51
|
Millard PS, Kragelund BB, Burow M. R2R3 MYB Transcription Factors - Functions outside the DNA-Binding Domain. TRENDS IN PLANT SCIENCE 2019; 24:934-946. [PMID: 31358471 DOI: 10.1016/j.tplants.2019.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/02/2019] [Accepted: 07/05/2019] [Indexed: 05/20/2023]
Abstract
Several transcription factor (TF) families, including the MYB family, regulate a wide array of biological processes. TFs contain DNA-binding domains (DBDs) and regulatory regions; although information on protein structure is scarce for plant MYB TFs, various in silico methods suggest that the non-MYB regions contain extensive intrinsically disordered regions (IDRs). Although IDRs do not fold into stable globular structures, they comprise functional regions including interaction motifs, and recent research has shown that IDRs perform crucial biological roles. We map here domain organization, disorder predictions, and functional regions across the entire Arabidopsis thaliana R2R3 MYB TF family, and highlight where an increased research focus will be necessary to shape a new understanding of structure-function relationships in plant TFs.
Collapse
Affiliation(s)
- Peter S Millard
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meike Burow
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
52
|
Zamora-Briseño JA, Pereira-Santana A, Reyes-Hernández SJ, Castaño E, Rodríguez-Zapata LC. Global Dynamics in Protein Disorder during Maize Seed Development. Genes (Basel) 2019; 10:genes10070502. [PMID: 31262071 PMCID: PMC6678312 DOI: 10.3390/genes10070502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/24/2019] [Accepted: 06/25/2019] [Indexed: 01/31/2023] Open
Abstract
Intrinsic protein disorder is a physicochemical attribute of some proteins lacking tridimensional structure and is collectively known as intrinsically disordered proteins (IDPs). Interestingly, several IDPs have been associated with protective functions in plants and with their response to external stimuli. To correlate the modulation of the IDPs content with the developmental progression in seed, we describe the expression of transcripts according to the disorder content of the proteins that they codify during seed development, from the early embryogenesis to the beginning of the desiccation tolerance acquisition stage. We found that the total expression profile of transcripts encoding for structured proteins is highly increased during middle phase. However, the relative content of protein disorder is increased as seed development progresses. We identified several intrinsically disordered transcription factors that seem to play important roles throughout seed development. On the other hand, we detected a gene cluster encoding for IDPs at the end of the late phase, which coincides with the beginning of the acquisition of desiccation tolerance. In conclusion, the expression pattern of IDPs is highly dependent on the developmental stage, and there is a general reduction in the expression of transcripts encoding for structured proteins as seed development progresses. We proposed maize seeds as a model to study the regulation of protein disorder in plant development and its involvement in the acquisition of desiccation tolerance in plants.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Alejandro Pereira-Santana
- Centro de Investigación y Asistencia en Tecnología y Diseño del estado de Jalisco. División de Biotecnología Industrial. Camino Arenero 1227, El Bajío, Zapopan, Jalisco. C.P. 45019
| | - Sandi Julissa Reyes-Hernández
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Enrique Castaño
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México
| | - Luis Carlos Rodríguez-Zapata
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, número 130, Chuburná de Hidalgo, CP 97205, Mérida, Yucatán, México.
| |
Collapse
|
53
|
iTRAQ-Based Quantitative Analysis of Responsive Proteins Under PEG-Induced Drought Stress in Wheat Leaves. Int J Mol Sci 2019; 20:ijms20112621. [PMID: 31141975 PMCID: PMC6600531 DOI: 10.3390/ijms20112621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 11/30/2022] Open
Abstract
Drought is an important abiotic stress that seriously restricts crop productivity. An understanding of drought tolerance mechanisms offers guidance for cultivar improvement. In order to understand how a well-known wheat genotype Jinmai 47 responds to drought, we adopted the iTRAQ and LC/MS approaches and conducted proteomics analysis of leaves after exposure to 20% of polyethylene glycol-6000 (PEG)-induced stress for 4 days. The study identified 176 differentially expressed proteins (DEPs), with 65 (36.5%) of them being up-regulated, and 111 (63.5%) down-regulated. DEPs, located in cellular membranes and cytosol mainly, were involved in stress and redox regulation (51), carbohydrate and energy metabolism (36), amino acid metabolism (24), and biosynthesis of other secondary metabolites (20) primarily. Under drought stress, TCA cycle related proteins were up-regulated. Antioxidant system, signaling system, and nucleic acid metabolism etc. were relatively weakened. In comparison, the metabolism pathways that function in plasma dehydration protection and protein structure protection were strongly enhanced, as indicated by the improved biosynthesis of 2 osmolytes, sucrose and Proline, and strongly up-regulated protective proteins, LEA proteins and chaperones. SUS4, P5CSs, OAT, Rab protein, and Lea14-A were considered to be important candidate proteins, which deserve to be further investigated.
Collapse
|
54
|
Koubaa S, Bremer A, Hincha DK, Brini F. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat. Sci Rep 2019; 9:3720. [PMID: 30842512 PMCID: PMC6403280 DOI: 10.1038/s41598-019-39823-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022] Open
Abstract
Late Embryogenesis Abundant (LEA) proteins are mostly predicted to be intrinsically disordered proteins (IDPs) that are induced under conditions of cellular dehydration. Their functions, however, are largely unexplored and also their structure and interactions with potential target molecules have only recently been investigated in a small number of proteins. Here, we have characterized the wheat LEA protein TdLEA3, which has sequence homology with the group of LEA_4 proteins that are characterized by the 11-mer repeat motif TAQAAKEKAXE. TdLEA3 has five repeats of this imperfectly conserved 11-mer amino acid motif. To investigate the structure of the protein, we used circular dichroism (CD) and Fourier-transform infrared (FTIR) spectroscopy. The data show that TdLEA3 was largely disordered under fully hydrated conditions and acquired α-helical structure upon drying and in the presence of trifluoroethanol (TFE). Moreover, the addition of increasing glycerol concentrations to the protein solution induced a progressive gain in α-helix content. Activity assays indicated that TdLEA3 was able to prevent the inactivation of lactate dehydrogenase (LDH) under heat, dehydration-rehydration and freeze-thaw treatments. In addition, TdLEA3 reduced aggregate formation in the enzyme during these treatments.
Collapse
Affiliation(s)
- Sana Koubaa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177", 3018, Sfax, Tunisia
| | - Anne Bremer
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam, Germany.,St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, USA
| | - Dirk K Hincha
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476, Potsdam, Germany.
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS)/University of Sfax, B.P ''1177", 3018, Sfax, Tunisia
| |
Collapse
|
55
|
Hernández-Sánchez IE, Maruri-López I, Molphe-Balch EP, Becerra-Flora A, Jaimes-Miranda F, Jiménez-Bremont JF. Evidence for in vivo interactions between dehydrins and the aquaporin AtPIP2B. Biochem Biophys Res Commun 2019; 510:545-550. [PMID: 30738581 DOI: 10.1016/j.bbrc.2019.01.095] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 11/29/2022]
Abstract
Plants have developed mechanisms that allow them to tolerate different abiotic stresses. Among these mechanisms, the accumulation of specific proteins such as dehydrins (DHNs) and aquaporins (AQPs) can protect other proteins from damage during dehydration and may allow the control of water loss, respectively. Although both types of proteins are involved in plant protection against dehydration stress, a direct interaction between them has not been explored. A previous screen to identify potential OpsDHN1 protein interactions revealed an aquaporin as a possible candidate. Here, we used the Bimolecular Fluorescence Complementation (BiFC) approach to investigate the direct interaction of the cactus OpsDHN1 protein with the Arabidopsis plasma membrane PIP family aquaporin AtPIP2B (At2G37170). Since AtPIP2B is a membrane protein and OpsDHN1 is a cytosolic protein that may be peripherally associated with membranes, we propose that OpsDHN1/AtPIP2B interaction takes place at cellular membranes. Furthermore, we also demonstrate the interaction of AtPIP2B with the three Arabidopsis dehydrins COR47 (AT1G20440), ERD10 (At1g20450), and RAB18 (At5g66400).
Collapse
Affiliation(s)
- Itzell Eurídice Hernández-Sánchez
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, SLP, Mexico
| | - Israel Maruri-López
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, SLP, Mexico
| | - Eugenio Pérez Molphe-Balch
- Unidad de Biotecnología Vegetal, Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Ags, Mexico
| | - Alicia Becerra-Flora
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, SLP, Mexico
| | - Fabiola Jaimes-Miranda
- CONACyT-Instituto Potosino de Investigación Científica y Tecnológica AC, División de Biología Molecular, San Luis Potosí, SLP, Mexico.
| | - Juan F Jiménez-Bremont
- Laboratorio de Biología Molecular de Hongos y Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica AC, San Luis Potosí, SLP, Mexico.
| |
Collapse
|
56
|
Toruño TY, Shen M, Coaker G, Mackey D. Regulated Disorder: Posttranslational Modifications Control the RIN4 Plant Immune Signaling Hub. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:56-64. [PMID: 30418084 PMCID: PMC6501815 DOI: 10.1094/mpmi-07-18-0212-fi] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RIN4 is an intensively studied immune regulator in Arabidopsis and is involved in perception of microbial features outside and bacterial effectors inside plant cells. Furthermore, RIN4 is conserved in land plants and is targeted for posttranslational modifications by several virulence proteins from the bacterial pathogen Pseudomonas syringae. Despite the important roles of RIN4 in plant immune responses, its molecular function is not known. RIN4 is an intrinsically disordered protein (IDP), except at regions where pathogen-induced posttranslational modifications take place. IDP act as hubs for protein complex formation due to their ability to bind to multiple client proteins and, thus, are important players in signal transduction pathways. RIN4 is known to associate with multiple proteins involved in immunity, likely acting as an immune-signaling hub for the formation of distinct protein complexes. Genetically, RIN4 is a negative regulator of immunity, but diverse posttranslational modifications can either enhance its negative regulatory function or, on the contrary, render it a potent immune activator. In this review, we describe the structural domains of RIN4 proteins, their intrinsically disordered regions, posttranslational modifications, and highlight the implications that these features have on RIN4 function. In addition, we will discuss the potential role of plasma membrane subdomains in mediating RIN4 protein complex formations.
