51
|
Pařízková B, Pernisová M, Novák O. What Has Been Seen Cannot Be Unseen-Detecting Auxin In Vivo. Int J Mol Sci 2017; 18:ijms18122736. [PMID: 29258197 PMCID: PMC5751337 DOI: 10.3390/ijms18122736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022] Open
Abstract
Auxins mediate various processes that are involved in plant growth and development in response to specific environmental conditions. Its proper spatio-temporal distribution that is driven by polar auxin transport machinery plays a crucial role in the wide range of auxins physiological effects. Numbers of approaches have been developed to either directly or indirectly monitor auxin distribution in vivo in order to elucidate the basis of its precise regulation. Herein, we provide an updated list of valuable techniques used for monitoring auxins in plants, with their utilities and limitations. Because the spatial and temporal resolutions of the presented approaches are different, their combination may provide a comprehensive outcome of auxin distribution in diverse developmental processes.
Collapse
Affiliation(s)
- Barbora Pařízková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| | - Markéta Pernisová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
- Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic.
| |
Collapse
|
52
|
Hu Y, Vandenbussche F, Van Der Straeten D. Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. PLANTA 2017; 245:467-489. [PMID: 28188422 DOI: 10.1007/s00425-017-2651-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/08/2017] [Indexed: 05/06/2023]
Abstract
This review highlights that the auxin gradient, established by local auxin biosynthesis and transport, can be controlled by ethylene, and steers seedling growth. A better understanding of the mechanisms in Arabidopsis will increase potential applications in crop species. In dark-grown Arabidopsis seedlings, exogenous ethylene treatment triggers an exaggeration of the apical hook, the inhibition of both hypocotyl and root elongation, and radial swelling of the hypocotyl. These features are predominantly based on the differential cell elongation in different cells/tissues mediated by an auxin gradient. Interestingly, the physiological responses regulated by ethylene and auxin crosstalk can be either additive or synergistic, as in primary root and root hair elongation, or antagonistic, as in hypocotyl elongation. This review focuses on the crosstalk of these two hormones at the seedling stage. Before illustrating the crosstalk, ethylene and auxin biosynthesis, metabolism, transport and signaling are briefly discussed.
Collapse
Affiliation(s)
- Yuming Hu
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Filip Vandenbussche
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant Biology, Department of Biology, Ghent University, K.L. Ledeganckstraat 35, 9000, Ghent, Belgium.
| |
Collapse
|
53
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
54
|
Krieger G, Shkolnik D, Miller G, Fromm H. Reactive Oxygen Species Tune Root Tropic Responses. PLANT PHYSIOLOGY 2016; 172:1209-1220. [PMID: 27535793 PMCID: PMC5047083 DOI: 10.1104/pp.16.00660] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/15/2016] [Indexed: 05/03/2023]
Abstract
The default growth pattern of primary roots of land plants is directed by gravity. However, roots possess the ability to sense and respond directionally to other chemical and physical stimuli, separately and in combination. Therefore, these root tropic responses must be antagonistic to gravitropism. The role of reactive oxygen species (ROS) in gravitropism of maize and Arabidopsis (Arabidopsis thaliana) roots has been previously described. However, which cellular signals underlie the integration of the different environmental stimuli, which lead to an appropriate root tropic response, is currently unknown. In gravity-responding roots, we observed, by applying the ROS-sensitive fluorescent dye dihydrorhodamine-123 and confocal microscopy, a transient asymmetric ROS distribution, higher at the concave side of the root. The asymmetry, detected at the distal elongation zone, was built in the first 2 h of the gravitropic response and dissipated after another 2 h. In contrast, hydrotropically responding roots show no transient asymmetric distribution of ROS Decreasing ROS levels by applying the antioxidant ascorbate, or the ROS-generation inhibitor diphenylene iodonium attenuated gravitropism while enhancing hydrotropism. Arabidopsis mutants deficient in Ascorbate Peroxidase 1 showed attenuated hydrotropic root bending. Mutants of the root-expressed NADPH oxidase RBOH C, but not rbohD, showed enhanced hydrotropism and less ROS in their roots apices (tested in tissue extracts with Amplex Red). Finally, hydrostimulation prior to gravistimulation attenuated the gravistimulated asymmetric ROS and auxin signals that are required for gravity-directed curvature. We suggest that ROS, presumably H2O2, function in tuning root tropic responses by promoting gravitropism and negatively regulating hydrotropism.
Collapse
Affiliation(s)
- Gat Krieger
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel (G.K., D.S., H.F.); andMina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (G.M.)
| | - Doron Shkolnik
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel (G.K., D.S., H.F.); andMina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (G.M.)
| | - Gad Miller
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel (G.K., D.S., H.F.); andMina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (G.M.)
| | - Hillel Fromm
- Department of Molecular Biology and Ecology of Plants, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel (G.K., D.S., H.F.); andMina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel (G.M.)
| |
Collapse
|
55
|
Sorty AM, Meena KK, Choudhary K, Bitla UM, Minhas PS, Krishnani KK. Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions. Appl Biochem Biotechnol 2016; 180:872-882. [DOI: 10.1007/s12010-016-2139-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022]
|
56
|
Ferl RJ, Paul AL. The effect of spaceflight on the gravity-sensing auxin gradient of roots: GFP reporter gene microscopy on orbit. NPJ Microgravity 2016; 2:15023. [PMID: 28725721 PMCID: PMC5515520 DOI: 10.1038/npjmgrav.2015.23] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 01/24/2023] Open
Abstract
Our primary aim was to determine whether gravity has a direct role in establishing the auxin-mediated gravity-sensing system in primary roots. Major plant architectures have long been thought to be guided by gravity, including the directional growth of the primary root via auxin gradients that are then disturbed when roots deviate from the vertical as a gravity sensor. However, experiments on the International Space Station (ISS) now allow physical clarity with regard to any assumptions regarding the role of gravity in establishing fundamental root auxin distributions. We examined the spaceflight green fluorescent protein (GFP)-reporter gene expression in roots of transgenic lines of Arabidopsis thaliana: pDR5r::GFP, pTAA1::TAA1–GFP, pSCR::SCR–GFP to monitor auxin and pARR5::GFP to monitor cytokinin. Plants on the ISS were imaged live with the Light Microscopy Module (LMM), and compared with control plants imaged on the ground. Preserved spaceflight and ground control plants were examined post flight with confocal microscopy. Plants on orbit, growing in the absence of any physical reference to the terrestrial gravity vector, displayed typically “vertical” distribution of auxin in the primary root. This confirms that the establishment of the auxin-gradient system, the primary guide for gravity signaling in the root, is gravity independent. The cytokinin distribution in the root tip differs between spaceflight and the ground controls, suggesting spaceflight-induced features of root growth may be cytokinin related. The distribution of auxin in the gravity-sensing portion of the root is not dependent on gravity. Spaceflight appears benign to auxin and its role in the development of the primary root tip, whereas spaceflight may influence cytokinin-associated processes.
Collapse
Affiliation(s)
- Robert J Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA.,Interdisciplinary Center for Biotechnology and Research, University of Florida, Gainesville, FL, USA
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
57
|
Shi YF, Wang DL, Wang C, Culler AH, Kreiser MA, Suresh J, Cohen JD, Pan J, Baker B, Liu JZ. Loss of GSNOR1 Function Leads to Compromised Auxin Signaling and Polar Auxin Transport. MOLECULAR PLANT 2015; 8:1350-65. [PMID: 25917173 DOI: 10.1016/j.molp.2015.04.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 03/30/2015] [Accepted: 04/16/2015] [Indexed: 05/21/2023]
Abstract
Cross talk between phytohormones, nitric oxide (NO), and auxin has been implicated in the control of plant growth and development. Two recent reports indicate that NO promoted auxin signaling but inhibited auxin transport probably through S-nitrosylation. However, genetic evidence for the effect of S-nitrosylation on auxin physiology has been lacking. In this study, we used a genetic approach to understand the broader role of S-nitrosylation in auxin physiology in Arabidopsis. We compared auxin signaling and transport in Col-0 and gsnor1-3, a loss-of-function GSNOR1 mutant defective in protein de-nitrosylation. Our results showed that auxin signaling was impaired in the gsnor1-3 mutant as revealed by significantly reduced DR5-GUS/DR5-GFP accumulation and compromised degradation of AXR3NT-GUS, a useful reporter in interrogating auxin-mediated degradation of Aux/IAA by auxin receptors. In addition, polar auxin transport was compromised in gsnor1-3, which was correlated with universally reduced levels of PIN or GFP-PIN proteins in the roots of the mutant in a manner independent of transcription and 26S proteasome degradation. Our results suggest that S-nitrosylation and GSNOR1-mediated de-nitrosylation contribute to auxin physiology, and impaired auxin signaling and compromised auxin transport are responsible for the auxin-related morphological phenotypes displayed by the gsnor1-3 mutant.
