51
|
Hirose F, Inagaki N, Takano M. Differences and similarities in the photoregulation of gibberellin metabolism between rice and dicots. PLANT SIGNALING & BEHAVIOR 2013; 8:e23424. [PMID: 23333965 PMCID: PMC3676509 DOI: 10.4161/psb.23424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 12/27/2012] [Indexed: 06/01/2023]
Abstract
In rice seedlings, elongation of leaf sheaths is suppressed by light stimuli. The response is mediated by two classes of photoreceptors, phytochromes and cryptochromes. However, it remains unclear how these photoreceptors interact in the process. Our recent study using phytochrome mutants and novel cryptochrome RNAi lines revealed that cryptochromes and phytochromes function cooperatively, but independently to reduce active GA contents in seedlings in visible light. Blue light captured by cryptochrome 1 (cry1a and cry1b) induces robust expression of GA 2-oxidase genes (OsGA2ox4-7). In parallel, phytochrome B with auxiliary action of phytochrome A mediates repression of GA 20-oxidase genes (OsGA20ox2 and OsGA20ox4). The independent effects cumulatively reduce active GA contents, leading to a suppression of leaf sheath elongation. These regulatory mechanisms are distinct from phytochrome B function in dicots. We discuss reasons why the distinct system appeared in rice, and advantages of the rice system in early photomorphogenesis.
Collapse
Affiliation(s)
- Fumiaki Hirose
- Functional Plant Research Unit; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki Japan
| | - Noritoshi Inagaki
- Functional Plant Research Unit; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki Japan
| | - Makoto Takano
- Genetically Modified Organism Research Center; National Institute of Agrobiological Sciences; Tsukuba, Ibaraki Japan
| |
Collapse
|
52
|
Li D, Wang L, Liu X, Cui D, Chen T, Zhang H, Jiang C, Xu C, Li P, Li S, Zhao L, Chen H. Deep sequencing of maize small RNAs reveals a diverse set of microRNA in dry and imbibed seeds. PLoS One 2013; 8:e55107. [PMID: 23359822 PMCID: PMC3554676 DOI: 10.1371/journal.pone.0055107] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 12/18/2012] [Indexed: 11/18/2022] Open
Abstract
Seed germination plays a pivotal role during the life cycle of plants. As dry seeds imbibe water, the resumption of energy metabolism and cellular repair occur and miRNA-mediated gene expression regulation is involved in the reactivation events. This research was aimed at understanding the role of miRNA in the molecular control during seed imbibition process. Small RNA libraries constructed from dry and imbibed maize seed embryos were sequenced using the Illumina platform. Twenty-four conserved miRNA families were identified in both libraries. Sixteen of them showed significant expression differences between dry and imbibed seeds. Twelve miRNA families, miR156, miR159, miR164, miR166, miR167, miR168, miR169, miR172, miR319, miR393, miR394 and miR397, were significantly down-regulated; while four families, miR398, miR408, miR528 and miR529, were significantly up-regulated in imbibed seeds compared to that in dry seeds. Furthermore, putative novel maize miRNAs and their target genes were predicted. Target gene GO analysis was performed for novel miRNAs that were sequenced more than 50 times in the normalized libraries. The result showed that carbohydrate catabolic related genes were specifically enriched in the dry seed, while in imbibed seed target gene enrichment covered a broad range of functional categories including genes in amino acid biosynthesis, isomerase activity, ligase activity and others. The sequencing results were partially validated by quantitative RT-PCR for both conserved and novel miRNAs and the predicted target genes. Our data suggested that diverse and complex miRNAs are involved in the seed imbibition process. That miRNA are involved in plant hormone regulation may play important roles during the dry-imbibed seed transition.
Collapse
Affiliation(s)
- Detao Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Liwen Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Xu Liu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Dezhou Cui
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Tingting Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Hua Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Chuan Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Chunyan Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Peng Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Song Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
53
|
Lee KP, Piskurewicz U, Turečková V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L. Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev 2012; 26:1984-96. [PMID: 22948663 DOI: 10.1101/gad.194266.112] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phytochromes phyB and phyA mediate a remarkable developmental switch whereby, early upon seed imbibition, canopy light prevents phyB-dependent germination, whereas later on, it stimulates phyA-dependent germination. Using a seed coat bedding assay where the growth of dissected embryos is monitored under the influence of dissected endosperm, allowing combinatorial use of mutant embryos and endosperm, we show that canopy light specifically inactivates phyB activity in the endosperm to override phyA-dependent signaling in the embryo. This interference involves abscisic acid (ABA) release from the endosperm and distinct spatial activities of phytochrome signaling components. Under the canopy, endospermic ABA opposes phyA signaling through the transcription factor (TF) ABI5, which shares with the TF PIF1 several target genes that negatively regulate germination in the embryo. ABI5 enhances the expression of phytochrome signaling genes PIF1, SOMNUS, GAI, and RGA, but also of ABA and gibberellic acid (GA) metabolic genes. Over time, weaker ABA-dependent responses eventually enable phyA-dependent germination, a distinct type of germination driven solely by embryonic growth.
Collapse
Affiliation(s)
- Keun Pyo Lee
- Département de Biologie Végétale, 30, quai Ernest-Ansermet-Sciences III, Université de Genève, 1211 Genève 4, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Hirose F, Inagaki N, Hanada A, Yamaguchi S, Kamiya Y, Miyao A, Hirochika H, Takano M. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation. PLANT & CELL PHYSIOLOGY 2012; 53:1570-82. [PMID: 22764280 PMCID: PMC3439870 DOI: 10.1093/pcp/pcs097] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In contrast to a wealth of knowledge about the photoregulation of gibberellin metabolism in dicots, that in monocots remains largely unclear. In this study, we found that a blue light signal triggers reduction of active gibberellin content in rice seedlings with simultaneous repression of two gibberellin 20-oxidase genes (OsGA20ox2 and OsGA20ox4) and acute induction of four gibberellin 2-oxidase genes (OsGA2ox4-OsGA2ox7). For further examination of the regulation of these genes, we established a series of cryptochrome-deficient lines through reverse genetic screening from a Tos17 mutant population and construction of knockdown lines based on an RNA interference technique. By using these lines and phytochrome mutants, we elucidated that cryptochrome 1 (cry1), consisting of two species in rice plants (cry1a and cry1b), is indispensable for robust induction of the GA2ox genes. On the other hand, repression of the GA20ox genes is mediated by phytochromes. In addition, we found that the phytochromes also mediate the repression of a gibberellin 3-oxidase gene (OsGA3ox2) in the light. These results imply that, in rice seedlings, phytochromes mediate the repression of gibberellin biosynthesis capacity, while cry1 mediates the induction of gibberellin inactivation capacity. The cry1 action was demonstrated to be dominant in the reduction of active gibberellin content, but, in rice seedlings, the cumulative effects of these independent actions reduced active gibberellin content in the light. This pathway design in which different types of photoreceptors independently but cooperatively regulate active gibberellin content is unique from the viewpoint of dicot research. This redundancy should provide robustness to the response in rice plants.
Collapse
Affiliation(s)
- Fumiaki Hirose
- Photobiology and Photosynthesis Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602 Japan.
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Ceunen S, Werbrouck S, Geuns JMC. Stimulation of steviol glycoside accumulation in Stevia rebaudiana by red LED light. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:749-752. [PMID: 22341569 DOI: 10.1016/j.jplph.2012.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/03/2012] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
The aim of this study was to determine whether steviol glycoside accumulation is under phytochrome control. The results indicate that Stevia rebaudiana Bertoni plants grown under short-day conditions showed precocious flowering and stagnation of steviol glycoside accumulation. Long night interruption by red LED light stimulated and sustained the vegetative growth as well as the accumulation of steviol glycosides in the leaves. After 7 weeks of treatment, steviol glycoside content was about two-fold higher in LED-treated plants than in the short-day control group. The effects of red LED light were measured both in a greenhouse and in a phytotron, irrespective of cultivar-specific differences. Therefore, it can be concluded that a mid-night interruption by red LED light during short photoperiods provides an easy and inexpensive method to increase vegetative leaf biomass production with an increased steviol glycoside yield.
Collapse
Affiliation(s)
- Stijn Ceunen
- Laboratory of Functional Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | |
Collapse
|
56
|
Jiang S, Kumar S, Eu YJ, Jami SK, Stasolla C, Hill RD. The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2693-703. [PMID: 22282534 PMCID: PMC3346229 DOI: 10.1093/jxb/err452] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/13/2011] [Accepted: 12/19/2011] [Indexed: 05/20/2023]
Abstract
Arabidopsis FY, a homologue of the yeast RNA 3' processing factor Pfs2p, regulates the autonomous floral transition pathway through its interaction with FCA, an RNA binding protein. It is demonstrated here that FY also influences seed dormancy. Freshly-harvested seed of the Arabidopsis fy-1 mutant germinated readily in the absence of stratification or after-ripening. Furthermore, the fy-1 mutant showed less ABA sensitivity compared with the wild type, Ler, under identical conditions. Freshly-harvested seed of fy-1 had significantly higher ABA levels than Ler, even though Ler was dormant and fy-1 germinated readily. The PPLPP domains of FY, which are required for flowering control, were not essential for the ABA-influenced repression of germination. FLC expression analysis in seeds of different genotypes suggested that the effect of FY on dormancy may not be elicited through FLC. No significant differences in CYP707A1, CYP707A2, NCED9, ABI3, and ABI4 were observed between freshly-harvested Ler and fy-1 imbibed for 48 h. GA3ox1 and GA3ox2 rapidly increased over the 48 h imbibition period for fy-1, with no significant increases in these transcripts for Ler. ABI5 levels were significantly lower in fy-1 over the 48 h imbibition period. The results suggest that FY is involved in the development of dormancy and ABA sensitivity in Arabidopsis seed.
