51
|
Ravid J, Spitzer-Rimon B, Takebayashi Y, Seo M, Cna'ani A, Aravena-Calvo J, Masci T, Farhi M, Vainstein A. GA as a regulatory link between the showy floral traits color and scent. THE NEW PHYTOLOGIST 2017; 215:411-422. [PMID: 28262954 DOI: 10.1111/nph.14504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 01/31/2017] [Indexed: 06/06/2023]
Abstract
Emission of volatiles at advanced stages of flower development is a strategy used by plants to lure pollinators to the flower. We reveal that GA negatively regulates floral scent production in petunia. We used Agrobacterium-mediated transient expression of GA-20ox in petunia flowers and a virus-induced gene silencing approach to knock down DELLA expression, measured volatile emission, internal pool sizes and GA levels by GC-MS or LC-MS/MS, and analyzed transcript levels of scent-related phenylpropanoid-pathway genes. We show that GA has a negative effect on the concentrations of accumulated and emitted phenylpropanoid volatiles in petunia flowers; this effect is exerted through transcriptional/post-transcriptional downregulation of regulatory and biosynthetic scent-related genes. Both overexpression of GA20-ox, a GA-biosynthesis gene, and suppression of DELLA, a repressor of GA-signal transduction, corroborated GA's negative regulation of floral scent. We present a model in which GA-dependent timing of the sequential activation of different branches of the phenylpropanoid pathway during flower development may represent a link between the showy traits controlling pollinator attraction, namely color and scent.
Collapse
Affiliation(s)
- Jasmin Ravid
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Ben Spitzer-Rimon
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Alon Cna'ani
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Javiera Aravena-Calvo
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Moran Farhi
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, PO Box 12, Rehovot, Israel
| |
Collapse
|
52
|
Schenck CA, Holland CK, Schneider MR, Men Y, Lee SG, Jez JM, Maeda HA. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants. Nat Chem Biol 2017; 13:1029-1035. [PMID: 28671678 DOI: 10.1038/nchembio.2414] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/11/2017] [Indexed: 11/09/2022]
Abstract
L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Matthew R Schneider
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yusen Men
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
53
|
Sweetlove LJ, Nielsen J, Fernie AR. Engineering central metabolism - a grand challenge for plant biologists. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:749-763. [PMID: 28004455 DOI: 10.1111/tpj.13464] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE41128, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800, Lyngby, Denmark
- Science for Life Laboratory, Royal Institute of Technology, SE17121, Stockholm, Sweden
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| |
Collapse
|
54
|
Wang M, Toda K, Maeda HA. Biochemical properties and subcellular localization of tyrosine aminotransferases in Arabidopsis thaliana. PHYTOCHEMISTRY 2016; 132:16-25. [PMID: 27726859 DOI: 10.1016/j.phytochem.2016.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/02/2016] [Accepted: 09/12/2016] [Indexed: 05/05/2023]
Abstract
Plants produce various L-tyrosine (Tyr)-derived compounds that are of pharmaceutical or nutritional importance to humans. Tyr aminotransferase (TAT) catalyzes the reversible transamination between Tyr and 4-hydroxyphenylpyruvate (HPP), the initial step in the biosynthesis of many Tyr-derived plant natural products. Herein reported is the biochemical characterization and subcellular localization of TAT enzymes from the model plant Arabidopsis thaliana. Phylogenetic analysis showed that Arabidopsis has at least two homologous TAT genes, At5g53970 (AtTAT1) and At5g36160 (AtTAT2). Their recombinant enzymes showed distinct biochemical properties: AtTAT1 had the highest activity towards Tyr, while AtTAT2 exhibited a broad substrate specificity for both amino and keto acid substrates. Also, AtTAT1 favored the direction of Tyr deamination to HPP, whereas AtTAT2 preferred transamination of HPP to Tyr. Subcellular localization analysis using GFP-fusion proteins and confocal microscopy showed that AtTAT1, AtTAT2, and HPP dioxygenase (HPPD), which catalyzes the subsequent step of TAT, are localized in the cytosol, unlike plastid-localized Tyr and tocopherol biosynthetic enzymes. Furthermore, subcellular fractionation indicated that, while HPPD activity is restricted to the cytosol, TAT activity is detected in both cytosolic and plastidic fractions of Arabidopsis leaf tissue, suggesting that an unknown aminotransferase(s) having TAT activity is also present in the plastids. Biochemical and cellular analyses of Arabidopsis TATs provide a fundamental basis for future in vivo studies and metabolic engineering for enhanced production of Tyr-derived phytochemicals in plants.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kyoko Toda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA; Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
55
|
Xie Q, Liu Z, Meir S, Rogachev I, Aharoni A, Klee HJ, Galili G. Altered metabolite accumulation in tomato fruits by coexpressing a feedback-insensitive AroG and the PhODO1 MYB-type transcription factor. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2300-2309. [PMID: 27185473 PMCID: PMC5103220 DOI: 10.1111/pbi.12583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 05/21/2023]
Abstract
Targeted manipulation of phenylalanine (Phe) synthesis is a potentially powerful strategy to boost biologically and economically important metabolites, including phenylpropanoids, aromatic volatiles and other specialized plant metabolites. Here, we use two transgenes to significantly increase the levels of aromatic amino acids, tomato flavour-associated volatiles and antioxidant phenylpropanoids. Overexpression of the petunia MYB transcript factor, ODORANT1 (ODO1), combined with expression of a feedback-insensitive E. coli 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (AroG), altered the levels of multiple primary and secondary metabolites in tomato fruit, boosting levels of multiple secondary metabolites. Our results indicate that coexpression of AroG and ODO1 has a dual effect on Phe and related biosynthetic pathways: (i) positively impacting tyrosine (Tyr) and antioxidant related metabolites, including ones derived from coumaric acid and ferulic acid; (ii) negatively impacting other downstream secondary metabolites of the Phe pathway, including kaempferol-, naringenin- and quercetin-derived metabolites, as well as aromatic volatiles. The metabolite profiles were distinct from those obtained with either single transgene. In addition to providing fruits that are increased in flavour and nutritional chemicals, coexpression of the two genes provides insights into regulation of branches of phenylpropanoid metabolic pathways.
Collapse
Affiliation(s)
- Qingjun Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesGuangdong Provincial Key Laboratory of Plant Molecular BreedingSouth China Agricultural UniversityGuangzhou510642China
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Zhongyuan Liu
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611‐0690USA
| | - Sagit Meir
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Ilana Rogachev
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Asaph Aharoni
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| | - Harry J. Klee
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611‐0690USA
| | - Gad Galili
- Department of Plant and environmental ScienceWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
56
|
Batista Silva W, Daloso DM, Fernie AR, Nunes-Nesi A, Araújo WL. Can stable isotope mass spectrometry replace radiolabelled approaches in metabolic studies? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 249:59-69. [PMID: 27297990 DOI: 10.1016/j.plantsci.2016.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/21/2016] [Accepted: 05/13/2016] [Indexed: 05/03/2023]
Abstract
Metabolic pathways and the key regulatory points thereof can be deduced using isotopically labelled substrates. One prerequisite is the accurate measurement of the labeling pattern of targeted metabolites. The subsequent estimation of metabolic fluxes following incubation in radiolabelled substrates has been extensively used. Radiolabelling is a sensitive approach and allows determination of total label uptake since the total radiolabel content is easy to detect. However, the incubation of cells, tissues or the whole plant in a stable isotope enriched environment and the use of either mass spectrometry or nuclear magnetic resonance techniques to determine label incorporation within specific metabolites offers the possibility to readily obtain metabolic information with higher resolution. It additionally also offers an important complement to other post-genomic strategies such as metabolite profiling providing insights into the regulation of the metabolic network and thus allowing a more thorough description of plant cellular function. Thus, although safety concerns mean that stable isotope feeding is generally preferred, the techniques are in truth highly complementary and application of both approaches in tandem currently probably provides the best route towards a comprehensive understanding of plant cellular metabolism.
