51
|
Wang Y, Yang L, Tang Y, Tang R, Jing Y, Zhang C, Zhang B, Li X, Cui Y, Zhang C, Shi J, Zhao F, Lan W, Luan S. Arabidopsis choline transporter-like 1 (CTL1) regulates secretory trafficking of auxin transporters to control seedling growth. PLoS Biol 2017; 15:e2004310. [PMID: 29283991 PMCID: PMC5746207 DOI: 10.1371/journal.pbio.2004310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/21/2017] [Indexed: 01/04/2023] Open
Abstract
Auxin controls a myriad of plant developmental processes and plant response to environmental conditions. Precise trafficking of auxin transporters is essential for auxin homeostasis in plants. Here, we report characterization of Arabidopsis CTL1, which controls seedling growth and apical hook development by regulating intracellular trafficking of PIN-type auxin transporters. The CTL1 gene encodes a choline transporter-like protein with an expression pattern highly correlated with auxin distribution and is enriched in shoot and root apical meristems, lateral root primordia, the vascular system, and the concave side of the apical hook. The choline transporter-like 1 (CTL1) protein is localized to the trans-Golgi network (TGN), prevacuolar compartment (PVC), and plasma membrane (PM). Disruption of CTL1 gene expression alters the trafficking of 2 auxin efflux transporters—Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3)—to the PM, thereby affecting auxin distribution and plant growth and development. We further found that phospholipids, sphingolipids, and other membrane lipids were significantly altered in the ctl1 mutant, linking CTL1 function to lipid homeostasis. We propose that CTL1 regulates protein sorting from the TGN to the PM through its function in lipid homeostasis. Auxin, a plant hormone, controls many aspects of plant growth and development. The precise transport and distribution of auxin hold the key to its function. A number of transport proteins are known to be involved in auxin translocation, and the PIN proteins, which are an integral part of membranes in plants, play a pivotal role in this process. Several PIN proteins are localized in the plasma membrane to mediate auxin efflux from cells, but their regulation is not well known. In this report, we analyze the role of a choline transport protein, choline transporter-like 1 (CTL1), and find that it controls the trafficking of Arabidopsis PM-located auxin efflux transporter PIN-formed 1 (PIN1) and Arabidopsis PM-located auxin efflux transporter PIN-formed 3 (PIN3) to the plasma membrane, thereby regulating auxin distribution during plant growth and development. In addition, we show that CTL1 has a role in lipid homeostasis in the membrane; thus, these findings provide a mechanistic link between choline transport, lipid homeostasis, and vesicle trafficking in plants. We conclude that CTL1 is a new factor in secretory protein sorting and that this finding contributes to the understanding of not only auxin distribution in plants but also protein trafficking in general.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- College of Life Sciences, Northwest University, Xi’an, Shanxi, China
| | - Lei Yang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Yumei Tang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Renjie Tang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Yanping Jing
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Chi Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Bin Zhang
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Xiaojuan Li
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yaning Cui
- Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jisen Shi
- Nanjing University–Nanjing Forestry University Joint Institute for Plant Molecular Biology, Key Laboratory of Forest Genetics and Biotechnology, Nanjing Forestry University, Nanjing, China
| | - Fugeng Zhao
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
| | - Wenzhi Lan
- State Key Laboratory for Pharmaceutical Biotechnology, Nanjing University-Nanjing Forestry University Joint Institute for Plant Molecular Biology, College of Life Sciences, Nanjing University, Nanjing, China
- * E-mail: (WL); (SL)
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail: (WL); (SL)
| |
Collapse
|
52
|
Di Sansebastiano GP, Barozzi F, Piro G, Denecke J, de Marcos Lousa C. Trafficking routes to the plant vacuole: connecting alternative and classical pathways. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:79-90. [PMID: 29096031 DOI: 10.1093/jxb/erx376] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/27/2017] [Indexed: 05/02/2023]
Abstract
Due to the numerous roles plant vacuoles play in cell homeostasis, detoxification, and protein storage, the trafficking pathways to this organelle have been extensively studied. Recent evidence, however, suggests that our vision of transport to the vacuole is not as simple as previously imagined. Alternative routes have been identified and are being characterized. Intricate interconnections between routes seem to occur in various cases, complicating the interpretation of data. In this review, we aim to summarize the published evidence and link the emerging data with previous findings. We discuss the current state of information on alternative and classical trafficking routes to the plant vacuole.
Collapse
Affiliation(s)
- Gian Pietro Di Sansebastiano
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Fabrizio Barozzi
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | - Gabriella Piro
- DiSTeBA (Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali), University of Salento, Campus ECOTEKNE, Italy
| | | | - Carine de Marcos Lousa
- Centre for Plant Sciences, Leeds University, UK
- Leeds Beckett University, School of Applied and Clinical Sciences, UK
| |
Collapse
|
53
|
Brillada C, Rojas-Pierce M. Vacuolar trafficking and biogenesis: a maturation in the field. CURRENT OPINION IN PLANT BIOLOGY 2017; 40:77-81. [PMID: 28865974 DOI: 10.1016/j.pbi.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/20/2017] [Accepted: 08/15/2017] [Indexed: 05/24/2023]
Abstract
The vacuole is a prominent organelle that is essential for plant viability. The vacuole size, and its role in ion homeostasis, protein degradation and storage, place significant demands for trafficking of vacuolar cargo along the endomembrane system. Recent studies indicate that sorting of vacuolar cargo initiates at the ER and Golgi, but not the trans-Golgi network/early endosome, as previously thought. Furthermore, maturation of the trans-Golgi network into pre-vacuolar compartments seems to contribute to a major route for plant vacuolar traffic that works by bulk flow and ends with membrane fusion between the pre-vacuolar compartment and the tonoplast. Here we summarize recent evidence that indicates conserved and plant-specific mechanisms involved in sorting and trafficking of proteins to this major organelle.
Collapse
Affiliation(s)
- Carla Brillada
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
54
|
Singh MK, Jürgens G. Specificity of plant membrane trafficking - ARFs, regulators and coat proteins. Semin Cell Dev Biol 2017; 80:85-93. [PMID: 29024759 DOI: 10.1016/j.semcdb.2017.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 09/29/2017] [Accepted: 10/09/2017] [Indexed: 11/27/2022]
Abstract
Approximately one-third of all eukaryotic proteins are delivered to their destination by trafficking within the endomembrane system. Such cargo proteins are incorporated into forming membrane vesicles on donor compartments and delivered to acceptor compartments by vesicle fusion. How cargo proteins are sorted into forming vesicles is still largely unknown. Here we review the roles of small GTPases of the ARF/SAR1 family, their regulators designated ARF guanine-nucleotide exchange factors (ARF-GEFs) and ARF GTPase-activating proteins (ARF-GAPs) as well as coat protein complexes during membrane vesicle formation. Although conserved across eukaryotes, these four functional groups of proteins display plant-specific modifications in composition, structure and function.
Collapse
Affiliation(s)
- Manoj K Singh
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Gerd Jürgens
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany.
| |
Collapse
|
55
|
Identifying Novel Regulators of Vacuolar Trafficking by Combining Fluorescence Imaging-Based Forward Genetic Screening and In Vitro Pollen Germination. Methods Mol Biol 2017. [PMID: 28861829 DOI: 10.1007/978-1-4939-7262-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.
Collapse
|
56
|
Feng QN, Li S, Zhang Y. Update on adaptor protein-3 in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2017; 12:e1356969. [PMID: 28786748 PMCID: PMC5616146 DOI: 10.1080/15592324.2017.1356969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
Adaptor proteins (APs) mediate protein sorting within endomembrane compartments in eukaryotic cells. AP-3 is an ancient AP complex mediating vacuolar trafficking in different phyla. Only recently, a few tonoplast proteins have been identified as AP-3 cargos in Arabidopsis whereas the function of AP-3 was largely unexplored. Here, we summarize recent advances on AP-3 in Arabidopsis, pointing at the potential roles of AP-3 in plant development and cellular processes.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
57
|
Krüger F, Schumacher K. Pumping up the volume - vacuole biogenesis in Arabidopsis thaliana. Semin Cell Dev Biol 2017; 80:106-112. [PMID: 28694113 DOI: 10.1016/j.semcdb.2017.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 01/05/2023]
Abstract
Plant architecture follows the need to collect CO2, solar energy, water and mineral nutrients via large surface areas. It is by the presence of a central vacuole that fills much of the cell volume that plants manage to grow at low metabolic cost. In addition vacuoles buffer the fluctuating supply of essential nutrients and help to detoxify the cytosol when plants are challenged by harmful molecules. Despite their large size and multiple important functions, our knowledge of vacuole biogenesis and the machinery underlying their amazing dynamics is still fragmentary. In this review, we try to reconcile past and present models for vacuole biogenesis with the current knowledge of multiple parallel vacuolar trafficking pathways and the molecular machineries driving membrane fusion and organelle shape.