Collapse
Affiliation(s)
- Tania Y. Toruño
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - Mingzhe Shen
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, CA 95616, U.S.A
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, U.S.A
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, U.S.A
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH 43210, U.S.A
- Corresponding author: D. Mackey;
| |
Collapse
|
57
|
Park S, Gilmour SJ, Grumet R, Thomashow MF. CBF-dependent and CBF-independent regulatory pathways contribute to the differences in freezing tolerance and cold-regulated gene expression of two Arabidopsis ecotypes locally adapted to sites in Sweden and Italy. PLoS One 2018; 13:e0207723. [PMID: 30517145 PMCID: PMC6281195 DOI: 10.1371/journal.pone.0207723] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/05/2018] [Indexed: 02/01/2023] Open
Abstract
Arabidopsis thaliana (Arabidopsis) increases in freezing tolerance in response to low nonfreezing temperatures, a phenomenon known as cold acclimation. The CBF regulatory pathway, which contributes to cold acclimation, includes three genes—CBF1, CBF2 and CBF3—encoding closely-related transcription factors that regulate the expression of more than 100 genes—the CBF regulon—that impart freezing tolerance. Here we compare the CBF pathways of two Arabidopsis ecotypes collected from sites in Sweden (SW) and Italy (IT). Previous studies showed that the SW ecotype was more freezing tolerant than the IT ecotype and that the IT ecotype had a nonfunctional CBF2 gene. Here we present results establishing that the difference in CBF2 alleles contributes to the difference in freezing tolerance between the two ecotypes. However, other differences in the CBF pathway as well as CBF-independent pathways contribute the large majority of the difference in freezing tolerance between the two ecotypes. The results also provided evidence that most cold-induced CBF regulon genes in both the SW and IT ecotypes are coregulated by CBF-independent pathways. Additional analysis comparing our results with those published by others examining the Col-0 accession resulted in the identification of 44 CBF regulon genes that were conserved among the three accessions suggesting that they likely have important functions in life at low temperature. The comparison further supported the conclusion that the CBF pathway can account for a large portion of the increase in freezing tolerance that occurs with cold acclimation in a given accession, but that CBF-independent pathways can also make a major contribution.
Collapse
Affiliation(s)
- Sunchung Park
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Sarah J. Gilmour
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, Michigan, United States of America
| | - Michael F. Thomashow
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, United States of America
- MSU Plant Resilience Institute, Michigan State University, East Lansing, Michigan, United States of America
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan, United States of America
- * E-mail:
| |
Collapse
|
58
|
Mahjoubi H, Tamari Y, Takeda S, Bouchabké-Coussa O, Hanin M, Herzog E, Schmit AC, Chabouté ME, Ebel C. The wheat TdRL1 is the functional homolog of the rice RSS1 and promotes plant salt stress tolerance. PLANT CELL REPORTS 2018; 37:1625-1637. [PMID: 30099611 DOI: 10.1007/s00299-018-2333-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Rice rss1 complementation assays show that wheat TdRL1 and RSS1 are true functional homologs. TdRL1 over-expression in Arabidopsis conferred salt stress tolerance and alleviated ROS accumulation. Plants have developed highly flexible adaptive responses to their ever-changing environment, which are often mediated by intrinsically disordered proteins (IDP). RICE SALT SENSITIVE 1 and Triticum durum RSS1-Like 1 protein (TdRL1) are both IDPs involved in abiotic stress responses, and possess conserved D and DEN-Boxes known to be required for post-translational degradation by the APC/Ccdc20 cyclosome. To further understand their function, we performed a computational analysis to compare RSS1 and TdRL1 co-expression networks revealing common gene ontologies, among which those related to cell cycle progression and regulation of microtubule (MT) networks were over-represented. When over-expressed in Arabidopsis, TdRL1::GFP was present in dividing cells and more visible in cortical and endodermal cells of the Root Apical Meristem (RAM). Incubation with the proteasome inhibitor MG132 stabilized TdRL1::GFP expression in RAM cells showing a post-translational regulation. Moreover, immuno-cytochemical analyses of transgenic roots showed that TdRL1 was present in the cytoplasm and within the microtubular spindle of mitotic cells, while, in interphasic cells, it was rather restricted to the cytoplasm with a spotty pattern at the nuclear periphery. Interestingly in cells subjected to stress, TdRL1 was partly relocated into the nucleus. Moreover, TdRL1 transgenic lines showed increased germination rates under salt stress conditions as compared to wild type. This enhanced salt stress tolerance was associated to an alleviation of oxidative damage. Finally, when expressed in the rice rss1 mutant, TdRL1 suppressed its dwarf phenotype upon salt stress, confirming that both proteins are true functional homologs required for salt stress tolerance in cereals.
Collapse
Affiliation(s)
- Habib Mahjoubi
- Laboratoire de Biotechnologie et d'Amélioration des Plantes, Centre de Biotechnologie de Sfax, BP 1177, 3018, Sfax, Tunisia
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Yutaka Tamari
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Shin Takeda
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Oumaya Bouchabké-Coussa
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000, Versailles, France
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP 1175, 3038, Sfax, Tunisia
| | - Etienne Herzog
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Anne-Catherine Schmit
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Marie-Edith Chabouté
- Institut de biologie moléculaire des plantes, UPR 2357 du CNRS, Université de Strasbourg, 12, rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Chantal Ebel
- Plant Physiology and Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, BP 1175, 3038, Sfax, Tunisia.
| |
Collapse
|
59
|
Lv A, Su L, Liu X, Xing Q, Huang B, An Y, Zhou P. Characterization of Dehydrin protein, CdDHN4-L and CdDHN4-S, and their differential protective roles against abiotic stress in vitro. BMC PLANT BIOLOGY 2018; 18:299. [PMID: 30477420 PMCID: PMC6258397 DOI: 10.1186/s12870-018-1511-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/29/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Dehydrins play positive roles in regulating plant abiotic stress responses. The objective of this study was to characterize two dehydrin genes, CdDHN4-L and CdDHN4-S, generated by alternative splicing of CdDHN4 in bermudagrass. RESULTS Overexpression of CdDHN4-L with φ-segment and CdDHN4-S lacking of φ-segment in Arabidopsis significantly increased tolerance against abiotic stresses. The growth phenotype of Arabidopsis exposed to NaCl at 100 mM was better in plants overexpressing CdDHN4-L than those overexpressing CdDHN4-S, as well as better in E.coli cells overexpressing CdDHN4-L than those overexpressing CdDHN4-S in 300 and 400 mM NaCl, and under extreme temperature conditions at - 20 °C and 50 °C. The CdDHN4-L had higher disordered characterization on structures than CdDHN4-S at temperatures from 10 to 90 °C. The recovery activities of lactic dehydrogenase (LDH) and alcohol dehydrogenase (ADH) in presence of CdDHN4-L and CdDHN4-S were higher than that of LDH and ADH alone under freeze-thaw damage and heat. Protein-binding and bimolecular fluorescence complementation showed that both proteins could bind to proteins with positive isoelectric point via electrostatic forces. CONCLUSIONS These results indicate that CdDHN4-L has higher protective ability against abiotic stresses due to its higher flexible unfolded structure and thermostability in comparison with CdDHN4-S. These provided direct evidence of the function of the φ-segment in dehydrins for protecting plants against abiotic stress and to show the electrostatic interaction between dehydrins and client proteins.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Xingchen Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Qiang Xing
- Shanghai Chenshan Botanical Garden, Shanghai, 201602 People’s Republic of China
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers, the State University of New Jersey, New Jersey, NJ 08901 USA
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101 People’s Republic of China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| |
Collapse
|
60
|
Meng F, Kurgan L. High‐throughput prediction of disordered moonlighting regions in protein sequences. Proteins 2018; 86:1097-1110. [DOI: 10.1002/prot.25590] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Fanchi Meng
- Department of Electrical and Computer Engineering University of Alberta Edmonton Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering University of Alberta Edmonton Canada
- Department of Computer Science Virginia Commonwealth University Richmond VA
| |
Collapse
|
61
|
Ferreira LA, Walczyk Mooradally A, Zaslavsky B, Uversky VN, Graether SP. Effect of an Intrinsically Disordered Plant Stress Protein on the Properties of Water. Biophys J 2018; 115:1696-1706. [PMID: 30297135 DOI: 10.1016/j.bpj.2018.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Dehydrins are plant proteins that are able to protect plants from various forms of dehydrative stress such as drought, cold, and high salinity. Dehydrins can prevent enzymes from losing activity after freeze/thaw treatments. Previous studies had suggested that the dehydrins function by a molecular shield effect, essentially preventing a denatured enzyme from aggregating with another enzyme. Therefore, the larger the dehydrin, the larger the shield and theoretically the more effective the protection. Although this relationship holds for smaller dehydrins, it fails to explain why larger dehydrins are less efficient than would be predicted from their size. Using solvatochromic dyes to probe the solvent features of water, we first confirm that the dehydrins do not bind the dyes, which would interfere with interpretation of the data. We then show that the dehydrins have an effect on three solvent properties of water (dipolarity/polarizability, hydrogen-bond donor acidity and hydrogen-bond acceptor basicity), which can contribute to the protective mechanism of these proteins. Interpretation of these data suggests that although polyethylene glycol and dehydrins have similar protective effects, dehydrins may more efficiently modify the hydrogen-bonding ability of bulk water to prevent enzyme denaturation. This possibly explains why dehydrins recover slightly more enzyme activity than polyethylene glycol.
Collapse
Affiliation(s)
| | | | | | - Vladimir N Uversky
- Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation.
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
62
|
Zamora-Briseño JA, Reyes-Hernández SJ, Zapata LCR. Does water stress promote the proteome-wide adjustment of intrinsically disordered proteins in plants? Cell Stress Chaperones 2018; 23:807-812. [PMID: 29860709 PMCID: PMC6111090 DOI: 10.1007/s12192-018-0918-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/08/2018] [Accepted: 05/21/2018] [Indexed: 12/11/2022] Open
Abstract
Plant response to water stress involves the activation of mechanisms expected to help them cope with water scarcity. Among these mechanisms, proteome-wide adjustment is well known. This includes actions to save energy, protect cellular and molecular components, and maintain vital functions of the cell. Intrinsically disordered proteins, which are proteins without a rigid three-dimensional structure, are seen as emerging multifunctional cellular components of proteomes. They are highly abundant in eukaryotic proteomes, and numerous functions for these proteins have been proposed. Here, we discuss several reasons why the collection of intrinsically disordered proteins in a proteome (disordome) could be subjected to an active regulation during conditions of water scarcity in plants. We also discuss the potential misinterpretations of disordome content estimations made so far due to bias-prone data and the need for reliable analysis based on experimental data in order to acknowledge the plasticity nature of the disordome.
Collapse
|
63
|
Wetzler DE, Fuchs Wightman F, Bucci HA, Rinaldi J, Caramelo JJ, Iusem ND, Ricardi MM. Conformational plasticity of the intrinsically disordered protein ASR1 modulates its function as a drought stress-responsive gene. PLoS One 2018; 13:e0202808. [PMID: 30138481 PMCID: PMC6107238 DOI: 10.1371/journal.pone.0202808] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/09/2018] [Indexed: 11/18/2022] Open
Abstract
Plants in arid zones are constantly exposed to drought stress. The ASR protein family (Abscisic, Stress, Ripening) -a subgroup of the late embryogenesis abundant superfamily- is involved in the water stress response and adaptation to dry environments. Tomato ASR1, as well as other members of this family, is an intrinsically disordered protein (IDP) that functions as a transcription factor and a chaperone. Here we employed different biophysical techniques to perform a deep in vitro characterization of ASR1 as an IDP and showed how both environmental factors and in vivo targets modulate its folding. We report that ASR1 adopts different conformations such as α-helix or polyproline type II in response to environmental changes. Low temperatures and low pH promote the polyproline type II conformation (PII). While NaCl increases PII content and slightly destabilizes α-helix conformation, PEG and glycerol have an important stabilizing effect of α-helix conformation. The binding of Zn2+in the low micromolar range promotes α-helix folding, while extra Zn2+ results in homo-dimerization. The ASR1-DNA binding is sequence specific and dependent on Zn2+. ASR1 chaperone activity does not change upon the structure induction triggered by the addition of Zn2+. Furthermore, trehalose, which has no effect on the ASR1 structure by itself, showed a synergistic effect on the ASR1-driven heat shock protection towards the reporter enzyme citrate synthase (CS). These observations prompted the development of a FRET reporter to sense ASR1 folding in vivo. Its performance was confirmed in Escherichia coli under saline and osmotic stress conditions, representing a promising probe to be used in plant cells. Overall, this work supports the notion that ASR1 plasticity is a key feature that facilitates its response to drought stress and its interaction with specific targets.