Collapse
|
57
|
Martínez-Andújar C, Martin RC, Nonogaki H. Seed traits and genes important for translational biology--highlights from recent discoveries. PLANT & CELL PHYSIOLOGY 2012; 53:5-15. [PMID: 21849396 DOI: 10.1093/pcp/pcr112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Seeds provide food, feed, fiber and fuel. They are also an important delivery system of genetic information, which is essential for the survival of wild species in ecosystems and the production of agricultural crops. In this review, seed traits and genes that are potentially important for agricultural applications are discussed. Over the long period of crop domestication, seed traits have been modified through intentional or unintentional selections. While most selections have led to seed traits favorable for agricultural consumption, such as larger seeds with higher nutritional value than the wild type, other manipulations in modern breeding sometimes led to negative traits, such as vivipary, precocious germination on the maternal plant or reduced seed vigor, as a side effect during the improvement of other characteristics. Greater effort is needed to overcome these problems that have emerged as a consequence of crop improvement. Seed biology researchers have characterized the function of many genes in the last decade, including those associated with seed domestication, which may be useful in addressing critical issues in modern agriculture, such as the prevention of vivipary and seed shattering or the enhancement of yields. Recent discoveries in seed biology research are highlighted in this review, with an emphasis on their potential for translational biology.
Collapse
|
58
|
Umetsu A, Sawada Y, Mitsuhashi W, Mazier M, Toyomasu T. Characterization of a loss-of-function mutant of gibberellin biosynthetic gene LsGA3ox1 in lettuce. Biosci Biotechnol Biochem 2011; 75:2398-400. [PMID: 22146725 DOI: 10.1271/bbb.110475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A previous study generated lettuce (Lactuca sativa) mutant lines tagged by retrotransposon Tnt1 from tobacco (Nicotiana tabacum) and identified a homozygous mutant, Tnt6a, that exhibited severe dwarf phenotype. Here we show that Tnt1 is inserted into the intron of gibberellin biosynthetic gene LsGA3ox1 in Tnt6a mutants. Expression analysis suggests that LsGA3ox1 is nearly knocked out in the Tnt6a mutants.
Collapse
Affiliation(s)
- Asami Umetsu
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Japan
| | | | | | | | | |
Collapse
|
59
|
Bou-Torrent J, Martínez-García JF, García-Martínez JL, Prat S. Gibberellin A1 metabolism contributes to the control of photoperiod-mediated tuberization in potato. PLoS One 2011; 6:e24458. [PMID: 21961036 PMCID: PMC3178525 DOI: 10.1371/journal.pone.0024458] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/10/2011] [Indexed: 11/19/2022] Open
Abstract
Some potato species require a short-day (SD) photoperiod for tuberization, a process that is negatively affected by gibberellins (GAs). Here we report the isolation of StGA3ox2, a gene encoding a GA 3-oxidase, whose expression is increased in the aerial parts and is repressed in the stolons after transfer of photoperiod-dependent potato plants to SD conditions. Over-expression of StGA3ox2 under control of constitutive or leaf-specific promoters results in taller plants which, in contrast to StGA20ox1 over-expressers previously reported, tuberize earlier under SD conditions than the controls. By contrast, StGA3ox2 tuber-specific over-expression results in non-elongated plants with slightly delayed tuber induction. Together, our experiments support that StGA3ox2 expression and gibberellin metabolism significantly contribute to the tuberization time in strictly photoperiod-dependent potato plants.
Collapse
|
60
|
Xu D, Huang X, Xu ZQ, Schläppi M. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. PLANTA 2011; 234:565-77. [PMID: 21556912 DOI: 10.1007/s00425-011-1425-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2011] [Accepted: 04/25/2011] [Indexed: 05/20/2023]
Abstract
The effect of the hybrid proline-rich protein (HyPRP) gene EARLI1 on the rate of germination (germinability) of Arabidopsis seeds and seedling growth under low temperature and salt stress conditions was investigated. EARLI1 was induced during germination in embryonic tissues, and was strongly expressed in certain parts of young seedlings. Comparisons of control, overexpressing (OX), and knockout (KO) lines indicated that higher than wild type levels of EARLI1 improved germinability, root elongation, and reduction of sodium accumulation in leaves under salt stress, as well as germinability under low-temperature stress. Abscisic acid (ABA) contents were relatively low after prolonged salt stress, suggesting that EARLI1 has an ABA-independent effect on germinability under these conditions. Overexpression of EARLI1 during germination enhanced the sensitivity of seeds to exogenously applied ABA, suggesting that EARLI1 has an ABA-dependent negative effect on seed germinability under high ABA stress conditions. Well-known stress response marker genes such as COR15a, KIN1, P5SC1, and RD29 were unaffected whereas P5SC2, RD22, or RAB18 were only slightly affected in OX and KO plants. The pleiotropic effects of EARLI1 during stress and an absence of strong regulatory effects on stress marker genes suggest that this HyPRP gene has an auxiliary role for various stress protection responses in Arabidopsis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Institute of Life Science, Northwest University, Xi'an 710069, Shaanxi, China
| | | | | | | |
Collapse
|
61
|
Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. THE PLANT CELL 2011; 23:2568-80. [PMID: 21803937 PMCID: PMC3226211 DOI: 10.1105/tpc.111.087643] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 07/08/2011] [Accepted: 07/15/2011] [Indexed: 05/18/2023]
Abstract
Summer annuals overwinter as seeds in the soil seed bank. This is facilitated by a cold-induced increase in dormancy during seed maturation followed by a switch to a state during seed imbibition in which cold instead promotes germination. Here, we show that the seed maturation transcriptome in Arabidopsis thaliana is highly temperature sensitive and reveal that low temperature during seed maturation induces several genes associated with dormancy, including DELAY OF GERMINATION1 (DOG1), and influences gibberellin and abscisic acid levels in mature seeds. Mutants lacking DOG1, or with altered gibberellin or abscisic acid synthesis or signaling, in turn show reduced ability to enter the deeply dormant states in response to low seed maturation temperatures. In addition, we find that DOG1 promotes gibberellin catabolism during maturation. We show that C-REPEAT BINDING FACTORS (CBFs) are necessary for regulation of dormancy and of GA2OX6 and DOG1 expression caused by low temperatures. However, the temperature sensitivity of CBF transcription is markedly reduced in seeds and is absent in imbibed seeds. Our data demonstrate that inhibition of CBF expression is likely a critical feature allowing cold to promote rather than inhibit germination and support a model in which CBFs act in parallel to a low-temperature signaling pathway in the regulation of dormancy.
Collapse
Affiliation(s)
- Sarah L. Kendall
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Anja Hellwege
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Poppy Marriot
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Celina Whalley
- Technology Facility, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Ian A. Graham
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Steven Penfield
- Centre for Novel Agricultural Products, Department of Biology, University of York, Heslington, York YO10 5DD, United Kingdom
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom
- Address correspondence to
| |
Collapse
|
62
|
An YQ, Lin L. Transcriptional regulatory programs underlying barley germination and regulatory functions of Gibberellin and abscisic acid. BMC PLANT BIOLOGY 2011; 11:105. [PMID: 21668981 PMCID: PMC3130657 DOI: 10.1186/1471-2229-11-105] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 06/13/2011] [Indexed: 05/07/2023]
Abstract
BACKGROUND Seed germination is a complex multi-stage developmental process, and mainly accomplished through concerted activities of many gene products and biological pathways that are often subjected to strict developmental regulation. Gibberellins (GA) and abscisic acid (ABA) are two key phytohormones regulating seed germination and seedling growth. However, transcriptional regulatory networks underlying seed germination and its associated biological pathways are largely unknown. RESULTS The studies examined transcriptomes of barley representing six distinct and well characterized germination stages and revealed that the transcriptional regulatory program underlying barley germination was composed of early, late, and post-germination phases. Each phase was accompanied with transcriptional up-regulation of distinct biological pathways. Cell wall synthesis and regulatory components including transcription factors, signaling and post-translational modification components were specifically and transiently up-regulated in early germination phase while histone families and many metabolic pathways were up-regulated in late germination phase. Photosynthesis and seed reserve mobilization pathways were up-regulated in post-germination phase. However, stress related pathways and seed storage proteins were suppressed through the entire course of germination. A set of genes were transiently up-regulated within three hours of imbibition, and might play roles in initiating biological pathways involved in seed germination. However, highly abundant transcripts in dry barley and Arabidopsis seeds were significantly conserved. Comparison with transcriptomes of barley aleurone in response to GA and ABA identified three sets of germination responsive genes that were regulated coordinately by GA, antagonistically by ABA, and coordinately by GA but antagonistically by ABA. Major CHO metabolism, cell wall degradation and protein degradation pathways were up-regulated by both GA and seed germination. Those genes and metabolic pathways are likely to be important parts of transcriptional regulatory networks underlying GA and ABA regulation of seed germination and seedling growth. CONCLUSIONS The studies developed a model depicting transcriptional regulatory programs underlying barley germination and GA and ABA regulation of germination at gene, pathway and systems levels, and established a standard transcriptome reference for further integration with various -omics and biological data to illustrate biological networks underlying seed germination. The studies also generated a great amount of systems biological evidence for previously proposed hypotheses, and developed a number of new hypotheses on transcriptional regulation of seed germination for further experimental validation.
Collapse
Affiliation(s)
- Yong-Qiang An
- US Department of Agriculture, Agriculture Research Service, Midwest Area, Plant Genetics Research at Donald Danforth Plant Sciences Center; 975 N Warson Road, St. Louis, MO 63132, USA
| | - Li Lin
- 221 Morrill Science Center III, Department of Biology University of Massachusetts, 611 N. Pleasant St., Amherst, MA 01003, USA
| |
Collapse
|
63
|
Feurtado JA, Huang D, Wicki-Stordeur L, Hemstock LE, Potentier MS, Tsang EW, Cutler AJ. The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation. THE PLANT CELL 2011; 23:1772-94. [PMID: 21571950 PMCID: PMC3123948 DOI: 10.1105/tpc.111.085134] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 03/15/2011] [Accepted: 04/25/2011] [Indexed: 05/20/2023]
Abstract
Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Adrian J. Cutler
- Plant Biotechnology Institute, National Research Council Canada, Saskatoon, Saskatchewan, Canada S7N 0W9
| |
Collapse
|
64
|
Ward DA, MacMillan J, Gong F, Phillips AL, Hedden P. Gibberellin 3-oxidases in developing embryos of the southern wild cucumber, Marah macrocarpus. PHYTOCHEMISTRY 2010; 71:2010-8. [PMID: 20965527 DOI: 10.1016/j.phytochem.2010.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 05/06/2023]
Abstract
Immature seeds of the southern wild cucumber, Marah macrocarpus, are a rich source of gibberellins (GAs) and were used in some of the earliest experiments on GA biosynthesis. The main biologically active GAs in developing embryos and endosperm of M. macrocarpus are GA(4) and GA(7), which have been shown previously to be formed from GA(9) in separate pathways, GA(4) being formed directly by 3β-hydroxylation, while GA(7) is produced in two steps via 2,3-didehydroGA(9). In order to identify the enzymes responsible for these conversions, three cDNA clones encoding functionally different GA 3-oxidases, MmGA3ox1, -2 and -3, were obtained from young immature M. macrocarpus embryos. Their biochemical functions were determined by expression of the cDNAs in Escherichia coli and incubation of cell lysates with (14)C-labelled substrates. MmGA3ox1 and MmGA3ox3 converted GA(9) to GA(4) as sole product, while MmGA3ox2 produced several products, including GA(4), 2,3-didehydroGA(9), 2,3-epoxyGA(9), GA(20) and GA(5), these last two products requiring 13-hydroxylation of GA(9) and 2,3-didehydroGA(9), respectively. MmGA3ox1 converted 2,3-didehydroGA(9) to GA(7), while MmGA3ox3 converted this substrate to the 2,3-epoxide, and MmGA3ox2 also formed the epoxide, but also GA(5.) Thus, formation of GA(7) requires the sequential activities of MmGA3ox2 and MmGA3ox1, while MmGA3ox3 is not involved in GA(7) production. The enzymes catalysed similar reactions when incubated with 13-hydroxylated GAs, although with reduced efficiencies. The 13-hydroxylase activity of MmGA3ox2 may be responsible for the production of GA(1) and GA(3), which are present at low levels in developing M. macrocarpus seeds.
