51
|
Wu Y, Li X, Zhang J, Zhao H, Tan S, Xu W, Pan J, Yang F, Pi E. ERF subfamily transcription factors and their function in plant responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1042084. [PMID: 36531407 PMCID: PMC9748296 DOI: 10.3389/fpls.2022.1042084] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/09/2022] [Indexed: 06/09/2023]
Abstract
Ethylene Responsive Factor (ERF) subfamily comprise the largest number of proteins in the plant AP2/ERF superfamily, and have been most extensively studied on the biological functions. Members of this subfamily have been proven to regulate plant resistances to various abiotic stresses, such as drought, salinity, chilling and some other adversities. Under these stresses, ERFs are usually activated by mitogen-activated protein kinase induced phosphorylation or escape from ubiquitin-ligase enzymes, and then form complex with nucleic proteins before binding to cis-element in promoter regions of stress responsive genes. In this review, we will discuss the phylogenetic relationships among the ERF subfamily proteins, summarize molecular mechanism how the transcriptional activity of ERFs been regulated and how ERFs of different subgroup regulate the transcription of stress responsive genes, such as high-affinity K+ transporter gene PalHKT1;2, reactive oxygen species related genes LcLTP, LcPrx, and LcRP, flavonoids synthesis related genes FtF3H and LhMYBSPLATTER, etc. Though increasing researches demonstrate that ERFs are involved in various abiotic stresses, very few interact proteins and target genes of them have been comprehensively annotated. Hence, future research prospects are described on the mechanisms of how stress signals been transited to ERFs and how ERFs regulate the transcriptional expression of stress responsive genes.
Collapse
|
52
|
Li M, Li H, Sun A, Wang L, Ren C, Liu J, Gao X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front Genet 2022; 13:1060529. [PMID: 36518213 PMCID: PMC9742610 DOI: 10.3389/fgene.2022.1060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 08/21/2023] Open
Abstract
Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.
Collapse
Affiliation(s)
- Mingqian Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anni Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chuanyou Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
53
|
Xiao S, Wu Y, Xu S, Jiang H, Hu Q, Yao W, Zhang M. Field evaluation of TaDREB2B-ectopic expression sugarcane ( Saccharum spp. hybrid) for drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:963377. [PMID: 36388609 PMCID: PMC9664057 DOI: 10.3389/fpls.2022.963377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sugarcane is one of the most crucial sugar crops globally that supplies the main raw material for sugar and ethanol production, but drought stress causes a severe decline in sugarcane yield worldwide. Enhancing sugarcane drought resistance and reducing yield and quality losses is an ongoing challenge in sugarcane genetic improvement. Here, we introduced a Tripidium arundinaceum dehydration-responsive element-binding transcription factor (TaDREB2B) behind the drought-responsible RD29A promoter into a commercial sugarcane cultivar FN95-1702 and subsequently conducted a series of drought tolerance experiments and investigation of agronomic and quality traits. Physiological analysis indicated that Prd29A: TaDREB2B transgenic sugarcane significantly confers drought tolerance in both the greenhouses and the field by enhancing water retention capacity and reducing membrane damage without compromising growth. These transgenic plants exhibit obvious improvements in yield performance and various physiological traits under the limited-irrigation condition in the field, such as increasing 41.9% yield and 44.4% the number of ratooning sugarcane seedlings. Moreover, Prd29A: TaDREB2B transgenic plants do not penalize major quality traits, including sucrose content, gravity purity, Brix, etc. Collectively, our results demonstrated that the Prd29A-TaDREB2B promoter-transgene combination will be a useful biotechnological tool for the increase of drought tolerance and the minimum of yield losses in sugarcane.
Collapse
|
54
|
Montes C, Wang P, Liao C, Nolan TM, Song G, Clark NM, Elmore JM, Guo H, Bassham DC, Yin Y, Walley JW. Integration of multi-omics data reveals interplay between brassinosteroid and Target of Rapamycin Complex signaling in Arabidopsis. THE NEW PHYTOLOGIST 2022; 236:893-910. [PMID: 35892179 PMCID: PMC9804314 DOI: 10.1111/nph.18404] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/16/2022] [Indexed: 06/01/2023]
Abstract
Brassinosteroids (BRs) and Target of Rapamycin Complex (TORC) are two major actors coordinating plant growth and stress responses. Brassinosteroids function through a signaling pathway to extensively regulate gene expression and TORC is known to regulate translation and autophagy. Recent studies have revealed connections between these two pathways, but a system-wide view of their interplay is still missing. We quantified the level of 23 975 transcripts, 11 183 proteins, and 27 887 phosphorylation sites in wild-type Arabidopsis thaliana and in mutants with altered levels of either BRASSINOSTEROID INSENSITIVE 2 (BIN2) or REGULATORY ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), two key players in BR and TORC signaling, respectively. We found that perturbation of BIN2 or RAPTOR1B levels affects a common set of gene-products involved in growth and stress responses. Furthermore, we used the multi-omic data to reconstruct an integrated signaling network. We screened 41 candidate genes identified from the reconstructed network and found that loss of function mutants of many of these proteins led to an altered BR response and/or modulated autophagy activity. Altogether, these results establish a predictive network that defines different layers of molecular interactions between BR- or TORC-regulated growth and autophagy.
Collapse
Affiliation(s)
- Christian Montes
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Ping Wang
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Ching‐Yi Liao
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Trevor M. Nolan
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Department of BiologyDuke UniversityDurhamNC27708USA
| | - Gaoyuan Song
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - Natalie M. Clark
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
| | - J. Mitch Elmore
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- USDA‐ARS Cereal Disease LaboratoryUniversity of MinnesotaSt PaulMN55108USA
| | - Hongqing Guo
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Diane C. Bassham
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| | - Justin W. Walley
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA50011USA
- Plant Sciences InstituteIowa State UniversityAmesIA50011USA
| |
Collapse
|
55
|
Ma Z, Jin YM, Wu T, Hu L, Zhang Y, Jiang W, Du X. OsDREB2B, an AP2/ERF transcription factor, negatively regulates plant height by conferring GA metabolism in rice. FRONTIERS IN PLANT SCIENCE 2022; 13:1007811. [PMID: 36388558 PMCID: PMC9650310 DOI: 10.3389/fpls.2022.1007811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 10/05/2022] [Indexed: 05/31/2023]
Abstract
The AP2/ERF family is a large group of plant-specific transcription factors that play an important role in many biological processes, such as growth, development, and abiotic stress responses. OsDREB2B, a dehydration responsive factor (DRE/CRT) in the DREB subgroup of the AP2/ERF family, is associated with abiotic stress responses, such as cold, drought, salt, and heat stress, in Arabidopsis or rice. However, its role in regulating plant growth and development in rice is unclear. In this study, we reported a new function of OsDREB2B, which negatively regulates plant height in rice. Compared with wild type (WT), OsDREB2B-overexpressing (OE) rice exhibited dwarf phenotypes, such as reduction in plant height, internode length, and seed length, as well as grain yield, while the knockout mutants developed by CRISPR/Cas9 technology exhibited similar phenotypes. Spatial expression analysis revealed that OsDREB2B was highly expressed in the leaf sheaths. Under exogenous GA3 application, OsDREB2B expression was induced, and the length of the second leaf sheath of the OsDREB2B-OE lines recovered to that of the WT. OsDREB2B localized to the nucleus of the rice protoplast acted as a transcription activator and upregulated OsAP2-39 by directly binding to its promoter. OsDREB2B-OE lines reduced endogenous bioactive GA levels by downregulating seven GA biosynthesis genes and upregulating eight GA deactivation genes but not GA signaling genes. The yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that OsDREB2B interacted with OsWRKY21. In summary, our study suggests that OsDREB2B plays a negative role in rice growth and development by regulating GA metabolic gene expression, which is mediated by OsAP2-39 and OsWRKY21, thereby reducing GA content and rice plant height.