Collapse
Affiliation(s)
- Diana E. Wetzler
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (DW); (MR)
| | - Federico Fuchs Wightman
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Hernan A. Bucci
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Rinaldi
- Fundación Instituto Leloir, Buenos Aires, Argentina e Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Julio J. Caramelo
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Fundación Instituto Leloir, Buenos Aires, Argentina e Instituto de investigaciones Bioquímicas de Buenos Aires (IIBBA- CONICET), Buenos Aires, Argentina
| | - Norberto D. Iusem
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martiniano M. Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail: (DW); (MR)
| |
Collapse
|
64
|
Mapping the domain of interaction of PVBV VPg with NIa-Pro: Role of N-terminal disordered region of VPg in the modulation of structure and function. Virology 2018; 524:18-31. [PMID: 30138835 DOI: 10.1016/j.virol.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/30/2018] [Accepted: 08/04/2018] [Indexed: 01/26/2023]
Abstract
VPg-Pro is involved in polyprotein processing, therefore its regulation is important for a successful potyviral infection. We report here that the N-terminal disordered region of VPg forms the domain of interaction with NIa-Pro. This region is also demonstrated to be responsible for modulating the protease activity of VPg-Pro, both in cis and trans. The disordered nature of VPg is elicited by the N-terminal 22 residues as removal of these residues (∆N22 VPg) brought about gross structural and conformational changes in the protein. Interestingly, ∆N22 VPg gained ATPase activity which suggested the presence of autoinhibitory motif within the N-terminal region of VPg. The autoinhibition gets relieved upon interaction of VPg with NIa-Pro or removal of the inhibitory motif. Thus, the N-terminal 22 residues of VPg qualify as molecular recognition feature (MoRF), regulating both protease and ATPase activity of VPg-Pro as well as forming the domain of interaction with other viral/host proteins.
Collapse
|
65
|
Liu B, Sun Y, Xue J, Jia X, Li R. Genome-wide characterization and expression analysis of GRAS gene family in pepper ( Capsicum annuum L.). PeerJ 2018; 6:e4796. [PMID: 29868257 PMCID: PMC5983004 DOI: 10.7717/peerj.4796] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/29/2018] [Indexed: 12/14/2022] Open
Abstract
Plant-specific GRAS transcription factors regulate various biological processes in plant growth, development and stress responses. However, this important gene family was not fully characterized in pepper (Capsicum annuum L.), an economically important vegetable crop. Here, a total of 50 CaGRAS members were identified in pepper genome and renamed by their respective chromosomal distribution. Genomic organization revealed that most CaGRAS genes (84%) have no intron. Phylogenetic analysis divided pepper CaGRAS members into 10 subfamilies, with each having distinct conserved domains and functions. For the expansion of the GRAS genes in pepper, segmental duplication contributed more than tandem duplication did. Gene expression analysis in various tissues demonstrated that most of CaGRAS genes exhibited a tissue- and development stage-specific expression pattern, uncovering their potential functions in pepper growth and development. Moreover, 21 CaGRAS genes were differentially expressed under cold, drought, salt and gibberellin acid (GA) treatments, indicating that they may implicated in plant response to abiotic stress. Notably, GA responsive cis-elements were detected in the promoter regions of the majority of CaGRAS genes, suggesting that CaGRAS may involve in signal cross-talking. The first comprehensive analysis of GRAS gene family in pepper genome by this study provide insights into understanding the GRAS-mediated regulation network, benefiting the genetic improvements in pepper and some other relative plants.
Collapse
Affiliation(s)
- Baoling Liu
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong City, China
| | - Yan Sun
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong City, China
| | - Jinai Xue
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong City, China
| | - Xiaoyun Jia
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong City, China
| | - Runzhi Li
- Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong City, China
| |
Collapse
|
66
|
Huang L, Zhang M, Jia J, Zhao X, Huang X, Ji E, Ni L, Jiang M. An Atypical Late Embryogenesis Abundant Protein OsLEA5 Plays a Positive Role in ABA-Induced Antioxidant Defense in Oryza sativa L. PLANT & CELL PHYSIOLOGY 2018; 59:916-929. [PMID: 29432551 DOI: 10.1093/pcp/pcy035] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/05/2018] [Indexed: 05/21/2023]
Abstract
OsLEA5 acts as a co-regulator of a transcriptional fact ZFP36 to enhance the expression and the activity of ascorbate peroxidase OsAPX1 to regulate seed germination in rice, but it it unknown whether OsLEA5 is also crucial in plant seedlings under stress conditions. To determine this, we generated OsLEA5 overexpression and knockdown rice plants. We found that overexpression of OsLEA5 in rice plants enhanced the tolerance to drought and salt stress; in contrast, an RNA interference (RNAi) mutant of OsLEA5 rice plants was more sensitive to drought and salinity. Further investigation found that various stimuli and ABA could induce OsLEA5 expression, and OsLEA5 acted downstream of ZFP36 to be involved in ABA-induced generation of hydrogen peroxide (H2O2), and the regulation of the expression and the activities of antioxidant defense enzymes in plants leaves, and OsLEA5 contributed to stabilize ZFP36. Additionally, OsLEA5 participates in the accumulation of ABA by up-regulating ABA biosynthesis genes and down-regulating ABA metabolism genes. Moreover, we found that two homologs of OsLEA5 (5C700, short for Os05g0526700; and 5C300, short for Os05g0584300) which were induced by ABA also interacted with ZFP36 separately; interestingly, the nuclear-located 5C700 could also act as a co-activator of ZFP36 to modulate OsAPX1, while 5C300 which was down-regulated by ABA induction acted as an ABA-induced inhibitor of ZFP36 to regulate OsAPX1. Hence, our conclusion is that OsLEA5 participates in the ABA-mediated antioxidant defense to function in drought and salt stress response in rice, and the 5C subgroup of LEAs contribute by acting as co-regulators of the transcription factor ZFP36.
Collapse
Affiliation(s)
- Liping Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - MengYao Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Jing Jia
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xixi Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xingxiu Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - E Ji
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Lan Ni
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
67
|
Zhang Y, Launay H, Schramm A, Lebrun R, Gontero B. Exploring intrinsically disordered proteins in Chlamydomonas reinhardtii. Sci Rep 2018; 8:6805. [PMID: 29717210 PMCID: PMC5931566 DOI: 10.1038/s41598-018-24772-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/26/2018] [Indexed: 11/14/2022] Open
Abstract
The content of intrinsically disordered protein (IDP) is related to organism complexity, evolution, and regulation. In the Plantae, despite their high complexity, experimental investigation of IDP content is lacking. We identified by mass spectrometry 682 heat-resistant proteins from the green alga, Chlamydomonas reinhardtii. Using a phosphoproteome database, we found that 331 of these proteins are targets of phosphorylation. We analyzed the flexibility propensity of the heat-resistant proteins and their specific features as well as those of predicted IDPs from the same organism. Their mean percentage of disorder was about 20%. Most of the IDPs (~70%) were addressed to other compartments than mitochondrion and chloroplast. Their amino acid composition was biased compared to other classic IDPs. Their molecular functions were diverse; the predominant ones were nucleic acid binding and unfolded protein binding and the less abundant one was catalytic activity. The most represented proteins were ribosomal proteins, proteins associated to flagella, chaperones and histones. We also found CP12, the only experimental IDP from C. reinhardtii that is referenced in disordered protein database. This is the first experimental investigation of IDPs in C. reinhardtii that also combines in silico analysis.
Collapse
Affiliation(s)
- Yizhi Zhang
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France
| | - Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France
| | | | - Régine Lebrun
- Plate-forme Protéomique, Marseille Protéomique (MaP), IBiSA labeled, IMM, FR 3479, CNRS, B.P. 71, 13402, Marseille, Cedex 20, France
| | - Brigitte Gontero
- Aix Marseille Univ, CNRS, BIP, UMR 7281, IMM, 31 Chemin J. Aiguier, 13402, Marseille, Cedex 20, France.
| |
Collapse
|
68
|
Wang K, He J, Zhao Y, Wu T, Zhou X, Ding Y, Kong L, Wang X, Wang Y, Li J, Song CP, Wang B, Yang S, Zhu JK, Gong Z. EAR1 Negatively Regulates ABA Signaling by Enhancing 2C Protein Phosphatase Activity. THE PLANT CELL 2018; 30:815-834. [PMID: 29618630 PMCID: PMC5969277 DOI: 10.1105/tpc.17.00875] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 05/20/2023]
Abstract
The reversible phosphorylation of proteins by kinases and phosphatases is an antagonistic process that modulates many cellular functions. Protein phosphatases are usually negatively regulated by inhibitor proteins. During abscisic acid (ABA) signaling, these inhibitor proteins comprise PYR1/PYL/RCAR ABA receptors, which inhibit the core negative regulators, the clade A type 2C protein phosphatases (PP2Cs). However, it is not known whether these PP2Cs are positively regulated by other proteins. Here, we identified an Arabidopsis thaliana ear1 (enhancer of aba co-receptor1) mutant that exhibits pleiotropic ABA-hypersensitive phenotypes. EAR1 encodes an uncharacterized protein that is conserved in both monocots and dicots. EAR1 interacts with the N-terminal inhibition domains of all six PP2Cs, ABA INSENSITIVE1 (ABI1), ABI2, HYPERSENSITIVE TO ABA1 (HAB1), HAB2, ABA-HYPERSENSITIVE GERMINATION1 (AHG1), and AHG3, during ABA signaling and enhances the activity of PP2Cs both in vitro and in vivo. ABA treatment caused EAR1 to accumulate in the nucleus. These results indicate that EAR1 is a negative regulator of ABA signaling that enhances the activity of PP2Cs by interacting with and releasing the N-terminal autoinhibition of these proteins.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junna He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yang Zhao
- China Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Ting Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lingyao Kong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoji Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jigang Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Collaborative Innovation Center of Crop Stress Biology, Henan Province, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Baoshan Wang
- Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji'nan 250014, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jian-Kang Zhu
- China Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 201602, China
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
69
|
Rikkerink EHA. Pathogens and Disease Play Havoc on the Host Epiproteome-The "First Line of Response" Role for Proteomic Changes Influenced by Disorder. Int J Mol Sci 2018. [PMID: 29518008 PMCID: PMC5877633 DOI: 10.3390/ijms19030772] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Organisms face stress from multiple sources simultaneously and require mechanisms to respond to these scenarios if they are to survive in the long term. This overview focuses on a series of key points that illustrate how disorder and post-translational changes can combine to play a critical role in orchestrating the response of organisms to the stress of a changing environment. Increasingly, protein complexes are thought of as dynamic multi-component molecular machines able to adapt through compositional, conformational and/or post-translational modifications to control their largely metabolic outputs. These metabolites then feed into cellular physiological homeostasis or the production of secondary metabolites with novel anti-microbial properties. The control of adaptations to stress operates at multiple levels including the proteome and the dynamic nature of proteomic changes suggests a parallel with the equally dynamic epigenetic changes at the level of nucleic acids. Given their properties, I propose that some disordered protein platforms specifically enable organisms to sense and react rapidly as the first line of response to change. Using examples from the highly dynamic host-pathogen and host-stress response, I illustrate by example how disordered proteins are key to fulfilling the need for multiple levels of integration of response at different time scales to create robust control points.