Collapse
Affiliation(s)
- Dennis A Ward
- Rothamsted Research, Harpenden, Herts AL5 2JQ, United Kingdom
| | | | | | | | | |
Collapse
|
65
|
Martin RC, Liu PP, Goloviznina NA, Nonogaki H. microRNA, seeds, and Darwin?: diverse function of miRNA in seed biology and plant responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2229-34. [PMID: 20335408 DOI: 10.1093/jxb/erq063] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
microRNAs (miRNAs) are small, single-stranded RNAs that down-regulate target genes at the post-transcriptional level. miRNAs regulate target genes by guiding mRNA cleavage or by repressing translation. miRNAs play crucial roles in a broad range of developmental processes in plants. Multiple miRNAs are present in germinating seeds and seedlings of Arabidopsis, some of which are involved in the regulation of germination and seedling growth by plant hormones such as abscisic acid (ABA) and auxin. The involvement of miRNAs in ABA responses is not limited to the early stages of plant development but seems to be important for general stress responses throughout the plant life cycle. This Darwin review summarizes recent progress in miRNA research focusing on seed and stress biology, two topics which were of interest to Charles Darwin.
Collapse
Affiliation(s)
- Ruth C Martin
- USDA-ARS, National Forage Seed Production Research Center, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
66
|
Abstract
Plants use light as a source of energy for photosynthesis and as a source of environmental information perceived by photoreceptors. Testing whether plants can complete their cycle if light provides energy but no information about the environment requires a plant devoid of phytochromes because all photosynthetically active wavelengths activate phytochromes. Producing such a quintuple mutant of Arabidopsis thaliana has been challenging, but we were able to obtain it in the flowering locus T (ft) mutant background. The quintuple phytochrome mutant does not germinate in the FT background, but it germinates to some extent in the ft background. If germination problems are bypassed by the addition of gibberellins, the seedlings of the quintuple phytochrome mutant exposed to red light produce chlorophyll, indicating that phytochromes are not the sole red-light photoreceptors, but they become developmentally arrested shortly after the cotyledon stage. Blue light bypasses this blockage, rejecting the long-standing idea that the blue-light receptors cryptochromes cannot operate without phytochromes. After growth under white light, returning the quintuple phytochrome mutant to red light resulted in rapid senescence of already expanded leaves and severely impaired expansion of new leaves. We conclude that Arabidopsis development is stalled at several points in the presence of light suitable for photosynthesis but providing no photomorphogenic signal.
Collapse
|
67
|
Zhou X, Cooke P, Li L. Eukaryotic release factor 1-2 affects Arabidopsis responses to glucose and phytohormones during germination and early seedling development. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:357-67. [PMID: 19939886 PMCID: PMC2803205 DOI: 10.1093/jxb/erp308] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/22/2009] [Accepted: 10/01/2009] [Indexed: 05/20/2023]
Abstract
Germination and early seedling development are coordinately regulated by glucose and phytohormones such as ABA, GA, and ethylene. However, the molecules that affect plant responses to glucose and phytohormones remain to be fully elucidated. Eukaryotic release factor 1 (eRF1) is responsible for the recognition of the stop codons in mRNAs during protein synthesis. Accumulating evidence indicates that eRF1 functions in other processes in addition to translation termination. The physiological role of eRF1-2, a member of the eRF1 family, in Arabidopsis was examined here. The eRF1-2 gene was found to be specifically induced by glucose. Arabidopsis plants overexpressing eRF1-2 were hypersensitive to glucose during germination and early seedling development. Such hypersensitivity to glucose was accompanied by a dramatic reduction of the expression of glucose-regulated genes, chlorophyll a/b binding protein and plastocyanin. The hypersensitive response was not due to the enhanced accumulation of ABA. In addition, the eRF1-2 overexpressing plants showed increased sensitivity to paclobutrazol, an inhibitor of GA biosynthesis, and exogenous GA restored their normal growth. By contrast, the loss-of-function erf1-2 mutant exhibited resistance to paclobutrazol, suggesting that eRF1-2 may exert a negative effect on the GA signalling pathway. Collectively, these data provide evidence in support of a novel role of eRF1-2 in affecting glucose and phytohormone responses in modulating plant growth and development.
Collapse
Affiliation(s)
- Xiangjun Zhou
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Peter Cooke
- Microscopic Imaging, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Li Li
- Robert W Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
68
|
Yano R, Kanno Y, Jikumaru Y, Nakabayashi K, Kamiya Y, Nambara E. CHOTTO1, a putative double APETALA2 repeat transcription factor, is involved in abscisic acid-mediated repression of gibberellin biosynthesis during seed germination in Arabidopsis. PLANT PHYSIOLOGY 2009; 151:641-54. [PMID: 19648230 PMCID: PMC2754653 DOI: 10.1104/pp.109.142018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Accepted: 07/23/2009] [Indexed: 05/18/2023]
Abstract
The phytohormones abscisic acid (ABA) and gibberellins (GAs) are the primary signals that regulate seed dormancy and germination. In this study, we investigated the role of a double APETALA2 repeat transcription factor, CHOTTO1 (CHO1), in seed dormancy, germination, and phytohormone metabolism of Arabidopsis (Arabidopsis thaliana). Wild-type seeds were dormant when freshly harvested seeds were sown, and these seeds were released from dormancy after a particular period of dry storage (after-ripening). The cho1 mutant seeds germinated easily even in a shorter period of storage than wild-type seeds. The cho1 mutants showed reduced responsiveness to ABA, whereas transgenic plants constitutively expressing CHO1 (p35SCHO1) showed an opposite phenotype. Notably, after-ripening reduced the ABA responsiveness of the wild type, cho1 mutants, and p35SCHO1 lines. Hormone profiling demonstrated that after-ripening treatment decreased the levels of ABA and salicylic acid and increased GA(4), jasmonic acid, and isopentenyl adenine when wild-type seeds were imbibed. Expression analysis showed that the transcript levels of genes for ABA and GA metabolism were altered in the wild type by after-ripening. Hormone profiling and expression analyses indicate that cho1 seeds, with a short period of storage, resembled fully after-ripened wild-type seeds. Genetic analysis showed that the cho1 mutation partially restored delayed seed germination and reduced GA biosynthesis activity in the ABA-overaccumulating cyp707a2-1 mutant background but did not restore seed germination in the GA-deficient ga1-3 mutant background. These results indicate that CHO1 acts downstream of ABA to repress GA biosynthesis during seed germination.
Collapse
Affiliation(s)
- Ryoichi Yano
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
69
|
Remay A, Lalanne D, Thouroude T, Le Couviour F, Hibrand-Saint Oyant L, Foucher F. A survey of flowering genes reveals the role of gibberellins in floral control in rose. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 119:767-81. [PMID: 19533080 DOI: 10.1007/s00122-009-1087-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/27/2009] [Indexed: 05/19/2023]
Abstract
Exhaustive studies on flowering control in annual plants have provided a framework for exploring this process in other plant species, especially in perennials for which little molecular data are currently available. Rose is a woody perennial plant with a particular flowering strategy--recurrent blooming, which is controlled by a recessive locus (RB). Gibberellins (GA) inhibit flowering only in non-recurrent roses. Moreover, the GA content varies during the flowering process and between recurrent and non-recurrent rose. Only a few rose genes potentially involved in flowering have been described, i.e. homologues of ABC model genes and floral genes from EST screening. In this study, we gained new information on the molecular basis of rose flowering: date of flowering and recurrent blooming. Based on a candidate gene strategy, we isolated genes that have similarities with genes known to be involved in floral control in Arabidopsis (GA pathway, floral repressors and integrators). Candidate genes were mapped on a segregating population, gene expression was studied in different organs and transcript abundance was monitored in growing shoot apices. Twenty-five genes were studied. RoFT, RoAP1 and RoLFY are proposed to be good floral markers. RoSPY and RB co-localized in our segregating population. GA metabolism genes were found to be regulated during floral transition. Furthermore, GA signalling genes were differentially regulated between a non-recurrent rose and its recurrent mutant. We propose that flowering gene networks are conserved between Arabidopsis and rose. The GA pathway appears to be a key regulator of flowering in rose. We postulate that GA metabolism is involved in floral initiation and GA signalling might be responsible for the recurrent flowering character.
