51
|
Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2019; 20:ijms20010153. [PMID: 30609831 PMCID: PMC6337393 DOI: 10.3390/ijms20010153] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/25/2018] [Accepted: 12/26/2018] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane intrinsic proteins (PIPs) are a subfamily of aquaporin proteins located on plasma membranes where they facilitate the transport of water and small uncharged solutes. PIPs play an important role throughout plant development, and in response to abiotic stresses. Jojoba (Simmondsia chinensis (Link) Schneider), as a typical desert plant, tolerates drought, salinity and nutrient-poor soils. In this study, a PIP1 gene (ScPIP1) was cloned from jojoba and overexpressed in Arabidopsis thaliana. The expression of ScPIP1 at the transcriptional level was induced by polyethylene glycol (PEG) treatment. ScPIP1 overexpressed Arabidopsis plants exhibited higher germination rates, longer roots and higher survival rates compared to the wild-type plants under drought and salt stresses. The results of malonaldehyde (MDA), ion leakage (IL) and proline content measurements indicated that the improved drought and salt tolerance conferred by ScPIP1 was correlated with decreased membrane damage and improved osmotic adjustment. We assume that ScPIP1 may be applied to genetic engineering to improve plant tolerance based on the resistance effect in transgenic Arabidopsis overexpressing ScPIP1.
Collapse
|
52
|
Li Y, Li W, Zhang H, Dong R, Li D, Liu Y, Huang L, Lei B. Biomimetic preparation of silicon quantum dots and their phytophysiology effect on cucumber seedlings. J Mater Chem B 2019; 7:1107-1115. [DOI: 10.1039/c8tb02981d] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, a biomimetic synthetic strategy was proposed for a facile preparation of red fluorescent silicon quantum dots (SiQDs) using unicellular algae of diatoms as reaction precursor.
Collapse
Affiliation(s)
- Yanjuan Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Wei Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Haoran Zhang
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Riyue Dong
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Dongna Li
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Yingliang Liu
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| | - Ling Huang
- Key Laboratory of Flexible Electronics (KLOFE)
- Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University
- Nanjing 211816
| | - Bingfu Lei
- Guangdong Provincial Engineering Technology Research Center for Optical Agriculture
- College of Materials and Energy
- South China Agricultural University
- Guangzhou 510642
- P. R. China
| |
Collapse
|
53
|
Naveed ZA, Bibi S, Ali GS. The Phytophthora RXLR Effector Avrblb2 Modulates Plant Immunity by Interfering With Ca 2+ Signaling Pathway. FRONTIERS IN PLANT SCIENCE 2019; 10:374. [PMID: 30984224 PMCID: PMC6447682 DOI: 10.3389/fpls.2019.00374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/11/2019] [Indexed: 05/03/2023]
Abstract
In plants, subcellular fluctuations in Ca2+ ion concentration are among the earliest responses to biotic and abiotic stresses. Calmodulin, which is a ubiquitous Ca2+ ion sensor in eukaryotes, plays a major role in translating these Ca2+ signatures to cellular responses by interacting with numerous proteins located in plasma membranes, cytoplasm, organelles and nuclei. In this report, we show that one of the Phytophthora RXLR effector, Avrblb2, interacts with calmodulin at the plasma membrane of the plant cells. Using deletion and single amino acid mutagenesis, we found that calmodulin binds to the effector domain of Avrblb2. In addition, we show that most known homologs of Avrblb2 in three different Phytophthora species interact with different isoforms of calmodulin. Type of amino acids at position 69 in Avrblb2, which determines Rbi-blb2 resistance protein-mediated defense responses, is not involved in the Avrblb2-calmodulin interaction. Using in planta functional analyses, we show that calmodulin binding to Avrblb2 is required for its recognition by Rpi-blb2 to incite hypersensitive response. These findings suggest that Avrblb2 by interacting with calmodulin interfere with plant defense associated Ca2+ signaling in plants.
Collapse
|
54
|
Wang R, Wang M, Chen K, Wang S, Mur LAJ, Guo S. Exploring the Roles of Aquaporins in Plant⁻Microbe Interactions. Cells 2018; 7:E267. [PMID: 30545006 PMCID: PMC6316839 DOI: 10.3390/cells7120267] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 11/16/2022] Open
Abstract
Aquaporins (AQPs) are membrane channel proteins regulating the flux of water and other various small solutes across membranes. Significant progress has been made in understanding the roles of AQPs in plants' physiological processes, and now their activities in various plant⁻microbe interactions are receiving more attention. This review summarizes the various roles of different AQPs during interactions with microbes which have positive and negative consequences on the host plants. In positive plant⁻microbe interactions involving rhizobia, arbuscular mycorrhizae (AM), and plant growth-promoting rhizobacteria (PGPR), AQPs play important roles in nitrogen fixation, nutrient transport, improving water status, and increasing abiotic stress tolerance. For negative interactions resulting in pathogenesis, AQPs help plants resist infections by preventing pathogen ingress by influencing stomata opening and influencing defensive signaling pathways, especially through regulating systemic acquired resistance. Interactions with bacterial or viral pathogens can be directly perturbed through direct interaction of AQPs with harpins or replicase. However, whilst these observations indicate the importance of AQPs, further work is needed to develop a fuller mechanistic understanding of their functions.
Collapse
Affiliation(s)
- Ruirui Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Min Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Kehao Chen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Shiyu Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| | - Luis Alejandro Jose Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 3DA, UK.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, China.
| |
Collapse
|
55
|
Molecular insights into the plasma membrane intrinsic proteins roles for abiotic stress and metalloids tolerance and transport in plants. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s40502-018-0425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
56
|
|
57
|
Pawłowicz I, Masajada K. Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 2018; 687:166-172. [PMID: 30445023 DOI: 10.1016/j.gene.2018.11.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Plant aquaporins constitute a large family of proteins involved in facilitating the transport of water and small neutral molecules across biological membranes. In higher plants they are divided into several sub-families, depending on membrane-type localization and permeability to specific solutes. They are abundantly expressed in the majority of plant organs and tissues, and play a function in primary biological processes. Many studies revealed the significant role of aquaporins in acquiring abiotic stresses' tolerance. This review focuses on aquaporins belonging to PIPs sub-family that are permeable to water and/or carbon dioxide. Isoforms transporting water are involved in hydraulic conductance regulation in the leaves and roots, whereas those transporting carbon dioxide control stomatal and mesophyll conductance in the leaves. Changes in PIP aquaporins abundance/activity in stress conditions allow to maintain the water balance and photosynthesis adjustment. Broad analyses showed that tight control between water and carbon dioxide supplementation mediated by aquaporins influences plant productivity, especially in stress conditions. Involvement of aquaporins in adaptation strategies to dehydrative stresses in different plant species are discussed in this review.
Collapse
Affiliation(s)
- Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland.
| | - Katarzyna Masajada
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479 Poznan, Poland
| |
Collapse
|
58
|
Matsui H, Hopkinson BM, Nakajima K, Matsuda Y. Plasma Membrane-Type Aquaporins from Marine Diatoms Function as CO 2/NH 3 Channels and Provide Photoprotection. PLANT PHYSIOLOGY 2018; 178:345-357. [PMID: 30076224 PMCID: PMC6130027 DOI: 10.1104/pp.18.00453] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Aquaporins (AQPs) are ubiquitous water channels that facilitate the transport of many small molecules and may play multiple vital roles in aquatic environments. In particular, mechanisms to maintain transmembrane fluxes of important small molecules have yet to be studied in marine photoautotrophic organisms. Here, we report the occurrence of multiple AQPs with differential cellular localizations in marine diatoms, an important group of oceanic primary producers. The AQPs play a role in mediating the permeability of membranes to CO2 and NH3 In silico surveys revealed the presence of five AQP orthologs in the pennate diatom Phaeodactylum tricornutum and two in the centric diatom Thalassiosira pseudonana GFP fusions of putative AQPs displayed clear localization to the plasma membrane (PtAGP1 and PtAQP2), the chloroplast endoplasmic reticulum (CER; PtAGP1 and PtAQP3), and the tonoplast (PtAQP5) in P. tricornutum In T. pseudonana, GFP-AQP fusion proteins were found on the vacuole membrane (TpAQP1) and CER (TpAQP2). Transcript levels of both PtAQP1 and PtAQP2 were highly induced by ammonia, while only PtAQP2 was induced by high (1%[v/v]) CO2 Constitutive overexpression of GFP-tagged PtAQP1 and PtAQP2 significantly increased CO2 and NH3 permeability in P. tricornutum, strongly indicating that these AQPs function in regulating CO2/NH3 permeability in the plasma membrane and/or CER. Cells carrying GFP-tagged PtAQP1 and PtAQP2 had higher nonphotochemical quenching under high light relative to that of wild-type cells, suggesting that these AQPs are involved in photoprotection. These AQPs may facilitate the efflux of NH3, preventing the uncoupling effect of high intracellular ammonia concentrations.
Collapse
Affiliation(s)
- Hiroaki Matsui
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| | - Brian M Hopkinson
- Department of Marine Sciences, University of Georgia, Athens, Georgia 30602
| | - Kensuke Nakajima
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| | - Yusuke Matsuda
- Department of Bioscience, Kwansei-Gakuin University, Sanda, Hyogo, Japan 669-1337
| |
Collapse
|
59
|
Shekoofa A, Sinclair TR. Aquaporin Activity to Improve Crop Drought Tolerance. Cells 2018; 7:E123. [PMID: 30158445 PMCID: PMC6162707 DOI: 10.3390/cells7090123] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/27/2018] [Indexed: 01/10/2023] Open
Abstract
In plants, aquaporins (AQP) occur in multiple isoforms in both plasmalemma and tonoplast membranes resulting in regulation of water flow in and out of cells, and ultimately, water transfer through a series of cells in leaves and roots. Consequently, it is not surprising that physiological and molecular studies have identified AQPs as playing key roles in regulating hydraulic conductance in roots and leaves. As a result, the activity of AQPs influences a range of physiological processes including phloem loading, xylem water exit, stomatal aperture and gas exchange. The influence of AQPs on hydraulic conductance in plants is particularly important in regulating plant transpiration rate, particularly under conditions of developing soil water-deficit stress and elevated atmospheric vapor pressure deficit (VPD). In this review, we examine the impact of AQP activity and hydraulic conductance on crop water use and the identification of genotypes that express soil water conservation as a result of these traits. An important outcome of this research has been the identification and commercialization of cultivars of peanut (Arachis hypogaea L.), maize (Zea mays L.), and soybean (Glycine max (Merr) L.) for dry land production systems.