Collapse
Affiliation(s)
- Willian Batista Silva
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Danilo M Daloso
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology Am Mühlenberg 1, 14476,Golm Potsdam, Germany.
| | - Adriano Nunes-Nesi
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| | - Wagner L Araújo
- Max Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa-MG, Brazil.
| |
Collapse
|
57
|
Galili G, Amir R, Fernie AR. The Regulation of Essential Amino Acid Synthesis and Accumulation in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:153-78. [PMID: 26735064 DOI: 10.1146/annurev-arplant-043015-112213] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although amino acids are critical for all forms of life, only proteogenic amino acids that humans and animals cannot synthesize de novo and therefore must acquire in their diets are classified as essential. Nine amino acids-lysine, methionine, threonine, phenylalanine, tryptophan, valine, isoleucine, leucine, and histidine-fit this definition. Despite their nutritional importance, several of these amino acids are present in limiting quantities in many of the world's major crops. In recent years, a combination of reverse genetic and biochemical approaches has been used to define the genes encoding the enzymes responsible for synthesizing, degrading, and regulating these amino acids. In this review, we describe recent advances in our understanding of the metabolism of the essential amino acids, discuss approaches for enhancing their levels in plants, and appraise efforts toward their biofortification in crop plants.
Collapse
Affiliation(s)
- Gad Galili
- Department of Plant Science, Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Rachel Amir
- Laboratory of Plant Science, MIGAL-Galilee Research Institute, Kiryat Shmona 11016, Israel;
| | - Alisdair R Fernie
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany;
| |
Collapse
|
58
|
Shaipulah NFM, Muhlemann JK, Woodworth BD, Van Moerkercke A, Verdonk JC, Ramirez AA, Haring MA, Dudareva N, Schuurink RC. CCoAOMT Down-Regulation Activates Anthocyanin Biosynthesis in Petunia. PLANT PHYSIOLOGY 2016; 170:717-31. [PMID: 26620524 PMCID: PMC4734575 DOI: 10.1104/pp.15.01646] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/25/2015] [Indexed: 05/06/2023]
Abstract
Anthocyanins and volatile phenylpropenes (isoeugenol and eugenol) in petunia (Petunia hybrida) flowers have the precursor 4-coumaryl coenzyme A (CoA) in common. These phenolics are produced at different stages during flower development. Anthocyanins are synthesized during early stages of flower development and sequestered in vacuoles during the lifespan of the flowers. The production of isoeugenol and eugenol starts when flowers open and peaks after anthesis. To elucidate additional biochemical steps toward (iso)eugenol production, we cloned and characterized a caffeoyl-coenzyme A O-methyltransferase (PhCCoAOMT1) from the petals of the fragrant petunia 'Mitchell'. Recombinant PhCCoAOMT1 indeed catalyzed the methylation of caffeoyl-CoA to produce feruloyl CoA. Silencing of PhCCoAOMT1 resulted in a reduction of eugenol production but not of isoeugenol. Unexpectedly, the transgenic plants had purple-colored leaves and pink flowers, despite the fact that cv Mitchell lacks the functional R2R3-MYB master regulator ANTHOCYANIN2 and has normally white flowers. Our results indicate that down-regulation of PhCCoAOMT1 activated the anthocyanin pathway through the R2R3-MYBs PURPLE HAZE (PHZ) and DEEP PURPLE, with predominantly petunidin accumulating. Feeding cv Mitchell flowers with caffeic acid induced PHZ expression, suggesting that the metabolic perturbation of the phenylpropanoid pathway underlies the activation of the anthocyanin pathway. Our results demonstrate a role for PhCCoAOMT1 in phenylpropene production and reveal a link between PhCCoAOMT1 and anthocyanin production.
Collapse
Affiliation(s)
- Nur Fariza M Shaipulah
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Joëlle K Muhlemann
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Benjamin D Woodworth
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Alex Van Moerkercke
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Julian C Verdonk
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Aldana A Ramirez
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Michel A Haring
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Natalia Dudareva
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| | - Robert C Schuurink
- Department of Plant Physiology, University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, The Netherlands (N.F.M.S., A.V.M., A.A.R., M.A.H., R.C.S.);Pusat Pengajian Sains Marin dan Sekitaran, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia (N.F.M.S.);Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907-2063 (J.K.M., B.D.W., N.D.); andHorticulture and Product Physiology, Plant Sciences Group, Wageningen University, Wageningen, the Netherlands 6700 AA (J.C.V.)
| |
Collapse
|
59
|
Characterization of aromatic aminotransferases from Ephedra sinica Stapf. Amino Acids 2016; 48:1209-20. [DOI: 10.1007/s00726-015-2156-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 12/13/2015] [Indexed: 01/12/2023]
|
60
|
Liu Z, Alseekh S, Brotman Y, Zheng Y, Fei Z, Tieman DM, Giovannoni JJ, Fernie AR, Klee HJ. Identification of a Solanum pennellii Chromosome 4 Fruit Flavor and Nutritional Quality-Associated Metabolite QTL. FRONTIERS IN PLANT SCIENCE 2016; 7:1671. [PMID: 27881988 PMCID: PMC5101573 DOI: 10.3389/fpls.2016.01671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/24/2016] [Indexed: 05/20/2023]
Abstract
A major resource for tomato quality improvement and gene discovery is the collection of introgression lines (ILs) of cultivated Solanum lycopersicum that contain different, defined chromosomal segments derived from the wild tomato relative, S. pennellii. Among these lines, IL4-4, in which the bottom of S. lycopersicum (cv. M82) chromosome 4 is replaced by the corresponding S. pennellii segment, is altered in many primary and secondary metabolites, including many related to fruit flavor and nutritional quality. Here, we provide a comprehensive profile of IL4-4 ripe fruit metabolites, the transcriptome and fine mapping of sub-ILs. Remarkably, out of 327 quantified metabolites, 185 were significantly changed in IL4-4 fruit, compared to the control. These altered metabolites include volatile organic compounds, primary and secondary metabolites. Partial least squares enhanced discriminant analysis of the metabolite levels among sub-ILs indicated that a genome region encompassing 20 putative open reading frames is responsible for most of the metabolic changes in IL4-4 fruit. This work provides comprehensive insights into IL4-4 fruit biochemistry, identifying a small region of the genome that has major effects on a large and diverse set of metabolites.
Collapse
Affiliation(s)
- Zhongyuan Liu
- Horticultural Sciences Department, Genetics Institute, University of Florida, GainesvilleFL, USA
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the NegevBeersheba, Israel
| | - Yi Zheng
- US Department of Agriculture–Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, IthacaNY, USA
- Robert W. Holley Center for Agriculture and Health, Cornell University and US Department of Agriculture–Agricultural Research Service, IthacaNY, USA
| | - Zhangjun Fei
- US Department of Agriculture–Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, IthacaNY, USA
- Robert W. Holley Center for Agriculture and Health, Cornell University and US Department of Agriculture–Agricultural Research Service, IthacaNY, USA
| | - Denise M. Tieman
- Horticultural Sciences Department, Genetics Institute, University of Florida, GainesvilleFL, USA
| | - James J. Giovannoni
- US Department of Agriculture–Agricultural Research Service Robert W. Holley Center for Agriculture and Health, Cornell University, IthacaNY, USA
- Robert W. Holley Center for Agriculture and Health, Cornell University and US Department of Agriculture–Agricultural Research Service, IthacaNY, USA
| | | | - Harry J. Klee
- Horticultural Sciences Department, Genetics Institute, University of Florida, GainesvilleFL, USA
- *Correspondence: Harry J. Klee,
| |
Collapse
|
61
|
Tohge T, Scossa F, Fernie AR. Integrative Approaches to Enhance Understanding of Plant Metabolic Pathway Structure and Regulation. PLANT PHYSIOLOGY 2015; 169:1499-511. [PMID: 26371234 PMCID: PMC4634077 DOI: 10.1104/pp.15.01006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/10/2015] [Indexed: 05/05/2023]
Abstract
Huge insight into molecular mechanisms and biological network coordination have been achieved following the application of various profiling technologies. Our knowledge of how the different molecular entities of the cell interact with one another suggests that, nevertheless, integration of data from different techniques could drive a more comprehensive understanding of the data emanating from different techniques. Here, we provide an overview of how such data integration is being used to aid the understanding of metabolic pathway structure and regulation. We choose to focus on the pairwise integration of large-scale metabolite data with that of the transcriptomic, proteomics, whole-genome sequence, growth- and yield-associated phenotypes, and archival functional genomic data sets. In doing so, we attempt to provide an update on approaches that integrate data obtained at different levels to reach a better understanding of either single gene function or metabolic pathway structure and regulation within the context of a broader biological process.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| | - Federico Scossa
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany (T.T., A.R.F.); andConsiglio per la Ricerca e Analisi dell'Economia Agraria, Centro di Ricerca per la Frutticoltura, 00134 Rome, Italy (F.S.)