Collapse
Affiliation(s)
- Arnaud Remay
- INRA d'Angers Nantes, IFR 149 Quasav, UMR 1259 GenHort, BP60057, 49071 Beaucouzé cedex, France
| | | | | | | | | | | |
Collapse
|
70
|
Penfield S, King J. Towards a systems biology approach to understanding seed dormancy and germination. Proc Biol Sci 2009; 276:3561-9. [PMID: 19605392 DOI: 10.1098/rspb.2009.0592] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seed germination is the first adaptive decision in the development of many land plants. Advances in genetics and molecular physiology have taught us much about the control of germination using the model plant Arabidopsis thaliana. Here we review the current state of the art with an emphasis on mechanistic considerations and explore the potential impact of a systems biology approach to the problem.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Biology, Centre for Novel Agricultural Products, University of York, PO Box 373, York YO10 5YW, UK.
| | | |
Collapse
|
71
|
Botto JF, Ibarra S, Jones AM. The heterotrimeric G-protein complex modulates light sensitivity in Arabidopsis thaliana seed germination. Photochem Photobiol 2009; 85:949-54. [PMID: 19192205 PMCID: PMC4676404 DOI: 10.1111/j.1751-1097.2008.00505.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Release of dormancy and induction of seed germination are complex traits finely regulated by hormonal signals and environmental cues such as temperature and light. The Red (R):Far-Red (FR) phytochrome photoreceptors mediate light regulation of seed germination. We investigated the possible involvement of heterotrimeric G-protein complex in the phytochrome signaling pathways of Arabidopsis thaliana seed germination. Germination rates of null mutants of the alpha (Galpha) and beta (Gbeta) subunits of the G-protein (Atgpa1-4 and agb1-2, respectively) and the double mutant (agb1-2/gpa1-4) are lower than the wildtype (WT) under continuous or pulsed light. The Galpha and Gbeta subunits play a role in seed germination under hourly pulses of R lower than 0.1 micromol m(-2) s(-1) whereas the Gbeta subunit plays a role in higher R fluences. The germination of double mutants of G-protein subunits with phyA-211 and phyB-9 suggests that AtGPA1 seems to act as a positive regulator of phyA and probably phyB signaling pathways, while the role of AGB1 is ambiguous. The imbibition of seeds at 4 degrees C and 35 degrees C alters the R and FR light responsiveness of WT and G-protein mutants to a similar magnitude. Thus, Galpha and Gbeta subunits of the heterotrimeric G-protein complex modulate light induction of seed germination by phytochromes and are dispensable for the control of dormancy by low and high temperatures prior to irradiation. We discuss the possible indirect role of the G-protein complex on the phytochrome-regulated germination through hormonal signaling pathways.
Collapse
Affiliation(s)
- Javier F Botto
- IFEVA, Facultad de Agronomía, Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina.
| | | | | |
Collapse
|
72
|
Penfield S, Hall A. A role for multiple circadian clock genes in the response to signals that break seed dormancy in Arabidopsis. THE PLANT CELL 2009; 21:1722-32. [PMID: 19542296 PMCID: PMC2714941 DOI: 10.1105/tpc.108.064022] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Revised: 05/08/2009] [Accepted: 05/29/2009] [Indexed: 05/18/2023]
Abstract
Plant seeds can sense diverse environmental signals and integrate the information to regulate developmental responses, such as dormancy and germination. The circadian clock confers a growth advantage on plants and uses environmental information for entrainment. Here, we show that normal circadian clock gene function is essential for the response to dormancy-breaking signals in seeds. We show that mutations in the clock genes LATE ELONGATED HYPOCOTYL, CIRCADIAN CLOCK ASSOCIATED1 (CCA1), and GIGANTEA (GI) cause germination defects in response to low temperature, alternating temperatures, and dry after-ripening. We demonstrate that the transcriptional clock is arrested in an evening-like state in dry seeds but rapidly entrains to light/dark cycles in ambient temperatures upon imbibition. Consistent with a role for clock genes in seed dormancy control, CCA1 expression is transcriptionally induced in response to dry after-ripening and that after-ripening affects the amplitude of subsequent transcriptional clock gene oscillations. Control of abscisic acid- and gibberellin-related gene expression in seeds requires normal circadian function, and GI and TIMING OF CAB EXPRESSION1 regulate the response to ABA and GA in seeds. We conclude that circadian clock genes play a key role in the integration of environmental signaling controlling dormancy release in plants.
Collapse
Affiliation(s)
- Steven Penfield
- Department of Biology, Centre for Novel Agricultural Products, University of York, YO105YW United Kingdom.
| | | |
Collapse
|
73
|
Christianson JA, Wilson IW, Llewellyn DJ, Dennis ES. The low-oxygen-induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis seeds following low-oxygen treatment. PLANT PHYSIOLOGY 2009; 149:1724-38. [PMID: 19176720 PMCID: PMC2663757 DOI: 10.1104/pp.108.131912] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Accepted: 01/23/2009] [Indexed: 05/18/2023]
Abstract
Low-oxygen stress imposed by field waterlogging is a serious impediment to plant germination and growth. Plants respond to waterlogging with a complex set of physiological responses regulated at the transcriptional, cellular, and tissue levels. The Arabidopsis (Arabidopsis thaliana) NAC domain-containing gene ANAC102 was shown to be induced under 0.1% oxygen within 30 min in both roots and shoots as well as in 0.1% oxygen-treated germinating seeds. Overexpression of ANAC102 altered the expression of a number of genes, including many previously identified as being low-oxygen responsive. Decreasing ANAC102 expression had no effect on global gene transcription in plants but did alter expression patterns in low-oxygen-stressed seeds. Increasing or decreasing the expression of ANAC102 did not affect adult plant survival of low-oxygen stress. Decreased ANAC102 expression significantly decreased germination efficiency following a 0.1% oxygen treatment, but increased expression had no effect on germination. This protective role during germination appeared to be specific to low-oxygen stress, implicating ANAC102 as an important regulator of seed germination under flooding.
Collapse
Affiliation(s)
- Jed A Christianson
- CSIRO Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | | | | | | |
Collapse
|
74
|
Seo M, Nambara E, Choi G, Yamaguchi S. Interaction of light and hormone signals in germinating seeds. PLANT MOLECULAR BIOLOGY 2009; 69:463-72. [PMID: 19031046 DOI: 10.1007/s11103-008-9429-y] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 11/04/2008] [Indexed: 05/22/2023]
Abstract
Seed germination is regulated by several environmental factors, such as moisture, oxygen, temperature, light, and nutrients. Light is a critical regulator of seed germination in small-seeded plants, including Arabidopsis and lettuce. Phytochromes, a class of photoreceptors, play a major role in perceiving light to induce seed germination. Classical physiological studies have long suggested the involvement of gibberellin (GA) and abscisic acid (ABA) in the phytochrome-mediated germination response. Recent studies have demonstrated that phytochromes modulate endogenous levels of GA and ABA, as well as GA responsiveness. Several key components that link the perception of light and the modulation of hormone levels and responsiveness have been identified. Complex regulatory loops between light, GA and ABA signaling pathways have been uncovered.
Collapse
Affiliation(s)
- Mitsunori Seo
- RIKEN Plant Science Center, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | |
Collapse
|
75
|
Nelson DC, Riseborough JA, Flematti GR, Stevens J, Ghisalberti EL, Dixon KW, Smith SM. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light. PLANT PHYSIOLOGY 2009; 149:863-73. [PMID: 19074625 PMCID: PMC2633839 DOI: 10.1104/pp.108.131516] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 12/05/2008] [Indexed: 05/20/2023]
Abstract
Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis (Arabidopsis thaliana), an ephemeral of the temperate northern hemisphere that has never, to our knowledge, been reported to be responsive to fire or smoke, rapidly and sensitively perceives karrikins. Thus, these signaling molecules may have greater significance among angiosperms than previously realized. Karrikins can trigger germination of primary dormant Arabidopsis seeds far more effectively than known phytohormones or the structurally related strigolactone GR-24. Natural variation and depth of seed dormancy affect the degree of KAR1 stimulation. Analysis of phytohormone mutant germination reveals suppression of KAR1 responses by abscisic acid and a requirement for gibberellin (GA) synthesis. The reduced germination of sleepy1 mutants is partially recovered by KAR1, which suggests that germination enhancement by karrikin is only partly DELLA dependent. While KAR1 has little effect on sensitivity to exogenous GA, it enhances expression of the GA biosynthetic genes GA3ox1 and GA3ox2 during seed imbibition. Neither abscisic acid nor GA levels in seed are appreciably affected by KAR1 treatment prior to radicle emergence, despite marked differences in germination outcome. KAR1 stimulation of Arabidopsis germination is light-dependent and reversible by far-red exposure, although limited induction of GA3ox1 still occurs in the dark. The observed requirements for light and GA biosynthesis provide the first insights into the karrikin mode of action.
Collapse
Affiliation(s)
- David C Nelson
- Plant Energy Biology, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | | | | | | | | | |
Collapse
|
76
|
Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. THE PLANT CELL 2009; 21:403-19. [PMID: 19244139 PMCID: PMC2660632 DOI: 10.1105/tpc.108.064691] [Citation(s) in RCA: 277] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 02/02/2009] [Accepted: 02/09/2009] [Indexed: 05/18/2023]
Abstract
PHYTOCHROME INTERACTING FACTOR 3-LIKE5 (PIL5) is a basic helix-loop-helix transcription factor that inhibits seed germination by regulating the expression of gibberellin (GA)- and abscisic acid (ABA)-related genes either directly or indirectly. It is not yet known, however, whether PIL5 regulates seed germination solely through GA and ABA. Here, we used Chromatin immunoprecipitation-chip (ChIP-chip) analysis to identify 748 novel PIL5 binding sites in the Arabidopsis thaliana genome. Consistent with the molecular function of PIL5 as a transcription regulator, most of the identified binding sites are located in gene promoter regions. Binding site analysis shows that PIL5 binds to its target sites mainly through the G-box motif in vivo. Microarray analysis reveals that phytochromes regulate a large number of genes mainly through PIL5 during seed germination. Comparison between the ChIP-chip and microarray data indicates that PIL5 regulates 166 genes by directly binding to their promoters. Many of the identified genes encode transcription regulators involved in hormone signaling, while some encode enzymes involved in cell wall modification. Interestingly, PIL5 directly regulates many transcription regulators of hormone signaling and indirectly regulates many genes involved in hormone metabolism. Taken together, our data indicate that PIL5 inhibits seed germination not just through GA and ABA, but also by coordinating hormone signals and modulating cell wall properties in imbibed seeds.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | |
Collapse
|
77
|
Auge GA, Perelman S, Crocco CD, Sánchez RA, Botto JF. Gene expression analysis of light-modulated germination in tomato seeds. THE NEW PHYTOLOGIST 2009; 183:301-314. [PMID: 19460109 DOI: 10.1111/j.1469-8137.2009.02867.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tomato (Solanum lycopersicum) seed germination can be inhibited by continuous irradiation with far-red light (FRc) and re-induced by a subsequent red light pulse. In this study, we carried out a global transcript analysis of seeds subjected to FRc inhibitory treatment, with and without a subsequent red light pulse, using potato cDNA microarrays. We also identified and characterized genes involved in light-modulated germination as elements of the phytochrome signalling pathway. Microarray data showed that the inhibition of germination by FRc involves the induction of a large number of genes and the repression of a significantly smaller quantity. Multivariate analysis established an underlying pattern of expression dependent on physiological treatment and incubation time, and identified different groups of genes associated with dormancy maintenance, inhibition and promotion of germination. We showed that ELIP, CSN6, SOS2 and RBP are related to the photocontrol of germination. These genes are known to participate in other physiological processes, but their participation in germination has not been suggested previously. Light quality regulates the tomato seed transcriptome during phytochrome-modulated germination through changes in the expression of certain sets of genes. In addition, ELIP and GIGANTEA were confirmed as components of the phytochrome A signalling pathway during FRc inhibition of germination.