Collapse
Affiliation(s)
- Avat Shekoofa
- Plant Sciences Department, University of Tennessee, West TN Research & Education Center, Jackson, TN 38301-3201, USA.
| | - Thomas R Sinclair
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC 27695-7620, USA.
| |
Collapse
|
60
|
Song S, Xu Y, Huang D, Miao H, Liu J, Jia C, Hu W, Valarezo AV, Xu B, Jin Z. Identification of a novel promoter from banana aquaporin family gene (MaTIP1;2) which responses to drought and salt-stress in transgenic Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 128:163-169. [PMID: 29778840 DOI: 10.1016/j.plaphy.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
Drought and salt stresses often affect plant growth and crop yields. Identification of promoters involved in drought and salt stress responses is of great significance for genetic improvement of crop resistance. Our previous studies showed that aquaporin can respond to drought and salt stresses, but its promoter has not yet been reported in plants. In the present study, cis-acting elements of MaAQP family member promoters were systematically analyzed in banana. Expression of MaTIP1; 2 was induced by drought and salt stresses but not sensitive to cold stress, waterlogging stress, or mechanical damage, and its promoter contained five stress-related cis-acting elements. The MaTIP1; 2 promoter (841 bp upstream of translation initiation site) from banana (Musa acuminata L. AAA group cv. Brazilian) was isolated through genome walking polymerase chain reaction, and found to contain a TATA Box, CAAT box, ABRE element, CCGTCC box, CGTCA motif, and TCA element. Transformation of the MaTIP1; 2 promoter into Arabidopsis to assess its function indicated that it responds to both drought and salt stress treatments. These results suggest that MaTIP1; 2 utilization may improve drought and salt stresses resistance of the transgenic plants by promoting banana aquaporin expression.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China; National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research(Wuhan), Huazhong Agricultural University, Wuhan, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Ana Valeria Valarezo
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| | - Zhiqiang Jin
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
| |
Collapse
|
61
|
Fernández-San Millán A, Aranjuelo I, Douthe C, Nadal M, Ancín M, Larraya L, Farran I, Flexas J, Veramendi J. Physiological performance of transplastomic tobacco plants overexpressing aquaporin AQP1 in chloroplast membranes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3661-3673. [PMID: 29912355 PMCID: PMC6022695 DOI: 10.1093/jxb/ery148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/12/2018] [Indexed: 05/10/2023]
Abstract
The leaf mesophyll CO2 conductance and the concentration of CO2 within the chloroplast are major factors affecting photosynthetic performance. Previous studies have shown that the aquaporin NtAQP1 (which localizes to the plasma membrane and chloroplast inner envelope membrane) is involved in CO2 permeability in the chloroplast. Levels of NtAQP1 in plants genetically engineered to overexpress the protein correlated positively with leaf mesophyll CO2 conductance and photosynthetic rate. In these studies, the nuclear transformation method used led to changes in NtAQP1 levels in the plasma membrane and the chloroplast inner envelope membrane. In the present work, NtAQP1 levels were increased up to 16-fold in the chloroplast membranes alone by the overexpression of NtAQP1 from the plastid genome. Despite the high NtAQP1 levels achieved, transplastomic plants showed lower photosynthetic rates than wild-type plants. This result was associated with lower Rubisco maximum carboxylation rate and ribulose 1,5-bisphosphate regeneration. Transplastomic plants showed reduced mesophyll CO2 conductance but no changes in chloroplast CO2 concentration. The absence of differences in chloroplast CO2 concentration was associated with the lower CO2 fixation activity of the transplastomic plants. These findings suggest that non-functional pores of recombinant NtAQP1 may be produced in the chloroplast inner envelope membrane.
Collapse
Affiliation(s)
- Alicia Fernández-San Millán
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Cyril Douthe
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - Miquel Nadal
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - María Ancín
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Luis Larraya
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Inmaculada Farran
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| | - Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa, Palma de Mallorca, Illes Balears, Spain
| | - Jon Veramendi
- Instituto de Agrobiotecnología (Universidad Pública de Navarra-CSIC), Departamento de Producción Agraria, Campus Arrosadía, Pamplona, Spain
| |
Collapse
|
62
|
Zhou L, Zhou J, Xiong Y, Liu C, Wang J, Wang G, Cai Y. Overexpression of a maize plasma membrane intrinsic protein ZmPIP1;1 confers drought and salt tolerance in Arabidopsis. PLoS One 2018; 13:e0198639. [PMID: 29856862 PMCID: PMC5983466 DOI: 10.1371/journal.pone.0198639] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 11/25/2022] Open
Abstract
Drought and salt stress are major abiotic stress that inhibit plants growth and development, here we report a plasma membrane intrinsic protein ZmPIP1;1 from maize and identified its function in drought and salt tolerance in Arabidopsis. ZmPIP1;1 was localized to the plasma membrane and endoplasmic reticulum in maize protoplasts. Treatment with PEG or NaCl resulted in induced expression of ZmPIP1;1 in root and leaves. Constitutive overexpression of ZmPIP1;1 in transgenic Arabidopsis plants resulted in enhanced drought and salt stress tolerance compared to wild type. A number of stress responsive genes involved in cellular osmoprotection in ZmPIP1;1 overexpression plants were up-regulated under drought or salt condition. ZmPIP1;1 overexpression plants showed higher activities of reactive oxygen species (ROS) scavenging enzymes such as catalase and superoxide dismutase, lower contents of stress-induced ROS such as superoxide, hydrogen peroxide and malondialdehyde, and higher levels of proline under drought and salt stress than did wild type. ZmPIP1;1 may play a role in drought and salt stress tolerance by inducing of stress responsive genes and increasing of ROS scavenging enzymes activities, and could provide a valuable gene for further plant breeding.
Collapse
Affiliation(s)
- Lian Zhou
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jing Zhou
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yuhan Xiong
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Chaoxian Liu
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiuguang Wang
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Guoqiang Wang
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Yilin Cai
- Maize Research Institute, Key Laboratory of Biotechnology and Crop Quality Improvement, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
63
|
Anupama A, Bhugra S, Lall B, Chaudhury S, Chugh A. Assessing the correlation of genotypic and phenotypic responses of indica rice varieties under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 127:343-354. [PMID: 29655154 DOI: 10.1016/j.plaphy.2018.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/03/2018] [Indexed: 06/08/2023]
Abstract
Drought is one of the severe abiotic stress that affects the productivity of rice, an important staple crop that is consumed all over the world. The traits responsible for enhancing or adapting drought resistance in rice plants can be selected and studied to improve their growth under stress conditions. Experiments have been conducted on indica rice varieties comprising Sahabhagidhan as drought tolerant variety and IR64, MTU1010 categorized as drought sensitive varieties. Various root related biochemical and morphological traits such as root length, relative water content (RWC), xylem number, xylem area, proline content, and malondialdehyde content have been investigated for a comparative study of the plant response to drought stress in different rice varieties. The results of differential root transcriptome analysis have revealed that there is a notable difference in gene expression of OsPIP2;5 and OsNIP2;1 in various indica varieties of rice at different time periods of stress. The present work aims at assessing the correlation between genotypic and phenotypic traits that can contribute towards the emerging field of rice phenomics.
Collapse
Affiliation(s)
- Anupama Anupama
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Swati Bhugra
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Brejesh Lall
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Santanu Chaudhury
- Department of Electrical Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India.
| |
Collapse
|
64
|
Chen Q, Yang S, Kong X, Wang C, Xiang N, Yang Y, Yang Y. Molecular cloning of a plasma membrane aquaporin in Stipa purpurea, and exploration of its role in drought stress tolerance. Gene 2018; 665:41-48. [PMID: 29709638 DOI: 10.1016/j.gene.2018.04.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022]
Abstract
Stipa purpurea is widely distributed on the Tibetan Plateau, and has high drought resistance. Plasma membrane intrinsic proteins are a type of aquaporin. They regulate the movement of water and are associated with plant protective reactions to biotic and abiotic stresses. We characterized a plasma membrane intrinsic protein from S. purpurea (SpPIP1) and elucidated its role in molecular aspects of the plant's response to drought stress. The full-length open reading frame of SpPIP1 was 870 bp and encoded 289 amino acids. The transcript level of SpPIP1 was higher in the root of S. purpurea than in the flower, leaf and stem. The level of SpPIP1 transcript increased significantly when treated with drought treatment. Subcellular localization result showed that SpPIP1 was localized in the plasma membrane. Ectopic expression of SpPIP1 in Arabidopsis thaliana resulted in plants with higher tolerance to drought treatment. SpPIP1 of S. purpurea may mediate plant response to arid environments.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shihai Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiangxiang Kong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Chuntao Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nan Xiang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yunqiang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Yongping Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650204, China; Plant Germplasm and Genomics Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; Institute of Tibetan Plateau Research at Kunming, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
65
|
Kumar RMS, Ji G, Guo H, Zhao L, Zheng B. Over-expression of a grafting-responsive gene from hickory increases abiotic stress tolerance in Arabidopsis. PLANT CELL REPORTS 2018; 37:541-552. [PMID: 29335788 DOI: 10.1007/s00299-018-2250-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 01/05/2018] [Indexed: 05/12/2023]
Abstract
A grafting response gene CcPIP1;2 was cloned from hickory plant, further functional characterization of the gene for water transport activity and abiotic stress tolerances were carried out through heterologous expression in Xenopus and Arabidopsis. Plasma membrane intrinsic proteins (PIPs) are multifunctional channel proteins belonging to the membrane intrinsic protein (MIP) family. In this study, a grafting-responsive gene from hickory (CcPIP1;2) was cloned and functionally characterized. Application of non-selective water inhibitors (HgCl2 and phloretin) led to the death of grafted hickory plants at 30 days after grafting (DAG). Furthermore, the transcript accumulation of the selected CcPIP1;2 gene was gradually decreased from 0 to 14 DAG in the grafted samples under inhibitor treatment conditions. Transient expression analysis of the GFP-CcPIP1;2 fusion protein showed that CcPIP1;2 was located at plasma membrane. Heterologous expression of CcPIP1;2 protein in the Xenopus oocyte system helped the access of water into the cells. Over-expression of CcPIP1;2 in Arabidopsis improved the percentage of seed germination when the seeds were grown in H2O2-, ABA-, and mannitol-containing media, but had no effect when grown in the salt containing media. CcPIP1;2 transgenic plants grew better under drought conditions. The expression of various ABA-related stress marker genes as well as cell wall expansin marker genes was significantly higher in CcPIP1;2 over-expression Arabidopsis lines than in the wild type (WT).