| |
Collapse
|
62
|
Ge Q, Zhang Y, Hua WP, Wu YC, Jin XX, Song SH, Wang ZZ. Combination of transcriptomic and metabolomic analyses reveals a JAZ repressor in the jasmonate signaling pathway of Salvia miltiorrhiza. Sci Rep 2015; 5:14048. [PMID: 26388160 PMCID: PMC4585666 DOI: 10.1038/srep14048] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/17/2015] [Indexed: 12/31/2022] Open
Abstract
Jasmonates (JAs) are plant-specific key signaling molecules that respond to various stimuli and are involved in the synthesis of secondary metabolites. However, little is known about the JA signal pathway, especially in economically significant medicinal plants. To determine the functions of novel genes that participate in the JA-mediated accumulation of secondary metabolites, we examined the metabolomic and transcriptomic signatures from Salvia miltiorrhiza. For the metabolome, 35 representative metabolites showing significant changes in rates of accumulation were extracted and identified. We also screened out 2131 differentially expressed unigenes, of which 30 were involeved in the phenolic secondary metabolic pathway, while 25 were in the JA biosynthesis and signal pathways. Among several MeJA-induced novel genes, SmJAZ8 was selected for detailed functional analysis. Transgenic plants over-expressing SmJAZ8 exhibited a JA-insensitive phenotype, suggesting that the gene is a transcriptional regulator in the JA signal pathway of S. miltiorrhiza. Furthermore, this transgenic tool revealed that JAZ genes have novel function in the constitutive accumulation of secondary metabolites. Based on these findings, we propose that the combined strategy of transcriptomic and metabolomic analyses is valuable for efficient discovery of novel genes in plants.
Collapse
Affiliation(s)
- Qian Ge
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yuan Zhang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Wen-Ping Hua
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Yu-Cui Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xin-Xin Jin
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Shuang-Hong Song
- Co-Innovation Center for Qinba regions' sustainable development, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Zhe-Zhi Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
63
|
Tohge T, Fernie AR. Metabolomics-Inspired Insight into Developmental, Environmental and Genetic Aspects of Tomato Fruit Chemical Composition and Quality. PLANT & CELL PHYSIOLOGY 2015; 56:1681-96. [PMID: 26228272 DOI: 10.1093/pcp/pcv093] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 06/12/2015] [Indexed: 05/20/2023]
Abstract
Tomato was one of the first plant species to be evaluated using metabolomics and remains one of the best characterized, with tomato fruit being both an important source of nutrition in the human diet and a valuable model system for the development of fleshy fruits. Additionally, given the broad habitat range of members of the tomato clade and the extensive use of exotic germplasm in tomato genetic research, it represents an excellent genetic model system for understanding both metabolism per se and the importance of various metabolites in conferring stress tolerance. This review summarizes technical approaches used to characterize the tomato metabolome to date and details insights into metabolic pathway structure and regulation that have been obtained via analysis of tissue samples taken under different developmental or environmental circumstance as well as following genetic perturbation. Particular attention is paid to compounds of importance for nutrition or the shelf-life of tomatoes. We propose furthermore how metabolomics information can be coupled to the burgeoning wealth of genome sequence data from the tomato clade to enhance further our understanding of (i) the shifts in metabolic regulation occurring during development and (ii) specialization of metabolism within the tomato clade as a consequence of either adaptive evolution or domestication.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
64
|
Tohge T, Zhang Y, Peterek S, Matros A, Rallapalli G, Tandrón YA, Butelli E, Kallam K, Hertkorn N, Mock HP, Martin C, Fernie AR. Ectopic expression of snapdragon transcription factors facilitates the identification of genes encoding enzymes of anthocyanin decoration in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:686-704. [PMID: 26108615 DOI: 10.1111/tpj.12920] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/15/2015] [Accepted: 06/16/2015] [Indexed: 05/12/2023]
Abstract
Given the potential health benefits of polyphenolic compounds in the diet, there is a growing interest in the generation of food crops enriched with health-protective flavonoids. We undertook a series of metabolite analyses of tomatoes ectopically expressing the Delila and Rosea1 transcription factor genes from snapdragon (Antirrhinum majus), paying particular attention to changes in phenylpropanoids compared to controls. These analyses revealed multiple changes, including depletion of rutin and naringenin chalcone, and enhanced levels of anthocyanins and phenylacylated flavonol derivatives. We isolated and characterized the chemical structures of the two most abundant anthocyanins, which were shown by NMR spectroscopy to be delphinidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside and petunidin-3-(4'''-O-trans-p-coumaroyl)-rutinoside-5-O-glucoside. By performing RNA sequencing on both purple fruit and wild-type fruit, we obtained important information concerning the relative expression of both structural and transcription factor genes. Integrative analysis of the transcript and metabolite datasets provided compelling evidence of the nature of all anthocyanin biosynthetic genes, including those encoding species-specific anthocyanin decoration enzymes. One gene, SlFdAT1 (Solyc12g088170), predicted to encode a flavonoid-3-O-rutinoside-4'''-phenylacyltransferase, was characterized by assays of recombinant protein and over-expression assays in tobacco. The combined data are discussed in the context of both our current understanding of phenylpropanoid metabolism in Solanaceous species, and evolution of flavonoid decorating enzymes and their transcriptional networks in various plant species.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Yang Zhang
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Silke Peterek
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Andrea Matros
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Ghanasyam Rallapalli
- The Sainsbury Laboratory, Norwich Research Park, Colney, Norwich, UK NR4 7UH, UK
| | - Yudelsy A Tandrón
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Eugenio Butelli
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Kalyani Kallam
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Norbert Hertkorn
- German Research Center for Environment and Health, GmbH, Institute of Ecological Chemistry, Helmholtz Zentrum München, Ingolstaedter Landstraße 1, D-85764, Neuherberg, Germany
| | - Hans-Peter Mock
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstraße 3, D-06466, Gatersleben, Germany
| | - Cathie Martin
- John Innes Centre, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
65
|
Medina-Puche L, Molina-Hidalgo FJ, Boersma M, Schuurink RC, López-Vidriero I, Solano R, Franco-Zorrilla JM, Caballero JL, Blanco-Portales R, Muñoz-Blanco J. An R2R3-MYB Transcription Factor Regulates Eugenol Production in Ripe Strawberry Fruit Receptacles. PLANT PHYSIOLOGY 2015; 168:598-614. [PMID: 25931522 PMCID: PMC4453772 DOI: 10.1104/pp.114.252908] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/29/2015] [Indexed: 05/18/2023]
Abstract
Eugenol is a volatile phenylpropanoid that contributes to flower and ripe fruit scent. In ripe strawberry (Fragaria × ananassa) fruit receptacles, eugenol is biosynthesized by eugenol synthase (FaEGS2). However, the transcriptional regulation of this process is still unknown. We have identified and functionally characterized an R2R3 MYB transcription factor (emission of benzenoid II [FaEOBII]) that seems to be the orthologous gene of PhEOBII from Petunia hybrida, which contributes to the regulation of eugenol biosynthesis in petals. The expression of FaEOBII was ripening related and fruit receptacle specific, although high expression values were also found in petals. This expression pattern of FaEOBII correlated with eugenol content in both fruit receptacle and petals. The expression of FaEOBII was repressed by auxins and activated by abscisic acid, in parallel to the ripening process. In ripe strawberry receptacles, where the expression of FaEOBII was silenced, the expression of cinnamyl alcohol dehydrogenase1 and FaEGS2, two structural genes involved in eugenol production, was down-regulated. A subsequent decrease in eugenol content in ripe receptacles was also observed, confirming the involvement of FaEOBII in eugenol metabolism. Additionally, the expression of FaEOBII was under the control of FaMYB10, another R2R3 MYB transcription factor that regulates the early and late biosynthetic genes from the flavonoid/phenylpropanoid pathway. In parallel, the amount of eugenol in FaMYB10-silenced receptacles was also diminished. Taken together, these data indicate that FaEOBII plays a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise to eugenol production in ripe strawberry receptacles.
