de Lorraine/Institut National de la Recherche Agronomique Faculté des Sciences et Technologies, 54506 Vandoeuvre-les-Nancy, France (N.R.)
| |
Collapse
|
68
|
Van Aken O, Ford E, Lister R, Huang S, Millar AH. Retrograde signalling caused by heritable mitochondrial dysfunction is partially mediated by ANAC017 and improves plant performance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:542-558. [PMID: 27425258 DOI: 10.1111/tpj.13276] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
Mitochondria are crucial for plant viability and are able to communicate information on their functional status to the cellular nucleus via retrograde signalling, thereby affecting gene expression. It is currently unclear if retrograde signalling in response to constitutive mitochondrial biogenesis defects is mediated by the same pathways as those triggered during acute mitochondrial dysfunction. Furthermore, it is unknown if retrograde signalling can effectively improve plant performance when mitochondrial function is constitutively impaired. Here we show that retrograde signalling in mutants defective in mitochondrial proteins RNA polymerase rpotmp or prohibitin atphb3 can be suppressed by knocking out the transcription factor ANAC017. Genome-wide RNA-seq expression analysis revealed that ANAC017 is almost solely responsible for the most dramatic transcriptional changes common to rpotmp and atphb3 mutants, regulating classical marker genes such as alternative oxidase 1a (AOX1a) and also previously-uncharacterised DUF295 genes that appear to be new retrograde markers. In contrast, ANAC017 does not regulate intra-mitochondrial gene expression or transcriptional changes unique to either rpotmp or atphb3 genotype, suggesting the existence of currently unknown signalling cascades. The data show that ANAC017 function extends beyond common retrograde transcriptional responses and affects downstream protein abundance and enzyme activity of alternative oxidase, as well as steady-state energy metabolism in atphb3 plants. Furthermore, detailed growth analysis revealed that ANAC017-dependent retrograde signalling provides benefits for growth and productivity in plants with mitochondrial defects. In conclusion, ANAC017 plays a key role in both biogenic and operational mitochondrial retrograde signalling, and improves plant performance when mitochondrial function is constitutively impaired.
Collapse
Affiliation(s)
- Olivier Van Aken
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Ethan Ford
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Ryan Lister
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - Shaobai Huang
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| | - A Harvey Millar
- Faculty of Science, ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Bayliss Building M316, 35 Stirling Highway, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
69
|
Huang S, Van Aken O, Schwarzländer M, Belt K, Millar AH. The Roles of Mitochondrial Reactive Oxygen Species in Cellular Signaling and Stress Response in Plants. PLANT PHYSIOLOGY 2016; 171:1551-9. [PMID: 27021189 PMCID: PMC4936549 DOI: 10.1104/pp.16.00166] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/21/2016] [Indexed: 05/18/2023]
Abstract
Mitochondria produce ATP via respiratory oxidation of organic acids and transfer of electrons to O2 via the mitochondrial electron transport chain. This process produces reactive oxygen species (ROS) at various rates that can impact respiratory and cellular function, affecting a variety of signaling processes in the cell. Roles in redox signaling, retrograde signaling, plant hormone action, programmed cell death, and defense against pathogens have been attributed to ROS generated in plant mitochondria (mtROS). The shortcomings of the black box-idea of mtROS are discussed in the context of mechanistic considerations and the measurement of mtROS The overall aim of this update is to better define our current understanding of mtROS and appraise their potential influence on cellular function in plants. Furthermore, directions for future research are provided, along with suggestions to increase reliability of mtROS measurements.