Collapse
Affiliation(s)
- Ziming Ma
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yong-Mei Jin
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Tao Wu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Lanjuan Hu
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Ying Zhang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wenzhu Jiang
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Xinglin Du
- Jilin Provincial Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
56
|
Lim J, Lim CW, Lee SC. Role of pepper MYB transcription factor CaDIM1 in regulation of the drought response. FRONTIERS IN PLANT SCIENCE 2022; 13:1028392. [PMID: 36304389 PMCID: PMC9592997 DOI: 10.3389/fpls.2022.1028392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Abscisic acid (ABA) is a major phytohormone that plays important roles in stress responses, including regulation of gene expression and stomatal closure. Regulation of gene expression by transcription factors is a key cellular process for initiating defense responses to biotic and abiotic stresses. Here, using pepper (Capsicum annuum) leaves, we identified the MYB transcription factor CaDIM1 (Capsicum annuum Drought Induced MYB 1), which was highly induced by ABA and drought stress. CaDIM1 has an MYB domain in the N-terminal region and an acidic domain in the C-terminal region, which are responsible for recognition and transactivation of the target gene, respectively. Compared to control plants, CaDIM1-silenced pepper plants displayed ABA-insensitive and drought-sensitive phenotypes with reduced expression of stress-responsive genes. On the other hand, overexpression of CaDIM1 in Arabidopsis exhibited the opposite phenotypes of CaDIM1-silenced pepper plants, accompanied by enhanced ABA sensitivity and drought tolerance. Taken together, we demonstrate that CaDIM1 functions as a positive regulator of the drought-stress response via modulating ABA-mediated gene expression.
Collapse
|
57
|
Han Q, Tan W, Zhao Y, Yang F, Yao X, Lin H, Zhang D. Salicylic acid-activated BIN2 phosphorylation of TGA3 promotes Arabidopsis PR gene expression and disease resistance. EMBO J 2022; 41:e110682. [PMID: 35950443 PMCID: PMC9531300 DOI: 10.15252/embj.2022110682] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/28/2022] [Accepted: 07/21/2022] [Indexed: 11/09/2022] Open
Abstract
The plant defense hormone, salicylic acid (SA), plays essential roles in immunity and systemic acquired resistance. Salicylic acid induced by the pathogen is perceived by the receptor nonexpressor of pathogenesis-related genes 1 (NPR1), which is recruited by TGA transcription factors to induce the expression of pathogenesis-related (PR) genes. However, the mechanism by which post-translational modifications affect TGA's transcriptional activity by salicylic acid signaling/pathogen infection is not well-established. Here, we report that the loss-of-function mutant of brassinosteroid insensitive2 (BIN2) and its homologs, bin2-3 bil1 bil2, causes impaired pathogen resistance and insensitivity to SA-induced PR gene expression, whereas the gain-of-function mutant, bin2-1, exhibited enhanced SA signaling and immunity against the pathogen. Our results demonstrate that salicylic acid activates BIN2 kinase, which in turn phosphorylates TGA3 at Ser33 to enhance TGA3 DNA binding ability and NPR1-TGA3 complex formation, leading to the activation of PR gene expression. These findings implicate BIN2 as a new component of salicylic acid signaling, functioning as a key node in balancing brassinosteroid-mediated plant growth and SA-induced immunity.
Collapse
Affiliation(s)
- Qing Han
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Wenrong Tan
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
- School of Life Science and EngineeringSouthwest University of Science and TechnologyMianyangChina
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Feng Yang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Xiuhong Yao
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| | - Dawei Zhang
- Ministry of Education Key Laboratory for Bio‐Resource and Eco‐Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River EngineeringSichuan UniversityChengduChina
| |
Collapse
|
58
|
Chai S, Chen J, Yue X, Li C, Zhang Q, de Dios VR, Yao Y, Tan W. Interaction of BES1 and LBD37 transcription factors modulates brassinosteroid-regulated root forging response under low nitrogen in arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:998961. [PMID: 36247555 PMCID: PMC9555238 DOI: 10.3389/fpls.2022.998961] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Brassinosteriod (BR) plays important roles in regulation of plant growth, development and environmental responses. BR signaling regulates multiple biological processes through controlling the activity of BES1/BZR1 regulators. Apart from the roles in the promotion of plant growth, BR is also involved in regulation of the root foraging response under low nitrogen, however how BR signaling regulate this process remains unclear. Here we show that BES1 and LBD37 antagonistically regulate root foraging response under low nitrogen conditions. Both the transcriptional level and dephosphorylated level of BES1, is significant induced by low nitrogen, predominantly in root. Phenotypic analysis showed that BES1 gain-of-function mutant or BES1 overexpression transgenic plants exhibits progressive outgrowth of lateral root in response to low nitrogen and BES1 negatively regulates repressors of nitrate signaling pathway and positively regulates several key genes required for NO3 - uptake and signaling. In contrast, BES1 knock-down mutant BES1-RNAi exhibited a dramatical reduction of lateral root elongation in response to low N. Furthermore, we identified a BES1 interacting protein, LBD37, which is a negative repressor of N availability signals. Our results showed that BES1 can inhibit LBD37 transcriptional repression on N-responsive genes. Our results thus demonstrated that BES1-LBD37 module acts critical nodes to integrate BR signaling and nitrogen signaling to modulate the root forging response at LN condition.
Collapse
Affiliation(s)
- Shuli Chai
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Junhua Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiaolan Yue
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chenlin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Qiang Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Víctor Resco de Dios
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- Department of Crop and Forest Sciences & Agrotecnio Center, Universitat de Lleida, Leida, Spain
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Wenrong Tan
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| |
Collapse
|
59
|
Wang S, He J, Deng M, Wang C, Wang R, Yan J, Luo M, Ma F, Guan Q, Xu J. Integrating ATAC-seq and RNA-seq Reveals the Dynamics of Chromatin Accessibility and Gene Expression in Apple Response to Drought. Int J Mol Sci 2022; 23:11191. [PMID: 36232500 PMCID: PMC9570298 DOI: 10.3390/ijms231911191] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Drought resistance in plants is influenced by multiple signaling pathways that involve various transcription factors, many target genes, and multiple types of epigenetic modifications. Studies on epigenetic modifications of drought focus on DNA methylation and histone modifications, with fewer on chromatin remodeling. Changes in chromatin accessibility can play an important role in abiotic stress in plants by affecting RNA polymerase binding and various regulatory factors. However, the changes in chromatin accessibility during drought in apples are not well understood. In this study, the landscape of chromatin accessibility associated with the gene expression of apple (GL3) under drought conditions was analyzed by Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) and RNA-seq. Differential analysis between drought treatment and control identified 23,466 peaks of upregulated chromatin accessibility and 2447 peaks of downregulated accessibility. The drought-induced chromatin accessibility changed genes were mainly enriched in metabolism, stimulus, and binding pathways. By combining results from differential analysis of RNA-seq and ATAC-seq, we identified 240 genes with higher chromatin accessibility and increased gene expression under drought conditions that may play important functions in the drought response process. Among them, a total of nine transcription factor genes were identified, including ATHB7, HAT5, and WRKY26. These transcription factor genes are differentially expressed with different chromatin accessibility motif binding loci that may participate in apple response to drought by regulating downstream genes. Our study provides a reference for chromatin accessibility under drought stress in apples and the results will facilitate subsequent studies on chromatin remodelers and transcription factors.