Collapse
Affiliation(s)
- Erik H A Rikkerink
- The New Zealand Institute for Plant & Food Research Ltd., 120 Mt. Albert Rd., Private Bag 92169, Auckland 1025, New Zealand.
| |
Collapse
|
70
|
Li N, Zhang S, Liang Y, Qi Y, Chen J, Zhu W, Zhang L. Label-free quantitative proteomic analysis of drought stress-responsive late embryogenesis abundant proteins in the seedling leaves of two wheat (Triticum aestivum L.) genotypes. J Proteomics 2018; 172:122-142. [DOI: 10.1016/j.jprot.2017.09.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 09/27/2017] [Accepted: 09/29/2017] [Indexed: 10/18/2022]
|
71
|
Roosjen M, Paque S, Weijers D. Auxin Response Factors: output control in auxin biology. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:179-188. [PMID: 28992135 DOI: 10.1093/jxb/erx237] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is involved in almost all developmental processes in land plants. Most, if not all, of these processes are mediated by changes in gene expression. Auxin acts on gene expression through a short nuclear pathway that converges upon the activation of a family of DNA-binding transcription factors. These AUXIN RESPONSE FACTORS (ARFs) are thus the effector of auxin response and translate the chemical signal into the regulation of a defined set of genes. Given the limited number of dedicated components in auxin signaling, distinct properties among the ARF family probably contribute to the establishment of multiple unique auxin responses in plant development. In the two decades following the identification of the first ARF in Arabidopsis, much has been learnt about how these transcription factors act, and how they generate unique auxin responses. Progress in genetics, biochemistry, genomics, and structural biology has helped to develop mechanistic models for ARF action. However, despite intensive efforts, many central questions are yet to be addressed. In this review, we highlight what has been learnt about ARF transcription factors, and identify outstanding questions and challenges for the near future.
Collapse
Affiliation(s)
- Mark Roosjen
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Sébastien Paque
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, The Netherlands
| |
Collapse
|
72
|
Zhang H, Zheng J, Su H, Xia K, Jian S, Zhang M. Molecular Cloning and Functional Characterization of the Dehydrin ( IpDHN) Gene From Ipomoea pes-caprae. FRONTIERS IN PLANT SCIENCE 2018; 9:1454. [PMID: 30364314 PMCID: PMC6193111 DOI: 10.3389/fpls.2018.01454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/12/2018] [Indexed: 05/02/2023]
Abstract
Dehydrin (DHN) genes can be rapidly induced to offset water deficit stresses in plants. Here, we reported on a dehydrin gene (IpDHN) related to salt tolerance isolated from Ipomoea pes-caprae L. (Convolvulaceae). The IpDHN protein shares a relatively high homology with Arabidopsis dehydrin ERD14 (At1g76180). IpDHN was shown to have a cytoplasmic localization pattern. Quantitative RT-PCR analyses indicated that IpDHN was differentially expressed in most organs of I. pes-caprae plants, and its expression level increased after salt, osmotic stress, oxidative stress, cold stress and ABA treatments. Analysis of the 974-bp promoter of IpDHN identified distinct cis-acting regulatory elements, including an MYB binding site (MBS), ABRE (ABA responding)-elements, Skn-1 motif, and TC-rich repeats. The induced expression of IpDHN in Escherichia coli indicated that IpDHN might be involved in salt, drought, osmotic, and oxidative stresses. We also generated transgenic Arabidopsis lines that over-expressed IpDHN. The transgenic Arabidopsis plants showed a significant enhancement in tolerance to salt/drought stresses, as well as less accumulation of hydrogen peroxide (H2O2) and the superoxide radical (O2 -), accompanied by increasing activity of the antioxidant enzyme system in vivo. Under osmotic stresses, the overexpression of IpDHN in Arabidopsis can elevate the expression of ROS-related and stress-responsive genes and can improve the ROS-scavenging ability. Our results indicated that IpDHN is involved in cellular responses to salt and drought through a series of pleiotropic effects that are likely involved in ROS scavenging and therefore influence the physiological processes of microorganisms and plants exposed to many abiotic stresses.
Collapse
Affiliation(s)
- Hui Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiexuan Zheng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Huaxiang Su
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuaifei Xia
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shuguang Jian
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Mei Zhang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Mei Zhang,
| |
Collapse
|
73
|
Buonanno M, Coppola M, Di Lelio I, Molisso D, Leone M, Pennacchio F, Langella E, Rao R, Monti SM. Prosystemin, a prohormone that modulates plant defense barriers, is an intrinsically disordered protein. Protein Sci 2017; 27:620-632. [PMID: 29168260 DOI: 10.1002/pro.3348] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/09/2017] [Accepted: 11/11/2017] [Indexed: 11/09/2022]
Abstract
Prosystemin, originally isolated from Lycopersicon esculentum, is a tomato pro-hormone of 200 aminoacid residues which releases a bioactive peptide of 18 aminoacids called Systemin. This signaling peptide is involved in the activation of defense genes in solanaceous plants in response to herbivore feeding damage. Using biochemical, biophysical and bioinformatics approaches we characterized Prosystemin, showing that it is an intrinsically disordered protein possessing a few secondary structure elements within the sequence. Plant treatment with recombinant Prosystemin promotes early and late plant defense genes, which limit the development and survival of Spodoptera littoralis larvae fed with treated plants.
Collapse
Affiliation(s)
| | - Mariangela Coppola
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Ilaria Di Lelio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Donata Molisso
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Francesco Pennacchio
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | - Emma Langella
- Institute of Biostructures and Bioimaging, CNR, Naples, Italy
| | - Rosa Rao
- Dipartimento di Agraria, Università degli Studi di Napoli Federico II, Portici, NA, Italy
| | | |
Collapse
|
74
|
Structural disorder and induced folding within two cereal, ABA stress and ripening (ASR) proteins. Sci Rep 2017; 7:15544. [PMID: 29138428 PMCID: PMC5686140 DOI: 10.1038/s41598-017-15299-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 10/04/2017] [Indexed: 11/13/2022] Open
Abstract
Abscisic acid (ABA), stress and ripening (ASR) proteins are plant-specific proteins involved in plant response to multiple abiotic stresses. We previously isolated the ASR genes and cDNAs from durum wheat (TtASR1) and barley (HvASR1). Here, we show that HvASR1 and TtASR1 are consistently predicted to be disordered and further confirm this experimentally. Addition of glycerol, which mimics dehydration, triggers a gain of structure in both proteins. Limited proteolysis showed that they are highly sensitive to protease degradation. Addition of 2,2,2-trifluoroethanol (TFE) however, results in a decreased susceptibility to proteolysis that is paralleled by a gain of structure. Mass spectrometry analyses (MS) led to the identification of a protein fragment resistant to proteolysis. Addition of zinc also induces a gain of structure and Hydrogen/Deuterium eXchange-Mass Spectrometry (HDX-MS) allowed identification of the region involved in the disorder-to-order transition. This study is the first reported experimental characterization of HvASR1 and TtASR1 proteins, and paves the way for future studies aimed at unveiling the functional impact of the structural transitions that these proteins undergo in the presence of zinc and at achieving atomic-resolution conformational ensemble description of these two plant intrinsically disordered proteins (IDPs).
Collapse
|
75
|
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC. Structural disorder in plant proteins: where plasticity meets sessility. Cell Mol Life Sci 2017; 74:3119-3147. [PMID: 28643166 PMCID: PMC11107788 DOI: 10.1007/s00018-017-2557-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 01/08/2023]
Abstract
Plants are sessile organisms. This intriguing nature provokes the question of how they survive despite the continual perturbations caused by their constantly changing environment. The large amount of knowledge accumulated to date demonstrates the fascinating dynamic and plastic mechanisms, which underpin the diverse strategies selected in plants in response to the fluctuating environment. This phenotypic plasticity requires an efficient integration of external cues to their growth and developmental programs that can only be achieved through the dynamic and interactive coordination of various signaling networks. Given the versatility of intrinsic structural disorder within proteins, this feature appears as one of the leading characters of such complex functional circuits, critical for plant adaptation and survival in their wild habitats. In this review, we present information of those intrinsically disordered proteins (IDPs) from plants for which their high level of predicted structural disorder has been correlated with a particular function, or where there is experimental evidence linking this structural feature with its protein function. Using examples of plant IDPs involved in the control of cell cycle, metabolism, hormonal signaling and regulation of gene expression, development and responses to stress, we demonstrate the critical importance of IDPs throughout the life of the plant.
Collapse
Affiliation(s)
- Alejandra A Covarrubias
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico.
| | - Cesar L Cuevas-Velazquez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Paulette S Romero-Pérez
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - David F Rendón-Luna
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| | - Caspar C C Chater
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250, Cuernavaca, Mexico
| |
Collapse
|
76
|
Liu Y, Wu J, Sun N, Tu C, Shi X, Cheng H, Liu S, Li S, Wang Y, Zheng Y, Uversky VN. Intrinsically Disordered Proteins as Important Players during Desiccation Stress of Soybean Radicles. J Proteome Res 2017; 16:2393-2409. [PMID: 28525284 DOI: 10.1021/acs.jproteome.6b01045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) play a variety of important physiological roles in all living organisms. However, there is no comprehensive analysis of the abundance of IDPs associated with environmental stress in plants. Here, we show that a set of heat-stable proteins (i.e., proteins that do not denature after boiling at 100 °C for 10 min) was present in R0mm and R15mm radicles (i.e., before radicle emergence and 15 mm long radicles) of soybean (Glycine max) seeds. This set of 795 iTRAQ-quantified heat-stable proteins contained a high proportion of wholly or highly disordered proteins (15%), which was significantly higher than that estimated for the whole soybean proteome containing 55,787 proteins (9%). The heat-stable proteome of soybean radicles that contain many IDPs could protect lactate dehydrogenase (LDH) during freeze-thaw cycles. Comparison of the 795 heat-stable proteins in the R0mm and R15mm soybean radicles revealed that many of these proteins changed abundance during seedling growth with 170 and 89 proteins being more abundant in R0mm and R15mm, respectively. KEGG analysis identified 18 proteins from the cysteine and methionine metabolism pathways and nine proteins from the phenylpropanoid biosynthesis pathway. As an important type of IDP related to stress, 30 late embryogenesis abundant proteins were also found. Ten selected proteins with high levels of predicted intrinsic disorder were able to efficiently protect LDH from the freeze-thaw-induced inactivation, but the protective ability was not correlated with the disorder content of these proteins. These observations suggest that protection of the enzymes and other proteins in a stressed cell can be one of the biological functions of plant IDPs.