Collapse
Affiliation(s)
- R M Saravana Kumar
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Guocun Ji
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Haipeng Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
66
|
Kapilan R, Vaziri M, Zwiazek JJ. Regulation of aquaporins in plants under stress. Biol Res 2018; 51:4. [PMID: 29338771 PMCID: PMC5769316 DOI: 10.1186/s40659-018-0152-0] [Citation(s) in RCA: 176] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/11/2018] [Indexed: 01/16/2023] Open
Abstract
Aquaporins (AQP) are channel proteins belonging to the Major Intrinsic Protein (MIP) superfamily that play an important role in plant water relations. The main role of aquaporins in plants is transport of water and other small neutral molecules across cellular biological membranes. AQPs have remarkable features to provide an efficient and often, specific water flow and enable them to transport water into and out of the cells along the water potential gradient. Plant AQPs are classified into five main subfamilies including the plasma membrane intrinsic proteins (PIPs), tonoplast intrinsic proteins (TIPs), nodulin 26 like intrinsic proteins (NIPs), small basic intrinsic proteins (SIPs) and X intrinsic proteins (XIPs). AQPs are localized in the cell membranes and are found in all living cells. However, most of the AQPs that have been described in plants are localized to the tonoplast and plasma membranes. Regulation of AQP activity and gene expression, are also considered as a part of the adaptation mechanisms to stress conditions and rely on complex processes and signaling pathways as well as complex transcriptional, translational and posttranscriptional factors. Gating of AQPs through different mechanisms, such as phosphorylation, tetramerization, pH, cations, reactive oxygen species, phytohormones and other chemical agents, may play a key role in plant responses to environmental stresses by maintaining the uptake and movement of water in the plant body.
Collapse
Affiliation(s)
| | - Maryam Vaziri
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
67
|
Gao L, Lu Z, Ding L, Guo J, Wang M, Ling N, Guo S, Shen Q. Role of Aquaporins in Determining Carbon and Nitrogen Status in Higher Plants. Int J Mol Sci 2018; 19:E35. [PMID: 29342938 PMCID: PMC5795985 DOI: 10.3390/ijms19010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 01/01/2023] Open
Abstract
Aquaporins (AQPs) are integral membrane proteins facilitating the transport of water and some small neutral molecules across cell membranes. In past years, much effort has been made to reveal the location of AQPs as well as their function in water transport, photosynthetic processes, and stress responses in higher plants. In the present review, we paid attention to the character of AQPs in determining carbon and nitrogen status. The role of AQPs during photosynthesis is characterized as its function in transporting water and CO₂ across the membrane of chloroplast and thylakoid; recalculated results from published studies showed that over-expression of AQPs contributed to 25% and 50% increases in stomatal conductance (gs) and mesophyll conductance (gm), respectively. The nitrogen status in plants is regulated by AQPs through their effect on water flow as well as urea and NH₄⁺ uptake, and the potential role of AQPs in alleviating ammonium toxicity is discussed. At the same time, root and/or shoot AQP expression is quite dependent on both N supply amounts and forms. Future research directions concerning the function of AQPs in regulating plant carbon and nitrogen status as well as C/N balance are also highlighted.
Collapse
Affiliation(s)
- Limin Gao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Lei Ding
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
68
|
Lu L, Dong C, Liu R, Zhou B, Wang C, Shou H. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development. FRONTIERS IN PLANT SCIENCE 2018; 9:530. [PMID: 29755491 PMCID: PMC5932197 DOI: 10.3389/fpls.2018.00530] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 05/21/2023]
Abstract
Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP) genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG)-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT) plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.
Collapse
Affiliation(s)
- Linghong Lu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Changhe Dong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ruifang Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Bin Zhou
- Institute of Crop Science, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chuang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, China
| | - Huixia Shou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
- *Correspondence: Huixia Shou,
| |
Collapse
|
69
|
Wang L, Li QT, Lei Q, Feng C, Zheng X, Zhou F, Li L, Liu X, Wang Z, Kong J. Ectopically expressing MdPIP1;3, an aquaporin gene, increased fruit size and enhanced drought tolerance of transgenic tomatoes. BMC PLANT BIOLOGY 2017; 17:246. [PMID: 29258418 PMCID: PMC5735821 DOI: 10.1186/s12870-017-1212-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/08/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Water deficit severely reduces apple growth and production, is detrimental to fruit quality and size. This problem is exacerbated as global warming is implicated in producing more severe drought stress. Thus water-efficiency has becomes the major target for apple breeding. A desired apple tree can absorb and transport water efficiently, which not only confers improved drought tolerance, but also guarantees fruit size for higher income returns. Aquaporins, as water channels, control water transportation across membranes and can regulate water flow by changing their amount and activity. The exploration of molecular mechanism of water efficiency and the gene wealth will pave a way for molecular breeding of drought tolerant apple tree. RESULTS In the current study, we screened out a drought inducible aquaporin gene MdPIP1;3, which specifically enhanced its expression during fruit expansion in 'Fuji' apple (Malus domestica Borkh. cv. Red Fuji). It localized on plasma membranes and belonged to PIP1 subfamily. The tolerance to drought stress enhanced in transgenic tomato plants ectopically expressing MdPIP1;3, showing that the rate of losing water in isolated transgenic leaves was slower than wild type, and stomata of transgenic plants closed sensitively to respond to drought compared with wild type. Besides, length and diameter of transgenic tomato fruits increased faster than wild type, and in final, fruit sizes and fresh weights of transgenic tomatoes were bigger than wild type. Specially, in cell levels, fruit cell size from transgenic tomatoes was larger than wild type, showing that cell number per mm2 in transgenic fruits was less than wild type. CONCLUSIONS Altogether, ectopically expressing MdPIP1;3 enhanced drought tolerance of transgenic tomatoes partially via reduced water loss controlled by stomata closure in leaves. In addition, the transgenic tomato fruits are larger and heavier with larger cells via more efficient water transportation across membranes. Our research will contribute to apple production, by engineering apples with big fruits via efficient water transportation when well watered and enhanced drought tolerance in transgenic apples under water deficit.
Collapse
Affiliation(s)
- Lin Wang
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qing-Tian Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Qiong Lei
- College of Horticulture, China Agricultural University, Beijing, China
| | - Chao Feng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaodong Zheng
- College of Horticulture, China Agricultural University, Beijing, China
| | - Fangfang Zhou
- College of Horticulture, China Agricultural University, Beijing, China
| | - Lingzi Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Xuan Liu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Zhi Wang
- College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin Kong
- College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
70
|
Pilcher W, Zandkamiri H, Arceneaux K, Harrison S, Baisakh N. Genome-wide microarray analysis leads to identification of genes in response to herbicide, metribuzin in wheat leaves. PLoS One 2017; 12:e0189639. [PMID: 29228046 PMCID: PMC5724888 DOI: 10.1371/journal.pone.0189639] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Herbicides are an important component of weed management in wheat, particularly in the southeastern US where weeds actively compete with wheat throughout the winter for nutrients and reduce tillering and ultimately the yield of the crop. Some wheat varieties are sensitive to metribuzin, a low-cost non-selective herbicide, leading to leaf chlorosis, stand loss, and decreased yield. Knowledge of the genetics of herbicide tolerance in wheat is very limited and most new varieties have not been screened for metribuzin tolerance. The identification of genes associated with metribuzin tolerance will lead to the development of molecular markers for use in screening breeding lines for metribuzin tolerance. AGS 2035 and AGS 2060 were identified as resistant and sensitive to metribuzin in several previous field screening experiments as well as controlled condition screening of nine varieties in the present study. Genome-wide transcriptome profiling of the genes in AGS 2035 and AGS 2060 through microarray analysis identified 169 and 127 genes to be significantly (2-fold, P>0.01) up- and down-regulated, respectively in response to metribuzin. Functional annotation revealed that genes involved in cell wall biosynthesis, photosynthesis and sucrose metabolism were highly responsive to metribuzin application. (Semi)quantitative RT-PCR of seven selected differentially expressed genes (DEGs) indicated that a gene coding for alkaline alpha-galactosidase 2 (AAG2) was specifically expressed in resistant varieties only after one and two weeks of metribuzin application. Integration of the DEGs into our ongoing mapping effort and identification of the genes within the QTL region showing significant association with resistance in future will aid in development of functional markers for metribuzin resistance.
Collapse
Affiliation(s)
- Whitney Pilcher
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Hana Zandkamiri
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Kelly Arceneaux
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
| | - Stephen Harrison
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (NB); (SH)
| | - Niranjan Baisakh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, United States of America
- * E-mail: (NB); (SH)
| |
Collapse
|
71
|
Vieira PM, Santos MP, Andrade CM, Souza-Neto OA, Ulhoa CJ, Aragão FJL. Overexpression of an aquaglyceroporin gene from Trichoderma harzianum improves water-use efficiency and drought tolerance in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:38-47. [PMID: 29080426 DOI: 10.1016/j.plaphy.2017.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 10/14/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
Aquaporins (AQPs) and aquaglyceroporins (AQGPs) are integral membrane proteins that mediate the transport of water and solutes, such as glycerol and urea, across membranes. AQP and AQGP genes represent a valuable tool for biotechnological improvement of plant tolerance to environmental stresses. We previously isolated a gene encoding for an aquaglyceroporin (ThAQGP), which was up-regulated in Trichoderma harzianum during interaction with the plant pathogen Fusarium solani. This gene was introduced into Nicotiana tabacum and plants were physiologically characterized. Under favorable growth conditions, transgenic progenies did not had differences in both germination and growth rates when compared to wild type. However, physiological responses under drought stress revealed that transgenic plants presented significantly higher transpiration rate, stomatal conductance, photosynthetic efficiency and faster turgor recovery than wild type. Quantitative RT-PCR analysis demonstrated the presence of ThAQGP transcripts in transgenic lines, showing the cause-effect relationship between the observed phenotype and the expression of the transgene. Our results underscore the high potential of T. harzianum as a source of genes with promising applications in transgenic plants tolerant to drought stress.