Collapse
Affiliation(s)
- Falco Krüger
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, DE-69120 Heidelberg, Germany
| | - Karin Schumacher
- Department of Plant Developmental Biology, Centre for Organismal Studies, Heidelberg University, DE-69120 Heidelberg, Germany.
| |
Collapse
|
58
|
Feng QN, Song SJ, Yu SX, Wang JG, Li S, Zhang Y. Adaptor Protein-3-Dependent Vacuolar Trafficking Involves a Subpopulation of COPII and HOPS Tethering Proteins. PLANT PHYSIOLOGY 2017; 174:1609-1620. [PMID: 28559361 PMCID: PMC5490925 DOI: 10.1104/pp.17.00584] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 05/25/2017] [Indexed: 05/20/2023]
Abstract
Plant vacuoles are versatile organelles critical for plant growth and responses to environment. Vacuolar proteins are transported from the endoplasmic reticulum via multiple routes in plants. Two classic routes bear great similarity to other phyla with major regulators known, such as COPII and Rab5 GTPases. By contrast, vacuolar trafficking mediated by adaptor protein-3 (AP-3) or that independent of the Golgi has few recognized cargos and none of the regulators. In search of novel regulators for vacuolar trafficking routes and by using a fluorescence-based forward genetic screen, we demonstrated that the multispan transmembrane protein, Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is an AP-3-mediated vacuolar cargo. We show that the tonoplast targeting of PAT10 is mediated by the AP-3 complex but independent of the Rab5-mediated post-Golgi trafficking route. We also report that AP-3-mediated vacuolar trafficking involves a subpopulation of COPII and requires the vacuolar tethering complex HOPS. In addition, we have identified two novel mutant alleles of AP-3δ, whose point mutations interfered with the formation of the AP-3 complex as well as its membrane targeting. The results presented here shed new light on the vacuolar trafficking route mediated by AP-3 in plant cells.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Jian Song
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shi-Xia Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jia-Gang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
59
|
Kaur H, Sparvoli D, Osakada H, Iwamoto M, Haraguchi T, Turkewitz AP. An endosomal syntaxin and the AP-3 complex are required for formation and maturation of candidate lysosome-related secretory organelles (mucocysts) in Tetrahymena thermophila. Mol Biol Cell 2017; 28:1551-1564. [PMID: 28381425 PMCID: PMC5449153 DOI: 10.1091/mbc.e17-01-0018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/28/2017] [Indexed: 12/14/2022] Open
Abstract
Lysosome-related organelles (LROs) are secretory organelles formed by convergence between secretory and endosomal trafficking pathways. In Tetrahymena, secretory vesicles that resemble dense core granules are a new class of LROs whose synthesis depends on a conserved syntaxin required for heterotypic fusion and AP-3 for maturation. The ciliate Tetrahymena thermophila synthesizes large secretory vesicles called mucocysts. Mucocyst biosynthesis shares features with dense core granules (DCGs) in animal cells, including proteolytic processing of cargo proteins during maturation. However, other molecular features have suggested relatedness to lysosome-related organelles (LROs). LROs, which include diverse organelles in animals, are formed via convergence of secretory and endocytic trafficking. Here we analyzed Tetrahymena syntaxin 7-like 1 (Stx7l1p), a Qa-SNARE whose homologues in other lineages are linked with vacuoles/LROs. Stx7l1p is targeted to both immature and mature mucocysts and is essential in mucocyst formation. In STX7L1-knockout cells, the two major classes of mucocyst cargo proteins localize independently, accumulating in largely nonoverlapping vesicles. Thus initial formation of immature mucocysts involves heterotypic fusion, in which a subset of mucocyst proteins is delivered via an endolysosomal compartment. Further, we show that subsequent maturation requires AP-3, a complex widely implicated in LRO formation. Knockout of the µ-subunit gene does not impede delivery of any known mucocyst cargo but nonetheless arrests mucocyst maturation. Our data argue that secretory organelles in ciliates may represent a new class of LROs and reveal key roles of an endosomal syntaxin and AP-3 in the assembly of this complex compartment.
Collapse
Affiliation(s)
- Harsimran Kaur
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| | - Hiroko Osakada
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Masaaki Iwamoto
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan
| | - Tokuko Haraguchi
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe 651-2492, Japan.,Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
60
|
Feng QN, Zhang Y, Li S. Tonoplast targeting of VHA-a3 relies on a Rab5-mediated but Rab7-independent vacuolar trafficking route. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:230-233. [PMID: 28198146 DOI: 10.1111/jipb.12526] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/09/2017] [Indexed: 06/06/2023]
Abstract
Vacuolar trafficking routes and their regulators have recently drawn lots of attention in plant cell biology. A recent study reported the discovery of a plant-specific vacuolar trafficking route, i.e., a direct ER-to-vacuole route, through analysis of VHA-a3 subcellular targeting, a key component for the tonoplast V-ATPases. Our recent findings showed that VHA-a3 targets to the tonoplast through a Rab5-mediated but Rab7-independent pathway, shedding new lights on the unconventional vacuolar trafficking route in plant cells.
Collapse
Affiliation(s)
- Qiang-Nan Feng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | | |
Collapse
|
61
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
62
|
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, Chen X. The Multivesicular Bodies (MVBs)-Localized AAA ATPase LRD6-6 Inhibits Immunity and Cell Death Likely through Regulating MVBs-Mediated Vesicular Trafficking in Rice. PLoS Genet 2016; 12:e1006311. [PMID: 27618555 PMCID: PMC5019419 DOI: 10.1371/journal.pgen.1006311] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 08/19/2016] [Indexed: 02/07/2023] Open
Abstract
Previous studies have shown that multivesicular bodies (MVBs)/endosomes-mediated vesicular trafficking may play key roles in plant immunity and cell death. However, the molecular regulation is poorly understood in rice. Here we report the identification and characterization of a MVBs-localized AAA ATPase LRD6-6 in rice. Disruption of LRD6-6 leads to enhanced immunity and cell death in rice. The ATPase activity and homo-dimerization of LRD6-6 is essential for its regulation on plant immunity and cell death. An ATPase inactive mutation (LRD6-6E315Q) leads to dominant-negative inhibition in plants. The LRD6-6 protein co-localizes with the MVBs marker protein RabF1/ARA6 and interacts with ESCRT-III components OsSNF7 and OsVPS2. Further analysis reveals that LRD6-6 is required for MVBs-mediated vesicular trafficking and inhibits the biosynthesis of antimicrobial compounds. Collectively, our study shows that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice. Plants have evolved sophistical immunity system in fighting against pathogenic micro-organisms including bacteria, fungi and oomycetes. Upon perception of pathogens, the immune system activates rapid cell death, characterized as a form of hypersensitive response typically in and around the infection sites to restrict pathogen invasion and prevent disease development. Recent studies have suggested that MVBs-mediated vesicular trafficking might play key roles in plant immunity and cell death. However, the molecular regulation is poorly known. By using the lesion resembling disease (lrd) mutant, lrd6-6, which exhibits autoimmunity and spontaneous cell death, we characterized LRD6-6 as a MVBs-localized AAA ATPase. We found that the ATPase LRD6-6 was required for MVBs-mediated vesicular trafficking and inhibited the biosynthesis of antimicrobial compounds for immune response in rice. Both the ATPase activity and homo-dimerization of LRD6-6 were essential for its inhibition on immunity and cell death. The catalytically inactive ATPase, LRD6-6E315Q, played dominant-negative effect on inhibition of immunity in plants. In addition, the LRD6-6 protein co-localized with the MVBs-spread marker protein RabF1/ARA6 and also interacted with ESCRT-III components OsSNF7 and OsVPS2. In summary, our study has shown that the AAA ATPase LRD6-6 inhibits plant immunity and cell death most likely through modulating MVBs-mediated vesicular trafficking in rice.
Collapse
Affiliation(s)
- Xiaobo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Junjie Yin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Sihui Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Ruihong Liang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xiaogang Zhou
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Zhixiong Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wen Zhao
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weitao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Min He
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Can Yuan
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Koji Miyamoto
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Bingtian Ma
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Jichun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Peng Qin
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Weilan Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Yuping Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Wenming Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xianjun Wu
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Hisakazu Yamane
- Department of Biosciences, Faculty of Science and Engineering, Teikyo University, Utsunomiya, Tochigi, Japan
| | - Lihuang Zhu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shigui Li
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
| | - Xuewei Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory of Major Crop Diseases & Collaborative Innovation Center for Hybrid Rice in Yangtze River Basin, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|
63
|
Marcote MJ, Sancho-Andrés G, Soriano-Ortega E, Aniento F. Sorting signals for PIN1 trafficking and localization. PLANT SIGNALING & BEHAVIOR 2016; 11:e1212801. [PMID: 27603315 PMCID: PMC5155414 DOI: 10.1080/15592324.2016.1212801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 05/24/2023]
Abstract
PIN-FORMED (PIN) family proteins direct polar auxin transport based on their asymmetric (polar) localization at the plasma membrane. In the case of PIN1, it mainly localizes to the basal (rootward) plasma membrane domain of stele cells in root meristems. Vesicular trafficking events, such as clathrin-dependent PIN1 endocytosis and polar recycling, are probably the main determinants for PIN1 polar localization. However, very little is known about the signals which may be involved in binding the μ-adaptin subunit of clathrin adaptor complexes (APs) for sorting of PIN1 within clathrin-coated vesicles, which can determine its trafficking and localization. We have performed a systematic mutagenesis analysis to investigate putative sorting motifs in the hydrophilic loop of PIN1. We have found that a non-canonical motif, based in a phenylalanine residue, through the binding of μA(μ2)- and μD(μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 traffcking along the secretory pathway, respectively. In addition, tyrosine-based motifs, which also bind different μ-adaptins, could also contribute to PIN1 trafficking and localization.