Collapse
Affiliation(s)
- Yun Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Jiahui Wu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Nan Sun
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Chengjian Tu
- Department of Pharmaceutical Sciences, State University of New York at Buffalo , 285 Kapoor Hall, Buffalo, New York14260, United States
| | - Xiaoying Shi
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Hua Cheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Simu Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Shuiming Li
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yong Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University , Nanhai Ave 3688, Shenzhen, Guangdong 518060, China
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida , 12901 Bruce B. Downs Boulevard MDC07, Tampa, Florida 33612, United States
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences , Institutskaya str., 7, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
77
|
Atkinson J, Clarke MW, Warnica JM, Boddington KF, Graether SP. Structure of an Intrinsically Disordered Stress Protein Alone and Bound to a Membrane Surface. Biophys J 2017; 111:480-491. [PMID: 27508433 DOI: 10.1016/j.bpj.2016.07.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 06/25/2016] [Accepted: 07/01/2016] [Indexed: 12/19/2022] Open
Abstract
Dehydrins are a group of intrinsically disordered proteins that protect plants from damage caused by drought, cold, and high salinity. Like other intrinsically disordered proteins, dehydrins can gain structure when bound to a ligand. Previous studies have shown that dehydrins are able to protect liposomes from cold damage, but the interactions that drive membrane binding and the detailed structure of the bound and unbound forms are not known. We use an ensemble-structure approach to generate models of a dehydrin known as K2 in the presence and absence of sodium dodecyl sulfate micelles, and we docked the bound structure to the micelle. The collection of residual dipolar coupling data, amide protection factors, and paramagnetic relaxation enhancement distances, in combination with chemical shifts and relaxation measurements, allows for determining plausible structures that are not otherwise visible in time-averaged structural data. The results show that in the bound structure, the conserved lysines are important for membrane binding, whereas the flanking hydrophobic residues play a lesser role. The unbound structure shows a high level of disorder and an extended structure. We propose that the structural differences between bound and unbound forms allow dehydrins to act as molecular shields in their unbound state and as membrane protectants in their bound state. Unlike α-synuclein, the significant gain of α-helicity in K2 at low concentrations of sodium dodecyl sulfate is not due to a decrease in the critical micelle concentration. The study provides structural insight into how a disordered protein can interact with a membrane surface.
Collapse
Affiliation(s)
- John Atkinson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Matthew W Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Josephine M Warnica
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Kelly F Boddington
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
78
|
Johnson KL, Cassin AM, Lonsdale A, Bacic A, Doblin MS, Schultz CJ. Pipeline to Identify Hydroxyproline-Rich Glycoproteins. PLANT PHYSIOLOGY 2017; 174:886-903. [PMID: 28446635 PMCID: PMC5462032 DOI: 10.1104/pp.17.00294] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/21/2017] [Indexed: 05/14/2023]
Abstract
Intrinsically disordered proteins (IDPs) are functional proteins that lack a well-defined three-dimensional structure. The study of IDPs is a rapidly growing area as the crucial biological functions of more of these proteins are uncovered. In plants, IDPs are implicated in plant stress responses, signaling, and regulatory processes. A superfamily of cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs), have characteristic features of IDPs. Their protein backbones are rich in the disordering amino acid proline, they contain repeated sequence motifs and extensive posttranslational modifications (glycosylation), and they have been implicated in many biological functions. HRGPs are evolutionarily ancient, having been isolated from the protein-rich walls of chlorophyte algae to the cellulose-rich walls of embryophytes. Examination of HRGPs in a range of plant species should provide valuable insights into how they have evolved. Commonly divided into the arabinogalactan proteins, extensins, and proline-rich proteins, in reality, a continuum of structures exists within this diverse and heterogenous superfamily. An inability to accurately classify HRGPs leads to inconsistent gene ontologies limiting the identification of HRGP classes in existing and emerging omics data sets. We present a novel and robust motif and amino acid bias (MAAB) bioinformatics pipeline to classify HRGPs into 23 descriptive subclasses. Validation of MAAB was achieved using available genomic resources and then applied to the 1000 Plants transcriptome project (www.onekp.com) data set. Significant improvement in the detection of HRGPs using multiple-k-mer transcriptome assembly methodology was observed. The MAAB pipeline is readily adaptable and can be modified to optimize the recovery of IDPs from other organisms.
Collapse
Affiliation(s)
- Kim L Johnson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew M Cassin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Andrew Lonsdale
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Monika S Doblin
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| | - Carolyn J Schultz
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of BioSciences, University of Melbourne, Parkville, Victoria 3010, Australia (K.L.J., A.M.C., A.L., A.B., M.S.D.); and
- School of Agriculture, Food, and Wine, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia (C.J.S.)
| |
Collapse
|
79
|
Liu G, Liu K, Gao Y, Zheng Y. Involvement of C-Terminal Histidines in Soybean PM1 Protein Oligomerization and Cu2+ Binding. PLANT & CELL PHYSIOLOGY 2017; 58:1018-1029. [PMID: 28387856 DOI: 10.1093/pcp/pcx046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/20/2017] [Indexed: 05/06/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are widely distributed among plant species, where they contribute to abiotic stress tolerance. LEA proteins can be classified into seven groups according to conserved sequence motifs. The PM1 protein from soybean, which belongs to the Pfam LEA_1 group, has been shown previously to be at least partially natively unfolded, to bind metal ions and potentially to stabilize proteins and membranes. Here, we investigated the role of the PM1 C-terminal domain and in particular the multiple histidine residues in this half of the protein. We constructed recombinant plasmids expressing full-length PM1 and two truncated forms, PM1-N and PM1-C, which represent the N- and C-terminal halves of the protein, respectively. Immunoblotting and cross-linking experiments showed that full-length PM1 forms oligomers and high molecular weight (HMW) complexes in vitro and in vivo, while PM1-C, but not PM1-N, also formed oligomers and HMW complexes in vitro. When the histidine residues in PM1 and PM1-C were chemically modified, oligomerization was abolished, suggesting that histidines play a key role in this process. Furthermore, we demonstrated that high Cu2+ concentrations promote oligomerization and induce PM1 and PM1-C to form HMW complexes. Therefore, we speculate that PM1 proteins not only maintain ion homeostasis in the cytoplasm, but also potentially stabilize and protect other proteins during abiotic stress by forming a large, oligomeric molecular shield around biological targets.
Collapse
Affiliation(s)
- Guobao Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Ke Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Yang Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| | - Yizhi Zheng
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, PR China
| |
Collapse
|
80
|
Chavali S, Gunnarsson A, Babu MM. Intrinsically Disordered Proteins Adaptively Reorganize Cellular Matter During Stress. Trends Biochem Sci 2017; 42:410-412. [PMID: 28487210 DOI: 10.1016/j.tibs.2017.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) can protect cells from diverse stresses by forming higher order assemblies such as reversible aggregates or granules. Recently, Boothby et al. show that IDPs protect tardigrades against desiccation by forming a glass-like amorphous matrix, highlighting that material properties of disordered proteins can confer adaptation during stress.
Collapse
Affiliation(s)
- Sreenivas Chavali
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| | | | - M Madan Babu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK.
| |
Collapse
|
81
|
Wang H, Wu Y, Yang X, Guo X, Cao X. SmLEA2, a gene for late embryogenesis abundant protein isolated from Salvia miltiorrhiza, confers tolerance to drought and salt stress in Escherichia coli and S. miltiorrhiza. PROTOPLASMA 2017; 254:685-696. [PMID: 27193100 DOI: 10.1007/s00709-016-0981-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/29/2016] [Indexed: 05/20/2023]
Abstract
Abiotic stresses, such as drought and high salinity, are major factors that limit plant growth and productivity. Late embryogenesis abundant (LEA) proteins are members of a diverse, multigene family closely associated with tolerance to abiotic stresses in numerous organisms. We examined the function of SmLEA2, previously isolated from Salvia miltiorrhiza, in defense responses to drought and high salinity. Phylogenetic analysis indicated that SmLEA2 belongs to the LEA_2 subfamily. Its overexpression in Escherichia coli improved growth performance when compared with the control under salt and drought stresses. We further characterized its roles in S. miltiorrhiza through overexpression and RNAi-mediated silencing. In response to drought and salinity treatments, transgenic plants overexpressing SmLEA2 exhibited significantly increased superoxide dismutase activity, reduced levels of lipid peroxidation, and more vigorous growth than empty-vector control plants did. However, transgenic lines in which expression was suppressed showed the opposite results. Our data demonstrate that SmLEA2 plays an important role in the abiotic stress response and its overexpression in transgenic S. miltiorrhiza improves tolerance to excess salt and drought conditions.
Collapse
Affiliation(s)
- Huaiqin Wang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Yucui Wu
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Xinbing Yang
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaorong Guo
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China
| | - Xiaoyan Cao
- Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest of China, Shaanxi Normal University, Xi'an, 710062, China.
| |
Collapse
|
82
|
Lynch TJ, Erickson BJ, Miller DR, Finkelstein RR. ABI5-binding proteins (AFPs) alter transcription of ABA-induced genes via a variety of interactions with chromatin modifiers. PLANT MOLECULAR BIOLOGY 2017; 93:403-418. [PMID: 27942958 DOI: 10.1007/s11103-016-0569-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/28/2016] [Indexed: 05/29/2023]
Abstract
Overexpression of ABI5/ABF binding proteins (AFPs) results in extreme ABA resistance of seeds via multiple mechanisms repressing ABA response, including interactions with histone deacetylases and the co-repressor TOPLESS. Several ABI5/ABF binding proteins (AFPs) inhibit ABA response, resulting in extreme ABA resistance in transgenic Arabidopsis overexpression lines, but their mechanism of action has remained obscure. By analogy to the related Novel Interactor of JAZ (NINJA) protein, it was suggested that the AFPs interact with the co-repressor TOPLESS to inhibit ABA-regulated gene expression. This study shows that the AFPs that inhibit ABA response have intrinsic repressor activity in a heterologous system, which does not depend on the domain involved in the interaction with TOPLESS. This domain is also not essential for repressing ABA response in transgenic plants, but does contribute to stronger ABA resistance. Additional interactions between some AFPs and histone deacetylase subunits were observed in yeast two-hybrid and bimolecular fluorescence assays, consistent with a more direct mechanism of AFP-mediated repression of gene expression. Chemical inhibition of histone deacetylase activity by trichostatin A suppressed AFP effects on a small fraction of the ABI5-regulated genes tested. Collectively, these results suggest that the AFPs participate in multiple mechanisms modulating ABA response, including both TOPLESS-dependent and -independent chromatin modification.