Collapse
Affiliation(s)
- Laura Medina-Puche
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Francisco Javier Molina-Hidalgo
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Maaike Boersma
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Robert C Schuurink
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Irene López-Vidriero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Roberto Solano
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José-Manuel Franco-Zorrilla
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - José Luis Caballero
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Rosario Blanco-Portales
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Juan Muñoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Campus Universitario de Rabanales y Campus de Excelencia Internacional Agroalimentario 3, Universidad de Córdoba, 14071 Cordoba, Spain (L.M.-P., F.J.M.-H., J.L.C., R.B.-P., J.M.-B.);Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands (M.B., R.C.S.); andGenomics Unit (I.L.-V., J.-M.F.-Z.) and Department of Plant Molecular Genetics (R.S.), Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| |
Collapse
|
66
|
Widhalm JR, Dudareva N. A familiar ring to it: biosynthesis of plant benzoic acids. MOLECULAR PLANT 2015; 8:83-97. [PMID: 25578274 DOI: 10.1016/j.molp.2014.12.001] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/19/2014] [Indexed: 05/20/2023]
Abstract
Plant benzoic acids (BAs) are building blocks or important structural elements for numerous primary and specialized metabolites, including plant hormones, cofactors, defense compounds, and attractants for pollinators and seed dispersers. Many natural products derived from plant BAs or containing benzoyl/benzyl moieties are also of medicinal or nutritional value to humans. Biosynthesis of BAs in plants is a network involving parallel and intersecting pathways spread across multiple subcellular compartments. In this review, a current overview on the metabolism of plant BAs is presented with a focus on the recent progress made on isolation and functional characterization of genes encoding biosynthetic enzymes and intracellular transporters. In addition, approaches for deciphering the complex interactions between pathways of the BAs network are discussed.
Collapse
Affiliation(s)
- Joshua R Widhalm
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, 175 South University Street, West Lafayette, IN 47907-2063, USA.
| |
Collapse
|
67
|
Schenck CA, Chen S, Siehl DL, Maeda HA. Non-plastidic, tyrosine-insensitive prephenate dehydrogenases from legumes. Nat Chem Biol 2015; 11:52-7. [PMID: 25402771 DOI: 10.1038/nchembio.1693] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 09/19/2014] [Indexed: 11/09/2022]
Abstract
L-Tyrosine (Tyr) and its plant-derived natural products are essential in both plants and humans. In plants, Tyr is generally assumed to be synthesized in the plastids via arogenate dehydrogenase (TyrA(a), also known also ADH), which is strictly inhibited by L-Tyr. Using phylogenetic and expression analyses, together with recombinant enzyme and endogenous activity assays, we identified prephenate dehydrogenases (TyrA(p)s, also known as PDHs) from two legumes, Glycine max (soybean) and Medicago truncatula. The identified PDHs were phylogenetically distinct from canonical plant ADH enzymes, preferred prephenate to arogenate substrate, localized outside of the plastids and were not inhibited by L-Tyr. The results provide molecular evidence for the diversification of primary metabolic Tyr pathway via an alternative cytosolic PDH pathway in plants.
Collapse
Affiliation(s)
- Craig A Schenck
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Siyu Chen
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
68
|
Alba JM, Schimmel BCJ, Glas JJ, Ataide LMS, Pappas ML, Villarroel CA, Schuurink RC, Sabelis MW, Kant MR. Spider mites suppress tomato defenses downstream of jasmonate and salicylate independently of hormonal crosstalk. THE NEW PHYTOLOGIST 2015; 205:828-40. [PMID: 25297722 PMCID: PMC4301184 DOI: 10.1111/nph.13075] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/18/2014] [Indexed: 05/08/2023]
Abstract
Plants respond to herbivory by mounting a defense. Some plant-eating spider mites (Tetranychus spp.) have adapted to plant defenses to maintain a high reproductive performance. From natural populations we selected three spider mite strains from two species, Tetranychus urticae and Tetranychus evansi, that can suppress plant defenses, using a fourth defense-inducing strain as a benchmark, to assess to which extent these strains suppress defenses differently. We characterized timing and magnitude of phytohormone accumulation and defense-gene expression, and determined if mites that cannot suppress defenses benefit from sharing a leaf with suppressors. The nonsuppressor strain induced a mixture of jasmonate- (JA) and salicylate (SA)-dependent defenses. Induced defense genes separated into three groups: 'early' (expression peak at 1 d postinfestation (dpi)); 'intermediate' (4 dpi); and 'late', whose expression increased until the leaf died. The T. evansi strains suppressed genes from all three groups, but the T. urticae strain only suppressed the late ones. Suppression occurred downstream of JA and SA accumulation, independently of the JA-SA antagonism, and was powerful enough to boost the reproductive performance of nonsuppressors up to 45%. Our results show that suppressing defenses not only brings benefits but, within herbivore communities, can also generate a considerable ecological cost when promoting the population growth of a competitor.
Collapse
Affiliation(s)
- Juan M Alba
- Department of Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, PO Box 94240, 1090 GE, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Tzin V, Rogachev I, Meir S, Moyal Ben Zvi M, Masci T, Vainstein A, Aharoni A, Galili G. Altered Levels of Aroma and Volatiles by Metabolic Engineering of Shikimate Pathway Genes in Tomato Fruits. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.2.75] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
70
|
Tohge T, Obata T, Fernie AR. Biosynthesis of the essential respiratory cofactor ubiquinone from phenylalanine in plants. MOLECULAR PLANT 2014; 7:1403-1405. [PMID: 25013082 DOI: 10.1093/mp/ssu081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
71
|
Bedewitz MA, Góngora-Castillo E, Uebler JB, Gonzales-Vigil E, Wiegert-Rininger KE, Childs KL, Hamilton JP, Vaillancourt B, Yeo YS, Chappell J, DellaPenna D, Jones AD, Buell CR, Barry CS. A root-expressed L-phenylalanine:4-hydroxyphenylpyruvate aminotransferase is required for tropane alkaloid biosynthesis in Atropa belladonna. THE PLANT CELL 2014; 26:3745-62. [PMID: 25228340 PMCID: PMC4213168 DOI: 10.1105/tpc.114.130534] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The tropane alkaloids, hyoscyamine and scopolamine, are medicinal compounds that are the active components of several therapeutics. Hyoscyamine and scopolamine are synthesized in the roots of specific genera of the Solanaceae in a multistep pathway that is only partially elucidated. To facilitate greater understanding of tropane alkaloid biosynthesis, a de novo transcriptome assembly was developed for Deadly Nightshade (Atropa belladonna). Littorine is a key intermediate in hyoscyamine and scopolamine biosynthesis that is produced by the condensation of tropine and phenyllactic acid. Phenyllactic acid is derived from phenylalanine via its transamination to phenylpyruvate, and mining of the transcriptome identified a phylogenetically distinct aromatic amino acid aminotransferase (ArAT), designated Ab-ArAT4, that is coexpressed with known tropane alkaloid biosynthesis genes in the roots of A. belladonna. Silencing of Ab-ArAT4 disrupted synthesis of hyoscyamine and scopolamine through reduction of phenyllactic acid levels. Recombinant Ab-ArAT4 preferentially catalyzes the first step in phenyllactic acid synthesis, the transamination of phenylalanine to phenylpyruvate. However, rather than utilizing the typical keto-acid cosubstrates, 2-oxoglutarate, pyruvate, and oxaloacetate, Ab-ArAT4 possesses strong substrate preference and highest activity with the aromatic keto-acid, 4-hydroxyphenylpyruvate. Thus, Ab-ArAT4 operates at the interface between primary and specialized metabolism, contributing to both tropane alkaloid biosynthesis and the direct conversion of phenylalanine to tyrosine.