Collapse
Affiliation(s)
- Ya-Fei Shi
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Da-Li Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Angela Hendrickson Culler
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Molly A Kreiser
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jayanti Suresh
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jerry D Cohen
- Department of Horticultural Science, Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
| |
Collapse
|
58
|
Jiang W, Wu J, Zhang Y, Yin L, Lu J. Isolation of a WRKY30 gene from Muscadinia rotundifolia (Michx) and validation of its function under biotic and abiotic stresses. PROTOPLASMA 2015; 252:1361-74. [PMID: 25643917 DOI: 10.1007/s00709-015-0769-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/23/2015] [Indexed: 05/25/2023]
Abstract
WRKY transcription factors (TFs) play important roles in many plant processes, including responses to biotic and abiotic stresses. In the present study, Muscadinia rotundifolia MrWRKY30 dramatically accumulated in grapevine leaves in response to inoculation of Plasmopara viticola, a pathogen causing grapevine downy mildew disease. Similar responses were also found on grapevines treated with exogenous SA/JA/ET. Ectopic expression of MrWRKY30 in Arabidopsis thaliana "COL0" enhanced its resistance to downy mildew pathogen Peronospora parasitica. Pathogenesis-related (PR) genes, including AtPR1, AtPR4, AtPR5, and AtPDF1.2, were significantly upregulated in transgenic A. thaliana after P. parasitica inoculation. In the mean time, two critical genes in SA and JA signaling pathways, AtEDS5 and AtJAR1, were abundantly expressed as well, indicating that MrWRKY30 may enhance disease resistance of A. thaliana through SA and JA defense system. The transgenic A. thaliana plants also enhanced tolerance to cold stress accompanied with upregulation of AtCBF1, AtCBF3, AtICE1, and AtCOR47. MrWRKY30 might protect A. thaliana from cold damage by activating the AtCBF-mediated signaling pathway to induce the downstream AtCOR47 gene. Interestingly, the transgenic seedlings had a negative effect on salt tolerance. Reverse transcription PCR (RT-PCR) analysis revealed that antioxidant enzyme genes AtAPX (ascorbate peroxidase), AtCAT (catalase), and AtGST (glutathione-S-transferase) were suppressed in transgenic plants, which may lead to reactive oxygen species (ROS)-mediated sensitivity to salt stress.
Collapse
Affiliation(s)
- Wenming Jiang
- Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | | | | | | | | |
Collapse
|
59
|
Zhu J, Geisler M. Keeping it all together: auxin-actin crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4983-98. [PMID: 26085676 DOI: 10.1093/jxb/erv308] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Polar auxin transport and the action of the actin cytoskeleton are tightly interconnected, which is documented by the finding that auxin transporters reach their final destination by active movement of secretory vesicles along F-actin tracks. Moreover, auxin transporter polarity and flexibility is thought to depend on transporter cycling that requires endocytosis and exocytosis of vesicles. In this context, we have reviewed the current literature on an involvement of the actin cytoskeleton in polar auxin transport and identify known similarities and differences in its structure, function and dynamics in comparison to non-plant organisms. By describing how auxin modulates actin expression and actin organization and how actin and its stability affects auxin-transporter endocytosis and recycling, we discuss the current knowledge on regulatory auxin-actin feedback loops. We focus on known effects of auxin and of auxin transport inhibitors on the stability and organization of actin and examine the functionality of auxin and/or auxin transport inhibitor-binding proteins with respect to their suitability to integrate auxin/auxin transport inhibitor action. Finally, we indicate current difficulties in the interpretation of organ, time and concentration-dependent auxin/auxin transport inhibitor treatments and formulate simple future experimental guidelines.
Collapse
Affiliation(s)
- Jinsheng Zhu
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| | - Markus Geisler
- University of Fribourg, Department of Biology-Plant Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
60
|
Ng JLP, Hassan S, Truong TT, Hocart CH, Laffont C, Frugier F, Mathesius U. Flavonoids and Auxin Transport Inhibitors Rescue Symbiotic Nodulation in the Medicago truncatula Cytokinin Perception Mutant cre1. THE PLANT CELL 2015; 27:2210-26. [PMID: 26253705 PMCID: PMC4568502 DOI: 10.1105/tpc.15.00231] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/18/2015] [Accepted: 07/08/2015] [Indexed: 05/18/2023]
Abstract
Initiation of symbiotic nodules in legumes requires cytokinin signaling, but its mechanism of action is largely unknown. Here, we tested whether the failure to initiate nodules in the Medicago truncatula cytokinin perception mutant cre1 (cytokinin response1) is due to its altered ability to regulate auxin transport, auxin accumulation, and induction of flavonoids. We found that in the cre1 mutant, symbiotic rhizobia cannot locally alter acro- and basipetal auxin transport during nodule initiation and that these mutants show reduced auxin (indole-3-acetic acid) accumulation and auxin responses compared with the wild type. Quantification of flavonoids, which can act as endogenous auxin transport inhibitors, showed a deficiency in the induction of free naringenin, isoliquiritigenin, quercetin, and hesperetin in cre1 roots compared with wild-type roots 24 h after inoculation with rhizobia. Coinoculation of roots with rhizobia and the flavonoids naringenin, isoliquiritigenin, and kaempferol, or with the synthetic auxin transport inhibitor 2,3,5,-triiodobenzoic acid, rescued nodulation efficiency in cre1 mutants and allowed auxin transport control in response to rhizobia. Our results suggest that CRE1-dependent cytokinin signaling leads to nodule initiation through the regulation of flavonoid accumulation required for local alteration of polar auxin transport and subsequent auxin accumulation in cortical cells during the early stages of nodulation.
Collapse
Affiliation(s)
- Jason Liang Pin Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Samira Hassan
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Thy T Truong
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Charles H Hocart
- Mass Spectrometry Facility, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| | - Carole Laffont
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay University (IPS2), UMR 9213/UMR 1403, CNRS/INRA/Université Paris-Sud/Université Paris-Diderot/Université d'Evry, 91405 Orsay, France
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra ACT 2601, Australia
| |
Collapse
|
61
|
Niu Y, Jin G, Li X, Tang C, Zhang Y, Liang Y, Yu J. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3841-54. [PMID: 25922494 PMCID: PMC4473981 DOI: 10.1093/jxb/erv181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes.
Collapse
Affiliation(s)
- Yaofang Niu
- Department of Horticulture, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Gulei Jin
- College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Xin Li
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou, 310008, PR China
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Victoria 3086, Australia
| | - Yongsong Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yongchao Liang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Jingquan Yu
- Department of Horticulture, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
62
|
Li S, Su LR, Ma SY, Shi ZZ, Yang XM. Initial exploration of the mechanism underlying H 2 O 2 -induced root horizontal bending in pea. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0820-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
63
|
Zhao X, Wang J, Yuan J, Wang XL, Zhao QP, Kong PT, Zhang X. NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) is essential for salicylic acid-induced root waving in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2015; 207:211-224. [PMID: 25690466 DOI: 10.1111/nph.13327] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/10/2015] [Indexed: 05/07/2023]
Abstract
Root waving responses have been attributed to both environmental and genetics factors, but the potential inducers and transducers of root waving remain elusive. Thus, the identification of novel signal elements related to root waving is an intriguing field of research. Genetic, physiological, cytological, live cell imaging, and pharmacological approaches provide strong evidence for the involvement of Arabidopsis thaliana NITRIC OXIDE-ASSOCIATED PROTEIN1 (AtNOA1) in salicylic acid (SA)-induced root waving. SA specially induced root waving, with an overall decrease in root elongation in A. thaliana, and this SA-induced response was disrupted in the Atnoa1 mutant, as well as in nonexpresser of pathogenesis-related genes 1 (npr1), which is defective in SA-mediated plant defense signal transduction, but not in npr3/4 single and double mutants. The expression assays revealed that the abundance of AtNOA1 was significantly increased by application of SA. Genetic and pharmacological analyses showed that SA-induced root waving involved an AtNOA1-dependent Ca(2+) signal transduction pathway, and PIN-FORMED2 (PIN2) -based polar auxin transport possibly plays a crucial role in this process. Our work suggests that SA signaling through NPR1 and AtNOA1 is involved in the control of root waving, which provides new insights into the mechanisms that control root growth behavior on a hard agar surface.
Collapse
Affiliation(s)
- Xiang Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jin Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Jing Yuan
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xi-Li Wang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Qing-Ping Zhao
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Pei-Tao Kong
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xiao Zhang
- Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
64
|
Singh P, Mohanta TK, Sinha AK. Unraveling the intricate nexus of molecular mechanisms governing rice root development: OsMPK3/6 and auxin-cytokinin interplay. PLoS One 2015; 10:e0123620. [PMID: 25856151 PMCID: PMC4391785 DOI: 10.1371/journal.pone.0123620] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 11/26/2022] Open
Abstract
The root system is an imperative component of a plant, involved in water and nutrient acquisition from the soil. Any subtle change in the root system may lead to drastic changes in plant productivity. Both auxin and cytokinin are implicated in regulating various root developmental aspects. One of the major signaling cascades facilitating various hormonal and developmental allocations is the Mitogen Activated Protein Kinase (MAPK) cascade. Innumerable efforts have been made to unravel the complex nexus involved in rice root development. In spite of a plethora of studies, a comprehensive study aiming to decipher the plausible cross-talk of MAPK signaling module with auxin and cytokinin signaling components in rice is missing. In the present study, extensive phenomics analysis of different stages of rice roots; transcript profiling by qRT-PCR of entire gene family of MAPK, MAPKK and PIN genes; as well as protein level and activity of potential MAPKs was investigated using western and immuno kinase assays both on auxin and cytokinin treatment. The above study led to the identification of various novel rice root specific phenotypic traits by using GiA roots software framework. High expression profile of OsMPK3/6, OsMKK4/5 and OsPIN 1b/9 and their marked transcript level modulation in response to both auxin and cytokinin was observed. Finally, the protein levels and activity assay further substantiated our present findings. Thus, OsMPK3/6-OsMKK4/5 module is elucidated as the putative, key player in auxin-cytokinin interaction augmenting their role by differentially regulating the expression patterns of OsPIN 1b/9 in root development in rice.