Collapse
Affiliation(s)
- Tim J Lynch
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - B Joy Erickson
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Dusty R Miller
- Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
- Chemistry Department, Vanderbilt University, Nashville, TN, 37235, USA
| | - Ruth R Finkelstein
- Molecular, Cellular, and Developmental Biology Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
83
|
Molecular cloning, phylogenetic analysis, and expression patterns of LATERAL SUPPRESSOR-LIKE and REGULATOR OF AXILLARY MERISTEM FORMATION-LIKE genes in sunflower (Helianthus annuus L.). Dev Genes Evol 2016; 227:159-170. [PMID: 28035495 DOI: 10.1007/s00427-016-0571-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/21/2016] [Indexed: 10/20/2022]
Abstract
The wild sunflower (Helianthus annuus) plants develop a highly branched form with numerous small flowering heads. The origin of a no branched sunflower, producing a single large head, has been a key event in the domestication process of this species. The interaction between hormonal factors and several genes organizes the initiation and outgrowth of axillary meristems (AMs). From sunflower, we have isolated two genes putatively involved in this process, LATERAL SUPPRESSOR (LS)-LIKE (Ha-LSL) and REGULATOR OF AXILLARY MERISTEM FORMATION (ROX)-LIKE (Ha-ROXL), encoding for a GRAS and a bHLH transcription factor (TF), respectively. Typical amino acid residues and phylogenetic analyses suggest that Ha-LSL and Ha-ROXL are the orthologs of the branching regulator LS and ROX/LAX1, involved in the growth habit of both dicot and monocot species. qRT-PCR analyses revealed a high accumulation of Ha-LSL transcripts in roots, vegetative shoots, and inflorescence shoots. By contrast, in internodal stems and young leaves, a lower amount of Ha-LSL transcripts was observed. A comparison of transcription patterns between Ha-LSL and Ha-ROXL revealed some analogies but also remarkable differences; in fact, the gene Ha-ROXL displayed a low expression level in all organs analyzed. In situ hybridization (ISH) analysis showed that Ha-ROXL transcription was strongly restricted to a small domain within the boundary zone separating the shoot apical meristem (SAM) and the leaf primordia and in restricted regions of the inflorescence meristem, beforehand the separation of floral bracts from disc flower primordia. These results suggested that Ha-ROXL may be involved to establish a cell niche for the initiation of AMs as well as flower primordia. The accumulation of Ha-LSL transcripts was not restricted to the boundary zones in vegetative and inflorescence shoots, but the mRNA activity was expanded in other cellular domains of primary shoot apical meristem as well as AMs. In addition, Ha-LSL transcript accumulation was also detected in leaves and floral primordia at early stages of development. These results were corroborated by qRT-PCR analyses that evidenced high levels of Ha-LSL transcripts in very young leaves and disc flowers, suggesting a role of Ha-LSL for the early outgrowth of lateral primordia.
Collapse
|
84
|
Sena L, Uversky VN. Comparison of the intrinsic disorder propensities of the RuBisCO activase enzyme from the motile and non-motile oceanic green microalgae. INTRINSICALLY DISORDERED PROTEINS 2016; 4:e1253526. [PMID: 28232899 PMCID: PMC5314929 DOI: 10.1080/21690707.2016.1253526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 10/20/2022]
Abstract
Green oceanic microalgae are efficient converters of solar energy into the biomass via the photosynthesis process, with the first step of carbon fixation in the photosynthesis being controlled by the enzyme ribulose-1, 5-bisphosphate carboxylase/oxygenase (RuBisCO), which is a large proteinaceous machine composed of large (L, 52 kDa) and small (S, 12 kDa) subunits arranged as a L8S8 hexadecamer that catalyzes the formation of 2 phosphoglyceric acid molecules from one ribulose 1,5-bisphosphate (RuBP) molecule and one of carbon dioxide (CO2) and that is considered as the most abundant protein on Earth. The catalytic efficiency of this protein is controlled by the RuBisCO activase (RCA) that interacts with RuBisCO and promotes the CO2 entrance to the active site of RuBisCO by removing RuBP. One of the peculiar features of RCA is the presence of functional disordered tails that might play a role in RCA-RuBisCO interaction. Based on their ability to move, microalgae are grouped into 2 major class, motile and non-motile. Motile microalgae have an obvious advantage over their non-motile counterparts because of their ability to actively migrate within the water column to find the most optimal environmental conditions. We hypothesizes that the RCA could be functionally different in the non-motile and motile microalgae. To check this hypothesis, we conducted a comparative computational analysis of the RCAs from the representatives of the non-motile (Ostreococcus tauri) and motile (Tetraselmis sp. GSL018) green oceanic microalgae.
Collapse
Affiliation(s)
- Lucia Sena
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
85
|
Ben Daniel BH, Cattan E, Wachtel C, Avrahami D, Glick Y, Malichy A, Gerber D, Miller G. Identification of novel transcriptional regulators of Zat12 using comprehensive yeast one-hybrid screens. PHYSIOLOGIA PLANTARUM 2016; 157:422-441. [PMID: 26923089 DOI: 10.1111/ppl.12439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/22/2016] [Accepted: 01/28/2016] [Indexed: 06/05/2023]
Abstract
To appropriately acclimate to environmental stresses, plants have to rapidly activate a specific transcriptional program. Yet, the identity and function of many of the transcriptional regulators that mediate early responses to abiotic stress stimuli is still unknown. In this work we employed the promoter of the multi-stress-responsive zinc-finger protein Zat12 in yeast one-hybrid (Y1H) screens to identify early abiotic stress-responsive transcriptional regulators. Analysis of Zat12 promoter fragments fused to luciferase underlined an approximately 200 bp fragment responsive to NaCl and to reactive oxygen species (ROS). Using these segments and others as baits against Y1H control or stress Arabidopsis prey libraries, we identified 15 potential Zat12 transcriptional regulators. Among the prominent proteins identified were known transcription factors including bZIP29 and ANAC91 as well as unknown function proteins such as a homolog of the human USB1, a U6 small nuclear RNA (snRNA) processing protein, and dormancy/auxin-associated family protein 2 (DRM2). Altered expression of Zat12 during high light stress in the knockout mutants further indicated the involvement of these proteins in the regulation of Zat12. Using a state of the art microfluidic approach we showed that AtUSB1 and DRM2 can specifically bind dsDNA and were able to identify the preferred DNA-binding motif of all four proteins. Overall, the proteins identified in this work provide an important start point for charting the earliest signaling network of Zat12 and of other genes required for acclimation to abiotic stresses.
Collapse
Affiliation(s)
- Bat-Hen Ben Daniel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Esther Cattan
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Chaim Wachtel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Dorit Avrahami
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Yair Glick
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Asaf Malichy
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Doron Gerber
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- The Nanotechnology Institute, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Gad Miller
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| |
Collapse
|
86
|
Huang K, Zhong Y, Li Y, Zheng D, Cheng ZM. Genome-wide identification and expression analysis of the apple ASR gene family in response to Alternaria alternata f. sp. mali. Genome 2016; 59:866-878. [PMID: 27653246 DOI: 10.1139/gen-2016-0043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The ABA/water stress/ripening-induced (ASR) gene family exists universally in higher plants, and many ASR genes are up-regulated during periods of environmental stress and fruit ripening. Although a considerable amount of research has been performed investigating ASR gene response to abiotic stresses, relatively little is known about their roles in response to biotic stresses. In this report, we identified five ASR genes in apple (Malus × domestica) and explored their phylogenetic relationship, duplication events, and selective pressure. Five apple ASR genes (Md-ASR) were divided into two clades based on phylogenetic analysis. Species-specific duplication was detected in M. domestica ASR genes. Leaves of 'Golden delicious' and 'Starking' were infected with Alternaria alternata f. sp. mali, which causes apple blotch disease, and examined for the expression of the ASR genes in lesion areas during the first 72 h after inoculation. Md-ASR genes showed different expression patterns at different sampling times in 'Golden delicious' and 'Starking'. The activities of stress-related enzymes, peroxidase (POD), superoxide dismutase (SOD), catalase (CAT), phenylalanine ammonia lyase (PAL), and polyphenoloxidase (PPO), and the content of malondialdehyde (MDA) were also measured in different stages of disease development in two cultivars. The ASR gene expression patterns and theses physiological indexes for disease resistance suggested that Md-ASR genes are involved in biotic stress responses in apple.
Collapse
Affiliation(s)
- Kaihui Huang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Zhong
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Li
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-Ming Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China.,College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
87
|
Zhang L, Kondo H, Kamikubo H, Kataoka M, Sakamoto W. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress. PLANT PHYSIOLOGY 2016; 171:1983-95. [PMID: 27208228 PMCID: PMC4936581 DOI: 10.1104/pp.16.00532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/09/2016] [Indexed: 05/19/2023]
Abstract
Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1.
Collapse
Affiliation(s)
- Lingang Zhang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Hironari Kamikubo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Mikio Kataoka
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| |
Collapse
|
88
|
Hara M, Monna S, Murata T, Nakano T, Amano S, Nachbar M, Wätzig H. The Arabidopsis KS-type dehydrin recovers lactate dehydrogenase activity inhibited by copper with the contribution of His residues. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 245:135-42. [PMID: 26940498 DOI: 10.1016/j.plantsci.2016.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/05/2016] [Accepted: 02/06/2016] [Indexed: 05/02/2023]
Abstract
Dehydrin, which is one of the late embryogenesis abundant (LEA) proteins, is involved in the ability of plants to tolerate the lack of water. Although many reports have indicated that dehydrins bind heavy metals, the physiological role of this metal binding has not been well understood. Here, we report that the Arabidopsis KS-type dehydrin (AtHIRD11) recovered the lactate dehydrogenase (LDH) activity denatured by Cu(2+). The LDH activity was partially inhibited by 0.93 μM Cu(2+) but totally inactivated by 9.3 μM Cu(2+). AtHIRD11 recovered the activity of LDH treated with 9.3 μM Cu(2+) in a dose-dependent manner. The recovery activity of AtHIRD11 was significantly higher than those of serum albumin and lysozyme. The conversion of His residues to Ala in AtHIRD11 resulted in the loss of the Cu(2+) binding of the protein as well as the disappearance of the conformational change induced by Cu(2+) that is observed by circular dichroism spectroscopy. The mutant protein showed lower recovery activity than the original AtHIRD11. These results indicate that AtHIRD11 can reactivate LDH inhibited by Cu(2+) via the His residues. This function may prevent physiological damage to plants due to heavy-metal stress.