Collapse
Affiliation(s)
- Matthew A Bedewitz
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | - Elsa Góngora-Castillo
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Joseph B Uebler
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| | | | | | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - John P Hamilton
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Brieanne Vaillancourt
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Yun-Soo Yeo
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Joseph Chappell
- Plant Biology Program and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky 40546
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - A Daniel Jones
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824 Department of Chemistry, Michigan State University, East Lansing, Michigan 48824
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Cornelius S Barry
- Department of Horticulture, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
72
|
Tohge T, Alseekh S, Fernie AR. On the regulation and function of secondary metabolism during fruit development and ripening. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:4599-611. [PMID: 24446507 DOI: 10.1093/jxb/ert443] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The maturation and development of tomato fruit has received much attention due both to the complexity and intricacy of the changes which occur during this process and to the importance of these fruits as a component of the human diet. Whilst great advances have been made in understanding molecular genetic aspects of fruit development, our knowledge concerning the metabolic shifts underpinning this process remains largely confined to primary metabolism. Conversely, the majority of the metabolites considered to have health benefits are secondary or specialized metabolites. Prior to assessing the role (if any) of these metabolites in tomato fruit development, considerable effort will be required in order to better describe the complement of secondary metabolites in the tomato and to elucidate the metabolic pathways involved in their synthesis and degradation. Advances in tomato secondary metabolism will be reviewed here focusing on the use of metabolomics strategies and, where applicable, the enabling of these strategies by their coupling to information resident in the tomato genome sequence.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muehlenberg 1. Potsdam 14476, Germany
| |
Collapse
|
73
|
Gaquerel E, Gulati J, Baldwin IT. Revealing insect herbivory-induced phenolamide metabolism: from single genes to metabolic network plasticity analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:679-92. [PMID: 24617849 PMCID: PMC5140026 DOI: 10.1111/tpj.12503] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 03/03/2014] [Indexed: 05/18/2023]
Abstract
The phenylpropanoid metabolic space comprises a network of interconnected metabolic branches that contribute to the biosynthesis of a large array of compounds with functions in plant development and stress adaptation. During biotic challenges, such as insect attack, a major rewiring of gene networks associated with phenylpropanoid metabolism is observed. This rapid reconfiguration of gene expression allows prioritized production of metabolites that help the plant solve ecological problems. Phenolamides are a group of phenolic derivatives that originate from diversion of hydroxycinnamoyl acids from the main phenylpropanoid pathway after N-acyltransferase-dependent conjugation to polyamines or aryl monoamines. These structurally diverse metabolites are abundant in the reproductive organs of many plants, and have recently been shown to play roles as induced defenses in vegetative tissues. In the wild tobacco, Nicotiana attenuata, in which herbivory-induced regulation of these metabolites has been studied, rapid elevations of the levels of phenolamides that function as induced defenses result from a multi-hormonal signaling network that re-shapes connected metabolic pathways. In this review, we summarize recent findings in the regulation of phenolamides obtained by mass spectrometry-based metabolomics profiling, and outline a conceptual framework for gene discovery in this pathway. We also introduce a multifactorial approach that is useful in deciphering metabolic pathway reorganizations among tissues in response to stress.
Collapse
Affiliation(s)
- Emmanuel Gaquerel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
- Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 360,69120 Heidelberg, Germany
| | - Jyotasana Gulati
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knoell-Str. 8, 07745 Jena, Germany
| |
Collapse
|
74
|
Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, Gonda I, Lewinsohn E, Rhodes D, Dudareva N. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat Commun 2014; 4:2833. [PMID: 24270997 DOI: 10.1038/ncomms3833] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 10/29/2013] [Indexed: 02/06/2023] Open
Abstract
Phenylalanine is a vital component of proteins in all living organisms, and in plants is a precursor for thousands of additional metabolites. Animals are incapable of synthesizing phenylalanine and must primarily obtain it directly or indirectly from plants. Although plants can synthesize phenylalanine in plastids through arogenate, the contribution of an alternative pathway via phenylpyruvate, as occurs in most microbes, has not been demonstrated. Here we show that plants also utilize a microbial-like phenylpyruvate pathway to produce phenylalanine, and flux through this route is increased when the entry point to the arogenate pathway is limiting. Unexpectedly, we find the plant phenylpyruvate pathway utilizes a cytosolic aminotransferase that links the coordinated catabolism of tyrosine to serve as the amino donor, thus interconnecting the extra-plastidial metabolism of these amino acids. This discovery uncovers another level of complexity in the plant aromatic amino acid regulatory network, unveiling new targets for metabolic engineering.
Collapse
Affiliation(s)
- Heejin Yoo
- Department of Horticulture and Landscape Architecture, Purdue University, 625 Agriculture Mall Dr, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Heise R, Arrivault S, Szecowka M, Tohge T, Nunes-Nesi A, Stitt M, Nikoloski Z, Fernie AR. Flux profiling of photosynthetic carbon metabolism in intact plants. Nat Protoc 2014; 9:1803-24. [DOI: 10.1038/nprot.2014.115] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Dornfeld C, Weisberg AJ, K C R, Dudareva N, Jelesko JG, Maeda HA. Phylobiochemical characterization of class-Ib aspartate/prephenate aminotransferases reveals evolution of the plant arogenate phenylalanine pathway. THE PLANT CELL 2014; 26:3101-14. [PMID: 25070637 PMCID: PMC4145135 DOI: 10.1105/tpc.114.127407] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/21/2014] [Accepted: 07/03/2014] [Indexed: 05/22/2023]
Abstract
The aromatic amino acid Phe is required for protein synthesis and serves as the precursor of abundant phenylpropanoid plant natural products. While Phe is synthesized from prephenate exclusively via a phenylpyruvate intermediate in model microbes, the alternative pathway via arogenate is predominant in plant Phe biosynthesis. However, the molecular and biochemical evolution of the plant arogenate pathway is currently unknown. Here, we conducted phylogenetically informed biochemical characterization of prephenate aminotransferases (PPA-ATs) that belong to class-Ib aspartate aminotransferases (AspAT Ibs) and catalyze the first committed step of the arogenate pathway in plants. Plant PPA-ATs and succeeding arogenate dehydratases (ADTs) were found to be most closely related to homologs from Chlorobi/Bacteroidetes bacteria. The Chlorobium tepidum PPA-AT and ADT homologs indeed efficiently converted prephenate and arogenate into arogenate and Phe, respectively. A subset of AspAT Ib enzymes exhibiting PPA-AT activity was further identified from both Plantae and prokaryotes and, together with site-directed mutagenesis, showed that Thr-84 and Lys-169 play key roles in specific recognition of dicarboxylic keto (prephenate) and amino (aspartate) acid substrates. The results suggest that, along with ADT, a gene encoding prephenate-specific PPA-AT was transferred from a Chlorobi/Bacteroidetes ancestor to a eukaryotic ancestor of Plantae, allowing efficient Phe and phenylpropanoid production via arogenate in plants today.
Collapse
Affiliation(s)
- Camilla Dornfeld
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Alexandra J Weisberg
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Ritesh K C
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - John G Jelesko
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hiroshi A Maeda
- Department of Botany, University of Wisconsin-Madison, Madison, Wisconsin 53706
| |
Collapse
|
77
|
de la Torre F, El-Azaz J, Ávila C, Cánovas FM. Deciphering the role of aspartate and prephenate aminotransferase activities in plastid nitrogen metabolism. PLANT PHYSIOLOGY 2014; 164:92-104. [PMID: 24296073 PMCID: PMC3875828 DOI: 10.1104/pp.113.232462] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 11/29/2013] [Indexed: 05/20/2023]
Abstract
Chloroplasts and plastids of nonphotosynthetic plant cells contain two aspartate (Asp) aminotransferases: a eukaryotic type (Asp5) and a prokaryotic-type bifunctional enzyme displaying Asp and prephenate aminotransferase activities (PAT). We have identified the entire Asp aminotransferase gene family in Nicotiana benthamiana and isolated and cloned the genes encoding the isoenzymes with plastidic localization: NbAsp5 and NbPAT. Using a virus-induced gene silencing approach, we obtained N. benthamiana plants silenced for NbAsp5 and/or NbPAT. Phenotypic and metabolic analyses were conducted in silenced plants to investigate the specific roles of these enzymes in the biosynthesis of essential amino acids within the plastid. The NbAsp5 silenced plants had no changes in phenotype, exhibiting similar levels of free Asp and glutamate as control plants, but contained diminished levels of asparagine and much higher levels of lysine. In contrast, the suppression of NbPAT led to a severe reduction in growth and strong chlorosis symptoms. NbPAT silenced plants exhibited extremely reduced levels of asparagine and were greatly affected in their phenylalanine metabolism and lignin deposition. Furthermore, NbPAT suppression triggered a transcriptional reprogramming in plastid nitrogen metabolism. Taken together, our results indicate that NbPAT has an overlapping role with NbAsp5 in the biosynthesis of Asp and a key role in the production of phenylalanine for the biosynthesis of phenylpropanoids. The analysis of NbAsp5/NbPAT cosilenced plants highlights the central role of both plastidic aminotransferases in nitrogen metabolism; however, only NbPAT is essential for plant growth and development.