Collapse
Affiliation(s)
- Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Markus Schwarzländer
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - Katharina Belt
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia (S.H., O.V.A., K.B., A.H.M.); andPlant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany (M.S.)
| |
Collapse
|
70
|
Van Aken O, De Clercq I, Ivanova A, Law SR, Van Breusegem F, Millar AH, Whelan J. Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases. PLANT PHYSIOLOGY 2016; 171:2150-65. [PMID: 27208304 PMCID: PMC4936557 DOI: 10.1104/pp.16.00273] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 05/04/2016] [Indexed: 05/20/2023]
Abstract
Previous studies have identified a range of transcription factors that modulate retrograde regulation of mitochondrial and chloroplast functions in Arabidopsis (Arabidopsis thaliana). However, the relative importance of these regulators and whether they act downstream of separate or overlapping signaling cascades is still unclear. Here, we demonstrate that multiple stress-related signaling pathways, with distinct kinetic signatures, converge on overlapping gene sets involved in energy organelle function. The transcription factor ANAC017 is almost solely responsible for transcript induction of marker genes around 3 to 6 h after chemical inhibition of organelle function and is a key regulator of mitochondrial and specific types of chloroplast retrograde signaling. However, an independent and highly transient gene expression phase, initiated within 10 to 30 min after treatment, also targets energy organelle functions, and is related to touch and wounding responses. Metabolite analysis demonstrates that this early response is concurrent with rapid changes in tricarboxylic acid cycle intermediates and large changes in transcript abundance of genes encoding mitochondrial dicarboxylate carrier proteins. It was further demonstrated that transcription factors AtWRKY15 and AtWRKY40 have repressive regulatory roles in this touch-responsive gene expression. Together, our results show that several regulatory systems can independently affect energy organelle function in response to stress, providing different means to exert operational control.
Collapse
Affiliation(s)
- Olivier Van Aken
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - Inge De Clercq
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - Aneta Ivanova
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - Simon R Law
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - Frank Van Breusegem
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| | - James Whelan
- ARC Centre of Excellence in Plant Energy Biology, Faculty of Science, The University of Western Australia, Crawley 6009, Western Australia, Australia (O.V.A., A.I., A.H.M.);Department of Botany, ARC Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Melbourne, Victoria 3086, Australia (I.D.C., S.R.L.);Department of Plant Systems Biology, VIB, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.);Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium (I.D.C., F.V.B.); andDepartment of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden (S.R.L.)
| |
Collapse
|
71
|
Kumar S, Kanakachari M, Gurusamy D, Kumar K, Narayanasamy P, Kethireddy Venkata P, Solanke A, Gamanagatti S, Hiremath V, Katageri IS, Leelavathi S, Kumar PA, Reddy VS. Genome-wide transcriptomic and proteomic analyses of bollworm-infested developing cotton bolls revealed the genes and pathways involved in the insect pest defence mechanism. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1438-55. [PMID: 26799171 PMCID: PMC5066800 DOI: 10.1111/pbi.12508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 05/31/2023]
Abstract
Cotton bollworm, Helicoverpa armigera, is a major insect pest that feeds on cotton bolls causing extensive damage leading to crop and productivity loss. In spite of such a major impact, cotton plant response to bollworm infection is yet to be witnessed. In this context, we have studied the genome-wide response of cotton bolls infested with bollworm using transcriptomic and proteomic approaches. Further, we have validated this data using semi-quantitative real-time PCR. Comparative analyses have revealed that 39% of the transcriptome and 35% of the proteome were differentially regulated during bollworm infestation. Around 36% of significantly regulated transcripts and 45% of differentially expressed proteins were found to be involved in signalling followed by redox regulation. Further analysis showed that defence-related stress hormones and their lipid precursors, transcription factors, signalling molecules, etc. were stimulated, whereas the growth-related counterparts were suppressed during bollworm infestation. Around 26% of the significantly up-regulated proteins were defence molecules, while >50% of the significantly down-regulated were related to photosynthesis and growth. Interestingly, the biosynthesis genes for synergistically regulated jasmonate, ethylene and suppressors of the antagonistic factor salicylate were found to be up-regulated, suggesting a choice among stress-responsive phytohormone regulation. Manual curation of the enzymes and TFs highlighted the components of retrograde signalling pathways. Our data suggest that a selective regulatory mechanism directs the reallocation of metabolic resources favouring defence over growth under bollworm infestation and these insights could be exploited to develop bollworm-resistant cotton varieties.