Collapse
Affiliation(s)
- Pabline Marinho Vieira
- Instituto Federal Goiano, Departamento de Ciências Biológicas, Laboratório de Biotecnologia, 75790-000, Urutaí, GO, Brazil
| | - Mirella Pupo Santos
- Universidade Federal do Rio de Janeiro, Nupem, Laboratório de Biotecnologia Vegetal, 27910-970, Macaé, RJ, Brazil
| | | | | | - Cirano José Ulhoa
- Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Bioquímica e Biologia Molecular, Campus Samambaia, P.O. Box 131, 74001-970, Goiânia, GO, Brazil
| | | |
Collapse
|
72
|
Putpeerawit P, Sojikul P, Thitamadee S, Narangajavana J. Genome-wide analysis of aquaporin gene family and their responses to water-deficit stress conditions in cassava. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 121:118-127. [PMID: 29100101 DOI: 10.1016/j.plaphy.2017.10.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 10/13/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Cassava (Manihot esculenta Crantz) is an important economic crop in tropical countries. Although cassava is considered a drought-tolerant crop that can grow in arid areas, the impact of drought can significantly reduce the growth and yield of cassava storage roots. The discovery of aquaporin molecules (AQPs) in plants has resulted in a paradigm shift in the understanding of plant-water relationships, whereas the relationship between aquaporin and drought resistance in cassava still remains elusive. To investigate the potential role of aquaporin in cassava under water-deficit conditions, 45 putative MeAQPs were identified in the cassava genome. Six members of MeAQPs, containing high numbers of water stress-responsive motifs in their promoter regions, were selected for a gene expression study. Two cassava cultivars, which showed different degrees of responses to water-deficit stress, were used to test in in vitro and potted plant systems. The differential expression of all candidate MeAQPs were found in only leaves from the potted plant system were consistent with the relative water content and with the stomatal closure profile of the two cultivars. MePIP2-1 and MePIP2-10 were up-regulated and this change in their expression might regulate a special signal for water efflux out of guard cells, thus inducing stomatal closure under water-deficit conditions. In addition, the expression profiles of genes in the ABA-dependent pathway revealed an essential correlation with stomatal closure. The potential functions of MeAQPs and candidate ABA-dependent pathway genes in response to water deficit in the more tolerant cassava cultivar were discussed.
Collapse
Affiliation(s)
- Pattaranit Putpeerawit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand
| | - Punchapat Sojikul
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siripong Thitamadee
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarunya Narangajavana
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand; Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, Thailand.
| |
Collapse
|
73
|
Chen Y, Zhi J, Zhang H, Li J, Zhao Q, Xu J. Transcriptome analysis of Phytolacca americana L. in response to cadmium stress. PLoS One 2017; 12:e0184681. [PMID: 28898278 PMCID: PMC5595333 DOI: 10.1371/journal.pone.0184681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/29/2017] [Indexed: 11/18/2022] Open
Abstract
Phytolacca americana L. (pokeweed) has metal phytoremediation potential, but little is known about its metal accumulation-related genes. In this study, the de novo sequencing of total RNA produced 53.15 million reads covering 10.63 gigabases of transcriptome raw data in cadmium (Cd)-treated and untreated pokeweed. Of the 97,502 assembled unigenes, 42,197 had significant matches in a public database and were annotated accordingly. An expression level comparison between the samples revealed 1515 differentially expressed genes (DEGs), 923 down- and 592 up-regulated under Cd treatment. A KEGG pathway enrichment analysis of DEGs revealed that they were involved in 72 metabolism pathways, with photosynthesis, phenylalanine metabolism, ribosome, phenylpropanoid biosynthesis, flavonoid biosynthesis and carbon fixation in photosynthetic organisms containing 24, 18, 72, 14, 7 and 15 genes, respectively. Genes related to heavy metal tolerance, absorption, transport and accumulation were also identified, including 11 expansins, 8 nicotianamine synthases, 6 aquaporins, 4 ZRT/IRT-like proteins, 3 ABC transporters and 3 metallothioneins. The gene expression results of 12 randomly selected DEGs were validated using quantitative real-time PCR, and showed different response patterns to Cd in their roots, stems and leaves. These results may be helpful in increasing our understanding of heavy metal hyperaccumulators and in future phytoremediation applications.
Collapse
Affiliation(s)
- Yongkun Chen
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Junkai Zhi
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Hao Zhang
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Jian Li
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Qihong Zhao
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
| | - Jichen Xu
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing, China
- * E-mail:
| |
Collapse
|
74
|
Wani SH, Dutta T, Neelapu NRR, Surekha C. Transgenic approaches to enhance salt and drought tolerance in plants. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
75
|
Abiotic stresses influence the transcript abundance of PIP and TIP aquaporins in Festuca species. J Appl Genet 2017; 58:421-435. [PMID: 28779288 PMCID: PMC5655603 DOI: 10.1007/s13353-017-0403-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/27/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022]
Abstract
Festuca arundinacea and F. pratensis are the models in forage grasses to recognize the molecular basis of drought, salt and frost tolerance, respectively. Transcription profiles of plasma membrane intrinsic proteins (PIPs) and tonoplast intrinsic proteins (TIPs) aquaporin genes were obtained for leaves of Festuca species treated with different abiotic stimuli. F. arundinacea plants were exposed to drought and salt stress, whereas F. pratensis plants were cold-hardened. Changes in genes expression measured with use of real time qRT-PCR method were compared between two genotypes characterized with a significantly different level of each stress tolerance. Under drought the transcript level of PIP1;2 and TIP1;1 aquaporin decreased in both analyzed F. arundinacea genotypes, whereas for PIP2;1 only in a high drought tolerant plant. A salt treatment caused a reduction of PIP1;2 transcript level in a high salt tolerant genotype and an increase of TIP1;1 transcript abundance in both F. arundinacea genotypes, but it did not influence the expression of PIP2;1 aquaporin. During cold-hardening a decrease of PIP1;2, PIP2;1, and TIP1;1 aquaporin transcripts was observed, both in high and low frost tolerant genotypes. The obtained results revealed that the selected genotypes responded in a different way to abiotic stresses application. A reduced level of PIP1;2 transcript in F. arundinacea low drought tolerant genotype corresponded with a faster water loss and a lowering of photosynthesis efficiency and gas exchange during drought conditions. In F. pratensis, cold acclimation was associated with a lower level of aquaporin transcripts in both high and low frost tolerant genotypes. This is the first report on aquaporin transcriptional profiling under abiotic stress condition in forage grasses.
Collapse
|
76
|
Sonah H, Deshmukh RK, Labbé C, Bélanger RR. Analysis of aquaporins in Brassicaceae species reveals high-level of conservation and dynamic role against biotic and abiotic stress in canola. Sci Rep 2017; 7:2771. [PMID: 28584277 PMCID: PMC5459863 DOI: 10.1038/s41598-017-02877-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/19/2017] [Indexed: 01/11/2023] Open
Abstract
Aquaporins (AQPs) are of vital importance in the cellular transport system of all living organisms. In this study, genome-wide identification, distribution, and characterization of AQPs were determined in Arabidopsis lyrata, Capsella grandiflora, C. rubella, Eutrema salsugineum, Brassica rapa, B. oleracea, and B. napus (canola). Classification and phylogeny of AQPs revealed the loss of XIPs and NIP-IIIs in all species. Characterization of distinctive AQP features showed a high level of conservation in spacing between NPA-domains, and selectivity filters. Interestingly, TIP3s were found to be highly expressed in developing seeds, suggesting their role in seed desiccation. Analysis of available RNA-seq data obtained under biotic and abiotic stresses led to the identification of AQPs involved in stress tolerance mechanisms in canola. In addition, analysis of the effect of ploidy level, and resulting gene dose effect performed with the different combinations of Brassica A and C genomes revealed that more than 70% of AQPs expression were dose-independent, thereby supporting their role in stress alleviation. This first in-depth characterization of Brassicaceae AQPs highlights transport mechanisms and related physiological processes that could be exploited in breeding programs of stress-tolerant cultivars.
Collapse
Affiliation(s)
- Humira Sonah
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Rupesh K Deshmukh
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Caroline Labbé
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada
| | - Richard R Bélanger
- Département de phytologie-Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec City, QC, Canada.
| |
Collapse
|
77
|
Groszmann M, Osborn HL, Evans JR. Carbon dioxide and water transport through plant aquaporins. PLANT, CELL & ENVIRONMENT 2017; 40:938-961. [PMID: 27739588 DOI: 10.1111/pce.12844] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/01/2016] [Accepted: 09/22/2016] [Indexed: 05/25/2023]
Abstract
Aquaporins are channel proteins that function to increase the permeability of biological membranes. In plants, aquaporins are encoded by multigene families that have undergone substantial diversification in land plants. The plasma membrane intrinsic proteins (PIPs) subfamily of aquaporins is of particular interest given their potential to improve plant water relations and photosynthesis. Flowering plants have between 7 and 28 PIP genes. Their expression varies with tissue and cell type, through development and in response to a variety of factors, contributing to the dynamic and tissue specific control of permeability. There are a growing number of PIPs shown to act as water channels, but those altering membrane permeability to CO2 are more limited. The structural basis for selective substrate specificities has not yet been resolved, although a few key amino acid positions have been identified. Several regions important for dimerization, gating and trafficking are also known. PIP aquaporins assemble as tetramers and their properties depend on the monomeric composition. PIPs control water flux into and out of veins and stomatal guard cells and also increase membrane permeability to CO2 in mesophyll and stomatal guard cells. The latter increases the effectiveness of Rubisco and can potentially influence transpiration efficiency.
Collapse
Affiliation(s)
- Michael Groszmann
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Hannah L Osborn
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - John R Evans
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
78
|
Secchi F, Pagliarani C, Zwieniecki MA. The functional role of xylem parenchyma cells and aquaporins during recovery from severe water stress. PLANT, CELL & ENVIRONMENT 2017; 40:858-871. [PMID: 27628165 DOI: 10.1111/pce.12831] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/09/2016] [Accepted: 08/27/2016] [Indexed: 05/05/2023]
Abstract
Xylem parenchyma cells [vessel associated cells (VACs)] constitute a significant fraction of the xylem in woody plants. These cells are often closely connected with xylem vessels or tracheids via simple pores (remnants of plasmodesmata fields). The close contact and biological activity of VACs during times of severe water stress and recovery from stress suggest that they are involved in the maintenance of xylem transport capacity and responsible for the restoration of vessel/tracheid functionality following embolism events. As recovery from embolism requires the transport of water across xylem parenchyma cell membranes, an understanding of stem-specific aquaporin expression patterns, localization and activity is a crucial part of any biological model dealing with embolism recovery processes in woody plants. In this review, we provide a short overview of xylem parenchyma cell biology with a special focus on aquaporins. In particular we address their distributions and activity during the development of drought stress, during the formation of embolism and the subsequent recovery from stress that may result in refilling. Complemented by the current biological model of parenchyma cell function during recovery from stress, this overview highlights recent breakthroughs on the unique ability of long-lived perennial plants to undergo cycles of embolism-recovery related to drought/rewetting or freeze/thaw events.