Collapse
Affiliation(s)
- Fernando de la Torre
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain
| | - Jorge El-Azaz
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain
| | - Concepción Ávila
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain
| | - Francisco M. Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Malaga, Spain
| |
Collapse
|
78
|
Klie S, Osorio S, Tohge T, Drincovich MF, Fait A, Giovannoni JJ, Fernie AR, Nikoloski Z. Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species. PLANT PHYSIOLOGY 2014; 164:55-68. [PMID: 24243932 PMCID: PMC3875825 DOI: 10.1104/pp.113.226142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/13/2013] [Indexed: 05/18/2023]
Abstract
Computational analyses of molecular phenotypes traditionally aim at identifying biochemical components that exhibit differential expression under various scenarios (e.g. environmental and internal perturbations) in a single species. High-throughput metabolomics technologies allow the quantification of (relative) metabolite levels across developmental stages in different tissues, organs, and species. Novel methods for analyzing the resulting multiple data tables could reveal preserved dynamics of metabolic processes across species. The problem we address in this study is 2-fold. (1) We derive a single data table, referred to as a compromise, which captures information common to the investigated set of multiple tables containing data on different fruit development and ripening stages in three climacteric (i.e. peach [Prunus persica] and two tomato [Solanum lycopersicum] cultivars, Ailsa Craig and M82) and two nonclimacteric (i.e. strawberry [Fragaria × ananassa] and pepper [Capsicum chilense]) fruits; in addition, we demonstrate the power of the method to discern similarities and differences between multiple tables by analyzing publicly available metabolomics data from three tomato ripening mutants together with two tomato cultivars. (2) We identify the conserved dynamics of metabolic processes, reflected in the data profiles of the corresponding metabolites that contribute most to the determined compromise. Our analysis is based on an extension to principal component analysis, called STATIS, in combination with pathway overenrichment analysis. Based on publicly available metabolic profiles for the investigated species, we demonstrate that STATIS can be used to identify the metabolic processes whose behavior is similarly affected during fruit development and ripening. These findings ultimately provide insights into the pathways that are essential during fruit development and ripening across species.
Collapse
Affiliation(s)
- Sebastian Klie
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | | | - Takayuki Tohge
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - María F. Drincovich
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Aaron Fait
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - James J. Giovannoni
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Alisdair R. Fernie
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| | - Zoran Nikoloski
- Genes and Small Molecules Group (S.K.), Central Metabolism Group (T.T., A.R.F.), and Systems Biology and Mathematical Modeling Group (Z.N.), Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” University of Malaga-Consejo Superior de Investigaciones Científicas, Department of Molecular Biology and Biochemistry, Campus de Teatinos, 29071 Malaga, Spain (S.O.)
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Rosario 2000, Argentina (M.F.D.)
- French Associates Institute for Agriculture and Biotechnology of Dryland, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negrev, Sede Boquer 84990, Israel (A.F.); and
- Thompson Institute for Plant Research and United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center, Cornell University, Ithaca, New York 14853 (J.J.G.)
| |
Collapse
|
79
|
Tzin V, Rogachev I, Meir S, Moyal Ben Zvi M, Masci T, Vainstein A, Aharoni A, Galili G. Tomato fruits expressing a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway possess enhanced levels of multiple specialized metabolites and upgraded aroma. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4441-52. [PMID: 24006429 PMCID: PMC3808321 DOI: 10.1093/jxb/ert250] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Tomato (Solanum lycopersicum) fruit contains significant amounts of bioactive compounds, particularly multiple classes of specialized metabolites. Enhancing the synthesis and accumulation of these substances, specifically in fruits, are central for improving tomato fruit quality (e.g. flavour and aroma) and could aid in elucidate pathways of specialized metabolism. To promote the production of specialized metabolites in tomato fruit, this work expressed under a fruit ripening-specific promoter, E8, a bacterial AroG gene encoding a 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS), which is feedback-insensitive to phenylalanine inhibition. DAHPS, the first enzyme of the shikimate pathway, links between the primary and specialized metabolism derived from aromatic amino acids. AroG expression influenced the levels of number of primary metabolites, such as shikimic acid and aromatic amino acids, as well as multiple volatile and non-volatile phenylpropanoids specialized metabolites and carotenoids. An organoleptic test, performed by trained panellists, suggested that the ripe AroG-expressing tomato fruits had a preferred floral aroma compare with fruits of the wild-type line. These results imply that fruit-specific manipulation of the conversion of primary to specialized metabolism is an attractive approach for improving fruit aroma and flavour qualities as well as discovering novel fruit-specialized metabolites.
Collapse
Affiliation(s)
- Vered Tzin
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
- * Present address: Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY 14853-1801, USA
| | - Ilana Rogachev
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Sagit Meir
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Michal Moyal Ben Zvi
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
- Present address: Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | - Tania Masci
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Alexander Vainstein
- Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Asaph Aharoni
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
| | - Gad Galili
- Department of Plant Sciences, Weizmann Institute of Science, PO Box 26, Rehovot 76100, Israel
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
80
|
Aragüez I, Valpuesta V. Metabolic engineering of aroma components in fruits. Biotechnol J 2013; 8:1144-58. [PMID: 24019257 DOI: 10.1002/biot.201300113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 12/23/2022]
Abstract
Plants have the ability to produce a diversity of volatile metabolites, which attract pollinators and seed dispersers and strengthen plant defense responses. Selection by plant breeders of traits such as rapid growth and yield leads, in many cases, to the loss of flavor and aroma quality in crops. How the aroma can be improved without affecting other fruit attributes is a major unsolved issue. Significant advances in metabolic engineering directed at improving the set of volatiles that the fruits emit has been aided by the characterization of enzymes involved in the biosynthesis of flavor and aroma compounds in some fruits. However, before this technology can be successfully applied to modulate the production of volatiles in different crops, further basic research is needed on the mechanisms that lead to the production of these compounds in plants. Here we review the biosynthesis and function of volatile compounds in plants, and the attempts that have been made to manipulate fruit aroma biosynthesis by metabolic engineering. In addition, we discuss the possibilities that molecular breeding offers for aroma enhancement and the implications of the latest advances in biotechnological modification of fruit flavor and aroma.
Collapse
Affiliation(s)
- Irene Aragüez
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | | |
Collapse
|
81
|
Fernie AR, Morgan JA. Analysis of metabolic flux using dynamic labelling and metabolic modelling. PLANT, CELL & ENVIRONMENT 2013; 36:1738-1750. [PMID: 23421750 DOI: 10.1111/pce.12083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/05/2013] [Accepted: 02/11/2013] [Indexed: 06/01/2023]
Abstract
Metabolic fluxes and the capacity to modulate them are a crucial component of the ability of the plant cell to react to environmental perturbations. Our ability to quantify them and to attain information concerning the regulatory mechanisms that control them is therefore essential to understand and influence metabolic networks. For all but the simplest of flux measurements labelling methods have proven to be the most informative. Both steady-state and dynamic labelling approaches have been adopted in the study of plant metabolism. Here the conceptual basis of these complementary approaches, as well as their historical application in microbial, mammalian and plant sciences, is reviewed, and an update on technical developments in label distribution analyses is provided. This is supported by illustrative cases studies involving the kinetic modelling of secondary metabolism. One issue that is particularly complex in the analysis of plant fluxes is the extensive compartmentation of the plant cell. This problem is discussed from both theoretical and experimental perspectives, and the current approaches used to address it are assessed. Finally, current limitations and future perspectives of kinetic modelling of plant metabolism are discussed.