Collapse
Affiliation(s)
- María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular,
Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED),
Universitat de València, Burjassot, Spain
| | - Gloria Sancho-Andrés
- Departamento de Bioquímica y Biología Molecular,
Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED),
Universitat de València, Burjassot, Spain
| | - Esther Soriano-Ortega
- Departamento de Bioquímica y Biología Molecular,
Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED),
Universitat de València, Burjassot, Spain
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular,
Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED),
Universitat de València, Burjassot, Spain
| |
Collapse
|
64
|
Pertl-Obermeyer H, Wu XN, Schrodt J, Müdsam C, Obermeyer G, Schulze WX. Identification of Cargo for Adaptor Protein (AP) Complexes 3 and 4 by Sucrose Gradient Profiling. Mol Cell Proteomics 2016; 15:2877-89. [PMID: 27371946 DOI: 10.1074/mcp.m116.060129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Intracellular vesicle trafficking is a fundamental process in eukaryotic cells. It enables cellular polarity and exchange of proteins between subcellular compartments such as the plasma membrane or the vacuole. Adaptor protein complexes participate in the vesicle formation by specific selection of the transported cargo. We investigated the role of the adaptor protein complex 3 (AP-3) and adaptor protein complex 4 (AP-4) in this selection process by screening for AP-3 and AP-4 dependent cargo proteins. Specific cargo proteins are expected to be mis-targeted in knock-out mutants of adaptor protein complex components. Thus, we screened for altered distribution profiles across a density gradient of membrane proteins in wild type versus ap-3β and ap-4β knock-out mutants. In ap-3β mutants, especially proteins with transport functions, such as aquaporins and plasma membrane ATPase, as well as vesicle trafficking proteins showed differential protein distribution profiles across the density gradient. In the ap-4β mutant aquaporins but also proteins from lipid metabolism were differentially distributed. These proteins also showed differential phosphorylation patterns in ap-3β and ap-4β compared with wild type. Other proteins, such as receptor kinases were depleted from the AP-3 mutant membrane system, possibly because of degradation after mis-targeting. In AP-4 mutants, membrane fractions were depleted for cytochrome P450 proteins, cell wall proteins and receptor kinases. Analysis of water transport capacity in wild type and mutant mesophyll cells confirmed aquaporins as cargo proteins of AP-3 and AP-4. The combination of organelle density gradients with proteome analysis turned out as a suitable experimental strategy for large-scale analyses of protein trafficking.
Collapse
Affiliation(s)
- Heidi Pertl-Obermeyer
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Xu Na Wu
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Jens Schrodt
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Christina Müdsam
- ¶Molecular Plant Physiology, University of Erlangen, Staudtstraβe 5, 91058 Erlangen, Germany
| | - Gerhard Obermeyer
- §Molecular Plant Biophysics and Biochemistry, Department of Molecular Biology, University of Salzburg, Billrothstraβe 11, 5020 Salzburg, Austria
| | - Waltraud X Schulze
- From the ‡Department of Plant Systems Biology, University of Hohenheim, 70593 Stuttgart, Germany;
| |
Collapse
|
65
|
Sancho-Andrés G, Soriano-Ortega E, Gao C, Bernabé-Orts JM, Narasimhan M, Müller AO, Tejos R, Jiang L, Friml J, Aniento F, Marcote MJ. Sorting Motifs Involved in the Trafficking and Localization of the PIN1 Auxin Efflux Carrier. PLANT PHYSIOLOGY 2016; 171:1965-82. [PMID: 27208248 PMCID: PMC4936568 DOI: 10.1104/pp.16.00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/11/2016] [Indexed: 05/21/2023]
Abstract
In contrast with the wealth of recent reports about the function of μ-adaptins and clathrin adaptor protein (AP) complexes, there is very little information about the motifs that determine the sorting of membrane proteins within clathrin-coated vesicles in plants. Here, we investigated putative sorting signals in the large cytosolic loop of the Arabidopsis (Arabidopsis thaliana) PIN-FORMED1 (PIN1) auxin transporter, which are involved in binding μ-adaptins and thus in PIN1 trafficking and localization. We found that Phe-165 and Tyr-280, Tyr-328, and Tyr-394 are involved in the binding of different μ-adaptins in vitro. However, only Phe-165, which binds μA(μ2)- and μD(μ3)-adaptin, was found to be essential for PIN1 trafficking and localization in vivo. The PIN1:GFP-F165A mutant showed reduced endocytosis but also localized to intracellular structures containing several layers of membranes and endoplasmic reticulum (ER) markers, suggesting that they correspond to ER or ER-derived membranes. While PIN1:GFP localized normally in a μA (μ2)-adaptin mutant, it accumulated in big intracellular structures containing LysoTracker in a μD (μ3)-adaptin mutant, consistent with previous results obtained with mutants of other subunits of the AP-3 complex. Our data suggest that Phe-165, through the binding of μA (μ2)- and μD (μ3)-adaptin, is important for PIN1 endocytosis and for PIN1 trafficking along the secretory pathway, respectively.
Collapse
Affiliation(s)
- Gloria Sancho-Andrés
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Esther Soriano-Ortega
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Caiji Gao
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Joan Miquel Bernabé-Orts
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Madhumitha Narasimhan
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Anna Ophelia Müller
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Ricardo Tejos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Liwen Jiang
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Jiří Friml
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| | - María Jesús Marcote
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universitat de Valencia, 46100 Burjassot, Spain (G.S.-A., E.S.-O., J.M.B.-O., F.A., M.J.M.);Institute of Science and Technology Austria, 3400 Klostenburg, Austria (M.N., A.O.M., R.T., J.F.); andSchool of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Hong Kong, China (C.G., L.J.)
| |
Collapse
|
66
|
Foissner I, Sommer A, Hoeftberger M, Hoepflinger MC, Absolonova M. Is Wortmannin-Induced Reorganization of the trans-Golgi Network the Key to Explain Charasome Formation? FRONTIERS IN PLANT SCIENCE 2016; 7:756. [PMID: 27375631 PMCID: PMC4891338 DOI: 10.3389/fpls.2016.00756] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/17/2016] [Indexed: 05/18/2023]
Abstract
Wortmannin, a fungal metabolite and an inhibitor of phosphatidylinositol-3 (PI3) and phosphatidylinositol-4 (PI4) kinases, is widely used for the investigation and dissection of vacuolar trafficking routes and for the identification of proteins located at multivesicular bodies (MVBs). In this study, we applied wortmannin on internodal cells of the characean green alga Chara australis. Wortmannin was used at concentrations of 25 and 50 μM which, unlike in other cells, arrested neither constitutive, nor wounding-induced endocytosis via coated vesicles. Wortmannin caused the formation of "mixed compartments" consisting of MVBs and membranous tubules which were probably derived from the trans-Golgi network (TGN) and within these compartments MVBs fused into larger organelles. Most interestingly, wortmannin also caused pronounced changes in the morphology of the TGNs. After transient hypertrophy, the TGNs lost their coat and formed compact, three-dimensional meshworks of anastomosing tubules containing a central core. These meshworks had a size of up to 4 μm and a striking resemblance to charasomes, which are convoluted plasma membrane domains, and which serve to increase the area available for transporters. Our findings indicate that similar mechanisms are responsible for the formation of charasomes and the wortmannin-induced reorganization of the TGN. We hypothesize that both organelles grow because of a disturbance of clathrin-dependent membrane retrieval due to inhibition of PI3 and/or PI4 kinases. This leads to local inhibition of clathrin-mediated endocytosis during charasome formation in untreated cells and to inhibition of vesicle release from the TGN in wortmannin-treated cells, respectively. The morphological resemblance between charasomes and wortmannin-modified TGN compartments suggests that homologous proteins are involved in membrane curvature and organelle architecture.
Collapse
|
67
|
Pei X, Fan F, Lin L, Chen Y, Sun W, Zhang S, Tian C. Involvement of the adaptor protein 3 complex in lignocellulase secretion in Neurospora crassa revealed by comparative genomic screening. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:124. [PMID: 26300971 PMCID: PMC4545925 DOI: 10.1186/s13068-015-0302-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/30/2015] [Indexed: 06/02/2023]
Abstract
BACKGROUND Lignocellulase hypersecretion has been achieved in industrial fungal workhorses such as Trichoderma reesei, but the underlying mechanism associated with this process is not well understood. Although previous comparative genomic studies have revealed that the mutagenic T. reesei strain RUT-C30 harbors hundreds of mutations compared with its parental strain QM6a, how these mutations actually contribute to the hypersecretion phenotype remains to be elucidated. RESULTS In this study, we systematically screened gene knockout (KO) mutants in the cellulolytic fungus Neurospora crassa, which contains orthologs of potentially defective T. reesei RUT-C30 mutated genes. Of the 86 deletion mutants screened in N. crassa, 12 exhibited lignocellulase production more than 25% higher than in the wild-type (WT) strain and 4 showed nearly 25% lower secretion. We observed that the deletion of Ncap3m (NCU03998), which encodes the μ subunit of the adaptor protein 3 (AP-3) complex in N. crassa, led to the most significant increase in lignocellulase secretion under both Avicel and xylan culture conditions. Moreover, strains lacking the β subunit of the AP-3 complex, encoded by Ncap3b (NCU06569), had a similar phenotype to ΔNcap3m, suggesting that the AP-3 complex is involved in lignocellulase secretion in N. crassa. We also found that the transcriptional abundance of major lignocellulase genes in ΔNcap3m was maintained at a relatively higher level during the late stage of fermentation compared with the WT, which might add to the hypersecretion phenotype. Finally, we found that importation of the T. reesei ap3m ortholog Trap3m into ΔNcap3m can genetically restore secretion of lignocellulases to normal levels, which suggests that the effect of the AP-3 complex on lignocellulase secretion is conserved in cellulolytic ascomycetes. CONCLUSIONS Using the model cellulolytic fungus N. crassa, we explored potential hypersecretion-related mutations in T. reesei strain RUT-C30. Through systematic genetic screening of 86 corresponding orthologous KO mutants in N. crassa, we identified several genes, particularly those encoding the AP-3 complex that contribute to lignocellulase secretion. These findings will be useful for strain improvement in future lignocellulase and biomass-based chemical production.