Collapse
Affiliation(s)
- Pallavi Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Tapan Kumar Mohanta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alok Krishna Sinha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- * E-mail:
| |
Collapse
|
65
|
Jia H, Hu Y, Fan T, Li J. Hydrogen sulfide modulates actin-dependent auxin transport via regulating ABPs results in changing of root development in Arabidopsis. Sci Rep 2015; 5:8251. [PMID: 25652660 PMCID: PMC4317700 DOI: 10.1038/srep08251] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/12/2015] [Indexed: 01/22/2023] Open
Abstract
Hydrogen sulfide (H2S) signaling has been considered a key regulator of plant developmental processes and defenses. In this study, we demonstrate that high levels of H2S inhibit auxin transport and lead to alterations in root system development. H2S inhibits auxin transport by altering the polar subcellular distribution of PIN proteins. The vesicle trafficking and distribution of the PIN proteins are an actin-dependent process. H2S changes the expression of several actin-binding proteins (ABPs) and decreases the occupancy percentage of F-actin bundles in the Arabidopsis roots. We observed the effects of H2S on F-actin in T-DNA insertion mutants of cpa, cpb and prf3, indicating that the effects of H2S on F-actin are partially removed in the mutant plants. Thus, these data imply that the ABPs act as downstream effectors of the H2S signal and thereby regulate the assembly and depolymerization of F-actin in root cells. Taken together, our data suggest that the existence of a tightly regulated intertwined signaling network between auxin, H2S and actin that controls root system development. In the proposed process, H2S plays an important role in modulating auxin transport by an actin-dependent method, which results in alterations in root development in Arabidopsis.
Collapse
Affiliation(s)
- Honglei Jia
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanfeng Hu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Nangang District, Harbin 150000, China
| | - Tingting Fan
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
66
|
Dubas E, Moravčíková J, Libantová J, Matušíková I, Benková E, Zur I, Krzewska M. The influence of heat stress on auxin distribution in transgenic B. napus microspores and microspore-derived embryos. PROTOPLASMA 2014; 251:1077-87. [PMID: 24553810 PMCID: PMC4125814 DOI: 10.1007/s00709-014-0616-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 05/22/2023]
Abstract
Plant embryogenesis is regulated by differential distribution of the plant hormone auxin. However, the cells establishing these gradients during microspore embryogenesis remain to be identified. For the first time, we describe, using the DR5 or DR5rev reporter gene systems, the GFP- and GUS-based auxin biosensors to monitor auxin during Brassica napus androgenesis at cellular resolution in the initial stages. Our study provides evidence that the distribution of auxin changes during embryo development and depends on the temperature-inducible in vitro culture conditions. For this, microspores (mcs) were induced to embryogenesis by heat treatment and then subjected to genetic modification via Agrobacterium tumefaciens. The duration of high temperature treatment had a significant influence on auxin distribution in isolated and in vitro-cultured microspores and on microspore-derived embryo development. In the "mild" heat-treated (1 day at 32 °C) mcs, auxin localized in a polar way already at the uni-nucleate microspore, which was critical for the initiation of embryos with suspensor-like structure. Assuming a mean mcs radius of 20 μm, endogenous auxin content in a single cell corresponded to concentration of 1.01 μM. In mcs subjected to a prolonged heat (5 days at 32 °C), although auxin concentration increased dozen times, auxin polarization was set up at a few-celled pro-embryos without suspensor. Those embryos were enclosed in the outer wall called the exine. The exine rupture was accompanied by the auxin gradient polarization. Relative quantitative estimation of auxin, using time-lapse imaging, revealed that primordia possess up to 1.3-fold higher amounts than those found in the root apices of transgenic MDEs in the presence of exogenous auxin. Our results show, for the first time, which concentration of endogenous auxin coincides with the first cell division and how the high temperature interplays with auxin, by what affects delay early establishing microspore polarity. Moreover, we present how the local auxin accumulation demonstrates the apical-basal axis formation of the androgenic embryo and directs the axiality of the adult haploid plant.
Collapse
Affiliation(s)
- Ewa Dubas
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland,
| | | | | | | | | | | | | |
Collapse
|
67
|
Shimizu-Mitao Y, Kakimoto T. Auxin Sensitivities of All Arabidopsis Aux/IAAs for Degradation in the Presence of Every TIR1/AFB. ACTA ACUST UNITED AC 2014; 55:1450-9. [DOI: 10.1093/pcp/pcu077] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
68
|
Roy R, Bassham DC. Root growth movements: waving and skewing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 221-222:42-7. [PMID: 24656334 DOI: 10.1016/j.plantsci.2014.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 05/20/2023]
Abstract
Roots anchor a plant in the soil, acquire nutrition and respond to environmental cues. Roots perform these functions using intricate movements and a variety of pathways have been implicated in mediating their growth patterns. These include endogenous genetic factors, perception of multiple environmental stimuli, signaling pathways interacting with hormonal dynamics and cellular processes of rapid cell elongation. In this review we attempt to consolidate our understanding of two specific types of root movements, waving and skewing, that arise on the surface of growth media, and how they are regulated by various genes and factors. These include crucial factors that are part of a complex nexus of processes including polar auxin transport and cytoskeletal dynamics. This knowledge can be extrapolated in the future for engineering plants with root architecture better suited for different soil and growth conditions such as abiotic stresses or even extended spaceflight. Technological innovations and interdisciplinary approaches promise to allow the tracking of root movements on a much finer scale, thus helping to expedite the discovery of more nodes in the regulation of root waving and skewing and movement in general.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA; Plant Sciences Institute, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
69
|
Cytokinin controls polarity of PIN1-dependent auxin transport during lateral root organogenesis. Curr Biol 2014; 24:1031-7. [PMID: 24768050 DOI: 10.1016/j.cub.2014.04.002] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/25/2014] [Accepted: 04/01/2014] [Indexed: 11/21/2022]
Abstract
The plant hormones auxin and cytokinin mutually coordinate their activities to control various aspects of development [1-9], and their crosstalk occurs at multiple levels [10, 11]. Cytokinin-mediated modulation of auxin transport provides an efficient means to regulate auxin distribution in plant organs. Here, we demonstrate that cytokinin does not merely control the overall auxin flow capacity, but might also act as a polarizing cue and control the auxin stream directionality during plant organogenesis. Cytokinin enhances the PIN-FORMED1 (PIN1) auxin transporter depletion at specific polar domains, thus rearranging the cellular PIN polarities and directly regulating the auxin flow direction. This selective cytokinin sensitivity correlates with the PIN protein phosphorylation degree. PIN1 phosphomimicking mutations, as well as enhanced phosphorylation in plants with modulated activities of PIN-specific kinases and phosphatases, desensitize PIN1 to cytokinin. Our results reveal conceptually novel, cytokinin-driven polarization mechanism that operates in developmental processes involving rapid auxin stream redirection, such as lateral root organogenesis, in which a gradual PIN polarity switch defines the growth axis of the newly formed organ.
Collapse
|
70
|
Wang L, Zhao Y, Reiter RJ, He C, Liu G, Lei Q, Zuo B, Zheng XD, Li Q, Kong J. Changes in melatonin levels in transgenic 'Micro-Tom' tomato overexpressing ovine AANAT and ovine HIOMT genes. J Pineal Res 2014; 56:134-42. [PMID: 24138427 DOI: 10.1111/jpi.12105] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 10/16/2013] [Indexed: 02/05/2023]
Abstract
In animals, the melatonin biosynthesis pathway has been well defined after the isolation and identification of the four key genes that are involved in the conversion of tryptophan to melatonin. In plants, there are special alternative catalyzing steps, and plant genes share very low homology with the animal genes. It was of interest to examine the phenotype of transgenic Micro-Tom tomato plants overexpressing the homologous sheep oAANAT and oHIOMT genes responsible for the last two steps of melatonin synthesis. The oAANAT transgenic plants have higher melatonin levels and lower indoleacetic acid (IAA) contents than control due to the competition for tryptophan, the same precursor for both melatonin and IAA. Therefore, the oAANAT lines lose the 'apical dominance' inferring that melatonin likely lacks auxin activity. The significantly higher melatonin content in oHIOMT lines than oAANAT lines provides new proof for the important role of ASMT in plant melatonin synthesis. In addition, the enhanced drought tolerance of oHIOMT lines will also be an important contribution for plant engineering.
Collapse
Affiliation(s)
- Lin Wang
- Institute for Horticultural Plants, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Band LR, Wells DM, Fozard JA, Ghetiu T, French AP, Pound MP, Wilson MH, Yu L, Li W, Hijazi HI, Oh J, Pearce SP, Perez-Amador MA, Yun J, Kramer E, Alonso JM, Godin C, Vernoux T, Hodgman TC, Pridmore TP, Swarup R, King JR, Bennett MJ. Systems analysis of auxin transport in the Arabidopsis root apex. THE PLANT CELL 2014; 26:862-75. [PMID: 24632533 PMCID: PMC4001398 DOI: 10.1105/tpc.113.119495] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/06/2014] [Accepted: 02/14/2014] [Indexed: 05/17/2023]
Abstract
Auxin is a key regulator of plant growth and development. Within the root tip, auxin distribution plays a crucial role specifying developmental zones and coordinating tropic responses. Determining how the organ-scale auxin pattern is regulated at the cellular scale is essential to understanding how these processes are controlled. In this study, we developed an auxin transport model based on actual root cell geometries and carrier subcellular localizations. We tested model predictions using the DII-VENUS auxin sensor in conjunction with state-of-the-art segmentation tools. Our study revealed that auxin efflux carriers alone cannot create the pattern of auxin distribution at the root tip and that AUX1/LAX influx carriers are also required. We observed that AUX1 in lateral root cap (LRC) and elongating epidermal cells greatly enhance auxin's shootward flux, with this flux being predominantly through the LRC, entering the epidermal cells only as they enter the elongation zone. We conclude that the nonpolar AUX1/LAX influx carriers control which tissues have high auxin levels, whereas the polar PIN carriers control the direction of auxin transport within these tissues.