Collapse
Affiliation(s)
- Saravanan Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Mogilicherla Kanakachari
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Dhandapani Gurusamy
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Krishan Kumar
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Prabhakaran Narayanasamy
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | - Amolkumar Solanke
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | | | | | | | - Sadhu Leelavathi
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Polumetla Ananda Kumar
- National Research Centre on Plant Biotechnology, Indian Agricultural Research Institute (IARI), New Delhi, India
| | - Vanga Siva Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
72
|
Berkowitz O, De Clercq I, Van Breusegem F, Whelan J. Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. PLANT, CELL & ENVIRONMENT 2016; 39:1127-39. [PMID: 26763171 DOI: 10.1111/pce.12712] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 05/23/2023]
Abstract
Mitochondria play a central role in plant metabolism as they are a major source of ATP through synthesis by the oxidative phosphorylation pathway and harbour key metabolic reactions such as the TCA cycle. The energy and building blocks produced by mitochondria are essential to drive plant growth and development as well as to provide fuel for responses to abiotic and biotic stresses. The majority of mitochondrial proteins are encoded in the nuclear genome and have to be imported into the organelle. For the regulation of the corresponding genes intricate signalling pathways exist to adjust their expression. Signals directly regulate nuclear gene expression (anterograde signalling) to adjust the protein composition of the mitochondria to the needs of the cell. In parallel, mitochondria communicate back their functional status to the nucleus (retrograde signalling) to prompt transcriptional regulation of responsive genes via largely unknown signalling mechanisms. Plant hormones are the major signalling components regulating all layers of plant development and cellular functions. Increasing evidence is now becoming available that plant hormones are also part of signalling networks controlling mitochondrial function and their biogenesis. This review summarizes recent advances in understanding the interaction of mitochondrial and hormonal signalling pathways.
Collapse
Affiliation(s)
- Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Inge De Clercq
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - Frank Van Breusegem
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, B-9052, Gent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
73
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 PMCID: PMC4814484 DOI: 10.3389/fpls.2016.00398] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/19/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
74
|
Sun AZ, Guo FQ. Chloroplast Retrograde Regulation of Heat Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:398. [PMID: 27066042 DOI: 10.3389/fpls.2016.00398/full] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/14/2016] [Indexed: 05/28/2023]
Abstract
It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the major targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. The efficient communication between plastids and the nucleus is highly required for such diverse metabolic and biosynthetic functions during adaptation processes to environmental stresses. In recent years, several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS) and organellar gene expression (OGE) in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation, and cellular coordination in plants.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics, National Center of Plant Gene Research (Shanghai) and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
75
|
Kaurilind E, Xu E, Brosché M. A genetic framework for H2O2 induced cell death in Arabidopsis thaliana. BMC Genomics 2015; 16:837. [PMID: 26493993 PMCID: PMC4619244 DOI: 10.1186/s12864-015-1964-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/29/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death. METHODS A cat2 double mutant collection was generated through crossing and scored for cell death in different assays. Selected double mutants were further analyzed for photosynthetic performance and H2O2 accumulation. RESULTS We used a targeted mutant analysis with more than 50 cat2 double mutants to investigate the role of stress hormones and other defense regulators in H2O2-mediated cell death. Several transcription factors (AS1, MYB30, MYC2, WRKY70), cell death regulators (RCD1, DND1) and hormone regulators (AXR1, ERA1, SID2, EDS1, SGT1b) were essential for execution of cell death in cat2. Genetic loci required for cell death in cat2 was compared with regulators of cell death in spontaneous lesion mimic mutants and led to the identification of a core set of plant cell death regulators. Analysis of gene expression data from cat2 and plants undergoing cell death revealed similar gene expression profiles, further supporting the existence of a common program for regulation of plant cell death. CONCLUSIONS Our results provide a genetic framework for further study on the role of H2O2 in regulation of cell death. The hormones salicylic acid, jasmonic acid and auxin, as well as their interaction, are crucial determinants of cell death regulation.