Collapse
Affiliation(s)
- Xue Pei
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Feiyu Fan
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Liangcai Lin
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Yong Chen
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Wenliang Sun
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| | - Shihong Zhang
- />College of Plant Sciences, Jilin University, Changchun, 130062 China
| | - Chaoguang Tian
- />Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 China
| |
Collapse
|
68
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
69
|
Löfke C, Dünser K, Scheuring D, Kleine-Vehn J. Auxin regulates SNARE-dependent vacuolar morphology restricting cell size. eLife 2015; 4. [PMID: 25742605 PMCID: PMC4384535 DOI: 10.7554/elife.05868] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/05/2015] [Indexed: 11/13/2022] Open
Abstract
The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates. DOI:http://dx.doi.org/10.7554/eLife.05868.001 In plants and animals, the way that cells grow is carefully controlled to enable tissues and organs to form and be maintained. This is especially important in plants because the cells are attached to each other by their cell walls. This means that, unlike some animal cells, plant cells are not able to move around as a plant's organs develop. Plant cells contain a large storage compartment called the vacuole, which occupies 30–80% of a cell's volume. The volume of the vacuole increases as the cell increases in size, and some researchers have suggested that the vacuole might help to control cell growth. A plant hormone called auxin can alter the growth of plant cells. However, this hormone's effect depends on the position of the cell in the plant; for example, it inhibits the growth of root cells, but promotes the growth of cells in the shoots and leaves. Nevertheless, it is not clear precisely how auxin controls plant cell growth. Here, Löfke et al. studied the effect of auxin on the appearance of vacuoles in a type of plant cell—called the root epidermal cell—on the surface of the roots of a plant called Arabidopsis thaliana. The experiments show that auxin alters the appearance of the vacuoles in these cells so they become smaller in size. At the same time, auxin also inhibits the growth of these cells. Löfke et al. found that auxin increases the amount of certain proteins in the membrane that surrounds the vacuole. These proteins belong to the SNARE family and one SNARE protein in particular, called VTI11, is required for auxin to be able to both alter the appearance of the vacuoles and restrict the growth of root epidermal cells. Enzymes called PI4 kinases were also shown to be involved in the control of the SNARE proteins in response to the auxin hormone. Löfke et al.'s findings suggest that auxin restricts the growth of root epidermal cells by controlling the amount of SNARE proteins in the vacuole membrane. The next challenge will be to understand precisely how the shape of the vacuole is controlled and how it contributes to cell growth. DOI:http://dx.doi.org/10.7554/eLife.05868.002
Collapse
Affiliation(s)
- Christian Löfke
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Kai Dünser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - David Scheuring
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
70
|
Teh OK, Hatsugai N, Tamura K, Fuji K, Tabata R, Yamaguchi K, Shingenobu S, Yamada M, Hasebe M, Sawa S, Shimada T, Hara-Nishimura I. BEACH-domain proteins act together in a cascade to mediate vacuolar protein trafficking and disease resistance in Arabidopsis. MOLECULAR PLANT 2015; 8:389-98. [PMID: 25618824 DOI: 10.1016/j.molp.2014.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/21/2014] [Accepted: 11/12/2014] [Indexed: 05/08/2023]
Abstract
Membrane trafficking to the protein storage vacuole (PSV) is a specialized process in seed plants. However, this trafficking mechanism to PSV is poorly understood. Here, we show that three types of Beige and Chediak-Higashi (BEACH)-domain proteins contribute to both vacuolar protein transport and effector-triggered immunity (ETI). We screened a green fluorescent seed (GFS) library of Arabidopsis mutants with defects in vesicle trafficking and isolated two allelic mutants gfs3 and gfs12 with a defect in seed protein transport to PSV. The gene responsible for the mutant phenotype was found to encode a putative protein belonging to group D of BEACH-domain proteins, which possess kinase domains. Disruption of other BEACH-encoding loci in the gfs12 mutant showed that BEACH homologs acted in a cascading manner for PSV trafficking. The epistatic genetic interactions observed among BEACH homologs were also found in the ETI responses of the gfs12 and gfs12 bchb-1 mutants, which showed elevated avirulent bacterial growth. The GFS12 kinase domain interacted specifically with the pleckstrin homology domain of BchC1. These results suggest that a cascade of multiple BEACH-domain proteins contributes to vacuolar protein transport and plant defense.
Collapse
Affiliation(s)
- Ooi-kock Teh
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Noriyuki Hatsugai
- Research Centre for Cooperative Projects, Hokkaido University, Kita-ku, Sapporo 060-8638, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kentaro Fuji
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Ryo Tabata
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Shuji Shingenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki 444-8585, Japan
| | - Masashi Yamada
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan; School of Life Science, The Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | | |
Collapse
|
71
|
An early secretory pathway mediated by GNOM-LIKE 1 and GNOM is essential for basal polarity establishment in Arabidopsis thaliana. Proc Natl Acad Sci U S A 2015; 112:E806-15. [PMID: 25646449 DOI: 10.1073/pnas.1424856112] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatial regulation of the plant hormone indole-3-acetic acid (IAA, or auxin) is essential for plant development. Auxin gradient establishment is mediated by polarly localized auxin transporters, including PIN-FORMED (PIN) proteins. Their localization and abundance at the plasma membrane are tightly regulated by endomembrane machinery, especially the endocytic and recycling pathways mediated by the ADP ribosylation factor guanine nucleotide exchange factor (ARF-GEF) GNOM. We assessed the role of the early secretory pathway in establishing PIN1 polarity in Arabidopsis thaliana by pharmacological and genetic approaches. We identified the compound endosidin 8 (ES8), which selectively interferes with PIN1 basal polarity without altering the polarity of apical proteins. ES8 alters the auxin distribution pattern in the root and induces a strong developmental phenotype, including reduced root length. The ARF-GEF-defective mutants gnom-like 1 (gnl1-1) and gnom (van7) are significantly resistant to ES8. The compound does not affect recycling or vacuolar trafficking of PIN1 but leads to its intracellular accumulation, resulting in loss of PIN1 basal polarity at the plasma membrane. Our data confirm a role for GNOM in endoplasmic reticulum (ER)-Golgi trafficking and reveal that a GNL1/GNOM-mediated early secretory pathway selectively regulates PIN1 basal polarity establishment in a manner essential for normal plant development.
Collapse
|
72
|
Adamowski M, Friml J. PIN-dependent auxin transport: action, regulation, and evolution. THE PLANT CELL 2015; 27:20-32. [PMID: 25604445 PMCID: PMC4330589 DOI: 10.1105/tpc.114.134874] [Citation(s) in RCA: 510] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 05/18/2023]
Abstract
Auxin participates in a multitude of developmental processes, as well as responses to environmental cues. Compared with other plant hormones, auxin exhibits a unique property, as it undergoes directional, cell-to-cell transport facilitated by plasma membrane-localized transport proteins. Among them, a prominent role has been ascribed to the PIN family of auxin efflux facilitators. PIN proteins direct polar auxin transport on account of their asymmetric subcellular localizations. In this review, we provide an overview of the multiple developmental roles of PIN proteins, including the atypical endoplasmic reticulum-localized members of the family, and look at the family from an evolutionary perspective. Next, we cover the cell biological and molecular aspects of PIN function, in particular the establishment of their polar subcellular localization. Hormonal and environmental inputs into the regulation of PIN action are summarized as well.
Collapse
Affiliation(s)
- Maciek Adamowski
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
73
|
Zouhar J, Sauer M. Helping hands for budding prospects: ENTH/ANTH/VHS accessory proteins in endocytosis, vacuolar transport, and secretion. THE PLANT CELL 2014; 26:4232-44. [PMID: 25415979 PMCID: PMC4277227 DOI: 10.1105/tpc.114.131680] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/31/2014] [Accepted: 11/13/2014] [Indexed: 05/18/2023]
Abstract
Coated vesicles provide a major mechanism for the transport of proteins through the endomembrane system of plants. Transport between the endoplasmic reticulum and the Golgi involves vesicles with COPI and COPII coats, whereas clathrin is the predominant coat in endocytosis and post-Golgi trafficking. Sorting of cargo, coat assembly, budding, and fission are all complex and tightly regulated processes that involve many proteins. The mechanisms and responsible factors are largely conserved in eukaryotes, and increasing organismal complexity tends to be associated with a greater numbers of individual family members. Among the key factors is the class of ENTH/ANTH/VHS domain-containing proteins, which link membrane subdomains, clathrin, and other adapter proteins involved in early steps of clathrin coated vesicle formation. More than 30 Arabidopsis thaliana proteins contain this domain, but their generally low sequence conservation has made functional classification difficult. Reports from the last two years have greatly expanded our knowledge of these proteins and suggest that ENTH/ANTH/VHS domain proteins are involved in various instances of clathrin-related endomembrane trafficking in plants. This review aims to summarize these new findings and discuss the broader context of clathrin-dependent plant vesicular transport.