Collapse
Affiliation(s)
- Masakazu Hara
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.
| | - Shuhei Monna
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Takae Murata
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Taiyo Nakano
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Shono Amano
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Markus Nachbar
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| | - Hermann Wätzig
- Institut für Pharmazeutische Chemie, Technische Universität Braunschweig, Beethovenstraße 55, 38106 Braunschweig, Germany
| |
Collapse
|
89
|
Cuevas-Velazquez CL, Saab-Rincón G, Reyes JL, Covarrubias AA. The Unstructured N-terminal Region of Arabidopsis Group 4 Late Embryogenesis Abundant (LEA) Proteins Is Required for Folding and for Chaperone-like Activity under Water Deficit. J Biol Chem 2016; 291:10893-903. [PMID: 27006402 DOI: 10.1074/jbc.m116.720318] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Indexed: 11/06/2022] Open
Abstract
Late embryogenesis abundant (LEA) proteins are a conserved group of proteins widely distributed in the plant kingdom that participate in the tolerance to water deficit of different plant species. In silico analyses indicate that most LEA proteins are structurally disordered. The structural plasticity of these proteins opens the question of whether water deficit modulates their conformation and whether these possible changes are related to their function. In this work, we characterized the secondary structure of Arabidopsis group 4 LEA proteins. We found that they are disordered in aqueous solution, with high intrinsic potential to fold into α-helix. We demonstrate that complete dehydration is not required for these proteins to sample ordered structures because milder water deficit and macromolecular crowding induce high α-helix levels in vitro, suggesting that prevalent conditions under water deficit modulate their conformation. We also show that the N-terminal region, conserved across all group 4 LEA proteins, is necessary and sufficient for conformational transitions and that their protective function is confined to this region, suggesting that folding into α-helix is required for chaperone-like activity under water limitation. We propose that these proteins can exist as different conformers, favoring functional diversity, a moonlighting property arising from their structural dynamics.
Collapse
Affiliation(s)
| | - Gloria Saab-Rincón
- Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62250 Cuernavaca, México
| | | | | |
Collapse
|
90
|
Tlusty T. Self-referring DNA and protein: a remark on physical and geometrical aspects. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0070. [PMID: 26857671 DOI: 10.1098/rsta.2015.0070] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
All known life forms are based upon a hierarchy of interwoven feedback loops, operating over a cascade of space, time and energy scales. Among the most basic loops are those connecting DNA and proteins. For example, in genetic networks, DNA genes are expressed as proteins, which may bind near the same genes and thereby control their own expression. In this molecular type of self-reference, information is mapped from the DNA sequence to the protein and back to DNA. There is a variety of dynamic DNA-protein self-reference loops, and the purpose of this remark is to discuss certain geometrical and physical aspects related to the back and forth mapping between DNA and proteins. The mappings are examined as dimensional reductions and expansions between high- and low-dimensional manifolds in molecular spaces. The discussion raises basic questions regarding the nature of DNA and proteins as self-referring matter, which are examined in a simple toy model.
Collapse
Affiliation(s)
- Tsvi Tlusty
- Simons Center for Systems Biology, Institute for Advanced Study, Princeton, NJ 08540, USACenter for Soft and Living Matter, Institute for Basic Science (IBS), Ulsan 689-798, Republic of KoreaDepartment of Physics, Ulsan National Institute of Science and Technology, Ulsan 689-798, Republic of Korea
| |
Collapse
|
91
|
Zamora-Briseño JA, de Jiménez ES. A LEA 4 protein up-regulated by ABA is involved in drought response in maize roots. Mol Biol Rep 2016; 43:221-8. [PMID: 26922182 DOI: 10.1007/s11033-016-3963-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/19/2016] [Indexed: 11/25/2022]
Abstract
Late embryogenesis abundant (LEA) proteins are hydrophilic proteins that accumulate to high concentrations during the late stages of seeds development, which are integral to desiccation tolerance. LEA proteins also play a protective role under other abiotic stresses. We analyzed in silico a maize protein predicted to be highly hydrophilic and intrinsically disordered. This prediction was experimentally corroborated by solubility assays under denaturing conditions. Based on its amino acid sequence, we propose that this protein belongs to group four of the LEA proteins. The accumulation pattern of this protein was similar to that of dehydrins during the desiccation process that takes place during seed development. This protein was induced by exogenous abscisic acid in immature embryos, but during imbibition was down-regulated by gibberellins. It was also induced in maize roots under osmotic stress. So far, this is the first member of the LEA proteins belonging to group four to be characterized in maize, and it plays a role in the response to osmotic stress.
Collapse
Affiliation(s)
- Jesús Alejandro Zamora-Briseño
- Laboratorio 103, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, DF, Mexico.
| | - Estela Sánchez de Jiménez
- Laboratorio 103, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, México, DF, Mexico.
| |
Collapse
|
92
|
Warner AH, Guo ZH, Moshi S, Hudson JW, Kozarova A. Study of model systems to test the potential function of Artemia group 1 late embryogenesis abundant (LEA) proteins. Cell Stress Chaperones 2016; 21:139-154. [PMID: 26462928 PMCID: PMC4679747 DOI: 10.1007/s12192-015-0647-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 10/23/2022] Open
Abstract
Embryos of the brine shrimp, Artemia franciscana, are genetically programmed to develop either ovoviparously or oviparously depending on environmental conditions. Shortly upon their release from the female, oviparous embryos enter diapause during which time they undergo major metabolic rate depression while simultaneously synthesize proteins that permit them to tolerate a wide range of stressful environmental events including prolonged periods of desiccation, freezing, and anoxia. Among the known stress-related proteins that accumulate in embryos entering diapause are the late embryogenesis abundant (LEA) proteins. This large group of intrinsically disordered proteins has been proposed to act as molecular shields or chaperones of macromolecules which are otherwise intolerant to harsh conditions associated with diapause. In this research, we used two model systems to study the potential function of the group 1 LEA proteins from Artemia. Expression of the Artemia group 1 gene (AfrLEA-1) in Escherichia coli inhibited growth in proportion to the number of 20-mer amino acid motifs expressed. As well, clones of E. coli, transformed with the AfrLEA-1 gene, expressed multiple bands of LEA proteins, either intrinsically or upon induction with isopropyl-β-thiogalactoside (IPTG), in a vector-specific manner. Expression of AfrLEA-1 in E. coli did not overcome the inhibitory effects of high concentrations of NaCl and KCl but modulated growth inhibition resulting from high concentrations of sorbitol in the growth medium. In contrast, expression of the AfrLEA-1 gene in Saccharomyces cerevisiae did not alter the growth kinetics or permit yeast to tolerate high concentrations of NaCl, KCl, or sorbitol. However, expression of AfrLEA-1 in yeast improved its tolerance to drying (desiccation) and freezing. Under our experimental conditions, both E. coli and S. cerevisiae appear to be potentially suitable hosts to study the function of Artemia group 1 LEA proteins under environmentally stressful conditions.
Collapse
Affiliation(s)
- Alden H Warner
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada.
| | - Zhi-Hao Guo
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Sandra Moshi
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - John W Hudson
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| | - Anna Kozarova
- Department of Biological Sciences, University of Windsor, Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
93
|
Fambrini M, Mariotti L, Parlanti S, Salvini M, Pugliesi C. A GRAS-like gene of sunflower (Helianthus annuus L.) alters the gibberellin content and axillary meristem outgrowth in transgenic Arabidopsis plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1123-34. [PMID: 26081041 DOI: 10.1111/plb.12358] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/11/2015] [Indexed: 05/03/2023]
Abstract
The GRAS proteins belong to a plant transcriptional regulator family that function in the regulation of plant growth and development. Despite their important roles, in sunflower only one GRAS gene (HaDella1) with the DELLA domain has been reported. Here, we provide a functional characterisation of a GRAS-like gene from Helianthus annuus (Ha-GRASL) lacking the DELLA motif. The Ha-GRASL gene contains an intronless open reading frame of 1,743 bp encoding 580 amino acids. Conserved motifs in the GRAS domain are detected, including VHIID, PFYRE, SAW and two LHR motifs. Within the VHII motif, the P-H-N-D-Q-L residues are entirely maintained. Phylogenetic analysis reveals that Ha-GRASL belongs to the SCARECROW LIKE4/7 (SCL4/7) subfamily of the GRAS consensus tree. Accumulation of Ha-GRASL mRNA at the adaxial boundaries from P6/P7 leaf primordia suggests a role of Ha-GRASL in the initiation of median and basal axillary meristems (AMs) of sunflower. When Ha-GRASL is over-expressed in Arabidopsis wild-type plants, the number of lateral bolts increases differently from untransformed plants. However, Ha-GRASL slightly affects the lateral suppressor (las-4-) mutation. Therefore, we hypothesise that Ha-GRASL and LAS are not functionally equivalent. The over-expression of Ha-GRASL reduces metabolic flow of gibberellins (GAs) in Arabidopsis and this modification could be relevant in AM development. Phylogenetic analysis includes LAS and SCL4/7 in the same major clade, suggesting a more recent separation of these genes with respect to other GRAS members. We propose that some features of their ancestor, as well as AM initiation and outgrowth, are partially retained in both LAS and SCL4/7.
Collapse
Affiliation(s)
- M Fambrini
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università degli Studi di Pisa, Pisa, Italy
| | - L Mariotti
- Dipartimento di Biologia, Università degli Studi di Pisa, Pisa, Italy
| | - S Parlanti
- PlantLab, Scuola Superiore Sant'Anna, Pisa, Italy
| | - M Salvini
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università degli Studi di Pisa, Pisa, Italy
- Scuola Normale Superiore, Pisa, Italy
| | - C Pugliesi
- Dipartimento di Scienze Agrarie, Alimentari ed Agro-ambientali, Università degli Studi di Pisa, Pisa, Italy
| |
Collapse
|
94
|
Baraldi E, Coller E, Zoli L, Cestaro A, Tosatto SCE, Zambelli B. Unfoldome variation upon plant-pathogen interactions: strawberry infection by Colletotrichum acutatum. PLANT MOLECULAR BIOLOGY 2015; 89:49-65. [PMID: 26245354 DOI: 10.1007/s11103-015-0353-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 07/26/2015] [Indexed: 06/04/2023]
Abstract
Intrinsically disordered proteins (IDPs) are proteins that lack secondary and/or tertiary structure under physiological conditions. These proteins are very abundant in eukaryotic proteomes and play crucial roles in all molecular mechanisms underlying the response to environmental challenges. In plants, different IDPs involved in stress response have been identified and characterized. Nevertheless, a comprehensive evaluation of protein disorder in plant proteomes under abiotic or biotic stresses is not available so far. In the present work the transcriptome dataset of strawberry (Fragaria X ananassa) fruits interacting with the fungal pathogen Colletotrichum acutatum was actualized onto the woodland strawberry (Fragaria vesca) genome. The obtained cDNA sequences were translated into protein sequences, which were subsequently subjected to disorder analysis. The results, providing the first estimation of disorder abundance associated to plant infection, showed that the proteome activated in the strawberry red fruit during the active fungal propagation is remarkably depleted in disorder. On the other hand, in the resistant white fruit, no significant disorder reduction is observed in the proteins expressed in response to fungal infection. Four representative proteins, FvSMP, FvPRKRIP, FvPCD-4 and FvFAM32A-like, predicted as mainly disordered and never experimentally characterized before, were isolated, and the absence of structure was validated at the secondary and tertiary level using circular dichroism and differential scanning fluorimetry. Their quaternary structure was also established using light scattering. The results are discussed considering the role of protein disorder in plant defense.