Collapse
Affiliation(s)
- Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Mengting Deng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Caixia Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Ruifeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Jinjiao Yan
- College of Forestry, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Minrong Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| | - Jidi Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest Agricultural and Forestry University, Yangling, Xianyang 712100, China
| |
Collapse
|
60
|
Jiang Q, Wang Z, Hu G, Yao X. Genome-wide identification and characterization of AP2/ERF gene superfamily during flower development in Actinidia eriantha. BMC Genomics 2022; 23:650. [PMID: 36100898 PMCID: PMC9469511 DOI: 10.1186/s12864-022-08871-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND As one of the largest transcription factor families in plants, AP2/ERF gene superfamily plays important roles in plant growth, development, fruit ripening and biotic and abiotic stress responses. Despite the great progress has been made in kiwifruit genomic studies, little research has been conducted on the AP2/ERF genes of kiwifruit. The increasing kiwifruit genome resources allowed us to reveal the tissue expression profiles of AP2/ERF genes in kiwifruit on a genome-wide basis. RESULTS In present study, a total of 158 AP2/ERF genes in A. eriantha were identified. All genes can be mapped on the 29 chromosomes. Phylogenetic analysis divided them into four main subfamilies based on the complete protein sequences. Additionally, our results revealed that the same subfamilies contained similar gene structures and conserved motifs. Ka/Ks calculation indicated that AP2/ERF gene family was undergoing a strong purifying selection and the evolutionary rates were slow. RNA-seq showed that the AP2/ERF genes were expressed differently in different flower development stages and 56 genes were considered as DEGs among three contrasts. Moreover, qRT-PCR suggested partial genes showed significant expressions as well, suggesting they could be key regulators in flower development in A. eriantha. In addition, two genes (AeAP2/ERF061, AeAP2/ERF067) had abundant transcription level based on transcriptomes, implying that they may play a crucial role in plant flower development regulation and flower tissue forming. CONCLUSIONS We identified AP2/ERF genes and demonstrated their gene structures, conserved motifs, and phylogeny relationships of AP2/ERF genes in two related species of kiwifruit, A. eriantha and A. chinensis, and their potential roles in flower development in A. eriantha. Such information would lay the foundation for further functional identification of AP2/ERF genes involved in kiwifruit flower development.
Collapse
Affiliation(s)
- Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
- Institute of Fruit and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Guangming Hu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan, 430074, Hubei, China.
| |
Collapse
|
61
|
Shi H, Li X, Lv M, Li J. BES1/BZR1 Family Transcription Factors Regulate Plant Development via Brassinosteroid-Dependent and Independent Pathways. Int J Mol Sci 2022; 23:ijms231710149. [PMID: 36077547 PMCID: PMC9478962 DOI: 10.3390/ijms231710149] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 01/04/2023] Open
Abstract
The BES1/BZR1 family is a plant-specific small group of transcription factors possessing a non-canonical bHLH domain. Genetic and biochemical analyses within the last two decades have demonstrated that members of this family are key transcription factors in regulating the expression of brassinosteroid (BR) response genes. Several recent genetic and evolutionary studies, however, have clearly indicated that the BES1/BZR1 family transcription factors also function in regulating several aspects of plant development via BR-independent pathways, suggesting they are not BR specific. In this review, we summarize our current understanding of this family of transcription factors, the mechanisms regulating their activities, DNA binding motifs, and target genes. We selectively discuss a number of their biological functions via BR-dependent and particularly independent pathways, which were recently revealed by loss-of-function genetic analyses. We also highlight a few possible future directions.
Collapse
|
62
|
Zheng H, Ma J, Huang W, Di H, Xia X, Ma W, Ma J, Yang J, Li X, Lian H, Huang Z, Tang Y, Zheng Y, Li H, Zhang F, Sun B. Physiological and Comparative Transcriptome Analysis Reveals the Mechanism by Which Exogenous 24-Epibrassinolide Application Enhances Drought Resistance in Potato (Solanum tuberosum L.). Antioxidants (Basel) 2022; 11:antiox11091701. [PMID: 36139774 PMCID: PMC9495798 DOI: 10.3390/antiox11091701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Drought stress is a key factor limiting the growth and tuber yield of potatoes (Solanum tuberosum L.). Brassinosteroids (BRs) have been shown to alleviate drought stress in several plant species; however, little is known about the physiological and molecular mechanisms by which BRs enhance drought resistance in potatoes. Here, we characterized changes in the physiology and transcriptome of the tetraploid potato variety ‘Xuanshu-2′ in response to drought stress after 24-epibrassinolide (EBR) pretreatment. The abscisic acid (ABA) content, photosynthetic capacity, and the activities of antioxidant enzymes were increased; the intercellular CO2 concentration, relative conductivity, reactive oxygen species, malondialdehyde, proline, and soluble sugar content were decreased after EBR pretreatment compared with plants under drought stress. Transcriptome analysis revealed 1330 differently expressed genes (DEGs) involved in the response to drought stress after EBR pretreatment. DEGs were enriched in plant hormone signal transduction, starch and sucrose metabolism, circadian rhythm, flavonoid biosynthesis, and carotenoid biosynthesis. DEGs associated with the BR signaling and biosynthesis pathways, as well as ABA metabolic pathways were identified. Our findings provide new insights into the mechanisms by which BRs enhance the drought resistance of potatoes.
Collapse
Affiliation(s)
- Hao Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jie Ma
- Bijie lnstitution of Agricultural Science, Bijie 551700, China
| | - Wenli Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Hongmei Di
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xue Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei Ma
- Bijie lnstitution of Agricultural Science, Bijie 551700, China
| | - Jun Ma
- Bijie lnstitution of Agricultural Science, Bijie 551700, China
| | - Jiao Yang
- Bijie lnstitution of Agricultural Science, Bijie 551700, China
| | - Xiaomei Li
- Rice and Sorghum Research Institue, Sichuan Academy of Agricultural Sciences, Deyang 618000, China
- Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan, Chengdu 610300, China
| | - Huashan Lian
- School of Agriculture and Horticulture, Chengdu Agricultural College, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Fen Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (F.Z.); (B.S.); Tel.: +86-28-86291840 (F.Z.); +86-28-86291848 (B.S.)
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (F.Z.); (B.S.); Tel.: +86-28-86291840 (F.Z.); +86-28-86291848 (B.S.)
| |
Collapse
|
63
|
Tang X, Li J, Liu L, Jing H, Zuo W, Zeng Y. Transcriptome Analysis Provides Insights into Potentilla bifurca Adaptation to High Altitude. Life (Basel) 2022; 12:life12091337. [PMID: 36143374 PMCID: PMC9503701 DOI: 10.3390/life12091337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Potentilla bifurca is widely distributed in Eurasia, including the Tibetan Plateau. It is a valuable medicinal plant in the Tibetan traditional medicine system, especially for the treatment of diabetes. This study investigated the functional gene profile of Potentilla bifurca at different altitudes by RNA-sequencing technology, including de novo assembly of 222,619 unigenes from 405 million clean reads, 57.64% of which were annotated in Nr, GO, KEGG, Pfam, and Swiss-Prot databases. The most significantly differentially expressed top 50 genes in the high-altitude samples were derived from plants that responded to abiotic stress, such as peroxidase, superoxide dismutase protein, and the ubiquitin-conjugating enzyme. Pathway analysis revealed that a large number of DEGs encode key enzymes involved in secondary metabolites, including phenylpropane and flavonoids. In addition, a total of 298 potential genomic SSRs were identified in this study, which provides information on the development of functional molecular markers for genetic diversity assessment. In conclusion, this study provides the first comprehensive assessment of the Potentilla bifurca transcriptome. This provides new insights into coping mechanisms for non-model organisms surviving in harsh environments at high altitudes, as well as molecular evidence for the selection of superior medicinal plants.