Collapse
Affiliation(s)
- Gabriela Alejandra Auge
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Susana Perelman
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Carlos Daniel Crocco
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Rodolfo Augusto Sánchez
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| | - Javier Francisco Botto
- IFEVA-CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, 1417, Buenos Aires, Argentina
| |
Collapse
|
78
|
Abstract
Seed dormancy allows seeds to overcome periods that are unfavourable for seedling established and is therefore important for plant ecology and agriculture. Several processes are known to be involved in the induction of dormancy and in the switch from the dormant to the germinating state. The role of plant hormones, the different tissues and genes involved, including newly identified genes in dormancy and germination are described in this chapter, as well as the use transcriptome, proteome and metabolome analyses to study these mechanistically not well understood processes.
Collapse
Affiliation(s)
- Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Maarten Koornneef
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Laboratory of Genetics, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands
| |
Collapse
|
79
|
Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. THE PLANT CELL 2008; 20:2420-36. [PMID: 18805991 PMCID: PMC2570722 DOI: 10.1105/tpc.108.058818] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 08/22/2008] [Accepted: 09/05/2008] [Indexed: 05/18/2023]
Abstract
Bioactive hormone concentrations are regulated both at the level of hormone synthesis and through controlled inactivation. Based on the ubiquitous presence of 2beta-hydroxylated gibberellins (GAs), a major inactivating pathway for the plant hormone GA seems to be via GA 2-oxidation. In this study, we used various approaches to determine the role of C(19)-GA 2-oxidation in regulating GA concentration and GA-responsive plant growth and development. We show that Arabidopsis thaliana has five C(19)-GA 2-oxidases, transcripts for one or more of which are present in all organs and at all stages of development examined. Expression of four of the five genes is subject to feed-forward regulation. By knocking out all five Arabidopsis C(19)-GA 2-oxidases, we show that C(19)-GA 2-oxidation limits bioactive GA content and regulates plant development at various stages during the plant life cycle: C(19)-GA 2-oxidases prevent seed germination in the absence of light and cold stimuli, delay the vegetative and floral phase transitions, limit the number of flowers produced per inflorescence, and suppress elongation of the pistil prior to fertilization. Under GA-limited conditions, further roles are revealed, such as limiting elongation of the main stem and side shoots. We conclude that C(19)-GA 2-oxidation is a major GA inactivation pathway regulating development in Arabidopsis.
Collapse
Affiliation(s)
- Ivo Rieu
- Centre for Crop Genetic Improvement, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Sawada Y, Katsumata T, Kitamura J, Kawaide H, Nakajima M, Asami T, Nakaminami K, Kurahashi T, Mitsuhashi W, Inoue Y, Toyomasu T. Germination of photoblastic lettuce seeds is regulated via the control of endogenous physiologically active gibberellin content, rather than of gibberellin responsiveness. JOURNAL OF EXPERIMENTAL BOTANY 2008; 59:3383-93. [PMID: 18653696 PMCID: PMC2529229 DOI: 10.1093/jxb/ern192] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2008] [Revised: 06/04/2008] [Accepted: 06/24/2008] [Indexed: 05/22/2023]
Abstract
Phytochrome regulates lettuce (Lactuca sativa L. cv. Grand Rapids) seed germination via the control of the endogenous level of bioactive gibberellin (GA). In addition to the previously identified LsGA20ox1, LsGA20ox2, LsGA3ox1, LsGA3ox2, LsGA2ox1, and LsGA2ox2, five cDNAs were isolated from lettuce seeds: LsCPS, LsKS, LsKO1, LsKO2, and LsKAO. Using an Escherichia coli expression system and functional assays, it is shown that LsCPS and LsKS encode ent-copalyl diphosphate synthase and ent-kaurene synthase, respectively. Using a Pichia pastoris system, it was found that LsKO1 and LsKO2 encode ent-kaurene oxidases and LsKAO encodes ent-kaurenoic acid oxidase. A comprehensive expression analysis of GA metabolism genes using the quantitative reverse transcription polymerase chain reaction suggested that transcripts of LsGA3ox1 and LsGA3ox2, both of which encode GA 3-oxidase for GA activation, were primarily expressed in the hypocotyl end of lettuce seeds, were expressed at much lower levels than the other genes tested, and were potently up-regulated by phytochrome. Furthermore, LsDELLA1 and LsDELLA2 cDNAs that encode DELLA proteins, which act as negative regulators in the GA signalling pathway, were isolated from lettuce seeds. The transcript levels of these two genes were little affected by light. Lettuce seeds in which de novo GA biosynthesis was suppressed responded almost identically to exogenously applied GA, irrespective of the light conditions, suggesting that GA responsiveness is not significantly affected by light in lettuce seeds. It is proposed that lettuce seed germination is regulated mainly via the control of the endogenous content of bioactive GA, rather than the control of GA responsiveness.
Collapse
Affiliation(s)
- Yoshiaki Sawada
- Course of the Science of Bioresource, The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Takumi Katsumata
- Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Jun Kitamura
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hiroshi Kawaide
- Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Masatoshi Nakajima
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kentaro Nakaminami
- Course of the Science of Bioresource, The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Toshihiro Kurahashi
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Wataru Mitsuhashi
- Course of the Science of Bioresource, The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
| | - Yasunori Inoue
- Faculty of Science and Technology, Tokyo University of Sciece, Noda, Chiba 278-8510, Japan
| | - Tomonobu Toyomasu
- Course of the Science of Bioresource, The United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate 020-8550, Japan
- Department of Bioresource Engineering, Yamagata University, Tsuruoka, Yamagata 997-8555, Japan
- Department of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| |
Collapse
|
81
|
Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. THE PLANT CELL 2008; 20:1260-77. [PMID: 18487351 PMCID: PMC2438461 DOI: 10.1105/tpc.108.058859] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Light absorbed by seed phytochromes of Arabidopsis thaliana modulates abscisic acid (ABA) and gibberellic acid (GA) signaling pathways at least partly via PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a phytochrome-interacting basic helix-loop-helix transcription factor. Here, we report a new mutant, somnus (som), that germinates in darkness, independently of various light regimens. SOM encodes a nucleus-localized CCCH-type zinc finger protein. The som mutant has lower levels of ABA and elevated levels of GA due to expressional changes in ABA and GA metabolic genes. Unlike PIL5, however, SOM does not regulate the expression of GA-INSENSITIVE and REPRESSOR OF GA1 (RGA/RGA1), two DELLA genes encoding GA negative signaling components. Our in vivo analysis shows that PIL5 activates the expression of SOM by binding directly to its promoter, suggesting that PIL5 regulates ABA and GA metabolic genes partly through SOM. In agreement with these results, we also observed that the reduced germination frequency of a PIL5 overexpression line is rescued by the som mutation and that this rescue is accompanied by expressional changes in ABA and GA metabolic genes. Taken together, our results indicate that SOM is a component in the phytochrome signal transduction pathway that regulates hormone metabolic genes downstream of PIL5 during seed germination.
Collapse
Affiliation(s)
- Dong Hwan Kim
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
82
|
López-Juez E, Dillon E, Magyar Z, Khan S, Hazeldine S, de Jager SM, Murray JAH, Beemster GTS, Bögre L, Shanahan H. Distinct light-initiated gene expression and cell cycle programs in the shoot apex and cotyledons of Arabidopsis. THE PLANT CELL 2008; 20:947-68. [PMID: 18424613 PMCID: PMC2390750 DOI: 10.1105/tpc.107.057075] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 02/19/2008] [Accepted: 03/24/2008] [Indexed: 05/19/2023]
Abstract
In darkness, shoot apex growth is repressed, but it becomes rapidly activated by light. We show that phytochromes and cryptochromes play largely redundant roles in this derepression in Arabidopsis thaliana. We examined the light activation of transcriptional changes in a finely resolved time course, comparing the shoot apex (meristem and leaf primordia) and the cotyledon and found >5700 differentially expressed genes. Early events specific to the shoot apices included the repression of genes for Really Interesting New Gene finger proteins and basic domain/leucine zipper and basic helix-loop-helix transcription factors. The downregulation of auxin and ethylene and the upregulation of cytokinin and gibberellin hormonal responses were also characteristic of shoot apices. In the apex, genes involved in ribosome biogenesis and protein translation were rapidly and synchronously induced, simultaneously with cell proliferation genes, preceding visible organ growth. Subsequently, the activation of signaling genes and transcriptional signatures of cell wall expansion, turgor generation, and plastid biogenesis were apparent. Furthermore, light regulates the forms and protein levels of two transcription factors with opposing functions in cell proliferation, E2FB and E2FC, through the Constitutively Photomorphogenic1 (COP1), COP9-Signalosome5, and Deetiolated1 light signaling molecules. These data provide the basis for reconstruction of the regulatory networks for light-regulated meristem, leaf, and cotyledon development.