Collapse
Affiliation(s)
- Elena Baraldi
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Emanuela Coller
- Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all' Adige, Trento, Italy
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Lisa Zoli
- Department of Agricultural Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Cestaro
- Research and Innovation Centre, Foundation Edmund Mach (FEM), San Michele all' Adige, Trento, Italy
| | | | - Barbara Zambelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
95
|
Huang W, Xian Z, Kang X, Tang N, Li Z. Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato. BMC PLANT BIOLOGY 2015; 15:209. [PMID: 26302743 PMCID: PMC4549011 DOI: 10.1186/s12870-015-0590-6] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/11/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND GRAS transcription factors usually act as integrators of multiple growth regulatory and environmental signals, including axillary shoot meristem formation, root radial pattering, phytohormones, light signaling, and abiotic/biotic stress. However, little is known about this gene family in tomato (Solanum lycopersicum), the most important model plant for crop species with fleshy fruits. RESULTS In this study, 53 GRAS genes were identified and renamed based on tomato whole-genome sequence and their respective chromosome distribution except 19 members were kept as their already existed name. Multiple sequence alignment showed typical GRAS domain in these proteins. Phylogenetic analysis of GRAS proteins from tomato, Arabidopsis, Populus, P.mume, and Rice revealed that SlGRAS proteins could be divided into at least 13 subfamilies. SlGRAS24 and SlGRAS40 were identified as target genes of miR171 using5'-RACE (Rapid amplification of cDNA ends). qRT-PCR analysis revealed tissue-/organ- and development stage-specific expression patterns of SlGRAS genes. Moreover, their expression patterns in response to different hormone and abiotic stress treatments were also investigated. CONCLUSIONS This study provides the first comprehensive analysis of GRAS gene family in the tomato genome. The data will undoubtedly be useful for better understanding the potential functions of GRAS genes, and their possible roles in mediating hormone cross-talk and abiotic stress in tomato as well as in some other relative species.
Collapse
Affiliation(s)
- Wei Huang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400044, People's Republic China.
| | - Zhiqiang Xian
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400044, People's Republic China.
| | - Xia Kang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400044, People's Republic China.
| | - Ning Tang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400044, People's Republic China.
| | - Zhengguo Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400044, People's Republic China.
| |
Collapse
|
96
|
Structural basis of JAZ repression of MYC transcription factors in jasmonate signalling. Nature 2015; 525:269-73. [PMID: 26258305 PMCID: PMC4567411 DOI: 10.1038/nature14661] [Citation(s) in RCA: 206] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 06/15/2015] [Indexed: 11/11/2022]
Abstract
The plant hormone jasmonate (JA) plays crucial roles in regulating plant responses to herbivorous insects and microbial pathogens and is an important regulator of plant growth and development1–7. Key mediators of JA signaling include MYC transcription factors, which are repressed by JAZ transcriptional repressors at the resting state. In the presence of active JA, JAZ proteins function as JA co-receptors by forming a hormone-dependent complex with COI1, the F-box subunit of an SCF-type ubiquitin E3 ligase8–11. The hormone-dependent formation of the COI1–JAZ co-receptor complex leads to ubiquitination and proteasome-dependent degradation of JAZ repressors and release of MYC proteins from transcriptional repression3,10,12. The mechanism by which JAZ proteins repress MYC transcription factors and how JAZ proteins switch between the repressor function in the absence of hormone and the co-receptor function in the presence of hormone remain enigmatic. Here we show that Arabidopsis MYC3 undergoes pronounced conformational changes when bound to the conserved Jas motif of the JAZ9 repressor. The Jas motif, previously shown to bind to hormone as a partially unwound helix, forms a complete α-helix that displaces the N-terminal helix of MYC3 and becomes an integral part of the MYC N-terminal fold. In this position, the Jas helix competitively inhibits MYC3 interaction with the MED25 subunit of the transcriptional Mediator complex. Our study elucidates a novel molecular switch mechanism that governs the repression and activation of a major plant hormone pathway.
Collapse
|
97
|
Montero-Morán GM, Sampedro JG, Saab-Rincón G, Cervantes-González MA, Huerta-Ocampo JÁ, De León-Rodríguez A, Barba de la Rosa AP. Biochemical and Molecular Characterization of a Novel Cu/Zn Superoxide Dismutase from Amaranthus hypochondriacus L.: an Intrinsically Disordered Protein. Appl Biochem Biotechnol 2015; 176:2328-45. [PMID: 26129702 DOI: 10.1007/s12010-015-1721-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/17/2015] [Indexed: 11/29/2022]
Abstract
A novel Cu/ZnSOD from Amaranthus hypochondriacus was cloned, expressed, and characterized. Nucleotide sequence analysis showed an open reading frame (ORF) of 456 bp, which was predicted to encode a 15.6-kDa molecular weight protein with a pI of 5.4. Structural analysis showed highly conserved amino acid residues involved in Cu/Zn binding. Recombinant amaranth superoxide dismutase (rAhSOD) displayed more than 50 % of catalytic activity after incubation at 100 °C for 30 min. In silico analysis of Amaranthus hypochondriacus SOD (AhSOD) amino acid sequence for globularity and disorder suggested that this protein is mainly disordered; this was confirmed by circular dichroism, which showed the lack of secondary structure. Intrinsic fluorescence studies showed that rAhSOD undergoes conformational changes in two steps by the presence of Cu/Zn, which indicates the presence of two binding sites displaying different affinities for metals ions. Our results show that AhSOD could be classified as an intrinsically disordered protein (IDP) that is folded when metals are bound and with high thermal stability.
Collapse
Affiliation(s)
- Gabriela M Montero-Morán
- División Biología Molecular, IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216, San Luis Potosí, SLP, Mexico
| | | | | | | | | | | | | |
Collapse
|
98
|
Suarez IP, Burdisso P, Benoit MPMH, Boisbouvier J, Rasia RM. Induced folding in RNA recognition by Arabidopsis thaliana DCL1. Nucleic Acids Res 2015; 43:6607-19. [PMID: 26101256 PMCID: PMC4513881 DOI: 10.1093/nar/gkv627] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/07/2015] [Indexed: 11/25/2022] Open
Abstract
DCL1 is the ribonuclease that carries out miRNA biogenesis in plants. The enzyme has two tandem double stranded RNA binding domains (dsRBDs) in its C-terminus. Here we show that the first of these domains binds precursor RNA fragments when isolated and cooperates with the second domain in the recognition of substrate RNA. Remarkably, despite showing RNA binding activity, this domain is intrinsically disordered. We found that it acquires a folded conformation when bound to its substrate, being the first report of a complete dsRBD folding upon binding. The free unfolded form shows tendency to adopt folded conformations, and goes through an unfolded bound state prior to the folding event. The significance of these results is discussed by comparison with the behavior of other dsRBDs.
Collapse
Affiliation(s)
- Irina P Suarez
- Instituto de Biología Molecular y Celular de Rosario. 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, 2000 Rosario, Argentina
| | - Paula Burdisso
- Instituto de Biología Molecular y Celular de Rosario. 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, 2000 Rosario, Argentina
| | - Matthieu P M H Benoit
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France Université Joseph Fourier - Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | - Jèrôme Boisbouvier
- CEA, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France CNRS, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France Université Joseph Fourier - Grenoble 1, Institut de Biologie Structurale Jean-Pierre Ebel, Grenoble, France
| | - Rodolfo M Rasia
- Instituto de Biología Molecular y Celular de Rosario. 27 de Febrero 210 bis, predio CCT, 2000 Rosario, Argentina Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario. Suipacha 531, 2000 Rosario, Argentina
| |
Collapse
|
99
|
Yruela I. Plant development regulation: Overview and perspectives. JOURNAL OF PLANT PHYSIOLOGY 2015; 182:62-78. [PMID: 26056993 DOI: 10.1016/j.jplph.2015.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/28/2015] [Accepted: 05/04/2015] [Indexed: 05/07/2023]
Abstract
Plant development, as occur in other eukaryotes, is conducted through a complex network of hormones, transcription factors, enzymes and micro RNAs, among other cellular components. They control developmental processes such as embryo, apical root and shoot meristem, leaf, flower, or seed formation, among others. The research in these topics has been very active in last decades. Recently, an explosion of new data concerning regulation mechanisms as well as the response of these processes to environmental changes has emerged. Initially, most of investigations were carried out in the model eudicot Arabidopsis but currently data from other plant species are available in the literature, although they are still limited. The aim of this review is focused on summarize the main molecular actors involved in plant development regulation in diverse plant species. A special attention will be given to the major families of genes and proteins participating in these regulatory mechanisms. The information on the regulatory pathways where they participate will be briefly cited. Additionally, the importance of certain structural features of such proteins that confer ductility and flexibility to these mechanisms will also be reported and discussed.
Collapse
Affiliation(s)
- Inmaculada Yruela
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Avda. Montañana 1005, 50059 Zaragoza, Spain; Instituto de Biocomputacióon y Física de Sistemas Complejos, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain.
| |
Collapse
|
100
|
Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B. Fairy "tails": flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2015; 2:23. [PMID: 26042223 PMCID: PMC4436894 DOI: 10.3389/fmolb.2015.00023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/04/2015] [Indexed: 12/22/2022] Open
Abstract
Intrinsically Disordered Proteins (IDPs), or protein fragments also called Intrinsically Disordered Regions (IDRs), display high flexibility as the result of their amino acid composition. They can adopt multiple roles. In globular proteins, IDRs are usually found as loops and linkers between secondary structure elements. However, not all disordered fragments are loops: some proteins bear an intrinsically disordered extension at their C- or N-terminus, and this flexibility can affect the protein as a whole. In this review, we focus on the disordered N- and C-terminal extensions of globular proteins from photosynthetic organisms. Using the examples of the A2B2-GAPDH and the α Rubisco activase isoform, we show that intrinsically disordered extensions can help regulate their “host” protein in response to changes in light, thereby participating in photosynthesis regulation. As IDPs are famous for their large number of protein partners, we used the examples of the NAC, bZIP, TCP, and GRAS transcription factor families to illustrate the fact that intrinsically disordered extremities can allow a protein to have an increased number of partners, which directly affects its regulation. Finally, for proteins from the cryptochrome light receptor family, we describe how a new role for the photolyase proteins may emerge by the addition of an intrinsically disordered extension, while still allowing the protein to absorb blue light. This review has highlighted the diverse repercussions of the disordered extension on the regulation and function of their host protein and outlined possible future research avenues.
Collapse
Affiliation(s)
- Gabriel Thieulin-Pardo
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Luisana Avilan
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Mila Kojadinovic
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| | - Brigitte Gontero
- UMR 7281, Centre National de la Recherche Scientifique, Aix-Marseille Université Marseille, France
| |
Collapse
|