Collapse
Affiliation(s)
- Francesca Secchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | - Chiara Pagliarani
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Grugliasco, 10095, Italy
| | | |
Collapse
|
79
|
Xu Z, Wang M, Shi D, Zhou G, Niu T, Hahn MG, O'Neill MA, Kong Y. DGE-seq analysis of MUR3-related Arabidopsis mutants provides insight into how dysfunctional xyloglucan affects cell elongation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 258:156-169. [PMID: 28330559 DOI: 10.1016/j.plantsci.2017.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/14/2016] [Accepted: 01/14/2017] [Indexed: 06/06/2023]
Abstract
Our previous study of the Arabidopsis mur3-3 mutant and mutant plants in which the mur3-3 phenotypes are suppressed (xxt2mur3-3, xxt5mur3-3, xxt1xxt2mur3-3 and 35Spro:XLT2:mur3-3) showed that hypocotyl cell elongation is decreased in plants that synthesize galactose-deficient xyloglucan. To obtain genome-wide insight into the transcriptome changes and regulatory networks that may be involved in this decreased elongation, we performed digital gene expression analyses of the etiolated hypocotyls of wild type (WT), mur3-3 and the four suppressor lines. Numerous differentially expressed genes (DEGs) were detected in comparisons between WT and mur3-3 (1423), xxt2mur3-3 and mur3-3 (675), xxt5mur3-3 and mur3-3 (1272), xxt1xxt2mur3-3 and mur3-3 (1197) and 35Spro:XLT2:mur3-3 vs mur3-3 (121). 550 overlapped DEGs were detected among WT vs mur3-3, xxt2mur3-3 vs mur3-3, xxt5mur3-3 vs mur3-3, and xxt1xxt2mur3-3 vs mur3-3 comparisons. These DEGs include 46 cell wall-related genes, 24 transcription factors, 6 hormone-related genes, 9 protein kinase genes and 9 aquaporin genes. The expression of all of the 550 overlapped genes is restored to near wild-type levels in the four mur3-3 suppressor lines. qRT-PCR of fifteen of these 550 genes showed that their expression levels are consistent with the digital gene expression data. Overexpression of some of these genes (XTH4, XTH30, PME3, EXPA11, MYB88, ROT3, AT5G37790, WAG2 and TIP2;3) that are down-regulated in mur3-3 partially rescued the short hypocotyl phenotype but not the aerial phenotype of mur3-3, indicating that different mechanisms exist between hypocotyl cell elongation and leaf cell elongation.
Collapse
Affiliation(s)
- Zongchang Xu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Meng Wang
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China; Graduate School of Chinese Academy of Agricultural Science, Beijing 100081, PR China.
| | - Dachuan Shi
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Gongke Zhou
- Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| | - Tiantian Niu
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| | - Michael G Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA; Department of Plant Biology, University of Georgia, Athens, GA 30602-4712 USA.
| | - Malcolm A O'Neill
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602-4712 USA.
| | - Yingzhen Kong
- Key Laboratory for Tobacco Gene Resources, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, PR China.
| |
Collapse
|
80
|
Sun X, Lian H, Liu X, Zhou S, Liu S. The garlic NF-YC gene, AsNF-YC8, positively regulates non-ionic hyperosmotic stress tolerance in tobacco. PROTOPLASMA 2017; 254:1353-1366. [PMID: 27650870 DOI: 10.1007/s00709-016-1026-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
To investigate the relationship between nuclear factor Y (NF-Y) and stress tolerance in garlic, we cloned a NF-Y family gene AsNF-YC8 from garlic, which was largely upregulated at dehydrate stage. Expression pattern analyses in garlic revealed that AsNF-YC8 is induced through abscisic acid (ABA) and abiotic stresses, such as NaCl and PEG. Compared with wild-type plants, the overexpressing-AsNF-YC8 transgenic tobacco plants showed higher seed germination rates, longer root length and better plant growth under salt and drought stresses. Under drought stress, the transgenic plants maintained higher relative water content (RWC), net photosynthesis, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than wild-type control plants. These results indicate the high tolerance of the transgenic plants to drought stress compared to the WT. The transgenic tobacco lines accumulated less reactive oxygen species (ROS) and exhibited higher antioxidative enzyme activities compared with wild-type (WT) plants under drought stress, which suggested that the overexpression of AsNF-YC8 improves the antioxidant defense system by regulating the activities of these antioxidant enzymes, which in turn protect transgenic lines against drought stress. These results suggest that AsNF-YC8 plays an important role in tolerance to drought and salt stresses.
Collapse
Affiliation(s)
- Xiudong Sun
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Haifeng Lian
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xingchen Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Shiqi Liu
- State Key Laboratory of Crop Biology, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
81
|
Wang L, Liu Y, Feng S, Yang J, Li D, Zhang J. Roles of Plasmalemma Aquaporin Gene StPIP1 in Enhancing Drought Tolerance in Potato. FRONTIERS IN PLANT SCIENCE 2017; 8:616. [PMID: 28487712 PMCID: PMC5403905 DOI: 10.3389/fpls.2017.00616] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/05/2017] [Indexed: 05/23/2023]
Abstract
Survival and mortality of plants in response to severe drought may be related to carbon starvation, but little is known about how plasma membrane intrinsic proteins may help alleviate the drought-induced damage. Here, we determined the roles of plasmalemma aquaporin gene in improving plant water status, maintaining carbon accumulation, and thereby enhancing drought tolerance. Seven StPIP1 transformed potato (Solanum tuberosum L.) lines (namely T1, T2…T7) were compared with non-transgenic control plant at molecule and whole-plant levels. The relative expression of StPIP1 gene was found in leaves, stems and roots, with the most abundant expression being in the roots. The transgenic lines T6 and T7 had the highest StPIP1 expression, averaging 7.2 times that of the control and the greatest differences occurred 48 h after mannitol osmotic stress treatment. Using an evaluation index to quantifying the degree of drought tolerance, we found that the StPIP1 transgenic lines T6 and T7 had the highest drought tolerance, averaging 8.5 times that of the control. Measured at 30 days in drought stress treatment, the control plant decreased net photosynthetic rate by 33 and 56%, respectively, under moderate and severe stresses; also decreased stomatal conductance by 39 and 65%; and lowered transpiration rate by 49 and 69%, compared to the no-stress treatment, whereas the transgenic lines T6 and T7 maintained a relatively stable level with slight decreases in these properties. The constitutive overexpression of StPIP1 in potato improved plant water use efficiency and increased nonstructural carbohydrate concentration, which helped alleviate carbon starvation and minimized the loss of biomass and tuber yield due to drought stress. We conclude that the expression of StPIPs improves overall water relations in the plant and helps maintain photosynthesis and stomatal conductance; these help minimize carbon starvation and enhance the whole plant tolerance to drought stress.
Collapse
Affiliation(s)
- Li Wang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
- Department of Plant Biotechnology, College of Life Science and Technology, Gansu Agricultural UniversityLanzhou, China
| | - Yuhui Liu
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
| | - Shoujiang Feng
- Institute of Soil, Fertilizer and Water-saving Agriculture, Gansu Academy of Agricultural SciencesLanzhou, China
| | - Jiangwei Yang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
- Department of Plant Biotechnology, College of Life Science and Technology, Gansu Agricultural UniversityLanzhou, China
| | - Dan Li
- Department of Agronomy, Longdong UniversityLanzhou, China
| | - Junlian Zhang
- Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural UniversityLanzhou, China
- Department of Olericulture, College of Horticulture, Gansu Agricultural UniversityLanzhou, China
| |
Collapse
|
82
|
Zargar SM, Nagar P, Deshmukh R, Nazir M, Wani AA, Masoodi KZ, Agrawal GK, Rakwal R. Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance. J Proteomics 2017; 169:233-238. [PMID: 28412527 DOI: 10.1016/j.jprot.2017.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 03/22/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022]
Abstract
Aquaporins (AQPs) are primarily involved in maintaining cellular water homeostasis. Their role in diverse physiological processes has fascinated plant scientists for more than a decade, particularly concerning abiotic stresses. Increasing examples of evidence in various crop plants indicate that the AQPs are responsible for precise regulation of water movement and consequently play a crucial role in the drought stress tolerance. Since drought is one of the major abiotic stresses affecting agricultural production worldwide, it has become a critical agenda to focus research on the development of drought tolerant crop plants. AQPs can act as key candidate molecules to confront this issue. Hence, there is an important need to explore the potential of AQPs by understanding the molecular mechanisms and pathways through which they induce drought tolerance. Moreover, the signalling network/s involved in such pathways needs to be mined and understood correctly, and that may lead to the development of drought tolerance in crop plants. In the present review, opportunity and challenges regarding the efficient utilization of AQP-related information is presented and discussed. The complied information and the discussion will be helpful for designing future experiments and to set the specific goals for the enhancement of drought tolerance in crop plants. Biological Significance Knowledge on the role of AQPs in maintaining cellular water homeostasis has given new hope for developing drought tolerance in crop plants. Since drought is one of the major abiotic stresses affecting agricultural production worldwide, it has become a critical agenda to focus research on the development of drought-tolerant crop plants. AQPs can act as key candidate molecules to solve this problem through genetic engineering. For this, it is important to understand the molecular mechanisms and inter-related pathways through which AQPs induce drought tolerance and to explore the signaling network/s involved in such pathways.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190025, India.