Collapse
Affiliation(s)
- Enrique López-Juez
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Toh S, Imamura A, Watanabe A, Nakabayashi K, Okamoto M, Jikumaru Y, Hanada A, Aso Y, Ishiyama K, Tamura N, Iuchi S, Kobayashi M, Yamaguchi S, Kamiya Y, Nambara E, Kawakami N. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. PLANT PHYSIOLOGY 2008; 146:1368-85. [PMID: 18162586 PMCID: PMC2259091 DOI: 10.1104/pp.107.113738] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Suppression of seed germination at supraoptimal high temperature (thermoinhibiton) during summer is crucial for Arabidopsis (Arabidopsis thaliana) to establish vegetative and reproductive growth in appropriate seasons. Abscisic acid (ABA) and gibberellins (GAs) are well known to be involved in germination control, but it remains unknown how these hormone actions (metabolism and responsiveness) are altered at high temperature. Here, we show that ABA levels in imbibed seeds are elevated at high temperature and that this increase is correlated with up-regulation of the zeaxanthin epoxidase gene ABA1/ZEP and three 9-cis-epoxycarotenoid dioxygenase genes, NCED2, NCED5, and NCED9. Reverse-genetic studies show that NCED9 plays a major and NCED5 and NCED2 play relatively minor roles in high temperature-induced ABA synthesis and germination inhibition. We also show that bioactive GAs stay at low levels at high temperature, presumably through suppression of GA 20-oxidase genes, GA20ox1, GA20ox2, and GA20ox3, and GA 3-oxidase genes, GA3ox1 and GA3ox2. Thermoinhibition-tolerant germination of loss-of-function mutants of GA negative regulators, SPINDLY (SPY) and RGL2, suggests that repression of GA signaling is required for thermoinibition. Interestingly, ABA-deficient aba2-2 mutant seeds show significant expression of GA synthesis genes and repression of SPY expression even at high temperature. In addition, the thermoinhibition-resistant germination phenotype of aba2-1 seeds is suppressed by a GA biosynthesis inhibitor, paclobutrazol. We conclude that high temperature stimulates ABA synthesis and represses GA synthesis and signaling through the action of ABA in Arabidopsis seeds.
Collapse
Affiliation(s)
- Shigeo Toh
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Sawada Y, Aoki M, Nakaminami K, Mitsuhashi W, Tatematsu K, Kushiro T, Koshiba T, Kamiya Y, Inoue Y, Nambara E, Toyomasu T. Phytochrome- and gibberellin-mediated regulation of abscisic acid metabolism during germination of photoblastic lettuce seeds. PLANT PHYSIOLOGY 2008; 146:1386-96. [PMID: 18184730 PMCID: PMC2259076 DOI: 10.1104/pp.107.115162] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/03/2008] [Indexed: 05/19/2023]
Abstract
Germination of lettuce (Lactuca sativa) 'Grand Rapids' seeds is regulated by phytochrome. The action of phytochrome includes alterations in the levels of gibberellin (GA) and abscisic acid (ABA). To determine the molecular mechanism of phytochrome regulation of ABA metabolism, we isolated four lettuce cDNAs encoding 9-cis-epoxycarotenoid dioxygenase (biosynthesis; LsNCED1-LsNCED4) and four cDNAs for ABA 8'-hydroxylase (catabolism; LsABA8ox1-LsABA8ox4). Measurements of ABA and its catabolites showed that a decrease in ABA level coincided with a slight increase in the level of the ABA catabolite phaseic acid after red light treatment. Quantitative reverse transcription-polymerase chain reaction analysis indicated that ABA levels are controlled by phytochrome through down-regulation of LsNCED2 and LsNCED4 expression and up-regulation of LsABA8ox4 expression in lettuce seeds. Furthermore, the expression levels of LsNCED4 decreased after GA(1) treatment, whereas the levels of expression of the other two genes were unaffected. The LsNCED4 expression was also down-regulated by red light in lettuce seeds in which GA biosynthesis was suppressed by AMO-1618, a specific GA biosynthesis inhibitor. These results indicate that phytochrome regulation of ABA metabolism is mediated by both GA-dependent and -independent mechanisms. Spatial analysis showed that after red light treatment, the ABA decrease on the hypocotyl side was greater than that on the cotyledon side of lettuce seeds. Moreover, phytochrome-regulated expression of ABA and GA biosynthesis genes was observed on the hypocotyl side, rather than the cotyledon side, suggesting that this regulation occurs near the photoperceptive site.
Collapse
Affiliation(s)
- Yoshiaki Sawada
- Course of the Science of Bioresource, United Graduate School of Agricultural Science, Iwate University, Morioka, Iwate, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Hu J, Mitchum MG, Barnaby N, Ayele BT, Ogawa M, Nam E, Lai WC, Hanada A, Alonso JM, Ecker JR, Swain SM, Yamaguchi S, Kamiya Y, Sun TP. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. THE PLANT CELL 2008; 20:320-36. [PMID: 18310462 PMCID: PMC2276448 DOI: 10.1105/tpc.107.057752] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2007] [Revised: 01/29/2008] [Accepted: 02/18/2008] [Indexed: 05/18/2023]
Abstract
Gibberellin 3-oxidase (GA3ox) catalyzes the final step in the synthesis of bioactive gibberellins (GAs). We examined the expression patterns of all four GA3ox genes in Arabidopsis thaliana by promoter-beta-glucuronidase gene fusions and by quantitative RT-PCR and defined their physiological roles by characterizing single, double, and triple mutants. In developing flowers, GA3ox genes are only expressed in stamen filaments, anthers, and flower receptacles. Mutant plants that lack both GA3ox1 and GA3ox3 functions displayed stamen and petal defects, indicating that these two genes are important for GA production in the flower. Our data suggest that de novo synthesis of active GAs is necessary for stamen development in early flowers and that bioactive GAs made in the stamens and/or flower receptacles are transported to petals to promote their growth. In developing siliques, GA3ox1 is mainly expressed in the replums, funiculi, and the silique receptacles, whereas the other GA3ox genes are only expressed in developing seeds. Active GAs appear to be transported from the seed endosperm to the surrounding maternal tissues where they promote growth. The immediate upregulation of GA3ox1 and GA3ox4 after anthesis suggests that pollination and/or fertilization is a prerequisite for de novo GA biosynthesis in fruit, which in turn promotes initial elongation of the silique.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sun TP. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. THE ARABIDOPSIS BOOK 2008; 6:e0103. [PMID: 22303234 PMCID: PMC3243332 DOI: 10.1199/tab.0103] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Bioactive gibberellins (GAs) are diterpene phytohormones that modulate growth and development throughout the whole life cycle of the plant. Arabidopsis genes encoding most GA biosynthesis and catabolism enzymes, as well as GA receptors (GIBBERELLIN INSENSITIVE DWARF1, GID1) and early GA signaling components have been identified. Expression studies on the GA biosynthesis genes are beginning to reveal the potential sites of GA biosynthesis during plant development. Biochemical and genetic analyses demonstrate that GA de-represses its signaling pathway by binding to GID1s, which induce degradation of GA signaling repressors (DELLAs) via an ubiquitin-proteasome pathway. To modulate plant growth and development, the GA pathway is also regulated by endogenous signals (other hormones) and environmental cues (such as light, temperature and salt stress). In many cases, these internal and external cues directly affect GA metabolism and bioactive GA levels, and indirectly alter DELLA accumulation and GA responses. Importantly, direct negative interaction between DELLA and PIF3 and PIF4 (2 phytochrome interacting transcription factors) appears to integrate the effects of light and GA on hypocotyl elongation.
Collapse
Affiliation(s)
- Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708
| |
Collapse
|
87
|
Holdsworth MJ, Bentsink L, Soppe WJJ. Molecular networks regulating Arabidopsis seed maturation, after-ripening, dormancy and germination. THE NEW PHYTOLOGIST 2008; 179:33-54. [PMID: 18422904 DOI: 10.1111/j.1469-8137.2008.02437.x] [Citation(s) in RCA: 557] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The transition between dormancy and germination represents a critical stage in the life cycle of higher plants and is an important ecological and commercial trait. In this review we present current knowledge of the molecular control of this trait in Arabidopsis thaliana, focussing on important components functioning during the developmental phases of seed maturation, after-ripening and imbibition. Establishment of dormancy during seed maturation is regulated by networks of transcription factors with overlapping and discrete functions. Following desiccation, after-ripening determines germination potential and, surprisingly, recent observations suggest that transcriptional and post-transcriptional processes occur in the dry seed. The single-cell endosperm layer that surrounds the embryo plays a crucial role in the maintenance of dormancy, and transcriptomics approaches are beginning to uncover endosperm-specific genes and processes. Molecular genetic approaches have provided many new components of hormone signalling pathways, but also indicate the importance of hormone-independent pathways and of natural variation in key regulatory loci. The influence of environmental signals (particularly light) following after-ripening, and the effect of moist chilling (stratification) are increasingly being understood at the molecular level. Combined postgenomics, physiology and molecular genetics approaches are beginning to provide an unparalleled understanding of the molecular processes underlying dormancy and germination.
Collapse
Affiliation(s)
- Michael J Holdsworth
- Department of Agricultural and Environmental Sciences, School of BioSciences, University of Nottingham, Nottingham LE12 5RD, UK
| | - Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Wim J J Soppe
- Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| |
Collapse
|
88
|
Donohue K, Heschel MS, Butler CM, Barua D, Sharrock RA, Whitelam GC, Chiang GCK. Diversification of phytochrome contributions to germination as a function of seed-maturation environment. THE NEW PHYTOLOGIST 2008; 177:367-379. [PMID: 18028293 DOI: 10.1111/j.1469-8137.2007.02281.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Environmental conditions during seed maturation influence germination, but the genetic basis of maternal environmental effects on germination is virtually unknown. Using single and multiple mutants of phytochromes, it is shown here that different phytochromes contributed to germination differently, depending on seed-maturation conditions. Arabidopsis thaliana wild-type seeds that were matured under cool temperatures were intensely dormant compared with seeds matured at warmer temperature, and this dormancy was broken only after warm seed-stratification followed by cold seed-stratification. The warm-cold stratification broke dormancy in fresh seeds but not in dry after-ripened seeds. Functional PHYB and PHYD were necessary to break cool-induced dormancy, which indicates a previously unknown and ecologically important function for PHYD. Disruption of PHYA in combination with PHYD (but not PHYB) restored germination to near wild-type levels, indicating that PHYA contributes to the maintenance of cool-induced dormancy on a phyD background. Effects of seed-maturation temperature were much stronger than effects of seed-maturation photoperiod. PHYB contributed to germination somewhat more strongly in seeds matured under short days, whereas PHYD contributed to germination somewhat more strongly in seeds matured under long days. The variable contributions of different phytochromes to germination as a function of seed-maturation conditions reveal further functional diversification of the phytochromes during the process of germination. This study identifies among the first genes to be associated with maternal environmental effects on germination.