Collapse
Affiliation(s)
- Eve Kaurilind
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| | - Enjun Xu
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - Mikael Brosché
- Division of Plant Biology, Department of Biosciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia.
| |
Collapse
|
76
|
Rogov AG, Sukhanova EI, Uralskaya LA, Aliverdieva DA, Zvyagilskaya RA. Alternative oxidase: distribution, induction, properties, structure, regulation, and functions. BIOCHEMISTRY (MOSCOW) 2015; 79:1615-34. [PMID: 25749168 DOI: 10.1134/s0006297914130112] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The respiratory chain in the majority of organisms with aerobic type metabolism features the concomitant existence of the phosphorylating cytochrome pathway and the cyanide- and antimycin A-insensitive oxidative route comprising a so-called alternative oxidase (AOX) as a terminal oxidase. In this review, the history of AOX discovery is described. Considerable evidence is presented that AOX occurs widely in organisms at various levels of organization and is not confined to the plant kingdom. This enzyme has not been found only in Archaea, mammals, some yeasts and protists. Bioinformatics research revealed the sequences characteristic of AOX in representatives of various taxonomic groups. Based on multiple alignments of these sequences, a phylogenetic tree was constructed to infer their possible evolution. The ways of AOX activation, as well as regulatory interactions between AOX and the main respiratory chain are described. Data are summarized concerning the properties of AOX and the AOX-encoding genes whose expression is either constitutive or induced by various factors. Information is presented on the structure of AOX, its active center, and the ubiquinone-binding site. The principal functions of AOX are analyzed, including the cases of cell survival, optimization of respiratory metabolism, protection against excess of reactive oxygen species, and adaptation to variable nutrition sources and to biotic and abiotic stress factors. It is emphasized that different AOX functions complement each other in many instances and are not mutually exclusive. Examples are given to demonstrate that AOX is an important tool to overcome the adverse aftereffects of restricted activity of the main respiratory chain in cells and whole animals. This is the first comprehensive review on alternative oxidases of various organisms ranging from yeasts and protists to vascular plants.
Collapse
Affiliation(s)
- A G Rogov
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, 119071, Russia.
| | | | | | | | | |
Collapse
|
77
|
Pu X, Lv X, Tan T, Fu F, Qin G, Lin H. Roles of mitochondrial energy dissipation systems in plant development and acclimation to stress. ANNALS OF BOTANY 2015; 116:583-600. [PMID: 25987710 PMCID: PMC4577992 DOI: 10.1093/aob/mcv063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/16/2015] [Accepted: 03/27/2015] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants are sessile organisms that have the ability to integrate external cues into metabolic and developmental signals. The cues initiate specific signal cascades that can enhance the tolerance of plants to stress, and these mechanisms are crucial to the survival and fitness of plants. The adaption of plants to stresses is a complex process that involves decoding stress inputs as energy-deficiency signals. The process functions through vast metabolic and/or transcriptional reprogramming to re-establish the cellular energy balance. Members of the mitochondrial energy dissipation pathway (MEDP), alternative oxidases (AOXs) and uncoupling proteins (UCPs), act as energy mediators and might play crucial roles in the adaption of plants to stresses. However, their roles in plant growth and development have been relatively less explored. SCOPE This review summarizes current knowledge about the role of members of the MEDP in plant development as well as recent advances in identifying molecular components that regulate the expression of AOXs and UCPs. Highlighted in particular is a comparative analysis of the expression, regulation and stress responses between AOXs and UCPs when plants are exposed to stresses, and a possible signal cross-talk that orchestrates the MEDP, reactive oxygen species (ROS), calcium signalling and hormone signalling. CONCLUSIONS The MEDP might act as a cellular energy/metabolic mediator that integrates ROS signalling, energy signalling and hormone signalling with plant development and stress accumulation. However, the regulation of MEDP members is complex and occurs at transcriptional, translational, post-translational and metabolic levels. How this regulation is linked to actual fluxes through the AOX/UCP in vivo remains elusive.