| | - Preeti Nagar
- Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110021, India
| | - Rupesh Deshmukh
- Departement de Phytologie, Université Laval, Quebec City, Canada
| | - Muslima Nazir
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190025, India
| | - Aijaz Ahmad Wani
- Department of Botany, University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir 190006, India
| | - Khalid Zaffar Masoodi
- Division of Biotechnology, Sher-e-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir 190025, India
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Pvt. Ltd., Adarsh Nagar-13, Birgunj, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB), GPO 13265, Kathmandu, Nepal; GRADE (Global Research Arch for Developing Education) Academy Pvt. Ltd., Adarsh Nagar-13, Birgunj, Nepal; Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8574, Ibaraki, Japan
| |
Collapse
|
83
|
|
84
|
Plant Aquaporins and Mycorrhizae: Their Regulation and Involvement in Plant Physiology and Performance. PLANT AQUAPORINS 2017. [DOI: 10.1007/978-3-319-49395-4_15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
85
|
Pou A, Jeanguenin L, Milhiet T, Batoko H, Chaumont F, Hachez C. Salinity-mediated transcriptional and post-translational regulation of the Arabidopsis aquaporin PIP2;7. PLANT MOLECULAR BIOLOGY 2016; 92:731-744. [PMID: 27671160 DOI: 10.1007/s11103-016-0542-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/08/2016] [Indexed: 05/23/2023]
Abstract
Salt stress triggers a simultaneous transcriptional repression and aquaporin internalization to modify root cell water conductivity. Plasma membrane intrinsic proteins (PIPs) are involved in the adjustment of plant water balance in response to changing environmental conditions. In this study, Arabidopsis wild-type (Col-0) and transgenic lines overexpressing PIP2;7 were used to investigate and compare their response to salt stress. Hydraulic conductivity measurements using a high-pressure flowmeter (HPFM) revealed that overexpression of PIP2;7 induced a sixfold increase in root hydraulic conductivity of four week-old Arabidopsis thaliana plants compared to WT. Exposure to a high salt stress (150 mM NaCl) triggered a rapid repression of overall aquaporin activity in both genotypes. Response to salt stress was also investigated in 8 day-old seedlings. Exposure to salt led to a repression of PIP2;7 promoter activity and a significant decrease in PIP2;7 mRNA abundance within 2 h. Concomitantly, a rapid internalization of fluorescently-tagged PIP2;7 proteins was observed but removal from the cell membrane was not accompanied by further degradation of the protein within 4 h of exposure to salinity stress. These data suggest that PIP transcriptional repression and channel internalization act in concert during salt stress conditions to modulate aquaporin activity, thereby significantly altering the plant hydraulic parameters in the short term.
Collapse
Affiliation(s)
- Alicia Pou
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Linda Jeanguenin
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Thomas Milhiet
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| | - Charles Hachez
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
86
|
Song J, Ye G, Qian Z, Ye Q. Virus-induced plasma membrane aquaporin PsPIP2;1 silencing inhibits plant water transport of Pisum sativum. BOTANICAL STUDIES 2016; 57:15. [PMID: 28597425 PMCID: PMC5430582 DOI: 10.1186/s40529-016-0135-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 07/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Aquaporins (AQPs) are known to facilitate water transport across cell membranes, but the role of a single AQP in regulating plant water transport, particularly in plants other than Arabidopsis remains largely unexplored. In the present study, a virus-induced gene silencing (VIGS) technique was employed to suppress the expression of a specific plasma membrane aquaporin PsPIP2;1 of Pea plants (Pisum sativum), and subsequent effects of the gene suppression on root hydraulic conductivity (Lpr), leaf hydraulic conductivity (K leaf ), root cell hydraulic conductivity (Lprc), and leaf cell hydraulic conductivity (Lplc) were investigated, using hydroponically grown Pea plants. RESULTS Compared with control plants, VIGS-PsPIP2;1 plants displayed a significant suppression of PsPIP2;1 in both roots and leaves, while the expression of other four PIP isoforms (PsPIP1;1, PsPIP1;2, PsPIP2;2, and PsPIP2;3) that were simultaneously monitored were not altered. As a consequence, significant declines in water transport of VIGS-PsPIP2;1 plants were observed at both organ and cell levels, i.e., as compared to control plants, Lpr and K leaf were reduced by 29 %, and Lprc and Lplc were reduced by 20 and 29 %, respectively. CONCLUSION Our results demonstrate that PsPIP2;1 alone contributes substantially to root and leaf water transport in Pea plants, and highlight VIGS a useful tool for investigating the role of a single AQP in regulating plant water transport.
Collapse
Affiliation(s)
- Juanjuan Song
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| | - Guoliang Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Zhengjiang Qian
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049 China
| | - Qing Ye
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 China
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, 510650 Guangdong China
| |
Collapse
|
87
|
Schmidt R, Kunkowska AB, Schippers JHM. Role of Reactive Oxygen Species during Cell Expansion in Leaves. PLANT PHYSIOLOGY 2016; 172:2098-2106. [PMID: 27794099 PMCID: PMC5129704 DOI: 10.1104/pp.16.00426] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species as potent regulators of leaf development poses special interest for cell expansion.
Collapse
Affiliation(s)
- Romy Schmidt
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Alicja B Kunkowska
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Jos H M Schippers
- Institute of Biology I, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
88
|
Zhao F, Zhang D, Zhao Y, Wang W, Yang H, Tai F, Li C, Hu X. The Difference of Physiological and Proteomic Changes in Maize Leaves Adaptation to Drought, Heat, and Combined Both Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1471. [PMID: 27833614 PMCID: PMC5080359 DOI: 10.3389/fpls.2016.01471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/15/2016] [Indexed: 05/18/2023]
Abstract
At the eight-leaf stage, maize is highly sensitive to stresses such as drought, heat, and their combination, which greatly affect its yield. At present, few studies have analyzed maize response to combined drought and heat stress at the eight-leaf stage. In this study, we measured certain physical parameters of maize at the eight-leaf stage when it was exposed to drought, heat, and their combination. The results showed an increase in the content of H2O2 and malondialdehyde (MDA), and in the enzyme activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but a decrease in the quantum efficiency of photosystem II (ΦPSII). The most obvious increase or decrease in physical parameters was found under the combined stress condition. Moreover, to identify proteins differentially regulated by the three stress conditions at the eight-leaf stage, total proteins from the maize leaves were identified and quantified using multiplex iTRAQ-based quantitative proteomic and LC-MS/MS methods. In summary, the expression levels of 135, 65, and 201 proteins were significantly changed under the heat, drought and combined stress conditions, respectively. Of the 135, 65, and 201 differentially expressed proteins, 61, 28, and 16 responded exclusively to drought stress, heat stress, and combined stress, respectively. Bioinformatics analysis implied that chaperone proteins and proteases play important roles in the adaptive response of maize to heat stress and combined stress, and that the leaf senescence promoted by ethylene-responsive protein and ripening-related protein may play active roles in maize tolerance to combined drought and heat stress. The signaling pathways related to differentially expressed proteins were obviously different under all three stress conditions. Thus, the functional characterization of these differentially expressed proteins will be helpful for discovering new targets to enhance maize tolerance to stress.
Collapse
Affiliation(s)
- Feiyun Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Dayong Zhang
- Provincial Key Laboratory of Agrobiology, Institute of Biotechnology, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Yulong Zhao
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Wei Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Hao Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Fuju Tai
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Chaohai Li
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, College of Life Science, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
89
|
Liu X, Dong X, Liu Z, Shi Z, Jiang Y, Qi M, Xu T, Li T. Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. PLANT MOLECULAR BIOLOGY 2016; 92:313-336. [PMID: 27542006 DOI: 10.1007/s11103-016-0514-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
Solanum lycopersicum auxin response factor 10 (SlARF10) is post-transcriptionally regulated by Sl-miR160. Overexpression of a Sl-miR160-resistant SlARF10 (mSlARF10) resulted in narrower leaflet blades with larger stomata but lower densities. 35S:mSlARF10-6 plants with narrower excised leaves had greater water loss, which was in contrast to the wild type (WT). Further analysis revealed that the actual water loss was not consistent with the calculated stomatal water loss in 35S:mSlARF10-6 and the WT under the dehydration treatment, indicating that there is a difference in hydraulic conductance. Pretreatment with abscisic acid (ABA) and HgCl2 confirmed higher hydraulic conductance in 35S:mSlARF10, which is related to the larger stomatal size and higher activity of aquaporins (AQPs). Under ABA treatment, 35S:mSlARF10-6 showed greater sensitivity, and the stomata closed rapidly. Screening by RNA sequencing revealed that five AQP-related genes, fourteen ABA biosynthesis/signal genes and three stomatal development genes were significantly altered in 35S:mSlARF10-6 plants, and this result was verified by qRT-PCR. The promoter analysis showed that upregulated AQPs contain AuxRE and ABRE, implying that these elements may be responsible for the high expression levels of AQPs in 35S:mSlARF10-6. The three most upregulated AQPs (SlTIP1-1-like, SlPIP2;4 and SlNIP-type-like) were chosen to confirm AuxRE and ABRE function. Promoters transient expression demonstrated that the SlPIP2;4 and SlNIP-type-like AuxREs and SlPIP2;4 and SlTIP1-1-like ABREs could significantly enhance the expression of the GUS reporter in 35S:mSlARF10-6, confirming that AuxRE and ABRE may be the main factors inducing the expression of AQPs. Additionally, two upregulated transcription factors in 35S:mSlARF10-6, SlARF10 and SlABI5-like were shown to directly bind to those elements in an electromobility shift assay and a yeast one-hybrid assay. Furthermore, transient expression of down-regulated ARF10 or up-regulated ABI5 in tomato leaves demonstrated that ARF10 is the direct factor for inducing the water loss in 35S:mSlARF10-6. Here, we show that although SlARF10 increased the ABA synthesis/signal response by regulating stomatal aperture to mitigate water loss, SlARF10 also influenced stomatal development and AQP expression to affect water transport, and both act cooperatively to control the loss of leaf water in tomato. Therefore, this study uncovers a previously unrecognized leaf water loss regulatory factor and a network for coordinating auxin and ABA signalling in this important process. In an evolutionary context, miR160 regulates ARF10 to maintain the water balance in the leaf, thus ensuring normal plant development and environmental adaptation.
Collapse
Affiliation(s)
- Xin Liu
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Xiufen Dong
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Zihan Liu
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Zihang Shi
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Yun Jiang
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China
| | - Tao Xu
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China.
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China.
| | - Tianlai Li
- Horticulture Department, College of Horticulture, Shenyang Agricultural University, No. 120 Dongling Road, Shenhe District, Shenyang, 110866, Liaoning, China.
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China.