Collapse
Affiliation(s)
- Leah R. Band
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Darren M. Wells
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John A. Fozard
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Teodor Ghetiu
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Andrew P. French
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael P. Pound
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Michael H. Wilson
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Lei Yu
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Wenda Li
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Hussein I. Hijazi
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Jaesung Oh
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Simon P. Pearce
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Miguel A. Perez-Amador
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia–Consejo Superior de Investigaciones Científicas, Ciudad Politécnica de la Innovación, 46022 Valencia, Spain
| | - Jeonga Yun
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Eric Kramer
- Physics Department, Bard College at Simon’s Rock, Great Barrington, Massachusetts 01230
| | - Jose M. Alonso
- Department of Genetics, North Carolina State University, Raleigh, North Carolina 27695
| | - Christophe Godin
- Virtual Plants Project Team, Unité Mixte de Recherche, Amélioration Génétique des Plantes Méditerranéennes et Tropicales, Institut National de Recherche en Informatique et en Automatique/Centre de Coopération Internationale en Recherche Agronomique pour le Développement, 34095 Montpellier, France
| | - Teva Vernoux
- Laboratoire de Reproduction et Developpement des Plantes, CNRS, INRA, Ecole Normale Supérieure Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69364 Lyon, France
| | - T. Charlie Hodgman
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Tony P. Pridmore
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - John R. King
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, University of Nottingham, Nottingham LE12 5RD, United Kingdom
| |
Collapse
|
72
|
Geisler M, Wang B, Zhu J. Auxin transport during root gravitropism: transporters and techniques. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:50-7. [PMID: 23648074 DOI: 10.1111/plb.12030] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/28/2013] [Indexed: 05/04/2023]
Abstract
Root gravitropism is a complex, plant-specific process allowing roots to grow downward into the soil. Polar auxin transport and redistribution are essential for root gravitropism. Here we summarise our current understanding of underlying molecular mechanisms and involved transporters that establish, maintain and redirect intercellular auxin gradients as the driving force for root gravitropism. We evaluate the genetic, biochemical and cell biological approaches presently used for the analysis of auxin redistribution and the quantification of auxin fluxes. Finally, we also discuss new tools that provide a higher spatial or temporal resolution and our technical needs for future gravitropism studies.
Collapse
Affiliation(s)
- M Geisler
- Department of Biology - Plant Biology, University of Fribourg, Fribourg, Switzerland
| | | | | |
Collapse
|
73
|
Ma Y, Rajkumar M, Rocha I, Oliveira RS, Freitas H. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils. FRONTIERS IN PLANT SCIENCE 2014; 5:757. [PMID: 25601876 PMCID: PMC4283507 DOI: 10.3389/fpls.2014.00757] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 05/20/2023]
Abstract
The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- *Correspondence: Ying Ma, Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal e-mail:
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil NaduThiruvarur, India
| | - Inês Rocha
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| | - Rui S. Oliveira
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
- Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica PortuguesaPorto, Portugal
- Research Centre on Health and Environment, School of Allied Health Sciences, Polytechnic Institute of PortoVila Nova de Gaia, Portugal
| | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of CoimbraCoimbra, Portugal
| |
Collapse
|
74
|
Li X, Lei M, Yan Z, Wang Q, Chen A, Sun J, Luo D, Wang Y. The REL3-mediated TAS3 ta-siRNA pathway integrates auxin and ethylene signaling to regulate nodulation in Lotus japonicus. THE NEW PHYTOLOGIST 2014; 201:531-544. [PMID: 24164597 DOI: 10.1111/nph.12550] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 09/10/2013] [Indexed: 05/04/2023]
Abstract
The ta-siRNA pathway is required for lateral organ development, including leaf patterning, flower differentiation and lateral root growth. Legumes can develop novel lateral root organs--nodules--resulting from symbiotic interactions with rhizobia. However, ta-siRNA regulation in nodule formation remains unknown. To explore ta-siRNA regulation in nodule formation, we investigated the roles of REL3, a key component of TAS3 ta-siRNA biogenesis, during nodulation in Lotus japonicus. We characterized the symbiotic phenotypes of the TAS3 ta-siRNA defective rel3 mutant, and analyzed the responses of the rel3 mutant to auxin and ethylene in order to gain insight into TAS3 ta-siRNA regulation of nodulation. The rel3 mutant produced fewer pink nitrogen-fixing nodules, with substantially decreased infection frequency and nodule initiation. Moreover, the rel3 mutant was more resistant than wild-type to 1-naphthaleneacetic acid (NAA) and N-1-naphthylphthalamic acid (NPA) in root growth, and exhibited insensitivity to auxins but greater sensitivity to auxin transport inhibitors during nodulation. Furthermore, the rel3 mutant has enhanced root-specific ethylene sensitivity and altered responses to ethylene during nodulation; the low-nodulating phenotype of the rel3 mutant can be restored by ethylene synthesis inhibitor L-α-(2-aminoethoxyvinyl)-glycine (AVG) or action inhibitor Ag(+). The REL3-mediated TAS3 ta-siRNA pathway regulates nodulation by integrating ethylene and auxin signaling.
Collapse
Affiliation(s)
- Xiaolin Li
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Mingjuan Lei
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhongyuan Yan
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qi Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Aimin Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jie Sun
- The key Laboratory of Oasis Eco-agriculture, Agriculture College of Shihezi University, Shihezi, 832003, China
| | - Da Luo
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Yanzhang Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
75
|
Ueda J, Miyamoto K, Uheda E, Oka M, Yano S, Higashibata A, Ishioka N. Close relationships between polar auxin transport and graviresponse in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16 Suppl 1:43-49. [PMID: 24128007 DOI: 10.1111/plb.12101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/18/2013] [Indexed: 06/02/2023]
Abstract
Gravitational force on Earth is one of the major environmental factors affecting plant growth and development. Spacecraft and the International Space Station (ISS), and a three-dimensional (3-D) clinostat have been available to clarify the effects of gravistimulation on plant growth and development in space and on ground conditions, respectively. Under a stimulus-free environment such as space conditions, plants show a growth and developmental habit designated as 'automorphosis' or 'automorphogenesis'. Recent studies in hormonal physiology, together with space and molecular biology, have demonstrated the close relationships between automorphosis and polar auxin transport. Reduced polar auxin transport in space conditions, or induced by the application of polar auxin transport inhibitors, substantially induced automorphosis or automorphosis-like growth and development, indicating that polar auxin transport is responsible for graviresponse in plants. This concise review covers graviresponse in plants and automorphosis observed in space conditions, and polar auxin transport related to graviresponse in etiolated Alaska and ageotropum pea seedlings. Molecular aspects of polar auxin transport clarified in recent studies are also described.
Collapse
Affiliation(s)
- J Ueda
- Graduate School of Science, Osaka Prefecture University, Naka-ku, Sakai, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
76
|
|
77
|
Bustos-Sanmamed P, Mao G, Deng Y, Elouet M, Khan GA, Bazin JRM, Turner M, Subramanian S, Yu O, Crespi M, Lelandais-Bri Re C. Overexpression of miR160 affects root growth and nitrogen-fixing nodule number in Medicago truncatula. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:1208-1220. [PMID: 32481189 DOI: 10.1071/fp13123] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/21/2013] [Indexed: 05/13/2023]
Abstract
Auxin action is mediated by a complex signalling pathway involving transcription factors of the auxin response factor (ARF) family. In Arabidopsis, microRNA160 (miR160) negatively regulates three ARF genes (ARF10/ARF16/ARF17) and therefore controls several developmental processes, including primary and lateral root growth. Here, we analysed the role of miR160 in root development and nodulation in Medicago truncatula Gaertn. Bioinformatic analyses identified two main mtr-miR160 variants (mtr-miR160abde and mtr-miR160c) and 17 predicted ARF targets. The miR160-dependent cleavage of four predicted targets in roots was confirmed by analysis of parallel analysis of RNA ends (PARE) data and RACE-PCR experiments. Promoter-GUS analyses for mtr-miR160d and mtr-miR160c genes revealed overlapping but distinct expression profiles during root and nodule development. In addition, the early miR160 activation in roots during symbiotic interaction was not observed in mutants of the nodulation signalling or autoregulation pathways. Composite plants that overexpressed mtr-miR160a under two different promoters exhibited distinct defects in root growth and nodulation: the p35S:miR160a construct led to reduced root length associated to a severe disorganisation of the RAM, whereas pCsVMV:miR160a roots showed gravitropism defects and lower nodule numbers. Our results suggest that a regulatory loop involving miR160/ARFs governs root and nodule organogenesis in M. truncatula.