Collapse
Affiliation(s)
- Xiaojun Pu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xin Lv
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tinghong Tan
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Faqiong Fu
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Gongwei Qin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource & Eco-Environment and Plant Physiology Laboratory, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
78
|
Zhang M, Wang C, Lin Q, Liu A, Wang T, Feng X, Liu J, Han H, Ma Y, Bonea D, Zhao R, Hua X. A tetratricopeptide repeat domain-containing protein SSR1 located in mitochondria is involved in root development and auxin polar transport in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:582-99. [PMID: 26072661 DOI: 10.1111/tpj.12911] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/25/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
Auxin polar transport mediated by a group of Pin-formed (PIN) transporters plays important roles in plant root development. However, the mechanism underlying the PIN expression and targeting in response to different developmental and environmental stimuli is still not fully understood. Here, we report a previously uncharacterized gene SSR1, which encodes a mitochondrial protein with tetratricopeptide repeat (TPR) domains, and show its function in root development in Arabidopsis thaliana. In ssr1-2, a SSR1 knock-out mutant, the primary root growth was dramatically inhibited due to severely impaired cell proliferation and cell elongation. Significantly lowered level of auxin was found in ssr1-2 roots by auxin measurement and was further supported by reduced expression of DR5-driven reporter gene. As a result, the maintenance of the root stem cell niche is compromised in ssr1-2. It is further revealed that the expression level of several PIN proteins, namely, PIN1, PIN2, PIN3, PIN4 and PIN7, were markedly reduced in ssr1-2 roots. In particular, we showed that the reduced protein level of PIN2 on cell membrane in ssr1-2 is due to impaired retrograde trafficking, possibly resulting from a defect in retromer sorting system, which destines PIN2 for degradation in vacuoles. In conclusion, our results indicated that SSR1 is functioning in root development in Arabidopsis, possibly by affecting PIN protein expression and subcellular targeting.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Cuiping Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Qingfang Lin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Aihua Liu
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ting Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Xuanjun Feng
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jie Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Huiling Han
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yan Ma
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Diana Bonea
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Rongmin Zhao
- Department of Biological Sciences, University of Toronto, Toronto, ON, M1C 1A4, Canada
| | - Xuejun Hua
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
79
|
Mróz TL, Havey MJ, Bartoszewski G. Cucumber Possesses a Single Terminal Alternative Oxidase Gene That is Upregulated by Cold Stress and in the Mosaic (MSC) Mitochondrial Mutants. PLANT MOLECULAR BIOLOGY REPORTER 2015; 33:1893-1906. [PMID: 26752808 PMCID: PMC4695503 DOI: 10.1007/s11105-015-0883-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Alternative oxidase (AOX) is a mitochondrial terminal oxidase which is responsible for an alternative route of electron transport in the respiratory chain. This nuclear-encoded enzyme is involved in a major path of survival under adverse conditions by transfer of electrons from ubiquinol instead of the main cytochrome pathway. AOX protects against unexpected inhibition of the cytochrome c oxidase pathway and plays an important role in stress tolerance. Two AOX subfamilies (AOX1 and AOX2) exist in higher plants and are usually encoded by small gene families. In this study, genome-wide searches and cloning were completed to identify and characterize AOX genes in cucumber (Cucumis sativus L.). Our results revealed that cucumber possesses no AOX1 gene(s) and only a single AOX2 gene located on chromosome 4. Expression studies showed that AOX2 in wild-type cucumber is constitutively expressed at low levels and is upregulated by cold stress. AOX2 transcripts and protein were detected in leaves and flowers of wild-type plants, with higher levels in the three independently derived mosaic (MSC) mitochondrial mutants. Because cucumber possesses a single AOX gene and its expression increases under cold stress and in the MSC mutants, this plant is a unique and intriguing model to study AOX expression and regulation particularly in the context of mitochondria-to-nucleus retrograde signaling.