Collapse
Affiliation(s)
- Jan Zouhar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, 28223 Madrid, Spain
| | - Michael Sauer
- Institute for Bichemistry and Biology, University of Potsdam, 10627 Potsdam, Germany
| |
Collapse
|
74
|
Wang X, Cai Y, Wang H, Zeng Y, Zhuang X, Li B, Jiang L. Trans-Golgi network-located AP1 gamma adaptins mediate dileucine motif-directed vacuolar targeting in Arabidopsis. THE PLANT CELL 2014; 26:4102-18. [PMID: 25351491 PMCID: PMC4247576 DOI: 10.1105/tpc.114.129759] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/17/2014] [Accepted: 09/29/2014] [Indexed: 05/18/2023]
Abstract
Membrane proteins on the tonoplast are indispensible for vacuolar functions in plants. However, how these proteins are transported to the vacuole and how they become separated from plasma membrane proteins remain largely unknown. In this study, we used Arabidopsis thaliana vacuolar ion transporter1 (VIT1) as a reporter to study the mechanisms of tonoplast targeting. We showed that VIT1 reached the tonoplast through a pathway involving the endoplasmic reticulum (ER), Golgi, trans-Golgi network (TGN), prevacuolar compartment, and tonoplast. VIT1 contains a putative N-terminal dihydrophobic type ER export signal, and its N terminus has a conserved dileucine motif (EKQTLL), which is responsible for tonoplast targeting. In vitro peptide binding assays with synthetic VIT1 N terminus identified adaptor protein complex-1 (AP1) subunits that interacted with the dileucine motif. A deficiency of AP1 gamma adaptins in Arabidopsis cells caused relocation of tonoplast proteins containing the dileucine motif, such as VIT1 and inositol transporter1, to the plasma membrane. The dileucine motif also effectively rerouted the plasma membrane protein SCAMP1 to the tonoplast. Together with subcellular localization studies showing that AP1 gamma adaptins localize to the TGN, we propose that the AP1 complex on the TGN mediates tonoplast targeting of membrane proteins with the dileucine motif.
Collapse
Affiliation(s)
- Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Baiying Li
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
75
|
Zhang C, Hicks GR, Raikhel NV. Plant vacuole morphology and vacuolar trafficking. FRONTIERS IN PLANT SCIENCE 2014; 5:476. [PMID: 25309565 PMCID: PMC4173805 DOI: 10.3389/fpls.2014.00476] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/29/2014] [Indexed: 05/23/2023]
Abstract
Plant vacuoles are essential organelles for plant growth and development, and have multiple functions. Vacuoles are highly dynamic and pleiomorphic, and their size varies depending on the cell type and growth conditions. Vacuoles compartmentalize different cellular components such as proteins, sugars, ions and other secondary metabolites and play critical roles in plants response to different biotic/abiotic signaling pathways. In this review, we will summarize the patterns of changes in vacuole morphology in certain cell types, our understanding of the mechanisms of plant vacuole biogenesis, and the role of SNAREs and Rab GTPases in vacuolar trafficking.
Collapse
Affiliation(s)
- Chunhua Zhang
- *Correspondence: Chunhua Zhang, Center for Plant Cell Biology and Department of Botany and Plant Sciences, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, USA e-mail:
| | | | | |
Collapse
|
76
|
Hurlock AK, Roston RL, Wang K, Benning C. Lipid trafficking in plant cells. Traffic 2014; 15:915-32. [PMID: 24931800 DOI: 10.1111/tra.12187] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Abstract
Plant cells contain unique organelles such as chloroplasts with an extensive photosynthetic membrane. In addition, specialized epidermal cells produce an extracellular cuticle composed primarily of lipids, and storage cells accumulate large amounts of storage lipids. As lipid assembly is associated only with discrete membranes or organelles, there is a need for extensive lipid trafficking within plant cells, more so in specialized cells and sometimes also in response to changing environmental conditions such as phosphate deprivation. Because of the complexity of plant lipid metabolism and the inherent recalcitrance of membrane lipid transporters, the mechanisms of lipid transport within plant cells are not yet fully understood. Recently, several new proteins have been implicated in different aspects of plant lipid trafficking. While these proteins provide only first insights into limited aspects of lipid transport phenomena in plant cells, they represent exciting opportunities for further studies.
Collapse
Affiliation(s)
- Anna K Hurlock
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA; Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
77
|
Pahari S, Cormark RD, Blackshaw MT, Liu C, Erickson JL, Schultz EA. Arabidopsis UNHINGED encodes a VPS51 homolog and reveals a role for the GARP complex in leaf shape and vein patterning. Development 2014; 141:1894-905. [PMID: 24757006 DOI: 10.1242/dev.099333] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Asymmetric localization of PIN proteins controls directionality of auxin transport and many aspects of plant development. Directionality of PIN1 within the marginal epidermis and the presumptive veins of developing leaf primordia is crucial for establishing leaf vein pattern. One mechanism that controls PIN protein distribution within the cell membranes is endocytosis and subsequent transport to the vacuole for degradation. The Arabidopsis mutant unhinged-1 (unh-1) has simpler leaf venation with distal non-meeting of the secondary veins and fewer higher order veins, a narrower leaf with prominent serrations, and reduced root and shoot growth. We identify UNH as the Arabidopsis vacuolar protein sorting 51 (VPS51) homolog, a member of the Arabidopsis Golgi-associated retrograde protein (GARP) complex, and show that UNH interacts with VPS52, another member of the complex and colocalizes with trans Golgi network and pre-vacuolar complex markers. The GARP complex in yeast and metazoans retrieves vacuolar sorting receptors to the trans-Golgi network and is important in sorting proteins for lysosomal degradation. We show that vacuolar targeting is reduced in unh-1. In the epidermal cells of unh-1 leaf margins, PIN1 expression is expanded. The unh-1 leaf phenotype is partially suppressed by pin1 and cuc2-3 mutations, supporting the idea that the phenotype results from expanded PIN1 expression in the marginal epidermis. Our results suggest that UNH is important for reducing expression of PIN1 within margin cells, possibly by targeting PIN1 to the lytic vacuole.
Collapse
Affiliation(s)
- Shankar Pahari
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB TIK 3M4, Canada
| | | | | | | | | | | |
Collapse
|
78
|
Ebine K, Inoue T, Ito J, Ito E, Uemura T, Goh T, Abe H, Sato K, Nakano A, Ueda T. Plant Vacuolar Trafficking Occurs through Distinctly Regulated Pathways. Curr Biol 2014; 24:1375-1382. [DOI: 10.1016/j.cub.2014.05.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2014] [Accepted: 05/01/2014] [Indexed: 02/04/2023]
|
79
|
Zheng J, Han SW, Rodriguez-Welsh MF, Rojas-Pierce M. Homotypic vacuole fusion requires VTI11 and is regulated by phosphoinositides. MOLECULAR PLANT 2014; 7:1026-1040. [PMID: 24569132 DOI: 10.1093/mp/ssu019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Most plant cells contain a large central vacuole that is essential to maintain cellular turgor. We report a new mutant allele of VTI11 that implicates the SNARE protein VTI11 in homotypic fusion of protein storage and lytic vacuoles. Fusion of the multiple vacuoles present in vti11 mutants could be induced by treatment with Wortmannin and LY294002, which are inhibitors of Phosphatidylinositol 3-Kinase (PI3K). We provide evidence that Phosphatidylinositol 3-Phosphate (PtdIns(3)P) regulates vacuole fusion in vti11 mutants, and that fusion of these vacuoles requires intact microtubules and actin filaments. Finally, we show that Wortmannin also induced the fusion of guard cell vacuoles in fava beans, where vacuoles are naturally fragmented after ABA-induced stomata closure. These results suggest a ubiquitous role of phosphoinositides in vacuole fusion, both during the development of the large central vacuole and during the dynamic vacuole remodeling that occurs as part of stomata movements.