Collapse
Affiliation(s)
- Pilar Bustos-Sanmamed
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Guohong Mao
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Ying Deng
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Morgane Elouet
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Ghazanfar Abbas Khan
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - J R Mie Bazin
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Marie Turner
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Senthil Subramanian
- Department of Plant Science, Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007, USA
| | - Oliver Yu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Martin Crespi
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| | - Christine Lelandais-Bri Re
- Institut des Sciences du Végétal (ISV), Centre National de la Recherche Scientifique (CNRS), Gif sur Yvette F-91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
78
|
Huang SJ, Chang CL, Wang PH, Tsai MC, Hsu PH, Chang IF. A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4343-60. [PMID: 23943848 PMCID: PMC3808318 DOI: 10.1093/jxb/ert241] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ethylene is an important plant hormone that regulates developmental processes in plants. The ethylene biosynthesis pathway is a highly regulated process at both the transcriptional and post-translational level. The transcriptional regulation of these ethylene biosynthesis genes is well known. However, post-translational modifications of the key ethylene biosynthesis enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) are little understood. In vitro kinase assays were conducted on the type III ACS, AtACS7, fusion protein and peptides to determine whether the AtACS7 protein can be phosphorylated by calcium-dependent protein kinase (CDPK). AtACS7 was phosphorylated at Ser216, Thr296, and Ser299 by AtCDPK16 in vitro. To investigate further the function of the ACS7 gene in Arabidopsis, an acs7-1 loss-of-function mutant was isolated. The acs7-1 mutant exhibited less sensitivity to the inhibition of root gravitropism by treatment with the calcium chelator ethylene glycol tetraacetic acid (EGTA). Seedlings were treated with gradient concentrations of ACC. The results showed that a certain concentration of ethylene enhanced the gravity response. Moreover, the acs7-1 mutant was less sensitive to inhibition of the gravity response by treatment with the auxin polar transport inhibitor 1-naphthylphthalamic acid, but exogenous ACC application recovered root gravitropism. Altogether, the results indicate that AtACS7 is involved in root gravitropism in a calcium-dependent manner in Arabidopsis.
Collapse
Affiliation(s)
- Shih-Jhe Huang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Chia-Lun Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Po-Hsun Wang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Min-Chieh Tsai
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
| | - Pang-Hung Hsu
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Ing-Feng Chang
- Institute of Plant Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Qi B, Zheng H. Modulation of root-skewing responses by KNAT1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:380-92. [PMID: 23889705 DOI: 10.1111/tpj.12295] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 07/17/2013] [Accepted: 07/19/2013] [Indexed: 05/20/2023]
Abstract
The KNOTTED1 homeobox (KNOX) family transcription factors are essential for stem cell establishment and maintenance and regulate various aspects of development in all green plants. Expression patterns of the KNOX genes in the roots of plants have been reported, but their role in development remains unclear. Here we show how the KNAT1 gene is specifically involved in root skewing in Arabidopsis. The roots of two mutant alleles of KNAT1 (bp-1 and bp-5) exhibited exaggerated skewing to the right of gravity when grown on both vertical and tilted agar medium surfaces. This skewing phenotype was enhanced by treatments with low concentrations of propyzamide, and required auxin transport. The KNAT1 mutation substantially decreased basipetal auxin transport and increased auxin accumulation in the roots. Using a PIN2-GFP reporter and western blot analysis, we found that this alteration in auxin transport was accompanied by a decrease in PIN2 levels in the root tip. Decreased PIN2 expression in the mutant roots was not accompanied by reduced mRNA levels, suggesting that the KNAT1 mutations affected PIN2 expression at the posttranscriptional level. In vivo visualization of intracellular vacuolar targeting indicated that vacuolar degradation of PIN2-GFP was significantly promoted in the root tips of the bp allelic mutants. Together, these results demonstrate that KNAT1 negatively modulates root skewing, possibly by regulating auxin transport.
Collapse
Affiliation(s)
- Bin Qi
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | | |
Collapse
|
80
|
Zou N, Li B, Chen H, Su Y, Kronzucker HJ, Xiong L, Baluška F, Shi W. GSA-1/ARG1 protects root gravitropism in Arabidopsis under ammonium stress. THE NEW PHYTOLOGIST 2013; 200:97-111. [PMID: 23782229 DOI: 10.1111/nph.12365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/11/2013] [Indexed: 05/22/2023]
Abstract
Gravitropism plays a critical role in plant growth and development, plant stability and acclimation to changes in water and nutrient availability. Ammonium (NH4(+)) is well known to have profound effects on root growth, but its impacts on gravitropism are poorly understood. To determine which genes are essential for the maintenance of root gravitropism under NH4(+) stress, we isolated and identified an NH4 (+)-sensitive mutant, gsa-1 (gravitropism sensitive to ammonium-1), in Arabidopsis thaliana, using an agar plate root reorientation assay. We found that, under NH4(+) stress, gsa-1 displayed increased loss of root gravitropism. Gene cloning and sequencing revealed that gsa-1 contains a G to C transversion mutation at the highly conserved 5'-GT splice position of intron 10 of ARG1 (ALTERED RESPONSE TO GRAVITY1), known to participate in the transduction of the root gravity signal. Genetic complement tests established the locus of GSA-1/ARG1 and its role in resistance to NH4 (+) inhibition on root gravitropism. GSA-1/ARG1 is required for normal AUX1 expression and basipetal auxin transport in root apices. In addition, PIN-FORMED2 (PIN2) is proposed as a target in the reduction of root gravitropism under NH4(+) stress, a response which can be antagonized by the GSA-1/ARG1-dependent pathway. These results suggest that GSA-1/ARG1 protects root gravitropism in Arabidopsis thaliana under ammonium stress.
Collapse
Affiliation(s)
- Na Zou
- College of Landscape and Art, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Baohai Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Hao Chen
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - Yanhua Su
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Department of Biological Sciences, University of Toronto, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Liming Xiong
- Donald Danforth Plant Science Center, St Louis, MO, 63132, USA
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Kirschallee 1, D-53115, Bonn, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, No. 71 East Beijing Road, Nanjing, 210008, China
| |
Collapse
|
81
|
Remy E, Baster P, Friml J, Duque P. ZIFL1.1 transporter modulates polar auxin transport by stabilizing membrane abundance of multiple PINs in Arabidopsis root tip. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25688. [PMID: 23857365 PMCID: PMC4091088 DOI: 10.4161/psb.25688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/08/2013] [Accepted: 07/09/2013] [Indexed: 05/29/2023]
Abstract
Cell-to-cell directional flow of the phytohormone auxin is primarily established by polar localization of the PIN auxin transporters, a process tightly regulated at multiple levels by auxin itself. We recently reported that, in the context of strong auxin flows, activity of the vacuolar ZIFL1.1 transporter is required for fine-tuning of polar auxin transport rates in the Arabidopsis root. In particular, ZIFL1.1 function protects plasma-membrane stability of the PIN 2 carrier in epidermal root tip cells under conditions normally triggering PIN 2 degradation. Here, we show that ZIFL1.1 activity at the root tip also promotes PIN 1 plasma-membrane abundance in central cylinder cells, thus supporting the notion that ZIFL1.1 acts as a general positive modulator of polar auxin transport in roots.
Collapse
Affiliation(s)
- Estelle Remy
- 1 Instituto Gulbenkian de Ciência; Oeiras, Portugal
- † These authors contributed equally to this work
| | - Pawel Baster
- † These authors contributed equally to this work
- 2 Department of Plant Systems Biology; VIB and Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent, Belgium
- 3 Institute of Science and Technology Austria; Klosterneuburg, Austria
| | - Jiří Friml
- 2 Department of Plant Systems Biology; VIB and Department of Plant Biotechnology and Bioinformatics; Ghent University; Gent, Belgium
- 3 Institute of Science and Technology Austria; Klosterneuburg, Austria
| | - Paula Duque
- 1 Instituto Gulbenkian de Ciência; Oeiras, Portugal
| |
Collapse
|
82
|
Zhang KX, Xu HH, Yuan TT, Zhang L, Lu YT. Blue-light-induced PIN3 polarization for root negative phototropic response in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:308-21. [PMID: 23888933 DOI: 10.1111/tpj.12298] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/04/2013] [Accepted: 07/12/2013] [Indexed: 05/04/2023]
Abstract
Root negative phototropism is an important response in plants. Although blue light is known to mediate this response, the cellular and molecular mechanisms underlying root negative phototropism remain unclear. Here, we report that the auxin efflux carrier PIN-FORMED (PIN) 3 is involved in asymmetric auxin distribution and root negative phototropism. Unilateral blue-light illumination polarized PIN3 to the outer lateral membrane of columella cells at the illuminated root side, and increased auxin activity at the illuminated side of roots, where auxin promotes growth and causes roots bending away from the light source. Furthermore, root negative phototropic response and blue-light-induced PIN3 polarization were modulated by a brefeldin A-sensitive, GNOM-dependent, trafficking pathway and by phot1-regulated PINOID (PID)/PROTEIN PHOSPHATASE 2A (PP2A) activity. Our results indicate that blue-light-induced PIN3 polarization is needed for asymmetric auxin distribution during root negative phototropic response.
Collapse
Affiliation(s)
- Kun-Xiao Zhang
- Key Lab of MOE for Plant Development, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | | | | | | | | |
Collapse
|
83
|
Roychoudhry S, Del Bianco M, Kieffer M, Kepinski S. Auxin controls gravitropic setpoint angle in higher plant lateral branches. Curr Biol 2013; 23:1497-504. [PMID: 23891109 DOI: 10.1016/j.cub.2013.06.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 04/28/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
Lateral branches in higher plants are often maintained at specific angles with respect to gravity, a quantity known as the gravitropic setpoint angle (GSA) [1]. Despite the importance of GSA control as a fundamental determinant of plant form, the mechanisms underlying gravity-dependent angled growth are not known. Here we address the central questions of how stable isotropic growth of a branch at a nonvertical angle is maintained and of how the value of that angle is set. We show that nonvertical lateral root and shoot branches are distinguished from the primary axis by the existence of an auxin-dependent antigravitropic offset mechanism that operates in tension with gravitropic response to generate angled isotropic growth. Further, we show that the GSA of lateral roots and shoots is dependent upon the magnitude of the antigravitropic offset component. Finally, we show that auxin specifies GSA values dynamically throughout development by regulating the magnitude of the antigravitropic offset component via TIR1/AFB-Aux/IAA-ARF-dependent auxin signaling within the gravity-sensing cells of the root and shoot. The involvement of auxin in controlling GSA is yet another example of auxin's remarkable capacity to self-organize in development [2] and provides a conceptual framework for understanding the specification of GSA throughout nature.