Collapse
Affiliation(s)
- Kathleen Donohue
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - M Shane Heschel
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Colleen M Butler
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Deepak Barua
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA 02138, USA
| | - Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, PO Box 173150, Bozeman, MT 59717-3150, USA
| | - Garry C Whitelam
- Institute of Genetics, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - George C K Chiang
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave., Cambridge, MA 02138, USA
| |
Collapse
|
89
|
Abstract
Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have highlighted the occurrence of previously unrecognized deactivation mechanisms. It is now clear that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In some cases, the molecular mechanisms for fine-tuning the hormone levels are beginning to be uncovered. In this review, I summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli.
Collapse
|
90
|
Zhao X, Yu X, Foo E, Symons GM, Lopez J, Bendehakkalu KT, Xiang J, Weller JL, Liu X, Reid JB, Lin C. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. PLANT PHYSIOLOGY 2007; 145:106-18. [PMID: 17644628 PMCID: PMC1976579 DOI: 10.1104/pp.107.099838] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 06/13/2007] [Indexed: 05/16/2023]
Abstract
Cryptochromes mediate blue light-dependent photomorphogenic responses, such as inhibition of hypocotyl elongation. To investigate the underlying mechanism, we analyzed a genetic suppressor, scc7-D (suppressors of cry1cry2), which suppressed the long-hypocotyl phenotype of the cry1cry2 (cryptochrome1/cryptochrome2) mutant in a light-dependent but wavelength-independent manner. scc7-D is a gain-of-expression allele of the GA2ox8 gene encoding a gibberellin (GA)-inactivating enzyme, GA 2-oxidase. Although scc7-D is hypersensitive to light, transgenic seedlings expressing GA2ox at a level higher than scc7-D showed a constitutive photomorphogenic phenotype, confirming a general role of GA2ox and GA in the suppression of hypocotyl elongation. Prompted by this result, we investigated blue light regulation of mRNA expression of the GA metabolic and catabolic genes. We demonstrated that cryptochromes are required for the blue light regulation of GA2ox1, GA20ox1, and GA3ox1 expression in transient induction, continuous illumination, and photoperiodic conditions. The kinetics of cryptochrome induction of GA2ox1 expression and cryptochrome suppression of GA20ox1 or GA3ox1 expression correlate with the cryptochrome-dependent transient reduction of GA(4) in etiolated wild-type seedlings exposed to blue light. Therefore we propose that in deetiolating seedlings, cryptochromes mediate blue light regulation of GA catabolic/metabolic genes, which affect GA levels and hypocotyl elongation. Surprisingly, no significant change in the GA(4) content was detected in the whole shoot samples of the wild-type or cry1cry2 seedlings grown in the dark or continuous blue light, suggesting that cryptochromes may also regulate GA responsiveness and/or trigger cell- or tissue-specific changes of the level of bioactive GAs.
Collapse
Affiliation(s)
- Xiaoying Zhao
- Bioenergy and Biomaterial Research Center, Hunan University, Changsha 410082, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Kim YO, Pan S, Jung CH, Kang H. A zinc finger-containing glycine-rich RNA-binding protein, atRZ-1a, has a negative impact on seed germination and seedling growth of Arabidopsis thaliana under salt or drought stress conditions. PLANT & CELL PHYSIOLOGY 2007; 48:1170-81. [PMID: 17602187 DOI: 10.1093/pcp/pcm087] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Despite the fact that glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to changing environmental conditions, the reports demonstrating their biological roles are severely limited. Here, we examined the functional roles of a zinc finger-containing GRP, designated atRZ-1a, in Arabidopsis thaliana under drought or salt stress conditions. Transgenic Arabidopsis plants overexpressing atRZ-1a displayed retarded germination and seedling growth compared with the wild-type plants under salt or dehydration stress conditions. In contrast, the loss-of-function mutants of atRZ-1a germinated earlier and grew faster than the wild-type plants under the same stress conditions. Germination of the transgenic plants and mutant lines was influenced by the addition of ABA or glucose, implying that atRZ-1a affects germination in an ABA-dependent way. H(2)O(2) was accumulated at higher levels in the transgenic plants compared with the wild-type plants under stress conditions. The expression of several germination-responsive genes was modulated by atRZ-1a, and proteome analysis revealed that the expression of different classes of genes, including those involved in reactive oxygen species homeostasis and functions, was affected by atRZ-1a under dehydration or salt stress conditions. Taken together, these results suggest that atRZ-1a has a negative impact on seed germination and seedling growth of Arabidopsis under salt or dehydration stress conditions, and imply that atRZ-1a exerts its function by modulating the expression of several genes under stress conditions.
Collapse
Affiliation(s)
- Yeon-Ok Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 500-757, Korea
| | | | | | | |
Collapse
|
92
|
Dreher K, Callis J. Ubiquitin, hormones and biotic stress in plants. ANNALS OF BOTANY 2007; 99:787-822. [PMID: 17220175 PMCID: PMC2802907 DOI: 10.1093/aob/mcl255] [Citation(s) in RCA: 357] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Revised: 09/07/2006] [Accepted: 10/03/2006] [Indexed: 05/13/2023]
Abstract
BACKGROUND The covalent attachment of ubiquitin to a substrate protein changes its fate. Notably, proteins typically tagged with a lysine48-linked polyubiquitin chain become substrates for degradation by the 26S proteasome. In recent years many experiments have been performed to characterize the proteins involved in the ubiquitylation process and to identify their substrates, in order to understand better the mechanisms that link specific protein degradation events to regulation of plant growth and development. SCOPE This review focuses on the role that ubiquitin plays in hormone synthesis, hormonal signalling cascades and plant defence mechanisms. Several examples are given of how targeted degradation of proteins affects downstream transcriptional regulation of hormone-responsive genes in the auxin, gibberellin, abscisic acid, ethylene and jasmonate signalling pathways. Additional experiments suggest that ubiquitin-mediated proteolysis may also act upstream of the hormonal signalling cascades by regulating hormone biosynthesis, transport and perception. Moreover, several experiments demonstrate that hormonal cross-talk can occur at the level of proteolysis. The more recently established role of the ubiquitin/proteasome system (UPS) in defence against biotic threats is also reviewed. CONCLUSIONS The UPS has been implicated in the regulation of almost every developmental process in plants, from embryogenesis to floral organ production probably through its central role in many hormone pathways. More recent evidence provides molecular mechanisms for hormonal cross-talk and links the UPS system to biotic defence responses.
Collapse
Affiliation(s)
- Kate Dreher
- Section of Molecular and Cellular Biology, Plant Biology Graduate Group Program, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA.
| | | |
Collapse
|
93
|
Carrera E, Holman T, Medhurst A, Peer W, Schmuths H, Footitt S, Theodoulou FL, Holdsworth MJ. Gene expression profiling reveals defined functions of the ATP-binding cassette transporter COMATOSE late in phase II of germination. PLANT PHYSIOLOGY 2007; 143:1669-79. [PMID: 17322332 PMCID: PMC1851828 DOI: 10.1104/pp.107.096057] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Phase II of germination represents a key developmental stage of plant growth during which imbibed seeds either enter stage III of germination, completing the germination process via radicle protrusion, or remain dormant. In this study, we analyzed the influence of the peroxisomal ATP-binding cassette transporter COMATOSE (CTS) on the postimbibition seed transcriptome of Arabidopsis (Arabidopsis thaliana) and also investigated interactions between gibberellin (GA) and CTS function. A novel method for analysis of transcriptome datasets allowed visualization of developmental signatures of seeds, showing that cts-1 retains the capacity to after ripen, indicating a germination block late in phase II. Expression of the key GA biosynthetic genes GA3ox1 and 2 was greatly reduced in cts seeds and genetic analysis suggested that CTS was epistatic to RGL2, a germination-repressing DELLA protein that is degraded by GA. Comparative analysis of seed transcriptome datasets indicated that specific cohorts of genes were influenced by GA and CTS. CTS function was required for expression of the flavonoid biosynthetic pathway. Confocal imaging demonstrated the exclusive accumulation of flavonoids in the epidermis of wild-type seeds. In contrast, flavonoids were absent from cts and kat2-1 mutant seeds, but accumulated following the application of sucrose, indicating an essential role for beta-oxidation in inducing flavonoid biosynthetic genes. These results demonstrate that CTS functions very late in phase II of germination and that its function is required for the expression of specific gene sets related to an important biochemical pathway associated with seedling establishment and survival.
Collapse
Affiliation(s)
- Esther Carrera
- Centro de Genomica, Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. THE PLANT CELL 2007; 19:1192-208. [PMID: 17449805 PMCID: PMC1913757 DOI: 10.1105/tpc.107.050153] [Citation(s) in RCA: 332] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Previous work showed that PHYTOCHROME-INTERACTING FACTOR3-LIKE5 (PIL5), a light-labile basic helix-loop-helix protein, inhibits seed germination by repressing GIBBERELLIN 3beta-HYDROXYLASE1 (GA3ox1) and GA3ox2 and activating a gibberellic acid (GA) catabolic gene (GA2ox2). However, we show persistent light-dependent and PIL5-inhibited germination behavior in the absence of both de novo GA biosynthesis and deactivation by GA2ox2, suggesting that PIL5 regulates not only GA metabolism but also GA responsiveness. PIL5 increases the expression of two GA repressor (DELLA) genes, GA-INSENSITIVE (GAI) and REPRESSOR OF GA1-3 (RGA/RGA1), in darkness. The hypersensitivity of gai-t6 rga-28 to red light and the suppression of germination defects of a rga-28 PIL5 overexpression line show the significant role of this transcriptional regulation in seed germination. PIL5 also increases abscisic acid (ABA) levels by activating ABA biosynthetic genes and repressing an ABA catabolic gene. PIL5 binds directly to GAI and RGA promoters but not to GA and ABA metabolic gene promoters. Together, our results show that light signals perceived by phytochromes cause a reduction in the PIL5 protein level, which in turn regulates the transcription of two DELLA genes directly and that of GA and ABA metabolic genes indirectly.