Collapse
Affiliation(s)
- Xun Tang
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Jinping Li
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Likuan Liu
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
| | - Hui Jing
- Qinghai Agricultural Technology Extension Station, Xining 810007, China
| | - Wenming Zuo
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
| | - Yang Zeng
- College of Life Sciences, Qinghai Normal University, Xining 810008, China
- Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining 810008, China
- Correspondence:
| |
Collapse
|
64
|
Shi W, Ma Q, Yin W, Liu T, Song Y, Chen Y, Song L, Sun H, Hu S, Liu T, Jiang R, Lv D, Song B, Wang J, Liu X. The transcription factor StTINY3 enhances cold-induced sweetening resistance by coordinating starch resynthesis and sucrose hydrolysis in potato. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4968-4980. [PMID: 35511088 DOI: 10.1093/jxb/erac171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of reducing sugars in cold-stored tubers, known as cold-induced sweetening (CIS), negatively affects potato processing quality. The starch to sugar interconversion pathways that are altered in cold-stored CIS tubers have been elucidated, but the mechanism that regulates them remains largely unknown. This study identified a CBF/DREB transcription factor (StTINY3) that enhances CIS resistance by both activating starch biosynthesis and repressing the hydrolysis of sucrose to reducing sugars in detached cold-stored tubers. Silencing StTINY3 in a CIS-resistant genotype decreased CIS resistance, while overexpressing StTINY3 in a CIS-sensitive genotype increased CIS resistance, and altering StTINY3 expression was associated with expression changes in starch resynthesis-related genes. We showed first that overexpressing StTINY3 inhibited sucrose hydrolysis by enhancing expression of the invertase inhibitor gene StInvInh2, and second that StTINY3 promoted starch resynthesis by up-regulating a large subunit of the ADP-glucose pyrophosphorylase gene StAGPaseL3, and the glucose-6-phosphate transporter gene StG6PT2. Using electrophoretic mobility shift assays, we revealed that StTINY3 is a nuclear-localized transcriptional activator that directly binds to the dehydration-responsive element/CRT cis-element in the promoters of StInvInh2 and StAGPaseL3. Taken together, these findings established that StTINY3 influences CIS resistance in cold-stored tubers by coordinately modulating the starch to sugar interconversion pathways and is a good target for improving potato processing quality.
Collapse
Affiliation(s)
- Weiling Shi
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Qiuqin Ma
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Wang Yin
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tiantian Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Yuhao Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Yuanya Chen
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Linjin Song
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Hui Sun
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Shuting Hu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Rui Jiang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Dianqiu Lv
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education. Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, PR China
| | - Jichun Wang
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| | - Xun Liu
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, PR China
| |
Collapse
|
65
|
Zhang X, Liu H, Huang L, Zhou B. Identification of Chilling-Responsive Genes in Litchi chinensis by Transcriptomic Analysis Underlying Phytohormones and Antioxidant Systems. Int J Mol Sci 2022; 23:ijms23158424. [PMID: 35955559 PMCID: PMC9369065 DOI: 10.3390/ijms23158424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022] Open
Abstract
Litchi (Litchi chinensis Sonn.) is an important subtropical and tropical evergreen fruit tree that is seriously affected by chilling stress. In order to identify genes that may be involved in the response to chilling in litchi, we investigate the physiological and biochemical changes under chilling stress and construct 12 RNA-Seq libraries of leaf samples at 0, 4, 8, and 12 days of chilling. The results show that antioxidant enzymes are activated by chilling treatments. Comparing the transcriptome data of the four time points, we screen 2496 chilling-responsive genes (CRGs), from which we identify 63 genes related to the antioxidant system (AO-CRGs) and 54 ABA, 40 IAA, 37 CTK, 27 ETH, 21 BR, 13 GA, 35 JA, 29 SA, and 4 SL signal transduction-related genes. Expression pattern analysis shows that the expression trends of the 28 candidate genes detected by qRT-PCR are similar to those detected by RNA-Seq, indicating the reliability of our RNA-Seq data. Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis of the RNA-Seq data suggests a model for the litchi plants in response to chilling stress that alters the expression of the plant hormone signaling-related genes, the transcription factor-encoding genes LcICE1, LcCBFs, and LcbZIPs, and the antioxidant system-related genes. This study provides candidate genes for the future breeding of litchi cultivars with high chilling resistance, and elucidates possible pathways for litchi in response to chilling using transcriptomic data.
Collapse
|
66
|
Ahmar S, Gruszka D. In-Silico Study of Brassinosteroid Signaling Genes in Rice Provides Insight Into Mechanisms Which Regulate Their Expression. Front Genet 2022; 13:953458. [PMID: 35873468 PMCID: PMC9299959 DOI: 10.3389/fgene.2022.953458] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Brassinosteroids (BRs) regulate a diverse spectrum of processes during plant growth and development and modulate plant physiology in response to environmental fluctuations and stress factors. Thus, the BR signaling regulators have the potential to be targeted for gene editing to optimize the architecture of plants and make them more resilient to environmental stress. Our understanding of the BR signaling mechanism in monocot crop species is limited compared to our knowledge of this process accumulated in the model dicot species - Arabidopsis thaliana. A deeper understanding of the BR signaling and response during plant growth and adaptation to continually changing environmental conditions will provide insight into mechanisms that govern the coordinated expression of the BR signaling genes in rice (Oryza sativa) which is a model for cereal crops. Therefore, in this study a comprehensive and detailed in silico analysis of promoter sequences of rice BR signaling genes was performed. Moreover, expression profiles of these genes during various developmental stages and reactions to several stress conditions were analyzed. Additionally, a model of interactions between the encoded proteins was also established. The obtained results revealed that promoters of the 39 BR signaling genes are involved in various regulatory mechanisms and interdependent processes that influence growth, development, and stress response in rice. Different transcription factor-binding sites and cis-regulatory elements in the gene promoters were identified which are involved in regulation of the genes’ expression during plant development and reactions to stress conditions. The in-silico analysis of BR signaling genes in O. sativa provides information about mechanisms which regulate the coordinated expression of these genes during rice development and in response to other phytohormones and environmental factors. Since rice is both an important crop and the model species for other cereals, this information may be important for understanding the regulatory mechanisms that modulate the BR signaling in monocot species. It can also provide new ways for the plant genetic engineering technology by providing novel potential targets, either cis-elements or transcriptional factors, to create elite genotypes with desirable traits.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| |
Collapse
|
67
|
Genome-Wide Identification, Characterization, and Expression Analysis Related to Low-Temperature Stress of the CmGLP Gene Family in Cucumis melo L. Int J Mol Sci 2022; 23:ijms23158190. [PMID: 35897766 PMCID: PMC9330424 DOI: 10.3390/ijms23158190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 01/25/2023] Open
Abstract
Germin-like protein (GLP) participates in plant growth and development and plays an important role in plant stress. In the present study, 22 CmGLPs belonging to five classes were identified in the melon genome. Each member of the CmGLPs family contains a typical Cupin_1 domain. We conducted a genome-wide analysis of the melon GLP gene family characterization. CmGLPs were randomly distributed in the melon chromosomes, with the largest number on chromosome 8, having eight family members. Gene duplication events drive the evolution and expansion of the melon GLP gene family. Based on the phylogenetic tree analysis of GLP proteins in melon, rice, Arabidopsis, and cucumber, it was found that the GLP gene families of different species have diverged in evolution. Based on qRT-PCR results, all members of the CmGLP gene family could be expressed in different tissues of melon. Most CmGLP genes were up-regulated after low-temperature stress. The relative expression of CmGLP2-5 increased by 157.13 times at 48 h after low-temperature treatment. This finding suggests that the CmGLP2-5 might play an important role in low-temperature stress in melon. Furthermore, quantitative dual LUC assays indicated that CmMYB23 and CmWRKY33 can bind the promoter fragment of the CmGLP2-5. These results were helpful in understanding the functional succession and evolution of the melon GLP gene family and further revealed the response of CmGLPs to low-temperature stress in melon.