Collapse
|
84
|
Buer CS, Kordbacheh F, Truong TT, Hocart CH, Djordjevic MA. Alteration of flavonoid accumulation patterns in transparent testa mutants disturbs auxin transport, gravity responses, and imparts long-term effects on root and shoot architecture. PLANTA 2013; 238:171-89. [PMID: 23624937 DOI: 10.1007/s00425-013-1883-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/08/2013] [Indexed: 05/18/2023]
Abstract
Flavonoids have broad cross-kingdom biological activity. In Arabidopsis, flavonoid accumulation in specific tissues, notably the root elongation zone and root/shoot junction modulate auxin transport, affect root gravitropism, and influence overall plant architecture. The relative contribution made by aglycones and their glycosides remains undetermined, and the longer-term phenotypic effects of altered flavonoid accumulation are not fully assessed. We tested Arabidopsis thaliana mutants that accumulate different flavonoids to determine which flavonoids were causing these affects. Tandem mass spectrometry and in situ fluorescence localisation were used to determine the in vivo levels of aglycones in specific tissues of 11 transparent testa mutants. We measured rootward and shootward auxin transport, gravitropic responses, and identified the long-term changes to root and shoot architecture. Unexpected aglycone species accumulated in vivo in several flavonoid-pathway mutants, and lower aglycone levels occurred in transcription factor mutants. Mutants accumulating more quercetin and quercetin-glycosides changed the greatest in auxin transport, gravitropism, and aerial tissue growth. Early flavonoid-pathway mutants showed aberrant lateral root initiation patterns including clustered lateral root initiations at a single site. Transcription factor mutants had multiple phenotypes including shallow root systems. These results confirm that aglycones are present at very low levels, show that lateral root initiation is perturbed in early flavonoid-pathway mutants, and indicate that altered flavonoid accumulation affects multiple aspects of plant architecture.
Collapse
Affiliation(s)
- Charles S Buer
- Plant Sciences Division, Research School of Biology, College of Medicine, Biology, and Environment, The Australian National University, Linneaus Bldg #134, Linneaus Way, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
85
|
Li J, Jia H. cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 66:105-17. [PMID: 23500713 DOI: 10.1016/j.plaphy.2013.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/15/2013] [Indexed: 05/02/2023]
Abstract
The phytohormone auxin participates in lateral root formation and primary root growth in plants. The auxin gradient formation is mainly regulated by the direction of polar auxin transport (PAT). PAT requires PIN family proteins, which are auxin transport facilitators and contribute to the establishment and maintenance of auxin gradients and mediate multiple developmental processes. Here, we report the effect of the 3', 5'-cyclic guanosine monophosphate (cGMP), an important second messenger, on postembryonic developmental of Arabidopsis lateral root. We find that enhanced cGMP level through the application of the membrane permeable cGMP analog 8-Br-cGMP, promotes the initiation of lateral root primordia and formation of lateral root. 6-Anilino-5,8-quinolinedione (Ly83583, the guanylate cyclase inhibitor) negatively regulates the process. cGMP also mediates acropetal auxin transport and basipetal auxin transport in the root. We further find that 8-Br-cGMP and Ly83583 change the expression of auxin transport genes and alter the polar localization and expression of PIN1 and PIN2 proteins. Moreover, Ly83583 affects actin organization and localization. Taken together, we propose that cGMP affects auxin transport and auxin gradient through modulation PINs proteins localization and expression. cGMP regulates postembryonic formation of Arabidopsis lateral root through the crosstalk with PAT.
Collapse
Affiliation(s)
- Jisheng Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | | |
Collapse
|
86
|
Yuan HM, Xu HH, Liu WC, Lu YT. Copper regulates primary root elongation through PIN1-mediated auxin redistribution. PLANT & CELL PHYSIOLOGY 2013; 54:766-78. [PMID: 23396597 DOI: 10.1093/pcp/pct030] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The heavy metal copper (Cu) is an essential microelement required for normal plant growth and development, but it inhibits primary root growth when in excess. The mechanism underlying how excess Cu functions in this process remains to be further elucidated. Here, we report that a higher concentration of CuSO4 inhibited primary root elongation of Arabidopsis seedlings by affecting both the elongation and meristem zones. In the meristem zone, meristematic cell division potential was reduced by excess Cu. Further experiments showed that Cu can modulate auxin distribution, resulting in higher auxin activities in both the elongation and meristem zones of Cu-treated roots based on DR5::GUS expression patterns. This Cu-mediated auxin redistribution was shown to be responsible for Cu-mediated inhibition of primary root elongation. Additional genetic and physiological data demonstrated that it was PINFORMED1 (PIN1), but not PIN2 or AUXIN1 (AUX1), that regulated this process. However, Cu-induced hydrogen peroxide accumulation did not contribute to Cu-induced auxin redistribution for inhibition of root elongation. When the possible role of ethylene in this process was analyzed, Cu had a similar impact on the root elongation of both the wild type and the ein2-1 mutant, implying that Cu-mediated inhibition of primary root elongation was not due to the ethylene signaling pathway.
Collapse
Affiliation(s)
- Hong-Mei Yuan
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | | | | |
Collapse
|
87
|
Sanders HL, Langdale JA. Conserved transport mechanisms but distinct auxin responses govern shoot patterning in Selaginella kraussiana. THE NEW PHYTOLOGIST 2013; 198:419-428. [PMID: 23421619 DOI: 10.1111/nph.12183] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 01/02/2013] [Indexed: 05/18/2023]
Abstract
To provide a comparative framework to understand the evolution of auxin regulation in vascular plants, the effect of perturbed auxin homeostasis was examined in the lycophyte Selaginella kraussiana. Polar auxin transport was measured by tracing tritiated IAA in excised shoots. Shoots were cultured in the presence of auxin efflux inhibitors and exogenous auxin, and developmental abnormalities were documented. Auxin transport in Selaginella shoots is exclusively basipetal, as in angiosperms. Perturbed auxin transport results in the loss of meristem maintenance and abnormal shoot architecture. Dichotomous root branching in Selaginella appears to be regulated by an antagonistic relationship between auxin and cytokinin. The results suggest that basipetal polar auxin transport occurred in the common ancestor of lycophytes and euphyllophytes. Although the mechanisms of auxin transport appear to be conserved across all vascular plants, distinct auxin responses govern shoot growth and development in lycophytes and euphyllophytes.
Collapse
Affiliation(s)
- Heather L Sanders
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jane A Langdale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|
88
|
Perturbation of auxin homeostasis by overexpression of wild-type IAA15 results in impaired stem cell differentiation and gravitropism in roots. PLoS One 2013; 8:e58103. [PMID: 23472140 PMCID: PMC3589423 DOI: 10.1371/journal.pone.0058103] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 02/03/2013] [Indexed: 12/23/2022] Open
Abstract
Aux/IAAs interact with auxin response factors (ARFs) to repress their transcriptional activity in the auxin signaling pathway. Previous studies have focused on gain-of-function mutations of domain II and little is known about whether the expression level of wild-type Aux/IAAs can modulate auxin homeostasis. Here we examined the perturbation of auxin homeostasis by ectopic expression of wild-type IAA15. Root gravitropism and stem cell differentiation were also analyzed. The transgenic lines were less sensitive to exogenous auxin and exhibited low-auxin phenotypes including failures in gravity response and defects in stem cell differentiation. Overexpression lines also showed an increase in auxin concentration and reduced polar auxin transport. These results demonstrate that an alteration in the expression of wild-type IAA15 can disrupt auxin homeostasis.
Collapse
|
89
|
Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P. Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. THE NEW PHYTOLOGIST 2013; 197:1130-1141. [PMID: 23252740 DOI: 10.1111/nph.12092] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 05/17/2023]
Abstract
Active polar transport establishes directional auxin flow and the generation of local auxin gradients implicated in plant responses and development. Auxin modulates gravitropism at the root tip and root hair morphogenesis at the differentiation zone. Genetic and biochemical analyses provide evidence for defective basipetal auxin transport in trh1 roots. The trh1, pin2, axr2 and aux1 mutants, and transgenic plants overexpressing PIN1, all showing impaired gravity response and root hair development, revealed ectopic PIN1 localization. The auxin antagonist hypaphorine blocked root hair elongation and caused moderate agravitropic root growth, also leading to PIN1 mislocalization. These results suggest that auxin imbalance leads to proximal and distal developmental defects in Arabidopsis root apex, associated with agravitropic root growth and root hair phenotype, respectively, providing evidence that these two auxin-regulated processes are coupled. Cell-specific subcellular localization of TRH1-YFP in stele and epidermis supports TRH1 engagement in auxin transport, and hence impaired function in trh1 causes dual defects of auxin imbalance. The interplay between intrinsic cues determining root epidermal cell fate through the TTG/GL2 pathway and environmental cues including abiotic stresses modulates root hair morphogenesis. As a consequence of auxin imbalance in Arabidopsis root apex, ectopic PIN1 mislocalization could be a risk aversion mechanism to trigger root developmental responses ensuring root growth plasticity.