Collapse
Affiliation(s)
- Jiameng Zheng
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Sang Won Han
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Marcela Rojas-Pierce
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
80
|
Paul P, Simm S, Mirus O, Scharf KD, Fragkostefanakis S, Schleiff E. The complexity of vesicle transport factors in plants examined by orthology search. PLoS One 2014; 9:e97745. [PMID: 24844592 PMCID: PMC4028247 DOI: 10.1371/journal.pone.0097745] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 04/24/2014] [Indexed: 11/18/2022] Open
Abstract
Vesicle transport is a central process to ensure protein and lipid distribution in eukaryotic cells. The current knowledge on the molecular components and mechanisms of this process is majorly based on studies in Saccharomyces cerevisiae and Arabidopsis thaliana, which revealed 240 different proteinaceous factors either experimentally proven or predicted to be involved in vesicle transport. In here, we performed an orthologue search using two different algorithms to identify the components of the secretory pathway in yeast and 14 plant genomes by using the 'core-set' of 240 factors as bait. We identified 4021 orthologues and (co-)orthologues in the discussed plant species accounting for components of COP-II, COP-I, Clathrin Coated Vesicles, Retromers and ESCRTs, Rab GTPases, Tethering factors and SNAREs. In plants, we observed a significantly higher number of (co-)orthologues than yeast, while only 8 tethering factors from yeast seem to be absent in the analyzed plant genomes. To link the identified (co-)orthologues to vesicle transport, the domain architecture of the proteins from yeast, genetic model plant A. thaliana and agriculturally relevant crop Solanum lycopersicum has been inspected. For the orthologous groups containing (co-)orthologues from yeast, A. thaliana and S. lycopersicum, we observed the same domain architecture for 79% (416/527) of the (co-)orthologues, which documents a very high conservation of this process. Further, publically available tissue-specific expression profiles for a subset of (co-)orthologues found in A. thaliana and S. lycopersicum suggest that some (co-)orthologues are involved in tissue-specific functions. Inspection of localization of the (co-)orthologues based on available proteome data or localization predictions lead to the assignment of plastid- as well as mitochondrial localized (co-)orthologues of vesicle transport factors and the relevance of this is discussed.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences Molecular Cell Biology of Plants
| | - Stefan Simm
- Department of Biosciences Molecular Cell Biology of Plants
| | - Oliver Mirus
- Department of Biosciences Molecular Cell Biology of Plants
| | | | | | - Enrico Schleiff
- Department of Biosciences Molecular Cell Biology of Plants
- Cluster of Excellence Frankfurt
- Center of Membrane Proteomics; Goethe University Frankfurt, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
81
|
Kania U, Fendrych M, Friml J. Polar delivery in plants; commonalities and differences to animal epithelial cells. Open Biol 2014; 4:140017. [PMID: 24740985 PMCID: PMC4043115 DOI: 10.1098/rsob.140017] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Although plant and animal cells use a similar core mechanism to deliver proteins
to the plasma membrane, their different lifestyle, body organization and
specific cell structures resulted in the acquisition of regulatory mechanisms
that vary in the two kingdoms. In particular, cell polarity regulators do not
seem to be conserved, because genes encoding key components are absent in plant
genomes. In plants, the broad knowledge on polarity derives from the study of
auxin transporters, the PIN-FORMED proteins, in the model plant
Arabidopsis thaliana. In animals, much information is
provided from the study of polarity in epithelial cells that exhibit basolateral
and luminal apical polarities, separated by tight junctions. In this review, we
summarize the similarities and differences of the polarization mechanisms
between plants and animals and survey the main genetic approaches that have been
used to characterize new genes involved in polarity establishment in plants,
including the frequently used forward and reverse genetics screens as well as a
novel chemical genetics approach that is expected to overcome the limitation of
classical genetics methods.
Collapse
Affiliation(s)
- Urszula Kania
- Institute of Science and Technology Austria (IST Austria), 3400 Klosterneuburg, Austria
| | | | | |
Collapse
|
82
|
Robinson DG, Pimpl P. Clathrin and post-Golgi trafficking: a very complicated issue. TRENDS IN PLANT SCIENCE 2014; 19:134-9. [PMID: 24263003 DOI: 10.1016/j.tplants.2013.10.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 05/21/2023]
Abstract
Clathrin-coated vesicles (CCVs) are formed at the plasma membrane and act as vectors for endocytosis. They also assemble at the trans-Golgi network (TGN), but their exact function at this organelle is unclear. Recent studies have examined the effects on vacuolar and secretory protein transport of knockout mutations of the adaptor protein 1 (AP1) μ-adaptin subunit AP1M, but these investigations do not clarify the situation. These mutations lead to the abrogation of multiple trafficking pathways at the TGN and cannot be used as evidence in favour of CCVs being agents for receptor-mediated export of vacuolar proteins out of the TGN. This transport process could just as easily occur through the maturation of the TGN into intermediate compartments that subsequently fuse with the vacuole.
Collapse
Affiliation(s)
- David G Robinson
- Centre for Organismal Studies (COS), University of Heidelberg, Heidelberg, Germany.
| | - Peter Pimpl
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| |
Collapse
|
83
|
SAC phosphoinositide phosphatases at the tonoplast mediate vacuolar function in Arabidopsis. Proc Natl Acad Sci U S A 2014; 111:2818-23. [PMID: 24550313 DOI: 10.1073/pnas.1324264111] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Phosphatidylinositol (PtdIns) is a structural phospholipid that can be phosphorylated into various lipid signaling molecules, designated polyphosphoinositides (PPIs). The reversible phosphorylation of PPIs on the 3, 4, or 5 position of inositol is performed by a set of organelle-specific kinases and phosphatases, and the characteristic head groups make these molecules ideal for regulating biological processes in time and space. In yeast and mammals, PtdIns3P and PtdIns(3,5)P2 play crucial roles in trafficking toward the lytic compartments, whereas the role in plants is not yet fully understood. Here we identified the role of a land plant-specific subgroup of PPI phosphatases, the suppressor of actin 2 (SAC2) to SAC5, during vacuolar trafficking and morphogenesis in Arabidopsis thaliana. SAC2-SAC5 localize to the tonoplast along with PtdIns3P, the presumable product of their activity. In SAC gain- and loss-of-function mutants, the levels of PtdIns monophosphates and bisphosphates were changed, with opposite effects on the morphology of storage and lytic vacuoles, and the trafficking toward the vacuoles was defective. Moreover, multiple sac knockout mutants had an increased number of smaller storage and lytic vacuoles, whereas extralarge vacuoles were observed in the overexpression lines, correlating with various growth and developmental defects. The fragmented vacuolar phenotype of sac mutants could be mimicked by treating wild-type seedlings with PtdIns(3,5)P2, corroborating that this PPI is important for vacuole morphology. Taken together, these results provide evidence that PPIs, together with their metabolic enzymes SAC2-SAC5, are crucial for vacuolar trafficking and for vacuolar morphology and function in plants.
Collapse
|
84
|
The use of multidrug approach to uncover new players of the endomembrane system trafficking machinery. Methods Mol Biol 2014; 1056:131-43. [PMID: 24306870 DOI: 10.1007/978-1-62703-592-7_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Chemical Biology is a strong tool to perform experimental procedures to study the Endomembrane System (ES) in plant biology. In the last few years, several bioactive compounds and their effects upon protein trafficking as well as organelle distribution, identity, and size in plants and yeast have been characterized. Today, several of these chemical tools are widely used to perform mutant screens and establish the trafficking pathway of a given cellular component. This chapter is a guideline to perform multidrug approaches to study the endomembrane system in plant cells. This type of approach is a powerful and useful strategy to thoroughly determine the trafficking of a specific protein as well as to perform mutant screens based on phenotypes produced by drug treatments. On the other hand, a multidrug approach can address the characterization of a new bioactive molecule and find its cellular pathway target. Overall, this approach can unravel mechanisms and identify new players in endomembrane trafficking.
Collapse
|
85
|
Viotti C. ER and vacuoles: never been closer. FRONTIERS IN PLANT SCIENCE 2014; 5:20. [PMID: 24550928 PMCID: PMC3913007 DOI: 10.3389/fpls.2014.00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 01/17/2014] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) represents the gateway for intracellular trafficking of membrane proteins, soluble cargoes and lipids. In all eukaryotes, the best described mechanism of exiting the ER is via COPII-coated vesicles, which transport both membrane proteins and soluble cargoes to the cis-Golgi. The vacuole, together with the plasma membrane, is the most distal point of the secretory pathway, and many vacuolar proteins are transported from the ER through intermediate compartments. However, past results and recent findings demonstrate the presence of alternative transport routes from the ER towards the tonoplast, which are independent of Golgi- and post-Golgi trafficking. Moreover, the transport mechanism of the vacuolar proton pumps VHA-a3 and AVP1 challenges the current model of vacuole biogenesis, pointing to the endoplasmic reticulum for being the main membrane source for the biogenesis of the plant lytic compartment. This review gives an overview of the current knowledge on the transport routes towards the vacuole and discusses the possible mechanism of vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Corrado Viotti
- *Correspondence: Corrado Viotti, Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Linnéusväg 6, 90187 Umeå, Sweden e-mail:
| |
Collapse
|
86
|
Baisa GA, Mayers JR, Bednarek SY. Budding and braking news about clathrin-mediated endocytosis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:718-25. [PMID: 24139529 DOI: 10.1016/j.pbi.2013.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/20/2013] [Accepted: 09/23/2013] [Indexed: 05/07/2023]
Abstract
Clathrin-mediated endocytosis (CME) is the predominate mechanism of endocytosis in eukaryotes, but an understanding of this mechanism in plants has lagged behind yeast and mammalian systems. The generation of Arabidopsis mutant libraries, and the development of the molecular tools and equipment necessary to characterize these plant lines has led to an astonishing number of new insights into the mechanisms of membrane trafficking in plants. Over the past few years progress has been made on identifying, and in some instances confirming, the core components of CME in plants. This review focuses on the recent progress made in the understanding of the mechanism and regulation of CME in plants.