Collapse
Affiliation(s)
- Tomasz L. Mróz
- />Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Michael J. Havey
- />Agricultural Research Service, U.S. Department of Agriculture, Vegetable Crops Unit, Department of Horticulture, University of Wisconsin, 1575 Linden Dr., Madison, WI 53706 USA
| | - Grzegorz Bartoszewski
- />Department of Plant Genetics, Breeding and Biotechnology, Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, ul. Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
80
|
Kühn K, Yin G, Duncan O, Law SR, Kubiszewski-Jakubiak S, Kaur P, Meyer E, Wang Y, Small CCDF, Giraud E, Narsai R, Whelan J. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. PLANT PHYSIOLOGY 2015; 167:228-50. [PMID: 25378695 PMCID: PMC4281006 DOI: 10.1104/pp.114.249946] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/29/2014] [Indexed: 05/18/2023]
Abstract
Diverse signaling pathways are activated by perturbation of mitochondrial function under different growth conditions.Mitochondria have emerged as an important organelle for sensing and coping with stress in addition to being the sites of important metabolic pathways. Here, responses to moderate light and drought stress were examined in different Arabidopsis (Arabidopsis thaliana) mutant plants lacking a functional alternative oxidase (alternative oxidase1a [aox1a]), those with reduced cytochrome electron transport chain capacity (T3/T7 bacteriophage-type RNA polymerase, mitochondrial, and plastidial [rpoTmp]), and double mutants impaired in both pathways (aox1a:rpoTmp). Under conditions considered optimal for growth, transcriptomes of aox1a and rpoTmp were distinct. Under adverse growth conditions, however, transcriptome changes in aox1a and rpoTmp displayed a highly significant overlap and were indicative of a common mitochondrial stress response and down-regulation of photosynthesis. This suggests that the role of mitochondria to support photosynthesis is provided through either the alternative pathway or the cytochrome pathway, and when either pathway is inhibited, such as under environmental stress, a common, dramatic, and succinct mitochondrial signal is activated to alter energy metabolism in both organelles. aox1a:rpoTmp double mutants grown under optimal conditions showed dramatic reductions in biomass production compared with aox1a and rpoTmp and a transcriptome that was distinct from aox1a or rpoTmp. Transcript data indicating activation of mitochondrial biogenesis in aox1a:rpoTmp were supported by a proteomic analysis of over 200 proteins. Under optimal conditions, aox1a:rpoTmp plants seemed to switch on many of the typical mitochondrial stress regulators. Under adverse conditions, aox1a:rpoTmp turned off these responses and displayed a biotic stress response. Taken together, these results highlight the diverse signaling pathways activated by the perturbation of mitochondrial function under different growth conditions.
Collapse
Affiliation(s)
- Kristina Kühn
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Guangkun Yin
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Owen Duncan
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Simon R Law
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Szymon Kubiszewski-Jakubiak
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Parwinder Kaur
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Etienne Meyer
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Yan Wang
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Catherine Colas des Francs Small
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Estelle Giraud
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - Reena Narsai
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| | - James Whelan
- Molekulare Zellbiologie der Pflanzen, Institut für Biologie, Humboldt-Universität zu Berlin, D-10115 Berlin, Germany (K.K.);Australian Research Council Centre of Excellence in Plant Energy Biology (G.Y., O.D., S.K.-J., C.C.d.F.S.) andCentre for Plant Genetics and Breeding (P.K.), University of Western Australia, Crawley, Western Australia 6009, Australia;National Genebank, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China (G.Y.);Australian Research Council Centre of Excellence in Plant Energy Biology, School of Life Science, La Trobe University, Bundoora, Victoria 3083, Australia (S.R.L., Y.W., R.N., J.W.);Department of Organelle Biology and Biotechnology, Max-Planck-Institut für Molekulare Pflanzenphysiologie, D-14476 Potsdam-Golm, Germany (E.M.); andIllumina, Inc., Scoresby, Victoria 3179, Australia (E.G.)
| |
Collapse
|