Collapse
Affiliation(s)
- Stamatis Rigas
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Franck Anicet Ditengou
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Gerasimos Daras
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| | - Olaf Tietz
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
| | - Klaus Palme
- Institute of Biology II, Faculty of Biology, Albert-Ludwigs-University of Freiburg, Schänzlestrasse 1, D-79104, Freiburg, Germany
- Centre of Biological Systems Analysis, Albert-Ludwigs-University of Freiburg, Habsburgerstr. 49, D-79104, Freiburg, Germany
- Freiburg Institute of Advanced Sciences (FRIAS), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104, Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), Albert-Ludwigs-University of Freiburg, Albertstrasse 19, D-79104, Freiburg, Germany
| | - Polydefkis Hatzopoulos
- Department of Agricultural Biotechnology, Agricultural University of Athens, Iera Odos 75, Athens, 118 55, Greece
| |
Collapse
|
90
|
Remy E, Cabrito TR, Baster P, Batista RA, Teixeira MC, Friml J, Sá-Correia I, Duque P. A major facilitator superfamily transporter plays a dual role in polar auxin transport and drought stress tolerance in Arabidopsis. THE PLANT CELL 2013; 25:901-26. [PMID: 23524662 PMCID: PMC3634696 DOI: 10.1105/tpc.113.110353] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 05/18/2023]
Abstract
Many key aspects of plant development are regulated by the polarized transport of the phytohormone auxin. Cellular auxin efflux, the rate-limiting step in this process, has been shown to rely on the coordinated action of PIN-formed (PIN) and B-type ATP binding cassette (ABCB) carriers. Here, we report that polar auxin transport in the Arabidopsis thaliana root also requires the action of a Major Facilitator Superfamily (MFS) transporter, Zinc-Induced Facilitator-Like 1 (ZIFL1). Sequencing, promoter-reporter, and fluorescent protein fusion experiments indicate that the full-length ZIFL1.1 protein and a truncated splice isoform, ZIFL1.3, localize to the tonoplast of root cells and the plasma membrane of leaf stomatal guard cells, respectively. Using reverse genetics, we show that the ZIFL1.1 transporter regulates various root auxin-related processes, while the ZIFL1.3 isoform mediates drought tolerance by regulating stomatal closure. Auxin transport and immunolocalization assays demonstrate that ZIFL1.1 indirectly modulates cellular auxin efflux during shootward auxin transport at the root tip, likely by regulating plasma membrane PIN2 abundance. Finally, heterologous expression in yeast revealed that ZIFL1.1 and ZIFL1.3 share H(+)-coupled K(+) transport activity. Thus, by determining the subcellular and tissue distribution of two isoforms, alternative splicing dictates a dual function for the ZIFL1 transporter. We propose that this MFS carrier regulates stomatal movements and polar auxin transport by modulating potassium and proton fluxes in Arabidopsis cells.
Collapse
Affiliation(s)
- Estelle Remy
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Tânia R. Cabrito
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Pawel Baster
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | | | - Miguel C. Teixeira
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Jiri Friml
- Department of Plant Systems Biology, Flanders Institute for Biotechnology (VIB), and Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Isabel Sá-Correia
- Institute for Biotechnology and BioEngineering, Center for Biological and Chemical Engineering, Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, 1049-001 Lisbon, Portugal
| | - Paula Duque
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
91
|
Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma B, Liu J, Li C, Bednarek SY, Pan J. Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. THE PLANT CELL 2013; 25:499-516. [PMID: 23424247 PMCID: PMC3608774 DOI: 10.1105/tpc.112.108373] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/21/2013] [Accepted: 01/31/2013] [Indexed: 05/18/2023]
Abstract
Plant clathrin-mediated membrane trafficking is involved in many developmental processes as well as in responses to environmental cues. Previous studies have shown that clathrin-mediated endocytosis of the plasma membrane (PM) auxin transporter PIN-FORMED1 is regulated by the extracellular auxin receptor AUXIN BINDING PROTEIN1 (ABP1). However, the mechanisms by which ABP1 and other factors regulate clathrin-mediated trafficking are poorly understood. Here, we applied a genetic strategy and time-resolved imaging to dissect the role of clathrin light chains (CLCs) and ABP1 in auxin regulation of clathrin-mediated trafficking in Arabidopsis thaliana. Auxin was found to differentially regulate the PM and trans-Golgi network/early endosome (TGN/EE) association of CLCs and heavy chains (CHCs) in an ABP1-dependent but TRANSPORT INHIBITOR RESPONSE1/AUXIN-BINDING F-BOX PROTEIN (TIR1/AFB)-independent manner. Loss of CLC2 and CLC3 affected CHC membrane association, decreased both internalization and intracellular trafficking of PM proteins, and impaired auxin-regulated endocytosis. Consistent with these results, basipetal auxin transport, auxin sensitivity and distribution, and root gravitropism were also found to be dramatically altered in clc2 clc3 double mutants, resulting in pleiotropic defects in plant development. These results suggest that CLCs are key regulators in clathrin-mediated trafficking downstream of ABP1-mediated signaling and thus play a critical role in membrane trafficking from the TGN/EE and PM during plant development.
Collapse
Affiliation(s)
- Chao Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Xu Yan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Qian Chen
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Jiang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Wei Fu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Bojun Ma
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Jianzhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Jianwei Pan
- College of Chemistry and Life Sciences, Zhejiang Normal University, Zhejiang 321004, China
- Address correspondence to
| |
Collapse
|
92
|
Yu J, Wen CK. Arabidopsis aux1rcr1 mutation alters AUXIN RESISTANT1 targeting and prevents expression of the auxin reporter DR5:GUS in the root apex. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:921-33. [PMID: 23293348 PMCID: PMC3580809 DOI: 10.1093/jxb/ers371] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multilevel interactions of the plant hormones ethylene and auxin coordinately and synergistically regulate many aspects of plant growth and development. This study isolated the AUXIN RESISTANT1 (AUX1) allele aux1(rcr1) (RCR1 for REVERSING CTR1-10 ROOT1) that suppressed the root growth inhibition conferred by the constitutive ethylene-response constitutive triple response1-10 (ctr1-10) allele. The aux1(rcr1) mutation resulted from an L126F substitution at loop 2 of the plasma membrane-associated auxin influx carrier protein AUX1. aux1(rcr1) and the T-DNA insertion mutant aux1-T were both defective in auxin transport and many aspects of the auxin response. Unexpectedly, expression of the auxin-response reporter DR5:GUS in the root apex was substantially prevented by the aux1(rcr1) but not the aux1-T mutation, even in the presence of the wild-type AUX1 allele. Following treatment with the synthetic auxin 1-naphthaleneacetic acid (NAA), DR5:GUS expression in aux1(rcr1) and aux1-T occurred mainly in the root apex and mature zone. NAA-induced DR5:GUS expression in the root apex was markedly prevented by ethylene in genotypes with aux1(rcr1) but not in aux1-T genotypes and the wild type. The effect of aux1(rcr1) on DR5:GUS expression seemed to be associated with AUX1-expressing domains. Green fluorescence protein-fused aux1(rcr1) was localized in the cytoplasm and probably not to the plasma membrane, indicating important roles of the Lys(126) residue at loop 2 in AUX1 targeting. The possible effects of aux1(rcr1) on DR5:GUS expression are discussed.
Collapse
Affiliation(s)
- Jing Yu
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| |
Collapse
|
93
|
Du H, Liu H, Xiong L. Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:397. [PMID: 24130566 PMCID: PMC3793129 DOI: 10.3389/fpls.2013.00397] [Citation(s) in RCA: 253] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/18/2013] [Indexed: 04/14/2023]
Abstract
Abiotic stresses such as drought, salinity, and adverse temperatures are major limiting factors for plant growth and reproduction. Plant responses to these stresses are coordinated by arrays of regulatory networks including the induction of endogenous abscisic acid (ABA), a well documented phytohormone for stress responses. However, whether or how these abiotic stresses affect the endogenous biosynthesis or metabolism of other phytohormones remains largely unknown. Here, we report the changes of endogenous indole-3-acetic acid (IAA) and jasmonic acid (JA) levels and expression of genes related to the biosynthesis or signaling of these hormones in rice under various abiotic stress conditions. The IAA content was decreased after drought stress, but it was significantly increased under cold and heat stresses. And the auxin-regulated gravitropism of root tip was inhibited by cold stress. Many genes involved in the IAA biosynthesis and signaling were changed in transcript level under these stresses, and the changes were essentially in agreement with the change of endogenous IAA level. Interestingly, the endogenous JA content was increased markedly under drought and cold stresses, but it was reduced by heat stress. Accordingly, many genes involved in JA biosynthesis and signaling were induced by drought and cold treatment but these genes were significantly suppressed by heat stress. We concluded that endogenous levels of IAA and JA were differentially regulated by abiotic stresses in rice, implying diverse roles of these hormones in stress responses.