Collapse
Affiliation(s)
- Eunkyoo Oh
- Department of Biological Sciences, KAIST, Daejeon 305-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Achard P, Liao L, Jiang C, Desnos T, Bartlett J, Fu X, Harberd NP. DELLAs contribute to plant photomorphogenesis. PLANT PHYSIOLOGY 2007; 143:1163-72. [PMID: 17220364 PMCID: PMC1820925 DOI: 10.1104/pp.106.092254] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 12/20/2006] [Indexed: 05/13/2023]
Abstract
Plant morphogenesis is profoundly influenced by light (a phenomenon known as photomorphogenesis). For example, light inhibits seedling hypocotyl growth via activation of phytochromes and additional photoreceptors. Subsequently, information is transmitted through photoreceptor-linked signal transduction pathways and used (via previously unknown mechanisms) to control hypocotyl growth. Here we show that light inhibition of Arabidopsis (Arabidopsis thaliana) hypocotyl growth is in part dependent on the DELLAs (a family of nuclear growth-restraining proteins that mediate the effect of the phytohormone gibberellin [GA] on growth). We show that light inhibition of growth is reduced in DELLA-deficient mutant hypocotyls. We also show that light activation of phytochromes promotes the accumulation of DELLAs. A green fluorescent protein (GFP)-tagged DELLA (GFP-RGA) accumulates in elongating cells of light-grown, but not dark-grown, transgenic wild-type hypocotyls. Furthermore, transfer of seedlings from light to dark (or vice versa) results in rapid changes in hypocotyl GFP-RGA accumulation, changes that are paralleled by rapid alterations in the abundance in hypocotyls of transcripts encoding enzymes of GA metabolism. These observations suggest that light-dependent changes in hypocotyl GFP-RGA accumulation are a consequence of light-dependent changes in bioactive GA level. Finally, we show that GFP accumulation and quantitative modulation of hypocotyl growth is proportionate with light energy dose (the product of exposure duration and fluence rate). Hence, DELLAs inhibit hypocotyl growth during the light phase of the day-night cycle via a mechanism that is quantitatively responsive to natural light variability. We conclude that DELLAs are a major component of the adaptively significant mechanism via which light regulates plant growth during photomorphogenesis.
Collapse
Affiliation(s)
- Patrick Achard
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
96
|
Yamauchi Y, Takeda-Kamiya N, Hanada A, Ogawa M, Kuwahara A, Seo M, Kamiya Y, Yamaguchi S. Contribution of gibberellin deactivation by AtGA2ox2 to the suppression of germination of dark-imbibed Arabidopsis thaliana seeds. PLANT & CELL PHYSIOLOGY 2007; 48:555-61. [PMID: 17289793 DOI: 10.1093/pcp/pcm023] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Gibberellin levels in imbibed Arabidopsis thaliana seeds are regulated by light via phytochrome, presumably through regulation of gibberellin biosynthesis genes, AtGA3ox1 and AtGA3ox2, and a deactivation gene, AtGA2ox2. Here, we show that a loss-of-function ga2ox2 mutation causes an increase in GA(4) levels and partly suppresses the germination inability during dark imbibition after inactivation of phytochrome. Experiments using 2,2-dimethylGA(4), a GA(4) analog resistant to gibberellin 2-oxidase, in combination with ga2ox2 mutant seeds suggest that the efficiency of deactivation of exogenous GA(4) by AtGA2ox2 is dependent on light conditions, which partly explains phytochrome-mediated changes in gibberellin effectiveness (sensitivity) found in previous studies.
Collapse
Affiliation(s)
- Yukika Yamauchi
- RIKEN Plant Science Center, Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Matsushita A, Furumoto T, Ishida S, Takahashi Y. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. PLANT PHYSIOLOGY 2007; 143:1152-62. [PMID: 17277098 PMCID: PMC1820926 DOI: 10.1104/pp.106.093542] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Negative feedback is a fundamental mechanism of organisms to maintain the internal environment within tolerable limits. Gibberellins (GAs) are essential regulators of many aspects of plant development, including seed germination, stem elongation, and flowering. GA biosynthesis is regulated by the feedback mechanism in plants. GA 3-oxidase (GA3ox) catalyzes the final step of the biosynthetic pathway to produce the physiologically active GAs. Here, we found that only the AtGA3ox1 among the AtGA3ox family of Arabidopsis (Arabidopsis thaliana) is under the regulation of GA-negative feedback. We have identified a cis-acting sequence responsible for the GA-negative feedback of AtGA3ox1 using transgenic plants. Furthermore, we have identified an AT-hook protein, AGF1 (for the AT-hook protein of GA feedback regulation), as a DNA-binding protein for the cis-acting sequence of GA-negative feedback. The mutation in the cis-acting sequence abolished both GA-negative feedback and AGF1 binding. In addition, constitutive expression of AGF1 affected GA-negative feedback in Arabidopsis. Our results suggest that AGF1 plays a role in the homeostasis of GAs through binding to the cis-acting sequence of the GA-negative feedback of AtGA3ox1.
Collapse
Affiliation(s)
- Akane Matsushita
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
98
|
Donohue K, Heschel MS, Chiang GCK, Butler CM, Barua D. Phytochrome mediates germination responses to multiple seasonal cues. PLANT, CELL & ENVIRONMENT 2007; 30:202-12. [PMID: 17238911 DOI: 10.1111/j.1365-3040.2006.01619.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We identified a new role of phytochrome in mediating germination responses to seasonal cues and thereby identified for the first time a gene involved in maternal environmental effects on germination. We examined the germination responses of a mutant, hy2-1, which is deficient in the phytochrome chromophore. The background genotype, Landsberg erecta (Ler), lacked dormancy in most treatments, while hy2-1 required cold stratification for germination in a manner that resembled a more dormant ecotype, Columbia (Col). Unlike Col, hy2-1 was not induced into dormancy by warm stratification. Therefore, the down-regulation of phytochrome-mediated germination pathways results in sensitivity to cold, but we found no evidence that reduced phytochrome activity enables the warm-induction of dormancy. Cool temperatures during seed maturation induced dormancy. The hy2-1 mutants did not overcome this dormancy, indicating that phytochrome-mediated pathways are required to break cold-induced dormancy. Ler did not respond to post-stratification temperature, but hy2-1 did respond, suggesting phytochrome pathways are involved in germination responses to temperature. In summary, phytochromes mediate dormancy and germination responses to seasonal cues experienced both during seed maturation and after dispersal. Phytochromes therefore appear to be involved in mediating seasonal germination timing, a trait of great ecological importance and one that is under strong natural selection.
Collapse
Affiliation(s)
- Kathleen Donohue
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Ave. Cambridge, MA 02138, USA.
| | | | | | | | | |
Collapse
|
99
|
Suzuki M, Wang HHY, McCarty DR. Repression of the LEAFY COTYLEDON 1/B3 regulatory network in plant embryo development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 genes. PLANT PHYSIOLOGY 2007; 143:902-11. [PMID: 17158584 PMCID: PMC1803726 DOI: 10.1104/pp.106.092320] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant embryo development is regulated by a network of transcription factors that include LEAFY COTYLEDON 1 (LEC1), LEC1-LIKE (L1L), and B3 domain factors, LEAFY COTYLEDON 2 (LEC2), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) of Arabidopsis (Arabidopsis thaliana). Interactions of these genes result in temporal progression of overlapping B3 gene expression culminating in maturation and desiccation of the seed. Three VP1/ABI3-LIKE (VAL) genes encode B3 proteins that include plant homeodomain-like and CW domains associated with chromatin factors. Whereas val monogenic mutants have phenotypes similar to wild type, val1 val2 double-mutant seedlings form no leaves and develop embryo-like proliferations in root and apical meristem regions. In a val1 background, val2 and val3 condition a dominant variegated leaf phenotype revealing a VAL function in vegetative development. Reminiscent of the pickle (pkl) mutant, inhibition of gibberellin biosynthesis during germination induces embryonic phenotypes in val1 seedlings. Consistent with the embryonic seedling phenotype, LEC1, L1L, ABI3, and FUS3 are up-regulated in val1 val2 seedlings in association with a global shift in gene expression to a profile resembling late-torpedo-stage embryogenesis. Hence, VAL factors function as global repressors of the LEC1/B3 gene system. The consensus binding site of the ABI3/FUS3/LEC2 B3 DNA-binding domain (Sph/RY) is strongly enriched in the promoters and first introns of VAL-repressed genes, including the early acting LEC1 and L1L genes. We suggest that VAL targets Sph/RY-containing genes in the network for chromatin-mediated repression in conjunction with the PKL-related CHD3 chromatin-remodeling factors.
Collapse
Affiliation(s)
- Masaharu Suzuki
- Plant Molecular and Cellular Biology Program, Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA.
| | | | | |
Collapse
|
100
|
Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K. A new role for phytochromes in temperature-dependent germination. THE NEW PHYTOLOGIST 2007; 174:735-741. [PMID: 17504457 DOI: 10.1111/j.1469-8137.2007.02044.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Germination timing is a fundamental life-history trait, as seedling establishment predicates realized fitness in the wild. Light and temperature are two important cues by which seeds sense the proper season of germination. Using Arabidopsis thaliana, we provide evidence that phytochrome-mediated germination pathways simultaneously respond to light and temperature cues in ways that affect germination. Phytochrome mutant seeds were sown on agar plates and allowed to germinate in lit, growth chambers across a range of temperatures (7 degrees C to 28 degrees C). phyA had an important role in promoting germination at warmer temperatures, phyE was important to germination at colder temperatures and phyB was important to germination across a range of temperatures. Different phytochromes were required for germination at different temperatures, indicating a restriction or even a potential specialization of individual phytochrome activity as a function of temperature. This temperature-dependent activity of particular phytochromes reveals a potentially novel role for phytochrome pathways in regulating the seasonal timing of germination.
Collapse
Affiliation(s)
- M Shane Heschel
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
- Present address: Department of Biology, Colorado College, 14 East Cache La Poudre Street, Colorado Springs, CO 80903, USA
| | - Jessica Selby
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Colleen Butler
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| | - Garry C Whitelam
- Department of Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert A Sharrock
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717-3140, USA
| | - Kathleen Donohue
- Department of Organismic and Evolutionary Biology, Harvard University, 22 Divinity Avenue, Cambridge, MA 02138, USA
| |
Collapse
|