Collapse
|
68
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
69
|
Shi L, Li X, Weng Y, Cai H, Liu K, Xie B, Ansar H, Guan D, He S, Liu Z. The CaPti1-CaERF3 module positively regulates resistance of Capsicum annuum to bacterial wilt disease by coupling enhanced immunity and dehydration tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:250-268. [PMID: 35491968 DOI: 10.1111/tpj.15790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Bacterial wilt, a severe disease involving vascular system blockade, is caused by Ralstonia solanacearum. Although both plant immunity and dehydration tolerance might contribute to disease resistance, whether and how they are related remains unclear. Herein, we showed that immunity against R. solanacearum and dehydration tolerance are coupled and regulated by the CaPti1-CaERF3 module. CaPti1 and CaERF3 are members of the serine/threonine protein kinase and ethylene-responsive factor families, respectively. Expression profiling revealed that CaPti1 and CaERF3 were upregulated by R. solanacearum inoculation, dehydration stress, and exogenously applied abscisic acid (ABA). They in turn phenocopied each other in promoting resistance of pepper (Capsicum annuum) to bacterial wilt not only by activating salicylic acid-dependent CaPR1, but also by activating dehydration tolerance-related CaOSM1 and CaOSR1 and inducing stomatal closure to reduce water loss in an ABA signaling-dependent manner. Our yeast two hybrid assay showed that CaERF3 interacted with CaPti1, which was confirmed using co-immunoprecipitation, bimolecular fluorescence complementation, and pull-down assays. Chromatin immunoprecipitation and electrophoretic mobility shift assays showed that upon R. solanacearum inoculation, CaPR1, CaOSM1, and CaOSR1 were directly targeted and positively regulated by CaERF3 and potentiated by CaPti1. Additionally, our data indicated that the CaPti1-CaERF3 complex might act downstream of ABA signaling, as exogenously applied ABA did not alter regulation of stomatal aperture by the CaPti1-CaERF3 module. Importantly, the CaPti1-CaERF3 module positively affected pepper growth and the response to dehydration stress. Collectively, the results suggested that immunity and dehydration tolerance are coupled and positively regulated by CaPti1-CaERF3 in pepper plants to enhance resistance against R. solanacearum.
Collapse
Affiliation(s)
- Lanping Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Li
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yahong Weng
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hanyang Cai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kaisheng Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Baixue Xie
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hussain Ansar
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan, 32200, Pakistan
| | - Deyi Guan
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
70
|
Wu Q, Liu Y, Xie Z, Yu B, Sun Y, Huang J. OsNAC016 regulates plant architecture and drought tolerance by interacting with the kinases GSK2 and SAPK8. PLANT PHYSIOLOGY 2022; 189:1296-1313. [PMID: 35333328 PMCID: PMC9237679 DOI: 10.1093/plphys/kiac146] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 05/04/2023]
Abstract
Ideal plant architecture and drought tolerance are important determinants of yield potential in rice (Oryza sativa). Here, we found that OsNAC016, a rice NAC (NAM, ATAF, and CUC) transcription factor, functions as a regulator in the crosslink between brassinosteroid (BR)-mediated plant architecture and abscisic acid (ABA)-regulated drought responses. The loss-of-function mutant osnac016 exhibited erect leaves and shortened internodes, but OsNAC016-overexpressing plants had opposite phenotypes. Further investigation revealed that OsNAC016 regulated the expression of the BR biosynthesis gene D2 by binding to its promoter. Moreover, OsNAC016 interacted with and was phosphorylated by GSK3/SHAGGY-LIKE KINASE2 (GSK2), a negative regulator in the BR pathway. Meanwhile, the mutant osnac016 had improved drought stress tolerance, supported by a decreased water loss rate and enhanced stomatal closure in response to exogenous ABA, but OsNAC016-overexpressing plants showed attenuated drought tolerance and reduced ABA sensitivity. Further, OSMOTIC STRESS/ABA-ACTIVATED PROTEIN KINASE8 (SAPK8) phosphorylated OsNAC016 and reduced its stability. The ubiquitin/26S proteasome system is an important degradation pathway of OsNAC016 via the interaction with PLANT U-BOX PROTEIN43 (OsPUB43) that mediates the ubiquitination of OsNAC016. Notably, RNA-sequencing analysis revealed global roles of OsNAC016 in promoting BR-mediated gene expression and repressing ABA-dependent drought-responsive gene expression, which was confirmed by chromatin immunoprecipitation quantitative PCR analysis. Our findings establish that OsNAC016 is positively involved in BR-regulated rice architecture, negatively modulates ABA-mediated drought tolerance, and is regulated by GSK2, SAPK8, and OsPUB43 through posttranslational modification. Our data provide insights into how plants balance growth and survival by coordinately regulating the growth-promoting signaling pathway and response under abiotic stresses.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Yingfan Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Zizhao Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Bo Yu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Ying Sun
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | | |
Collapse
|
71
|
Pham G, Shin DM, Kim Y, Kim SH. Ran-GTP/-GDP-dependent nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and TGACG-BINDING FACTOR2 controls salicylic acid-induced leaf senescence. PLANT PHYSIOLOGY 2022; 189:1774-1793. [PMID: 35417014 PMCID: PMC9237681 DOI: 10.1093/plphys/kiac164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/08/2022] [Indexed: 05/11/2023]
Abstract
Leaf senescence is the final stage of leaf development and can be triggered by various external factors, such as hormones and light deprivation. In this study, we demonstrate that the overexpression of the GTP-bound form of Arabidopsis (Arabidopsis thaliana) Ran1 (a Ras-related nuclear small G-protein, AtRan1) efficiently promotes age-dependent and dark-triggered leaf senescence, while Ran-GDP has the opposite effect. Transcriptome analysis comparing AtRan1-GDP- and AtRan1-GTP-overexpressing transgenic plants (Ran1T27Nox and Ran1G22Vox, respectively) revealed that differentially expressed genes (DEGs) related to the senescence-promoting hormones salicylic acid (SA), jasmonic acid, abscisic acid, and ethylene (ET) were significantly upregulated in dark-triggered senescing leaves of Ran1G22Vox, indicating that these hormones are actively involved in Ran-GTP/-GDP-dependent, dark-triggered leaf senescence. Bioinformatic analysis of the promoter regions of DEGs identified diverse consensus motifs, including the bZIP motif, a common binding site for TGACG-BINDING FACTOR (TGA) transcription factors. Interestingly, TGA2 and its interactor, NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (NPR1), which are two positive transcriptional regulators of SA signaling, differed in their extent of accumulation in the nucleus versus cytoplasm of Ran1T27Nox and Ran1G22Vox plants. Moreover, SA-induced, Ran-GTP-/-GDP-dependent functions of NPR1 included genome-wide global transcriptional reprogramming of genes involved in cell death, aging, and chloroplast organization. Furthermore, the expression of AtRan1-GTP in SA signaling-defective npr1 and SA biosynthesis-deficient SA-induction deficient2 genetic backgrounds abolished the effects of AtRan1-GTP, thus retarding age-promoted leaf senescence. However, ET-induced leaf senescence was not mediated by Ran machinery-dependent nuclear shuttling of ETHYLENE-INSENSITIVE3 and ETHYLENE-INSENSITIVE3-LIKE1 proteins. We conclude that Ran-GTP/-GDP-dependent nuclear accumulation of NPR1 and TGA2 represents another regulatory node for SA-induced leaf senescence.