Collapse
Affiliation(s)
| | | | - Lizhong Xiong
- *Correspondence: Lizhong Xiong, National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Shizishan Street 01, Wuhan 430070, China e-mail:
| |
Collapse
|
94
|
Withers JC, Shipp MJ, Rupasinghe SG, Sukumar P, Schuler MA, Muday GK, Wyatt SE. Gravity Persistent Signal 1 (GPS1) reveals novel cytochrome P450s involved in gravitropism. AMERICAN JOURNAL OF BOTANY 2013; 100:183-193. [PMID: 23284057 DOI: 10.3732/ajb.1200436] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
PREMISE Gravity is an important environmental factor that affects growth and development of plants. In response to changes in gravity, directional growth occurs along the major axes and lateral branches of both shoots and roots. The gravity persistent signal (gps) mutants of Arabidopsis thaliana were previously identified as having an altered response to gravity when reoriented relative to the gravity vector in the cold, with the gps1 mutant exhibiting a complete loss of tropic response under these conditions. METHODS Thermal asymmetric interlaced (TAIL) PCR was used to identify the gene defective in gps1. Gene expression data, molecular modeling and computational substrate dockings, quantitative RT-PCR analyses, reporter gene fusions, and physiological analyses of knockout mutants were used to characterize the genes identified. RESULTS Cloning of the gene defective in gps1 and genetic complementation revealed that GPS1 encodes CYP705A22, a cytochrome P450 monooxygenase (P450). CYP705A5, a closely related family member, was identified as expressed specifically in roots in response to gravistimulation, and a mutation affecting its expression resulted in a delayed gravity response, increased flavonol levels, and decreased basipetal auxin transport. Molecular modeling coupled with in silico substrate docking and diphenylboric acid 2-aminoethyl ester (DBPA) staining indicated that these P450s are involved in biosynthesis of flavonoids potentially involved in auxin transport. CONCLUSION The characterization of two novel P450s (CYP705A22 and CYP705A5) and their role in the gravity response has offered new insights into the regulation of the genetic and physiological controls of plant gravitropism.
Collapse
Affiliation(s)
- John C Withers
- Department of Environmental and Plant Biology, 317 Porter Hall, Ohio University, Athens, Ohio 45701, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Spalding EP. Diverting the downhill flow of auxin to steer growth during tropisms. AMERICAN JOURNAL OF BOTANY 2013; 100:203-14. [PMID: 23284058 DOI: 10.3732/ajb.1200420] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polar auxin transport can be likened to water following the path of least resistance as it flows downhill. In the case of auxin, the hill is the difference in electrochemical potential of the auxin anion (IAA(-)). H(+)-ATPases and H(+)-IAA symporters at the plasma membrane create the electrical and IAA(-) concentration gradients that constitute this thermodynamic hill. PIN and ABCB transporters also at the plasma membrane bias the direction and limit the rate of downhill flow out of the cell. This article will present the thermodynamic basis for this view and critically examine how well the molecular biological descriptions of the polar auxin transport process fit the framework. An auxin concentration gradient across an organ has long been recognized as the cause of bending growth during tropisms. Its generation can be viewed as a result of redirected polar auxin transport. This article will examine how molecular regulation of the paths of least resistance to auxin efflux diverts the downhill flow of auxin to steer growth during tropisms.
Collapse
Affiliation(s)
- Edgar P Spalding
- Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, Wisconsin 53706, USA.
| |
Collapse
|
96
|
Baldwin KL, Strohm AK, Masson PH. Gravity sensing and signal transduction in vascular plant primary roots. AMERICAN JOURNAL OF BOTANY 2013; 100:126-42. [PMID: 23048015 DOI: 10.3732/ajb.1200318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.
Collapse
Affiliation(s)
- Katherine L Baldwin
- Laboratory of Genetics and Program of Cellular and Molecular Biology, University of Wisconsin-Madison, 425G Henry Mall, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
97
|
Roux SJ. Root waving and skewing: unexpectedly in micro-g. BMC PLANT BIOLOGY 2012; 12:231. [PMID: 23217095 PMCID: PMC3533921 DOI: 10.1186/1471-2229-12-231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 11/28/2012] [Indexed: 05/11/2023]
Abstract
Gravity has major effects on both the form and overall length of root growth. Numerous papers have documented these effects (over 300 publications in the last 5 years), the most well-studied being gravitropism, which is a growth re-orientation directed by gravity toward the earth's center. Less studied effects of gravity are undulations due to the regular periodic change in the direction root tips grow, called waving, and the slanted angle of growth roots exhibit when they are growing along a nearly-vertical surface, called skewing. Although diverse studies have led to the conclusion that a gravity stimulus is needed for plant roots to show waving and skewing, the novel results just published by Paul et al. (2012) reveal that this conclusion is not correct. In studies carried out in microgravity on the International Space Station, the authors used a new imaging system to collect digital photographs of plants every six hours during 15 days of spaceflight. The imaging system allowed them to observe how roots grew when their orientation was directed not by gravity but by overhead LED lights, which roots grew away from because they are negatively phototropic. Surprisingly, the authors observed both skewing and waving in spaceflight plants, thus demonstrating that both growth phenomena were gravity independent. Touch responses and differential auxin transport would be common features of root waving and skewing at 1-g and micro-g, and the novel results of Paul et al. will focus the attention of cell and molecular biologists more on these features as they try to decipher the signaling pathways that regulate root skewing and waving.
Collapse
Affiliation(s)
- Stanley J Roux
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX, USA
| |
Collapse
|
98
|
SCF(TIR1/AFB)-auxin signalling regulates PIN vacuolar trafficking and auxin fluxes during root gravitropism. EMBO J 2012; 32:260-74. [PMID: 23211744 PMCID: PMC3553380 DOI: 10.1038/emboj.2012.310] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/19/2012] [Indexed: 01/31/2023] Open
Abstract
The distribution of the phytohormone auxin regulates many aspects of plant development including growth response to gravity. Gravitropic root curvature involves coordinated and asymmetric cell elongation between the lower and upper side of the root, mediated by differential cellular auxin levels. The asymmetry in the auxin distribution is established and maintained by a spatio-temporal regulation of the PIN-FORMED (PIN) auxin transporter activity. We provide novel insights into the complex regulation of PIN abundance and activity during root gravitropism. We show that PIN2 turnover is differentially regulated on the upper and lower side of gravistimulated roots by distinct but partially overlapping auxin feedback mechanisms. In addition to regulating transcription and clathrin-mediated internalization, auxin also controls PIN abundance at the plasma membrane by promoting their vacuolar targeting and degradation. This effect of elevated auxin levels requires the activity of SKP-Cullin-F-box(TIR1/AFB) (SCF(TIR1/AFB))-dependent pathway. Importantly, also suboptimal auxin levels mediate PIN degradation utilizing the same signalling pathway. These feedback mechanisms are functionally important during gravitropic response and ensure fine-tuning of auxin fluxes for maintaining as well as terminating asymmetric growth.
Collapse
|
99
|
Liu X, Wu J, Clark G, Lundy S, Lim M, Arnold D, Chan J, Tang W, Muday GK, Gardner G, Roux SJ. Role for apyrases in polar auxin transport in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:1985-95. [PMID: 23071251 PMCID: PMC3510125 DOI: 10.1104/pp.112.202887] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 10/10/2012] [Indexed: 05/20/2023]
Abstract
Recent evidence indicates that extracellular nucleotides regulate plant growth. Exogenous ATP has been shown to block auxin transport and gravitropic growth in primary roots of Arabidopsis (Arabidopsis thaliana). Cells limit the concentration of extracellular ATP in part through the activity of ectoapyrases (ectonucleoside triphosphate diphosphohydrolases), and two nearly identical Arabidopsis apyrases, APY1 and APY2, appear to share this function. These findings, plus the fact that suppression of APY1 and APY2 blocks growth in Arabidopsis, suggested that the expression of these apyrases could influence auxin transport. This report tests that hypothesis. The polar movement of [(3)H]indole-3-acetic acid in both hypocotyl sections and primary roots of Arabidopsis seedlings was measured. In both tissues, polar auxin transport was significantly reduced in apy2 null mutants when they were induced by estradiol to suppress the expression of APY1 by RNA interference. In the hypocotyl assays, the basal halves of APY-suppressed hypocotyls contained considerably lower free indole-3-acetic acid levels when compared with wild-type plants, and disrupted auxin transport in the APY-suppressed roots was reflected by their significant morphological abnormalities. When a green fluorescent protein fluorescence signal encoded by a DR5:green fluorescent protein construct was measured in primary roots whose apyrase expression was suppressed either genetically or chemically, the roots showed no signal asymmetry following gravistimulation, and both their growth and gravitropic curvature were inhibited. Chemicals that suppress apyrase activity also inhibit gravitropic curvature and, to a lesser extent, growth. Taken together, these results indicate that a critical step connecting apyrase suppression to growth suppression is the inhibition of polar auxin transport.
Collapse
|
100
|
Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. Dev Cell 2012; 22:1275-85. [PMID: 22698285 DOI: 10.1016/j.devcel.2012.04.008] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 02/10/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
In plants, developmental programs and tropisms are modulated by the phytohormone auxin. Auxin reconfigures the actin cytoskeleton, which controls polar localization of auxin transporters such as PIN2 and thus determines cell-type-specific responses. In conjunction with a second growth-promoting phytohormone, brassinosteroid (BR), auxin synergistically enhances growth and gene transcription. We show that BR alters actin configuration and PIN2 localization in a manner similar to that of auxin. We describe a BR constitutive-response mutant that bears an allele of the ACTIN2 gene and shows altered actin configuration, PIN2 delocalization, and a broad array of phenotypes that recapitulate BR-treated plants. Moreover, we show that actin filament reconfiguration is sufficient to activate BR signaling, which leads to an enhanced auxin response. Our results demonstrate that the actin cytoskeleton functions as an integration node for the BR signaling pathway and auxin responsiveness.
Collapse
|