Collapse
Affiliation(s)
- Gary A Baisa
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI 53706, USA
| | | | | |
Collapse
|
87
|
Kansup J, Tsugama D, Liu S, Takano T. The Arabidopsis adaptor protein AP-3μ interacts with the G-protein β subunit AGB1 and is involved in abscisic acid regulation of germination and post-germination development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5611-21. [PMID: 24098050 PMCID: PMC3871816 DOI: 10.1093/jxb/ert327] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Heterotrimeric G-proteins (G-proteins) have been implicated in ubiquitous signalling mechanisms in eukaryotes. In plants, G-proteins modulate hormonal and stress responses and regulate diverse developmental processes. However, the molecular mechanisms of their functions are largely unknown. A yeast two-hybrid screen was performed to identify interacting partners of the Arabidopsis G-protein β subunit AGB1. One of the identified AGB1-interacting proteins is the Arabidopsis adaptor protein AP-3µ. The interaction between AGB1 and AP-3µ was confirmed by an in vitro pull-down assay and bimolecular fluorescence complementation assay. Two ap-3µ T-DNA insertional mutants were found to be hyposensitive to abscisic acid (ABA) during germination and post-germination growth, whereas agb1 mutants were hypersensitive to ABA. During seed germination, agb1/ap-3µ double mutants were more sensitive to ABA than the wild type but less sensitive than agb1 mutants. However, in post-germination growth, the double mutants were as sensitive to ABA as agb1 mutants. These data suggest that AP-3µ positively regulates the ABA responses independently of AGB1 in seed germination, while AP-3µ does require AGB1 to regulate ABA responses during post-germination growth.
Collapse
Affiliation(s)
- Jeeraporn Kansup
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
| | - Daisuke Tsugama
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan
- * Present address: Biology Department, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802, USA
| | - Shenkui Liu
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University, Harbin 150040, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo, Tokyo 188-0002, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
88
|
Nodzynski T, Feraru MI, Hirsch S, De Rycke R, Niculaes C, Boerjan W, Van Leene J, De Jaeger G, Vanneste S, Friml J. Retromer subunits VPS35A and VPS29 mediate prevacuolar compartment (PVC) function in Arabidopsis. MOLECULAR PLANT 2013; 6:1849-62. [PMID: 23770835 DOI: 10.1093/mp/sst044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Intracellular protein routing is mediated by vesicular transport which is tightly regulated in eukaryotes. The protein and lipid homeostasis depends on coordinated delivery of de novo synthesized or recycled cargoes to the plasma membrane by exocytosis and their subsequent removal by rerouting them for recycling or degradation. Here, we report the characterization of protein affected trafficking 3 (pat3) mutant that we identified by an epifluorescence-based forward genetic screen for mutants defective in subcellular distribution of Arabidopsis auxin transporter PIN1-GFP. While pat3 displays largely normal plant morphology and development in nutrient-rich conditions, it shows strong ectopic intracellular accumulations of different plasma membrane cargoes in structures that resemble prevacuolar compartments (PVC) with an aberrant morphology. Genetic mapping revealed that pat3 is defective in vacuolar protein sorting 35A (VPS35A), a putative subunit of the retromer complex that mediates retrograde trafficking between the PVC and trans-Golgi network. Similarly, a mutant defective in another retromer subunit, vps29, shows comparable subcellular defects in PVC morphology and protein accumulation. Thus, our data provide evidence that the retromer components VPS35A and VPS29 are essential for normal PVC morphology and normal trafficking of plasma membrane proteins in plants. In addition, we show that, out of the three VPS35 retromer subunits present in Arabidopsis thaliana genome, the VPS35 homolog A plays a prevailing role in trafficking to the lytic vacuole, presenting another level of complexity in the retromer-dependent vacuolar sorting.
Collapse
Affiliation(s)
- Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University (MU), Kamenice 5, CZ-625 00, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Rojas-Pierce M. Targeting of tonoplast proteins to the vacuole. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 211:132-136. [PMID: 23987818 DOI: 10.1016/j.plantsci.2013.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Revised: 07/08/2013] [Accepted: 07/10/2013] [Indexed: 06/02/2023]
Abstract
Vacuoles are essential for plant growth and development, and are dynamic compartments that require constant deposition of integral membrane proteins. These membrane proteins carry out many critical functions of the vacuole such as transporting ions and metabolites for vacuolar storage. Understanding the mechanisms for targeting proteins to the vacuolar membrane, or tonoplast, is important for developing novel applications for biotechnology. The mechanisms to target tonoplast proteins to the vacuole are quite complex. Multiple routes, including both Golgi-dependent and Golgi-independent mechanisms, have been implicated in tonoplast protein trafficking. A few endomembrane proteins that regulate this traffic at the level of the endoplasmic reticulum, the pre-vacuolar compartment and the tonoplast are now known. Recent reports indicate that the Golgi-dependent and independent pathways may merge at the level of the pre-vacuolar compartment. Finally, the small GTP-binding protein Rab7 and the SNARE protein SYP21 have been implicated in the traffic of tonoplast proteins from the pre-vacuolar compartment to the tonoplast. With multiple cargo proteins being analyzed under a variety of experimental systems, a clearer picture for targeting mechanisms for tonoplast proteins is starting to emerge.
Collapse
Affiliation(s)
- Marcela Rojas-Pierce
- Department of Plant Biology, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
90
|
Fan L, Hao H, Xue Y, Zhang L, Song K, Ding Z, Botella MA, Wang H, Lin J. Dynamic analysis of Arabidopsis AP2 σ subunit reveals a key role in clathrin-mediated endocytosis and plant development. Development 2013; 140:3826-37. [DOI: 10.1242/dev.095711] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clathrin-mediated endocytosis, which depends on the AP2 complex, plays an essential role in many cellular and developmental processes in mammalian cells. However, the function of the AP2 complex in plants remains largely unexplored. Here, we show in Arabidopsis that the AP2 σ subunit mutant (ap2 σ) displays various developmental defects that are similar to those of mutants defective in auxin transport and/or signaling, including single, trumpet-shaped and triple cotyledons, impaired vascular pattern, reduced vegetative growth, defective silique development and drastically reduced fertility. We demonstrate that AP2 σ is closely associated and physically interacts with the clathrin light chain (CLC) in vivo using fluorescence cross-correlation spectroscopy (FCCS), protein proximity analyses and co-immunoprecipitation assays. Using variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), we show that AP2 σ-mCherry spots colocalize with CLC-EGFP at the plasma membrane, and that AP2 σ-mCherry fluorescence appears and disappears before CLC-EGFP fluorescence. The density and turnover rate of the CLC-EGFP spots are significantly reduced in the ap2 σ mutant. The internalization and recycling of the endocytic tracer FM4-64 and the auxin efflux carrier protein PIN1 are also significantly reduced in the ap2 σ mutant. Further, the polar localization of PIN1-GFP is significantly disrupted during embryogenesis in the ap2 σ mutant. Taken together, our results support an essential role of AP2 σ in the assembly of a functional AP2 complex in plants, which is required for clathrin-mediated endocytosis, polar auxin transport and plant growth regulation.
Collapse
Affiliation(s)
- Lusheng Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaiqing Hao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yiqun Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Kai Song
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Graduate University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaojun Ding
- School of Life Sciences, Shandong University, Jinan 250100, China
| | - Miguel A. Botella
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29071 Malaga, Spain
| | - Haiyang Wang
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | - Jinxing Lin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
91
|
Viotti C, Krüger F, Krebs M, Neubert C, Fink F, Lupanga U, Scheuring D, Boutté Y, Frescatada-Rosa M, Wolfenstetter S, Sauer N, Hillmer S, Grebe M, Schumacher K. The endoplasmic reticulum is the main membrane source for biogenesis of the lytic vacuole in Arabidopsis. THE PLANT CELL 2013; 25:3434-49. [PMID: 24014545 PMCID: PMC3809542 DOI: 10.1105/tpc.113.114827] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/21/2013] [Indexed: 05/18/2023]
Abstract
Vacuoles are multifunctional organelles essential for the sessile lifestyle of plants. Despite their central functions in cell growth, storage, and detoxification, knowledge about mechanisms underlying their biogenesis and associated protein trafficking pathways remains limited. Here, we show that in meristematic cells of the Arabidopsis thaliana root, biogenesis of vacuoles as well as the trafficking of sterols and of two major tonoplast proteins, the vacuolar H(+)-pyrophosphatase and the vacuolar H(+)-adenosinetriphosphatase, occurs independently of endoplasmic reticulum (ER)-Golgi and post-Golgi trafficking. Instead, both pumps are found in provacuoles that structurally resemble autophagosomes but are not formed by the core autophagy machinery. Taken together, our results suggest that vacuole biogenesis and trafficking of tonoplast proteins and lipids can occur directly from the ER independent of Golgi function.
Collapse
Affiliation(s)
- Corrado Viotti
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Falco Krüger
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Melanie Krebs
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Neubert
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Fabian Fink
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Upendo Lupanga
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - David Scheuring
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Yohann Boutté
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Márcia Frescatada-Rosa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Susanne Wolfenstetter
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Norbert Sauer
- Molecular Plant Physiology, University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Stefan Hillmer
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Markus Grebe
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Karin Schumacher
- Centre for Organismal Studies, Plant Developmental Biology, University of Heidelberg, 69120 Heidelberg, Germany
- Address correspondence to
| |
Collapse
|
92
|
Wang JG, Li S, Zhao XY, Zhou LZ, Huang GQ, Feng C, Zhang Y. HAPLESS13, the Arabidopsis μ1 adaptin, is essential for protein sorting at the trans-Golgi network/early endosome. PLANT PHYSIOLOGY 2013; 162:1897-910. [PMID: 23766365 PMCID: PMC3729769 DOI: 10.1104/pp.113.221051] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/11/2013] [Indexed: 05/20/2023]
Abstract
In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.