Collapse
Affiliation(s)
| | | | - Yoon Kim
- Division of Biological Science and Technology, Yonsei University, Yonseidae 1 Gil, Wonju-Si 220-710, South Korea
| | | |
Collapse
|
72
|
Wu R, Xu B, Shi F. MrERF, MrbZIP, and MrSURNod of Medicago ruthenica Are Involved in Plant Growth and Abiotic Stress Response. FRONTIERS IN PLANT SCIENCE 2022; 13:907674. [PMID: 35720590 PMCID: PMC9203031 DOI: 10.3389/fpls.2022.907674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/05/2022] [Indexed: 06/01/2023]
Abstract
Abiotic stresses affect plant growth and productivity. The outstanding stress resistance of Medicago ruthenica makes it a desirable gene resource to improve the stress tolerance of other plants. The roles of three differently expressed genes [(DEGs) (MrERF, MrbZIP, and MrSURNod)] from M. ruthenica in stress resistance have not been fully elucidated. Therefore, we constructed their expression vectors, transformed them into tobacco, and subjected transgenic lines to abiotic stresses. Through comprehensive bioinformatics, transcriptomic, morphological, and physiological analyses of transgenic lines, we have revealed the critical role of these three DEGs in plant growth and abiotic stress response. The upregulation of genes enhanced the germination rate, biomass, root length number, etc. Additionally, the accumulation of osmolytes increased the activity of antioxidant enzymes. These genes are also associated with improved seed yield, increased branching, and early flowering, thereby shortening the growth period. Potentially, this is one of the ways for tobacco to cope with stress. Furthermore, the resistance of transgenic tobacco expressing MrERF or MrbZIP was better than that with MrSURNod. MrERF and MrbZIP can improve drought and salt tolerance of plants, whereas MrSURNod is beneficial in improving drought and cold resistance. Moreover, MrERF or MrbZIP can promote root elongation and increase the root number, whereas MrSURNod mainly promotes root elongation. This may be the reason why stress resistance conferred by MrSURNod is weaker than that associated with the other two genes. Overall, MrERF, MrbZIP, and MrSURNod positively modulate plant growth and stress tolerance.
Collapse
|
73
|
One AP2/ERF Transcription Factor Positively Regulates Pi Uptake and Drought Tolerance in Poplar. Int J Mol Sci 2022; 23:ijms23095241. [PMID: 35563632 PMCID: PMC9099566 DOI: 10.3390/ijms23095241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022] Open
Abstract
Drought decreases the inorganic phosphate (Pi) supply of soil, resulting in Pi starvation of plants, but the molecular mechanism of how plants, especially the perennial trees, are tolerant to drought stress and Pi starvation, is still elusive. In this study, we identified an AP2/ERF transcription factor gene, PalERF2, from Populus alba var. pyramidalis, and it was induced by both mannitol treatment and Pi starvation. Overexpressing and knocking-down of PalERF2 both enhanced and attenuated tolerance to drought stress and Pi deficiency compared to WT, respectively. Moreover, the overexpression of PalERF2 up-regulated the expression levels of Pi starvation-induced (PSI) genes and increased Pi uptake under drought conditions; however, its RNAi poplar showed the opposite phenotypes. Subsequent analysis indicated that PalERF2 directly modulated expressions of drought-responsive genes PalRD20 and PalSAG113, as well as PSI genes PalPHL2 and PalPHT1;4, through binding to the DRE motifs on their promoters. These results clearly indicate that poplars can recruit PalERF2 to increase the tolerance to drought and also elevate Pi uptake under drought stress.
Collapse
|
74
|
Mei H, Zhao T, Dong Z, Han J, Xu B, Chen R, Zhang J, Zhang J, Hu Y, Zhang T, Fang L. Population-Scale Polymorphic Short Tandem Repeat Provides an Alternative Strategy for Allele Mining in Cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:916830. [PMID: 35599867 PMCID: PMC9120961 DOI: 10.3389/fpls.2022.916830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Short tandem repeats (STRs), which vary in size due to featuring variable numbers of repeat units, are present throughout most eukaryotic genomes. To date, few population-scale studies identifying STRs have been reported for crops. Here, we constructed a high-density polymorphic STR map by investigating polymorphic STRs from 911 Gossypium hirsutum accessions. In total, we identified 556,426 polymorphic STRs with an average length of 21.1 bp, of which 69.08% were biallelic. Moreover, 7,718 (1.39%) were identified in the exons of 6,021 genes, which were significantly enriched in transcription, ribosome biogenesis, and signal transduction. Only 5.88% of those exonic STRs altered open reading frames, of which 97.16% were trinucleotide. An alternative strategy STR-GWAS analysis revealed that 824 STRs were significantly associated with agronomic traits, including 491 novel alleles that undetectable by previous SNP-GWAS methods. For instance, a novel polymorphic STR consisting of GAACCA repeats was identified in GH_D06G1697, with its (GAACCA)5 allele increasing fiber length by 1.96-4.83% relative to the (GAACCA)4 allele. The database CottonSTRDB was further developed to facilitate use of STR datasets in breeding programs. Our study provides functional roles for STRs in influencing complex traits, an alternative strategy STR-GWAS for allele mining, and a database serving the cotton community as a valuable resource.
Collapse
Affiliation(s)
- Huan Mei
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ting Zhao
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zeyu Dong
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jin Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Biyu Xu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Rui Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Jun Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
75
|
Chai G, Qi G, Wang D, Zhuang Y, Xu H, Bai Z, Bai MY, Hu R, Wang ZY, Zhou G, Kong Y. The CCCH zinc finger protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid signaling. PLANT PHYSIOLOGY 2022; 189:285-300. [PMID: 35139225 PMCID: PMC9070797 DOI: 10.1093/plphys/kiac046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/10/2022] [Indexed: 05/20/2023]
Abstract
Plant CCCH proteins participate in the control of multiple developmental and adaptive processes, but the regulatory mechanisms underlying these processes are not well known. In this study, we showed that the Arabidopsis (Arabidopsis thaliana) CCCH protein C3H15 negatively regulates cell elongation by inhibiting brassinosteroid (BR) signaling. Genetic and biochemical evidence showed that C3H15 functions downstream of the receptor BR INSENSITIVE 1 (BRI1) as a negative regulator in the BR pathway. C3H15 is phosphorylated by the GLYCOGEN SYNTHASE KINASE 3 -like kinase BR-INSENSITIVE 2 (BIN2) at Ser111 in the cytoplasm in the absence of BRs. Upon BR perception, C3H15 transcription is enhanced, and the phosphorylation of C3H15 by BIN2 is reduced. The dephosphorylated C3H15 protein accumulates in the nucleus, where C3H15 regulates transcription via G-rich elements (typically GGGAGA). C3H15 and BRASSINAZOLE RESISTANT 1 (BZR1)/BRI1-EMS-SUPPRESSOR 1 (BES1), two central transcriptional regulators of BR signaling, directly suppress each other and share a number of BR-responsive target genes. Moreover, C3H15 antagonizes BZR1 and BES1 to regulate the expression of their shared cell elongation-associated target gene, SMALL AUXIN-UP RNA 15 (SAUR15). This study demonstrates that C3H15-mediated BR signaling may be parallel to, or even attenuate, the dominant BZR1 and BES1 signaling pathways to control cell elongation. This finding expands our understanding of the regulatory mechanisms underlying BR-induced cell elongation in plants.