Collapse
Affiliation(s)
- A R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| | | |
Collapse
|
82
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013. [PMID: 23585213 DOI: 10.1007/s1103-013-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
83
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
84
|
Transcriptome analysis of Barbarea vulgaris infested with diamondback moth (Plutella xylostella) larvae. PLoS One 2013; 8:e64481. [PMID: 23696897 PMCID: PMC3655962 DOI: 10.1371/journal.pone.0064481] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/16/2013] [Indexed: 01/23/2023] Open
Abstract
Background The diamondback moth (DBM, Plutella xylostella) is a crucifer-specific pest that causes significant crop losses worldwide. Barbarea vulgaris (Brassicaceae) can resist DBM and other herbivorous insects by producing feeding-deterrent triterpenoid saponins. Plant breeders have long aimed to transfer this insect resistance to other crops. However, a lack of knowledge on the biosynthetic pathways and regulatory networks of these insecticidal saponins has hindered their practical application. A pyrosequencing-based transcriptome analysis of B. vulgaris during DBM larval feeding was performed to identify genes and gene networks responsible for saponin biosynthesis and its regulation at the genome level. Principal Findings Approximately 1.22, 1.19, 1.16, 1.23, 1.16, 1.20, and 2.39 giga base pairs of clean nucleotides were generated from B. vulgaris transcriptomes sampled 1, 4, 8, 12, 24, and 48 h after onset of P. xylostella feeding and from non-inoculated controls, respectively. De novo assembly using all data of the seven transcriptomes generated 39,531 unigenes. A total of 37,780 (95.57%) unigenes were annotated, 14,399 of which were assigned to one or more gene ontology terms and 19,620 of which were assigned to 126 known pathways. Expression profiles revealed 2,016–4,685 up-regulated and 557–5188 down-regulated transcripts. Secondary metabolic pathways, such as those of terpenoids, glucosinolates, and phenylpropanoids, and its related regulators were elevated. Candidate genes for the triterpene saponin pathway were found in the transcriptome. Orthological analysis of the transcriptome with four other crucifer transcriptomes identified 592 B. vulgaris-specific gene families with a P-value cutoff of 1e−5. Conclusion This study presents the first comprehensive transcriptome analysis of B. vulgaris subjected to a series of DBM feedings. The biosynthetic and regulatory pathways of triterpenoid saponins and other DBM deterrent metabolites in this plant were classified. The results of this study will provide useful data for future investigations on pest-resistance phytochemistry and plant breeding.
Collapse
|
85
|
Tohge T, Watanabe M, Hoefgen R, Fernie AR. Shikimate and phenylalanine biosynthesis in the green lineage. FRONTIERS IN PLANT SCIENCE 2013; 4:62. [PMID: 23543266 PMCID: PMC3608921 DOI: 10.3389/fpls.2013.00062] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/04/2013] [Indexed: 05/18/2023]
Abstract
The shikimate pathway provides carbon skeletons for the aromatic amino acids l-tryptophan, l-phenylalanine, and l-tyrosine. It is a high flux bearing pathway and it has been estimated that greater than 30% of all fixed carbon is directed through this pathway. These combined pathways have been subjected to considerable research attention due to the fact that mammals are unable to synthesize these amino acids and the fact that one of the enzymes of the shikimate pathway is a very effective herbicide target. However, in addition to these characteristics these pathways additionally provide important precursors for a wide range of important secondary metabolites including chlorogenic acid, alkaloids, glucosinolates, auxin, tannins, suberin, lignin and lignan, tocopherols, and betalains. Here we review the shikimate pathway of the green lineage and compare and contrast its evolution and ubiquity with that of the more specialized phenylpropanoid metabolism which this essential pathway fuels.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Rainer Hoefgen
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | |
Collapse
|
86
|
Quadrana L, Almeida J, Otaiza SN, Duffy T, Corrêa da Silva JV, de Godoy F, Asís R, Bermúdez L, Fernie AR, Carrari F, Rossi M. Transcriptional regulation of tocopherol biosynthesis in tomato. PLANT MOLECULAR BIOLOGY 2013; 81:309-25. [PMID: 23247837 DOI: 10.1007/s11103-012-0001-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 12/10/2012] [Indexed: 05/21/2023]
Abstract
Tocopherols, compounds with vitamin E (VTE) activity, are potent lipid-soluble antioxidants synthesized only by photosynthetic organisms. Their biosynthesis requires the condensation of phytyl-diphosphate and homogentisate, derived from the methylerythritol phosphate (MEP) and shikimate pathways (SK), respectively. These metabolic pathways are central in plant chloroplast metabolism and are involved in the biosynthesis of important molecules such as chlorophyll, carotenoids, aromatic amino-acids and prenylquinones. In the last decade, few studies have provided insights into the regulation of VTE biosynthesis and its accumulation. However, the pathway regulatory mechanism/s at mRNA level remains unclear. We have recently identified a collection of tomato genes involved in tocopherol biosynthesis. In this work, by a dedicated qPCR array platform, the transcript levels of 47 genes, including paralogs, were determined in leaves and across fruit development. Expression data were analyzed for correlation with tocopherol profiles by coregulation network and neural clustering approaches. The results showed that tocopherol biosynthesis is controlled both temporally and spatially however total tocopherol content remains constant. These analyses exposed 18 key genes from MEP, SK, phytol recycling and VTE-core pathways highly associated with VTE content in leaves and fruits. Moreover, genomic analyses of promoter regions suggested that the expression of the tocopherol-core pathway genes is trancriptionally coregulated with specific genes of the upstream pathways. Whilst the transcriptional profiles of the precursor pathway genes would suggest an increase in VTE content across fruit development, the data indicate that in the M82 cultivar phytyl diphosphate supply limits tocopherol biosynthesis in later fruit stages. This is in part due to the decreasing transcript levels of geranylgeranyl reductase (GGDR) which restricts the isoprenoid precursor availability. As a proof of concept, by analyzing a collection of Andean landrace tomato genotypes, the role of the pinpointed genes in determining fruit tocopherol content was confirmed. The results uncovered a finely tuned regulation able to shift the precursor pathways controlling substrate influx for VTE biosynthesis and overcoming endogenous competition for intermediates. The whole set of data allowed to propose that 1-deoxy-D-xylulose-5-phosphate synthase and GGDR encoding genes, which determine phytyl-diphosphate availability, together with enzyme encoding genes involved in chlorophyll-derived phytol metabolism appear as the most plausible targets to be engineered aiming to improve tomato fruit nutritional value.
Collapse
Affiliation(s)
- Leandro Quadrana
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Spitzer-Rimon B, Farhi M, Albo B, Cna’ani A, Ben Zvi MM, Masci T, Edelbaum O, Yu Y, Shklarman E, Ovadis M, Vainstein A. The R2R3-MYB-like regulatory factor EOBI, acting downstream of EOBII, regulates scent production by activating ODO1 and structural scent-related genes in petunia. THE PLANT CELL 2012; 24:5089-105. [PMID: 23275577 PMCID: PMC3556977 DOI: 10.1105/tpc.112.105247] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 05/19/2023]
Abstract
Flower scent is a highly dynamic trait, under developmental, spatial, and diurnal regulation. The mechanism governing scent production is only beginning to be unraveled. In petunia (Petunia hybrida), EMISSION OF BENZENOIDS II (EOBII) controls transcription of both the shikimate pathway-regulating MYB factor ODORANT1 (ODO1) and phenylpropanoid scent-related structural genes. A promoter-activation screen identified an R2R3-MYB-like regulatory factor of phenylpropanoid volatile biosynthesis acting downstream of EOBII, designated EOBI. EOBI silencing led to downregulation of ODO1 and numerous structural scent-related genes from both the shikimate and phenylpropanoid pathways. The ability of EOBI to directly activate ODO1, as revealed by electrophoretic mobility shift assay and yeast one-hybrid analysis, place EOBI upstream of ODO1 in regulating substrate availability for volatile biosynthesis. Interestingly, ODO1-silenced transgenic petunia flowers accumulated higher EOBI transcript levels than controls, suggesting a complex feedback loop between these regulatory factors. The accumulation pattern of EOBI transcript relative to EOBII and ODO1, and the effect of up/downregulation of EOBII on transcript levels of EOBI and ODO1, further support these factors' hierarchical relationships. The dependence of scent production on EOBI expression and its direct interaction with both regulatory and structural genes provide evidence for EOBI's wide-ranging involvement in the production of floral volatiles.