- Key Laboratory of Protected Horticulture of Liaoning Province, Shenyang, Liaoning Province, China.
| |
Collapse
|
90
|
Li R, Wang J, Li S, Zhang L, Qi C, Weeda S, Zhao B, Ren S, Guo YD. Plasma Membrane Intrinsic Proteins SlPIP2;1, SlPIP2;7 and SlPIP2;5 Conferring Enhanced Drought Stress Tolerance in Tomato. Sci Rep 2016; 6:31814. [PMID: 27545827 PMCID: PMC4992886 DOI: 10.1038/srep31814] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/26/2016] [Indexed: 11/30/2022] Open
Abstract
The function of aquaporin (AQP) protein in transporting water is crucial for plants to survive in drought stress. With 47 homologues in tomato (Solanum lycopersicum) were reported, but the individual and integrated functions of aquaporins involved in drought response remains unclear. Here, three plasma membrane intrinsic protein genes, SlPIP2;1, SlPIP2;7 and SlPIP2;5, were identified as candidate aquaporins genes because of highly expressed in tomato roots. Assay on expression in Xenopus oocytes demonstrated that SlPIP2s protein displayed water channel activity and facilitated water transport into the cells. With real-time PCR and in situ hybridization analysis, SlPIP2s were considered to be involved in response to drought treatment. To test its function, transgenic Arabidopsis and tomato lines overexpressing SlPIP2;1, SlPIP2;7 or SlPIP2;5 were generated. Compared with wild type, the over-expression of SlPIP2;1, SlPIP2;7 or SlPIP2;5 transgenic Arabidopsis and tomato plants all showed significantly higher hydraulic conductivity levels and survival rates under both normal and drought conditions. Taken together, this study concludes that aquaporins (SlPIP2;1, SlPIP2;7 and SlPIP2;5) contribute substantially to root water uptake in tomato plants through improving plant water content and maintaining osmotic balance.
Collapse
Affiliation(s)
- Ren Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 100081 Beijing, China
| | - Jinfang Wang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuangtao Li
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Lei Zhang
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chuandong Qi
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Sarah Weeda
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Bing Zhao
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shuxin Ren
- School of Agriculture, Virginia State University, PO Box 9061, Petersburg, VA 23806, USA
| | - Yang-Dong Guo
- College of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
91
|
Zhuo C, Wang T, Guo Z, Lu S. Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 (-) deficiency in transgenic tobacco plants. BMC PLANT BIOLOGY 2016; 16:138. [PMID: 27301445 PMCID: PMC4907284 DOI: 10.1186/s12870-016-0814-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/19/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND Plasma membrane intrinsic proteins (PIPs), which belong to aquaporins (AQPs) superfamily, are subdivided into two groups, PIP1 and PIP2, based on sequence similarity. Several PIP2s function as water channels, while PIP1s have low or no water channel activity, but have a role in water permeability through interacting with PIP2. A cold responsive PIP2 named as MfPIP2-7 was isolated from Medicago falcata (hereafter falcata), a forage legume with great cold tolerance, and transgenic tobacco plants overexpressing MfPIP2-7 were analyzed in tolerance to multiple stresses including freezing, chilling, and nitrate reduction in this study. RESULTS MfPIP2-7 transcript was induced by 4 to 12 h of cold treatment and 2 h of abscisic acid (ABA) treatment. Pretreatment with inhibitor of ABA synthesis blocked the cold induced MfPIP2-7 transcript, indicating that ABA was involved in cold induced transcription of MfPIP2-7 in falcata. Overexpression of MfPIP2-7 resulted in enhanced tolerance to freezing, chilling and NO3 (-) deficiency in transgenic tobacco (Nicotiana tabacum L.) plants as compared with the wild type. Moreover, MfPIP2-7 was demonstrated to facilitate H2O2 diffusion in yeast. Higher transcript levels of several stress responsive genes, such as NtERD10B, NtERD10C, NtDREB1, and 2, and nitrate reductase (NR) encoding genes (NtNIA1, and NtNIA2) were observed in transgenic plants as compared with the wild type with dependence upon H2O2. In addition, NR activity was increased in transgenic plants, which led to alterations in free amino acid components and concentrations. CONCLUSIONS The results suggest that MfPIP2-7 plays an important role in plant tolerance to freezing, chilling, and NO3 (-) deficiency by promoted H2O2 diffusion that in turn up-regulates expression of NIAs and multiple stress responsive genes.
Collapse
Affiliation(s)
- Chunliu Zhuo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ting Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenfei Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- College of Grassland Science, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoyun Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Engineering Research Center for Grassland Science, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
92
|
Pandey V, Ansari M, Tula S, Sahoo R, Bains G, Kumar J, Tuteja N, Shukla A. Ocimum sanctum leaf extract induces drought stress tolerance in rice. PLANT SIGNALING & BEHAVIOR 2016; 11:e1150400. [PMID: 26890603 PMCID: PMC4977457 DOI: 10.1080/15592324.2016.1150400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Ocimum leaves are highly enriched in antioxidant components. Thus, its leaf extract, if applied in plants, is believed to efficiently scavenge ROS, thereby preventing oxidative damage under drought stress. Thus, the present study was performed in kharif 2013 and rabi 2014 season to evaluate the effect of aqueous leaf extract of Ocimum sanctum against drought stress in 2 rice genotype under glass house conditions. Here we show that various morpho- physiological (chlorophyll fluorescence, leaf rolling score, leaf tip burn, number of senesced leaves and total dry matter) and biochemical parameters (proline, malondialdehyde and superoxide dismutase content) were amended by Ocimum treatment in both the seasons. Application of Ocimum extract increased expression of dehydrin genes, while reducing expression of aquaporin genes in drought stressed rice plant. Thus, application of Ocimum leaf extract under drought stress can be suggested as a promising strategy to mitigate drought stress in economical, accessible and ecofriendly manner.
Collapse
Affiliation(s)
- Veena Pandey
- Department of Plant Physiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - M.W. Ansari
- Department of Botany, Zakir Husain Delhi College, Jawahar Lal Nehru Marg, New Delhi, India
| | - Suresh Tula
- Plant Molecular Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - R.K. Sahoo
- Plant Molecular Biology Group, International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gurdeep Bains
- Department of Plant Physiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - J. Kumar
- Department of Plant Pathology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Narendra Tuteja
- Amity Institute of Microbial Technology, Amity University, Noida, UP, India
| | - Alok Shukla
- Department of Plant Physiology, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
93
|
He F, Zhang H, Tang M. Aquaporin gene expression and physiological responses of Robinia pseudoacacia L. to the mycorrhizal fungus Rhizophagus irregularis and drought stress. MYCORRHIZA 2016; 26:311-23. [PMID: 26590998 DOI: 10.1007/s00572-015-0670-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/13/2015] [Indexed: 05/09/2023]
Abstract
The influence of arbuscular mycorrhiza (AM) and drought stress on aquaporin (AQP) gene expression, water status, and photosynthesis was investigated in black locust (Robinia pseudoacacia L.). Seedlings were grown in potted soil inoculated without or with the AM fungus Rhizophagus irregularis, under well-watered and drought stress conditions. Six full-length AQP complementary DNAs (cDNAs) were isolated from Robinia pseudoacacia, named RpTIP1;1, RpTIP1;3, RpTIP2;1, RpPIP1;1, RpPIP1;3, and RpPIP2;1. A phylogenetic analysis of deduced amino acid sequences demonstrated that putative proteins coded by these RpAQP genes belong to the water channel protein family. Expression analysis revealed higher RpPIP expression in roots while RpTIP expression was higher in leaves, except for RpTIP1;3. AM symbiosis regulated host plant AQPs, and the expression of RpAQP genes in mycorrhizal plants depended on soil water condition and plant tissue. Positive effects were observed for plant physiological parameters in AM plants, which had higher dry mass and lower water saturation deficit and electrolyte leakage than non-AM plants. Rhizophagus irregularis inoculation also slightly increased leaf net photosynthetic rate and stomatal conductance under well-watered and drought stress conditions. These findings suggest that AM symbiosis can enhance the drought tolerance in Robinia pseudoacacia plants by regulating the expression of RpAQP genes, and by improving plant biomass, tissue water status, and leaf photosynthesis in host seedlings.
Collapse
Affiliation(s)
- Fei He
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Haoqiang Zhang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Ming Tang
- College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
94
|
Daloso DM, Williams TCR, Antunes WC, Pinheiro DP, Müller C, Loureiro ME, Fernie AR. Guard cell-specific upregulation of sucrose synthase 3 reveals that the role of sucrose in stomatal function is primarily energetic. THE NEW PHYTOLOGIST 2016; 209:1470-83. [PMID: 26467445 DOI: 10.1111/nph.13704] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/06/2015] [Indexed: 05/21/2023]
Abstract
Isoform 3 of sucrose synthase (SUS3) is highly expressed in guard cells; however, the precise function of SUS3 in this cell type remains to be elucidated. Here, we characterized transgenic Nicotiana tabacum plants overexpressing SUS3 under the control of the stomatal-specific KST1 promoter, and investigated the changes in guard cell metabolism during the dark to light transition. Guard cell-specific SUS3 overexpression led to increased SUS activity, stomatal aperture, stomatal conductance, transpiration rate, net photosynthetic rate and growth. Although only minor changes were observed in the metabolite profile in whole leaves, an increased fructose level and decreased organic acid levels and sucrose to fructose ratio were observed in guard cells of transgenic lines. Furthermore, guard cell sucrose content was lower during light-induced stomatal opening. In a complementary approach, we incubated guard cell-enriched epidermal fragments in (13) C-NaHCO3 and followed the redistribution of label during dark to light transitions; this revealed increased labeling in metabolites of, or associated with, the tricarboxylic acid cycle. The results suggest that sucrose breakdown is a mechanism to provide substrate for the provision of organic acids for respiration, and imply that manipulation of guard cell metabolism may represent an effective strategy for plant growth improvement.
Collapse
Affiliation(s)
- Danilo M Daloso
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| | - Thomas C R Williams
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Departamento de Botânica, Universidade de Brasilia, Brasília, DF, 70910-900, Brazil
| | - Werner C Antunes
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, PR, 87020-900, Brazil
| | - Daniela P Pinheiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Caroline Müller
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Marcelo E Loureiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany
| |
Collapse
|
95
|
The Roles of Aquaporins in Plant Stress Responses. J Dev Biol 2016; 4:jdb4010009. [PMID: 29615577 PMCID: PMC5831814 DOI: 10.3390/jdb4010009] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 12/26/2022] Open
Abstract
Aquaporins are membrane channel proteins ubiquitously present in all kingdoms of life. Although aquaporins were originally discovered as water channels, their roles in the transport of small neutral solutes, gasses, and metal ions are now well established. Plants contain the largest number and greatest diversity of aquaporin homologs with diverse subcellular localization patterns, gating properties, and solute specificity. The roles of aquaporins in physiological functions throughout plant growth and development are well known. As an integral regulator of plant–water relations, they are presumed to play an important role in plant defense responses against biotic and abiotic stressors. This review highlights involvement of various aquaporin homologs in plant stress responses against a variety of environmental stresses that disturb plant cell osmotic balance and nutrient homeostasis.