Collapse
Affiliation(s)
| | | | | | | | - Hua Xu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zetao Bai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ming-Yi Bai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation, Ministry of Education, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Ruibo Hu
- Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Zeng-yu Wang
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | | | | |
Collapse
|
76
|
Li Q, Gu L, Song J, Li C, Zhang Y, Wang Y, Pang Y, Zhang B. Physiological and transcriptome analyses highlight multiple pathways involved in drought stress in Medicago falcata. PLoS One 2022; 17:e0266542. [PMID: 35390072 PMCID: PMC8989214 DOI: 10.1371/journal.pone.0266542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/22/2022] [Indexed: 11/19/2022] Open
Abstract
Medicago falcata is one of the leguminous forage crops, which grows well in arid and semiarid region. To fully investigate the mechanism of drought resistance response in M. falcata, we challenged the M. falcata plants with 30% PEG-6000, and performed physiological and transcriptome analyses. It was found that, the activities of antioxidant enzymes (eg. SOD, POD, and CAT) and soluble sugar content were all increased in the PEG-treated group, as compared to the control group. Transcriptome results showed that a total of 706 genes were differentially expressed in the PEG-treated plants in comparison with the control. Gene enrichment analyses on differentially expressed genes revealed that a number of genes in various pathway were significantly enriched, including the phenylpropanoid biosynthesis (ko00940) and glycolysis/gluconeogenesis (ko00010), indicating the involvement of these key pathways in drought response. Furthermore, the expression levels of seven differentially expressed genes were verified to be involved in drought response in M. falcata by qPCR. Taken together, these results will provide valuable information related to drought response in M. falcata and lay a foundation for molecular studies and genetic breeding of legume crops in future research.
Collapse
Affiliation(s)
- Qian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lili Gu
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Jiaxing Song
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Chenjian Li
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yanhui Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yuxiang Wang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (BZ); (YP)
| | - Bo Zhang
- West Arid Region Grassland Resource and Ecology Key Laboratory, College of Grassland and Environmental Sciences, Xinjiang Agricultural University, Urumqi, China
- * E-mail: (BZ); (YP)
| |
Collapse
|
77
|
Sun Z, Liu X, Zhu W, Lin H, Chen X, Li Y, Ye W, Yin Z. Molecular Traits and Functional Exploration of BES1 Gene Family in Plants. Int J Mol Sci 2022; 23:ijms23084242. [PMID: 35457060 PMCID: PMC9027564 DOI: 10.3390/ijms23084242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
The BES1 (BRI1-EMSSUPPRESSOR1) gene family is a unique class of transcription factors that play dynamic roles in the Brassinosteroids (BRs) signaling pathway. The published genome sequences of a large number of plants provide an opportunity to identify and perform a comprehensive functional study on the BES1 gene family for their potential roles in developmental processes and stress responses. A total of 135 BES1 genes in 27 plant species were recognized and characterized, which were divided into five well-conserved subfamilies. BES1 was not found in lower plants, such as Cyanophora paradoxa and Galdieria sulphuraria. The spatial expression profiles of BES1s in Arabidopsis, rice, and cotton, as well as their response to abiotic stresses, were analyzed. The overexpression of two rice BES1 genes, i.e., OsBES1-3 and OsBES1-5, promotes root growth under drought stress. The overexpression of GhBES1-4 from cotton enhanced the salt tolerance in Arabidopsis. Five protein interaction networks were constructed and numerous genes co-expressed with GhBES1-4 were characterized in transgenic Arabidopsis. BES1 may have evolved in the ancestors of the first land plants following its divergence from algae. Our results lay the foundation for understanding the complex mechanisms of BES1-mediated developmental processes and abiotic stress tolerance.
Collapse
Affiliation(s)
- Zhenting Sun
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
| | - Xingzhou Liu
- Suzhou Academy of Agricultural Science, Suzhou 234000, China;
| | - Weidong Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China;
| | - Huan Lin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
| | - Xiugui Chen
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
| | - Wuwei Ye
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
- Correspondence: (W.Y.); (Z.Y.); Tel.: +86-372-2562219 (W.Y. & Z.Y.); Fax: +86-372-2562311 (W.Y. & Z.Y.)
| | - Zujun Yin
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.S.); (X.C.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (H.L.); (Y.L.)
- Correspondence: (W.Y.); (Z.Y.); Tel.: +86-372-2562219 (W.Y. & Z.Y.); Fax: +86-372-2562311 (W.Y. & Z.Y.)
| |
Collapse
|
78
|
Wang H, Ni D, Shen J, Deng S, Xuan H, Wang C, Xu J, Zhou L, Guo N, Zhao J, Xing H. Genome-Wide Identification of the AP2/ERF Gene Family and Functional Analysis of GmAP2/ERF144 for Drought Tolerance in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:848766. [PMID: 35419020 PMCID: PMC8996232 DOI: 10.3389/fpls.2022.848766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
Drought is a major environmental constraint that causes substantial reductions in plant growth and yield. Expression of stress-related genes is largely regulated by transcription factors (TFs), including in soybean [Glycine max (L.) Merr.]. In this study, 301 GmAP2/ERF genes that encode TFs were identified in the soybean genome. The TFs were divided into five categories according to their homology. Results of previous studies were then used to select the target gene GmAP2/ERF144 from among those up-regulated by drought and salt stress in the transcriptome. According to respective tissue expression analysis and subcellular determination, the gene was highly expressed in leaves and encoded a nuclear-localized protein. To validate the function of GmAP2/ERF144, the gene was overexpressed in soybean using Agrobacterium-mediated transformation. Compared with wild-type soybean, drought resistance of overexpression lines increased significantly. Under drought treatment, leaf relative water content was significantly higher in overexpressed lines than in the wild-type genotype, whereas malondialdehyde content and electrical conductivity were significantly lower than those in the wild type. Thus, drought resistance of transgenic soybean increased with overexpression of GmAP2/ERF144. To understand overall function of the gene, network analysis was used to predict the genes that interacted with GmAP2/ERF144. Reverse-transcription quantitative PCR showed that expression of those interacting genes in two transgenic lines was 3 to 30 times higher than that in the wild type. Therefore, GmAP2/ERF144 likely interacted with those genes; however, that conclusion needs to be verified in further specific experiments.