Collapse
Affiliation(s)
- Ben Spitzer-Rimon
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Moran Farhi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Boaz Albo
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alon Cna’ani
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Michal Moyal Ben Zvi
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Tania Masci
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Orit Edelbaum
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Yixun Yu
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Elena Shklarman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Marianna Ovadis
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Alexander Vainstein
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| |
Collapse
|
88
|
Jirschitzka J, Mattern DJ, Gershenzon J, D'Auria JC. Learning from nature: new approaches to the metabolic engineering of plant defense pathways. Curr Opin Biotechnol 2012; 24:320-8. [PMID: 23141769 DOI: 10.1016/j.copbio.2012.10.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/12/2012] [Accepted: 10/18/2012] [Indexed: 12/31/2022]
Abstract
Biotechnological manipulation of plant defense pathways can increase crop resistance to herbivores and pathogens while also increasing yields of medicinal, industrial, flavor and fragrance compounds. The most successful achievements in engineering defense pathways can be attributed to researchers striving to imitate natural plant regulatory mechanisms. For example, the introduction of transcription factors that control several genes in one pathway is often a valuable strategy to increase flux in that pathway. The use of multi-gene cassettes which mimic natural gene clusters can facilitate coordinated regulation of a pathway and speed transformation efforts. The targeting of defense pathway genes to organs and tissues in which the defensive products are typically made and stored can also increase yield as well as defensive potential.
Collapse
Affiliation(s)
- Jan Jirschitzka
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, D-07745 Jena, Germany
| | | | | | | |
Collapse
|
89
|
Shelton D, Stranne M, Mikkelsen L, Pakseresht N, Welham T, Hiraka H, Tabata S, Sato S, Paquette S, Wang TL, Martin C, Bailey P. Transcription factors of Lotus: regulation of isoflavonoid biosynthesis requires coordinated changes in transcription factor activity. PLANT PHYSIOLOGY 2012; 159:531-47. [PMID: 22529285 PMCID: PMC3375922 DOI: 10.1104/pp.112.194753] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 04/23/2012] [Indexed: 05/20/2023]
Abstract
Isoflavonoids are a class of phenylpropanoids made by legumes, and consumption of dietary isoflavonoids confers benefits to human health. Our aim is to understand the regulation of isoflavonoid biosynthesis. Many studies have shown the importance of transcription factors in regulating the transcription of one or more genes encoding enzymes in phenylpropanoid metabolism. In this study, we coupled bioinformatics and coexpression analysis to identify candidate genes encoding transcription factors involved in regulating isoflavonoid biosynthesis in Lotus (Lotus japonicus). Genes encoding proteins belonging to 39 of the main transcription factor families were examined by microarray analysis of RNA from leaf tissue that had been elicited with glutathione. Phylogenetic analyses of each transcription factor family were used to identify subgroups of proteins that were specific to L. japonicus or closely related to known regulators of the phenylpropanoid pathway in other species. R2R3MYB subgroup 2 genes showed increased expression after treatment with glutathione. One member of this subgroup, LjMYB14, was constitutively overexpressed in L. japonicus and induced the expression of at least 12 genes that encoded enzymes in the general phenylpropanoid and isoflavonoid pathways. A distinct set of six R2R3MYB subgroup 2-like genes was identified. We suggest that these subgroup 2 sister group proteins and those belonging to the main subgroup 2 have roles in inducing isoflavonoid biosynthesis. The induction of isoflavonoid production in L. japonicus also involves the coordinated down-regulation of competing biosynthetic pathways by changing the expression of other transcription factors.
Collapse
Affiliation(s)
- Dale Shelton
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Maria Stranne
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Lisbeth Mikkelsen
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Nima Pakseresht
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Tracey Welham
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Hideki Hiraka
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Satoshi Tabata
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Shusei Sato
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Suzanne Paquette
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | - Trevor L. Wang
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| | | | - Paul Bailey
- Department of Plant Biology and Biotechnology, University of Copenhagen, 1871 Frederiksberg, Denmark (D.S., M.S., L.M., C.M.)
- John Innes Centre, Colney, Norwich NR4 7UH, United Kingdom (N.P., T.W., T.L.W., C.M., P.B.)
- Kazusa DNA Research Institute, 292–0818 Chiba, Japan (H.H., S.T., S.S.)
- Department of Genome Science, University of Washington, Seattle, Washington 98195 (S.P.)
| |
Collapse
|
90
|
Kochevenko A, Araújo WL, Maloney GS, Tieman DM, Do PT, Taylor MG, Klee HJ, Fernie AR. Catabolism of branched chain amino acids supports respiration but not volatile synthesis in tomato fruits. MOLECULAR PLANT 2012; 5:366-75. [PMID: 22199237 DOI: 10.1093/mp/ssr108] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The branched-chain amino acid transaminases (BCATs) have a crucial role in metabolism of the branched-chain amino acids leucine, isoleucine, and valine. These enzymes catalyze the last step of synthesis and the initial step of degradation of these amino acids. Although the biosynthetic pathways of branched chain amino acids in plants have been extensively investigated and a number of genes have been characterized, their catabolism in plants is not yet completely understood. We previously characterized the branched chain amino acid transaminase gene family in tomato, revealing both the subcellular localization and kinetic properties of the enzymes encoded by six genes. Here, we examined possible functions of the enzymes during fruit development. We further characterized transgenic plants differing in the expression of branched chain amino acid transaminases 1 and 3, evaluating the rates of respiration in fruits deficient in BCAT1 and the levels of volatiles in lines overexpressing either BCAT1 or BCAT3. We quantitatively tested, via precursor and isotope feeding experiments, the importance of the branched chain amino acids and their corresponding keto acids in the formation of fruit volatiles. Our results not only demonstrate for the first time the importance of branched chain amino acids in fruit respiration, but also reveal that keto acids, rather than amino acids, are the likely precursors for the branched chain flavor volatiles.
Collapse
Affiliation(s)
- Andrej Kochevenko
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Araújo WL, Nunes-Nesi A, Nikoloski Z, Sweetlove LJ, Fernie AR. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Methods Mol Biol 2012; 1090:107-19. [PMID: 21477125 DOI: 10.1007/978-1-62703-688-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The tricarboxylic acid (TCA) cycle is a crucial component of respiratory metabolism in both photosynthetic and heterotrophic plant organs. All of the major genes of the tomato TCA cycle have been cloned recently, allowing the generation of a suite of transgenic plants in which the majority of the enzymes in the pathway are progressively decreased. Investigations of these plants have provided an almost complete view of the distribution of control in this important pathway. Our studies suggest that citrate synthase, aconitase, isocitrate dehydrogenase, succinyl CoA ligase, succinate dehydrogenase, fumarase and malate dehydrogenase have control coefficients flux for respiration of -0.4, 0.964, -0.123, 0.0008, 0.289, 0.601 and 1.76, respectively; while 2-oxoglutarate dehydrogenase is estimated to have a control coefficient of 0.786 in potato tubers. These results thus indicate that the control of this pathway is distributed among malate dehydrogenase, aconitase, fumarase, succinate dehydrogenase and 2-oxoglutarate dehydrogenase. The unusual distribution of control estimated here is consistent with specific non-cyclic flux mode and cytosolic bypasses that operate in illuminated leaves. These observations are discussed in the context of known regulatory properties of the enzymes and some illustrative examples of how the pathway responds to environmental change are given.
Collapse
Affiliation(s)
- Wagner L Araújo
- Max-Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, Germany
| | | | | | | | | |
Collapse
|
92
|
Maeda H, Dudareva N. The shikimate pathway and aromatic amino Acid biosynthesis in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:73-105. [PMID: 22554242 DOI: 10.1146/annurev-arplant-042811-105439] [Citation(s) in RCA: 748] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
L-tryptophan, L-phenylalanine, and L-tyrosine are aromatic amino acids (AAAs) that are used for the synthesis of proteins and that in plants also serve as precursors of numerous natural products, such as pigments, alkaloids, hormones, and cell wall components. All three AAAs are derived from the shikimate pathway, to which ≥30% of photosynthetically fixed carbon is directed in vascular plants. Because their biosynthetic pathways have been lost in animal lineages, the AAAs are essential components of the diets of humans, and the enzymes required for their synthesis have been targeted for the development of herbicides. This review highlights recent molecular identification of enzymes of the pathway and summarizes the pathway organization and the transcriptional/posttranscriptional regulation of the AAA biosynthetic network. It also identifies the current limited knowledge of the subcellular compartmentalization and the metabolite transport involved in the plant AAA pathways and discusses metabolic engineering efforts aimed at improving production of the AAA-derived plant natural products.
Collapse
Affiliation(s)
- Hiroshi Maeda
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-2010, USA.
| | | |
Collapse
|