Collapse
|
96
|
Ariani A, Francini A, Andreucci A, Sebastiani L. Over-expression of AQUA1 in Populus alba Villafranca clone increases relative growth rate and water use efficiency, under Zn excess condition. PLANT CELL REPORTS 2016; 35:289-301. [PMID: 26518428 DOI: 10.1007/s00299-015-1883-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 05/04/2023]
Abstract
Transgenic Populus alba over-expressing a TIP aquaporin ( aqua1) showed a higher growth rate under Zn excess, suggesting that aqua1 could be involved in water homeostasis, rather than in Zn homeostasis. Populus is the internationally accepted model for physiological and developmental studies of tree traits under stress. In plants, aquaporins facilitate and regulate the diffusion of water, however, few poplar aquaporins have been characterized to date. In this study, we reported for the first time an in vivo characterization of Populus alba clone Villafranca transgenic plants over-expressing a TIP aquaporin (aqua1) of P. x euramericana clone I-214. An AQUA1:GFP chimeric construct, over-expressed in P. alba Villafranca clones, shows a cytoplasmic localization in roots, and it localizes in guard cells in leaves. When over-expressed in transgenic plants, aqua1 confers a higher growth rate compared to wild-type (wt) plants, without affecting chlorophyll accumulation, relative water content (RWC), and fluorescence performances, but increasing the intrinsic Transpiration Efficiency. In response to Zn (1 mM), transgenic lines did not show a significant increase in Zn accumulation as compared to wt plants, even though the over-expression of this gene confers higher tolerance in root tissues. These results suggest that, in poplar plants, this gene could be principally involved in regulation of water homeostasis and biomass production, rather than in Zn homeostasis.
Collapse
Affiliation(s)
- Andrea Ariani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
- Department of Plant Sciences/MS1, University of California, 1 Shields Avenue, Davis, CA, 95616-8780, USA.
| | - Alessandra Francini
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| | - Andrea Andreucci
- Department of Biology, University of Pisa, V. L. Ghini 13, 56126, Pisa, Italy.
| | - Luca Sebastiani
- BioLabs, Institute of Life Sciences, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| |
Collapse
|
97
|
Chang W, Liu X, Zhu J, Fan W, Zhang Z. An aquaporin gene from halophyte Sesuvium portulacastrum, SpAQP1, increases salt tolerance in transgenic tobacco. PLANT CELL REPORTS 2016; 35:385-95. [PMID: 26581952 DOI: 10.1007/s00299-015-1891-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 05/21/2023]
Abstract
KEY MESSAGE SpAQP1 was strongly induced by salt in an ABA-independent way, promoted seed germination and root growth in transgenic tobaccos and increased salt tolerance by increasing the activities of antioxidative enzymes. Aquaporin (AQP) plays crucial roles in the responses of plant to abiotic stresses such as drought, salt and cold. Compared to glycophytes, halophytes often have excellent salt and drought tolerances. To uncover the molecular mechanism of halophyte Sesuvium portulacastrum tolerance to salt, in this study, an AQP gene, SpAQP1, from S. portulacastrum was isolated and characterized. The amino acid sequence of SpAQP1 shared high homology with that of plant plasma membrane intrinsic proteins (PIPs) and contained the distinct molecular features of PIPs. In the phylogenic tree, SpAQP1 was evidently classified as the PIP2 subfamily. SpAQP1 is expressed in roots, stems and leaves, and was significantly induced by NaCl treatment and inhibited by abscisic acid (ABA) treatment. When heterologously expressed in yeast and tobacco, SpAQP1 enhanced the salt tolerance of yeast strains and tobacco plants and promoted seed germination and root growth under salt stress in transgenic plants. The activity of antioxidative enzymes including superoxide dismutase, peroxidase and catalase was increased in transgenic plants overexpressing SpAQP1. Taken together, our studies suggested that SpAQP1 functioned in the responses of S. portulacastrum to salt stress and could increase salt tolerance by enhancing the antioxidative activity of plants.
Collapse
Affiliation(s)
- Wenjun Chang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China.
| | - Xiwen Liu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Jiahong Zhu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Wei Fan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, 571101, People's Republic of China
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Longhua District, Haikou, 571101, People's Republic of China
| | - Zhili Zhang
- Hainan Academy of Agricultural Sciences, 4 Xingdan Road, Haikou, 571100, People's Republic of China.
| |
Collapse
|
98
|
Alavilli H, Awasthi JP, Rout GR, Sahoo L, Lee BH, Panda SK. Overexpression of a Barley Aquaporin Gene, HvPIP2;5 Confers Salt and Osmotic Stress Tolerance in Yeast and Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:1566. [PMID: 27818670 PMCID: PMC5073208 DOI: 10.3389/fpls.2016.01566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/05/2016] [Indexed: 05/19/2023]
Abstract
We characterized an aquaporin gene HvPIP2;5 from Hordeum vulgare and investigated its physiological roles in heterologous expression systems, yeast and Arabidopsis, under high salt and high osmotic stress conditions. In yeast, the expression of HvPIP2;5 enhanced abiotic stress tolerance under high salt and high osmotic conditions. Arabidopsis plants overexpressing HvPIP2;5 also showed better stress tolerance in germination and root growth under high salt and high osmotic stresses than the wild type (WT). HvPIP2;5 overexpressing plants were able to survive and recover after a 3-week drought period unlike the control plants which wilted and died during stress treatment. Indeed, overexpression of HvPIP2;5 caused higher retention of chlorophylls and water under salt and osmotic stresses than did control. We also observed lower accumulation of reactive oxygen species (ROS) and malondialdehyde (MDA), an end-product of lipid peroxidation in HvPIP2;5 overexpressing plants than in WT. These results suggest that HvPIP2;5 overexpression brought about stress tolerance, at least in part, by reducing the secondary oxidative stress caused by salt and osmotic stresses. Consistent with these stress tolerant phenotypes, HvPIP2;5 overexpressing Arabidopsis lines showed higher expression and activities of ROS scavenging enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) under salt and osmotic stresses than did WT. In addition, the proline biosynthesis genes, Δ 1-Pyrroline-5-Carboxylate Synthase 1 and 2 (P5CS1 and P5CS2) were up-regulated in HvPIP2;5 overexpressing plants under salt and osmotic stresses, which coincided with increased levels of the osmoprotectant proline. Together, these results suggested that HvPIP2;5 overexpression enhanced stress tolerance to high salt and high osmotic stresses by increasing activities and/or expression of ROS scavenging enzymes and osmoprotectant biosynthetic genes.
Collapse
Affiliation(s)
| | - Jay Prakash Awasthi
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
| | - Gyana R. Rout
- Department of Agricultural Biotechnology, Orissa University of Agriculture and TechnologyBhubaneswar, India
| | - Lingaraj Sahoo
- Department of Bioscience and Biotechnology, Indian Institute of TechnologyGuwahati, India
| | - Byeong-ha Lee
- Department of Life Science, Sogang UniversitySeoul, Korea
- *Correspondence: Byeong-ha Lee
| | - Sanjib Kumar Panda
- Plant Molecular Biotechnology Laboratory, Department of Life Science and Bioinformatics, Assam UniversitySilchar, India
- Sanjib Kumar Panda
| |
Collapse
|
99
|
Min H, Chen C, Wei S, Shang X, Sun M, Xia R, Liu X, Hao D, Chen H, Xie Q. Identification of Drought Tolerant Mechanisms in Maize Seedlings Based on Transcriptome Analysis of Recombination Inbred Lines. FRONTIERS IN PLANT SCIENCE 2016; 7:1080. [PMID: 27507977 PMCID: PMC4961006 DOI: 10.3389/fpls.2016.01080] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/08/2016] [Indexed: 05/20/2023]
Abstract
Zea mays is an important crop that is sensitive to drought stress, but survival rates and growth status remain strong in some drought-tolerant lines under stress conditions. Under drought conditions, many biological processes, such as photosynthesis, carbohydrate metabolism and energy metabolism, are suppressed, while little is known about how the transcripts of genes respond to drought stress in the genome-wide rang in the seedling stage. In our study, the transcriptome profiles of two maize recombination inbred lines (drought-tolerant RIL70 and drought-sensitive RIL93) were analyzed at different drought stages to elucidate the dynamic mechanisms underlying drought tolerance in maize seedlings during drought conditions. Different numbers of differentially expressed genes presented in the different stages of drought stress in the two RILs, for the numbers of RIL93 vs. RIL70 were: 9 vs. 358, 477 vs. 103, and 5207 vs. 152 respectively in DT1, DT2, and DT5. Gene Ontology enrichment analysis revealed that in the initial drought-stressed stage, the primary differentially expressed genes involved in cell wall biosynthesis and transmembrane transport biological processes were overrepresented in RIL70 compared to RIL93. On the contrary, differentially expressed genes profiles presented at 2 and 5 day-treatments, the primary differentially expressed genes involved in response to stress, protein folding, oxidation-reduction, photosynthesis and carbohydrate metabolism, were overrepresented in RIL93 compared to RIL70. In addition, the transcription of genes encoding key members of the cell cycle and cell division processes were blocked, but ABA- and programmed cell death-related processes responded positively in RIL93. In contrast, the expression of cell cycle genes, ABA- and programmed cell death-related genes was relatively stable in RIL70. The results we obtained supported the working hypothesis that signaling events associated with turgor homeostasis, as established by cell wall biosynthesis regulation- and aquaporin-related genes, responded early in RIL70, which led to more efficient detoxification signaling (response to stress, protein folding, oxidation-reduction) during drought stress. This energy saving response at the early stages of drought should facilitate more cell activity under stress conditions and result in drought tolerance in RIL70.
Collapse
Affiliation(s)
- Haowei Min
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Shaowei Wei
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiaoling Shang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Meiyun Sun
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Xiangguo Liu
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Dongyun Hao
- Argo-Biotechnology Research Institute, Jilin Academy of Agricultural SciencesChangchun, China
| | - Huabang Chen
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of SciencesBeijing, China
- *Correspondence: Qi Xie
| |
Collapse
|
100
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|