Collapse
|
93
|
Yamaoka S, Shimono Y, Shirakawa M, Fukao Y, Kawase T, Hatsugai N, Tamura K, Shimada T, Hara-Nishimura I. Identification and dynamics of Arabidopsis adaptor protein-2 complex and its involvement in floral organ development. THE PLANT CELL 2013; 25:2958-69. [PMID: 23975897 PMCID: PMC3784591 DOI: 10.1105/tpc.113.114082] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/16/2013] [Accepted: 08/06/2013] [Indexed: 05/18/2023]
Abstract
The adaptor protein-2 (AP-2) complex is a heterotetramer involved in clathrin-mediated endocytosis of cargo proteins from the plasma membrane in animal cells. The homologous genes of AP-2 subunits are present in the genomes of plants; however, their identities and roles in endocytic pathways are not clearly defined in plants. Here, we reveal the molecular composition of the AP-2 complex of Arabidopsis thaliana and its dynamics on the plasma membrane. We identified all of the α-, β-, σ-, and μ-subunits of the AP-2 complex and detected a weak interaction of the AP-2 complex with clathrin heavy chain. The μ-subunit protein fused to green fluorescent protein (AP2M-GFP) was localized to the plasma membrane and to the cytoplasm. Live-cell imaging using a variable-angle epifluorescence microscope revealed that AP2M-GFP transiently forms punctate structures on the plasma membrane. Homozygous ap2m mutant plants exhibited abnormal floral structures, including reduced stamen elongation and delayed anther dehiscence, which led to a failure of pollination and a subsequent reduction of fertility. Our study provides a molecular basis for understanding AP-2-dependent endocytic pathways in plants and their roles in floral organ development and plant reproduction.
Collapse
Affiliation(s)
- Shohei Yamaoka
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yuki Shimono
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Makoto Shirakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yoichiro Fukao
- Plant Global Educational Project, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Takashi Kawase
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Noriyuki Hatsugai
- Research Center for Cooperative Projects, Hokkaido University, Sapporo 060-8638, Japan
| | - Kentaro Tamura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Ikuko Hara-Nishimura
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
- Address correspondence to
| |
Collapse
|
94
|
Xiang L, Van den Ende W. Trafficking of plant vacuolar invertases: from a membrane-anchored to a soluble status. Understanding sorting information in their complex N-terminal motifs. PLANT & CELL PHYSIOLOGY 2013; 54:1263-1277. [PMID: 23737500 DOI: 10.1093/pcp/pct075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vacuolar invertases (VIs) are highly expressed in young tissues and organs. They may have a substantial regulatory influence on whole-plant metabolism as well as on photosynthetic efficiency. Therefore, they are emerging as potentially interesting biotechnological targets to increase plant biomass production, especially under stress. On the one hand, VIs are well known as soluble and extractable proteins. On the other hand, they contain complex N-terminal propeptide (NTPP) regions with a basic region (BR) and a transmembrane domain (TMD). Here we analyzed in depth the Arabidopsis thaliana VI2 (AtVI2) NTPP by mutagenesis. It was found that correct sorting to the lytic vacuole (LV) depends on the presence of intact dileucine (SSDALLPIS), BR (RRRR) and TMD motifs. AtVI2 remains inserted into membranes on its way to the LV, and the classical sorting pathway (endoplasmic reticulum→Golgi→LV) is followed. However, our data suggest that VIs might follow an alternative, adaptor protein 3 (AP3)-dependent route as well. Membrane-anchored transport and a direct recognition of the dileucine motif in the NTPP of VIs might have evolved as a simple and more efficient sorting mechanism as compared with the vacuolar sorting receptor 1/binding protein of 80 kDa (VSR1/BP80)-dependent sorting mechanism followed by those proteins that travel to the vacuole as soluble proteins.
Collapse
Affiliation(s)
- Li Xiang
- Biology Department, Laboratory for Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Box 2434, B-3001 Heverlee, Belgium
| | | |
Collapse
|
95
|
Arabidopsis μ-adaptin subunit AP1M of adaptor protein complex 1 mediates late secretory and vacuolar traffic and is required for growth. Proc Natl Acad Sci U S A 2013; 110:10318-23. [PMID: 23733933 DOI: 10.1073/pnas.1300460110] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adaptor protein (AP) complexes are the predominant coat proteins of membrane vesicles in post-Golgi trafficking of mammalian cells. Each AP complex contains a specific medium subunit, μ-adaptin, that selects cargo proteins bearing sequence-specific sorting motifs. Much less is known about the AP complexes and their μ subunits in plants. Because of uncertain homology, the μ-adaptins of Arabidopsis have been designated muA through muD [Happel et al. (2004) Plant J 37(5):678-693]. Furthermore, only muD has been assigned to a specific AP complex, AP-3, involved in Golgi-vacuolar trafficking [Niihama et al. (2009) Plant Cell Physiol 50(12):2057-2068, Zwiewka et al. (2011) Cell Res 21(12):1711-1722, and Wolfenstetter et al. (2012) Plant Cell 24(1):215-232]. In contrast, the μ subunit of neither the post-Golgi trafficking AP-1 complex nor the endocytic AP-2 complex has been identified. Here, we report the functional analysis of redundant AP-1 μ-adaptins AP1M1 (also known as muB1) and AP1M2 (also known as muB2). Coimmunoprecipitation revealed that both AP1M2 and its less strongly expressed isoform AP1M1 are complexed with the large subunit γ-adaptin of AP-1. In addition, AP1M2 was localized at or near the trans-Golgi network. Knockout mutations of AP1M2 impaired pollen function and arrested plant growth whereas the ap1m1 ap1m2 double mutant was nearly pollen-lethal. At the cellular level, the absence of AP1M2 entailed inhibition of multiple trafficking pathways from the trans-Golgi network to the vacuole and to the plasma membrane in interphase and to the plane of cell division in cytokinesis. Thus, AP-1 is crucial in post-Golgi trafficking in plant cells and required for cell division and plant growth.
Collapse
|
96
|
Niñoles R, Rubio L, García-Sánchez MJ, Fernández JA, Bueso E, Alejandro S, Serrano R. A dominant-negative form of Arabidopsis AP-3 β-adaptin improves intracellular pH homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:557-568. [PMID: 23397991 DOI: 10.1111/tpj.12138] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/28/2013] [Accepted: 02/03/2013] [Indexed: 06/01/2023]
Abstract
Intracellular pH (pHi ) is a crucial parameter in cellular physiology but its mechanisms of homeostasis are only partially understood. To uncover novel roles and participants of the pHi regulatory system, we have screened an Arabidopsis mutant collection for resistance of seed germination to intracellular acidification induced by weak organic acids (acetic, propionic, sorbic). The phenotypes of one identified mutant, weak acid-tolerant 1-1D (wat1-1D) are due to the expression of a truncated form of AP-3 β-adaptin (encoded by the PAT2 gene) that behaves as a as dominant-negative. During acetic acid treatment the root epidermal cells of the mutant maintain a higher pHi and a more depolarized plasma membrane electrical potential than wild-type cells. Additional phenotypes of wat1-1D roots include increased rates of acetate efflux, K(+) uptake and H(+) efflux, the latter reflecting the in vivo activity of the plasma membrane H(+) -ATPase. The in vitro activity of the enzyme was not increased but, as the H(+) -ATPase is electrogenic, the increased ion permeability would allow a higher rate of H(+) efflux. The AP-3 adaptor complex is involved in traffic from Golgi to vacuoles but its function in plants is not much known. The phenotypes of the wat1-1D mutant can be explained if loss of function of the AP-3 β-adaptin causes activation of channels or transporters for organic anions (acetate) and for K(+) at the plasma membrane, perhaps through miss-localization of tonoplast proteins. This suggests a role of this adaptin in trafficking of ion channels or transporters to the tonoplast.
Collapse
Affiliation(s)
- Regina Niñoles
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, 46022, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
97
|
Teh OK, Shimono Y, Shirakawa M, Fukao Y, Tamura K, Shimada T, Hara-Nishimura I. The AP-1 µ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in Arabidopsis. ACTA ACUST UNITED AC 2013; 54:838-47. [DOI: 10.1093/pcp/pct048] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
98
|
Mishev K, Dejonghe W, Russinova E. Small Molecules for Dissecting Endomembrane Trafficking: A Cross-Systems View. ACTA ACUST UNITED AC 2013; 20:475-86. [DOI: 10.1016/j.chembiol.2013.03.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 01/31/2023]
|
99
|
Pedrazzini E, Komarova NY, Rentsch D, Vitale A. Traffic Routes and Signals for the Tonoplast. Traffic 2013; 14:622-8. [DOI: 10.1111/tra.12051] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 01/17/2023]
Affiliation(s)
- Emanuela Pedrazzini
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| | | | - Doris Rentsch
- Institute of Plant Sciences; University of Bern; Bern; Switzerland
| | - Alessandro Vitale
- Istituto di Biologia e Biotecnologia Agraria; Consiglio Nazionale delle Ricerche; Milano; Italy
| |
Collapse
|
100
|
Xiang L, Etxeberria E, den Ende W. Vacuolar protein sorting mechanisms in plants. FEBS J 2013; 280:979-93. [DOI: 10.1111/febs.12092] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/08/2012] [Accepted: 12/11/2012] [Indexed: 01/12/2023]
Affiliation(s)
- Li Xiang
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| | - Ed Etxeberria
- Horticulture Department Citrus Research and Education Center University of Florida Lake Alfred FL USA
| | - Wim den Ende
- Laboratory of Molecular Plant Biology KU Leuven Belgium
| |
Collapse
|