Collapse
|
79
|
Yung WS, Wang Q, Huang M, Wong FL, Liu A, Ng MS, Li KP, Sze CC, Li MW, Lam HM. Priming-induced alterations in histone modifications modulate transcriptional responses in soybean under salt stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1575-1590. [PMID: 34961994 DOI: 10.1111/tpj.15652] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/01/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plants that have experienced certain abiotic stress may gain tolerance to a similar stress in subsequent exposure. This phenomenon, called priming, was observed here in soybean (Glycine max) seedlings exposed to salt stress. Time-course transcriptomic profiles revealed distinctively different transcriptional responses in the primed seedlings from those in the non-primed seedlings under high salinity stress, indicating a stress response strategy of repressing unhelpful biotic stress responses and focusing on the promotion of those responses important for salt tolerance. To identify histone marks altered by the priming salinity treatment, a genome-wide profiling of histone 3 lysine 4 dimethylation (H3K4me2), H3K4me3, and histone 3 lysine 9 acetylation (H3K9ac) was performed. Our integrative analyses revealed that priming induced drastic alterations in these histone marks, which coordinately modified the stress response, ion homeostasis, and cell wall modification. Furthermore, transcriptional network analyses unveiled epigenetically modified networks which mediate the strategic downregulation of defense responses. Altering the histone acetylation status using a chemical inhibitor could elicit the priming-like transcriptional responses in non-primed seedlings, confirming the importance of histone marks in forming the priming response.
Collapse
Affiliation(s)
- Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Qianwen Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mingkun Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ailin Liu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Sin Ng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kwan-Pok Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ching-Ching Sze
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
80
|
Tian W, Huang Y, Li D, Meng L, He T, He G. Identification of StAP2/ERF genes of potato (Solanum tuberosum) and their multiple functions in detoxification and accumulation of cadmium in yest: Implication for Genetic-based phytoremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152322. [PMID: 34902403 DOI: 10.1016/j.scitotenv.2021.152322] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/16/2021] [Accepted: 12/07/2021] [Indexed: 05/02/2023]
Abstract
The discovery of genes responsible for the tolerance to heavy metals is critical for genome-based phytotechnologies. In this study, we exposed potato (Solanum tuberosum L.) to Cd/Pb/Zn/Ni/Cu as an approach to explore the potential genes associated with stress tolerance. Using genome-wide analysis, we identified 181 potential StAP2/ERF genes that were classified into three subgroups. These StAP2/ERF genes were significantly related to heavy metal stress and are more specifically related to Cd tolerance in yeast. Yeast complementation tests showed that the StAP2/ERF129/139 genes (Subgroup 1) decreased Cd accumulation (Cd reduction-type), whilst the StAP2/ERF044/180 genes (Subgroup 2) promoted Cd accumulation in yeast which showed inhibited growth (Cd accumulation-type). The StAP2/ERF075/077/126 genes (Subgroup 3) promoted Cd accumulation and yeast growth (Cd detoxification-type). We used phylogenetic analysis to classify the 181 genes into three Cd tolerant types defined above in which the numbers of Cd reduction, accumulation, and detoxification type genes were 81, 65 and 35 respectively. Also, we performed tandem duplication, phylogenetic, and conserved motifs analysis to characterization the StAP2/ERF genes and results supported their functions in Cd tolerance. Our study showed that StAP2/ERFs is indispensable in Cd uptake and tolerance, and may be useful towards designing gene-modified plants with improved Cd tolerances.
Collapse
Affiliation(s)
- Weijun Tian
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Yun Huang
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Dandan Li
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Lulu Meng
- Agricultural College of Guizhou University, Guiyang 550025, PR China
| | - Tengbing He
- Agricultural College of Guizhou University, Guiyang 550025, PR China; Institute of New Rural Development of Guizhou University, Guiyang 550025, PR China.
| | - Guandi He
- Agricultural College of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
81
|
Shi Y, Liu X, Zhao S, Guo Y. The PYR-PP2C-CKL2 module regulates ABA-mediated actin reorganization during stomatal closure. THE NEW PHYTOLOGIST 2022; 233:2168-2184. [PMID: 34932819 DOI: 10.1111/nph.17933] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/29/2021] [Indexed: 05/20/2023]
Abstract
Limiting water loss by reducing transpiration helps plants survive when water is limited. Under drought stress, abscisic acid (ABA)-mediated gene expression and anion channel activation regulate stomatal closure and stress responses. ABA-induced actin reorganization also affects stomatal closure, but the underlying molecular mechanism remains unclear. In this study, we discovered that under nonstress conditions, the clade A PP2C phosphatases, such as ABI1 and ABI2, interact with CKL2 and inhibit its kinase activity in Arabidopsis. Under drought stress, CKL2 kinase activity was released through the formation of a complex containing ABA, PP2C and a PYR1/PYL/RCAR family (PYL) receptor. The activated CKL2 regulating actin reorganization is another important process to maintain stomatal closure besides ABA-activated SnRK2 signaling. Moreover, CKL2 phosphorylated PYR1-LIKE 1, ABI1 and ABI2 at amino acid residues conserved among PYLs and PP2Cs, and stabilized ABI1 protein. Our results reveal that ABA signaling regulates actin reorganization to maintain stomatal closure during drought stress, and the feedback regulation of PYL1, ABI1 and ABI2 by the CKL2 kinase might fine-tune ABA signaling and affect plant ABA responses.
Collapse
Affiliation(s)
- Yue Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangning Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan, 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
82
|
Zhao R, Qi S, Cui Y, Gao Y, Jiang S, Zhao J, Zhang J, Kong L. Transcriptomic and physiological analysis identifies a gene network module highly associated with brassinosteroid regulation in hybrid sweetgum tissues differing in the capability of somatic embryogenesis. HORTICULTURE RESEARCH 2022; 9:uhab047. [PMID: 35031801 PMCID: PMC8788368 DOI: 10.1093/hr/uhab047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 06/14/2023]
Abstract
Somatic embryogenesis is a preferred method for large-scale production of forest trees due to its high propagation efficiency. In this study, hybrid sweetgum leaves with phase changes from mature to embryogenic state were selected as experimental material to study somatic embryo initiation. Embryogenicity ranged from high to low, i.e. from 45%, 25%, and 12.5% to 0, with the samples of embryogenic callus (EC), whiten leaf edge (WLI), whiten leaf (WLII), and green leaf (GL) respectively. High correlations existed between embryogenicity and endogenous brassinosteroids (BRs) (r = 0.95, p < 0.05). Similarly, concentrations of endogenous BRs of the sample set correlated positively (r = 0.93, 0.99, 0.87, 0.99, 0.96 respectively, P < 0.05) to expression of somatic embryo (SE)-related genes, i.e. BBM, LEC2, ABI3, PLT2, and WOX2. Hierarchical cluster and weighted gene coexpression network analysis identified modules of coexpressed genes and network in 4820 differentially expressed genes (DEGs) from All-BR-Regulated Genes (ABRG). Moreover, exogenously-supplemented epiBR, together with 2,4-D and 6-BA, increased embryogenicity of GL-sourced callus, and expression of SE- and auxin-related genes, while brassinazole (BRZ), a BR biosynthesis inhibitor, reduced embryogenicity. Evidences obtained in this study revealed that BRs involved in phase change of leaf explants and may function in regulating gene expression and enhancing auxin effects. This study successfully established protocols for inducing somatic embryogenesis from leaf explants in hybrid sweetgum, which could facilitate the propagation process greatly, and provide theoretical basis for manipulating SE competence of explants in ornamental woody plants.
Collapse
Affiliation(s)
- Ruirui Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuaizheng Qi
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ying Cui
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Ying Gao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Shuaifei Jiang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jian Zhao
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jinfeng Zhang
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lisheng Kong
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Centre for Forest Biology, Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8W 3N5, Canada
| |
Collapse
|
83
|
Xu S, Hou H, Wu Z, Zhao J, Zhang F, Teng R, Chen F, Teng N. Chrysanthemum embryo development is negatively affected by a novel ERF transcription factor, CmERF12. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:197-212. [PMID: 34453430 DOI: 10.1093/jxb/erab398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Embryo abortion often occurs during distant hybridization events. Apetala 2/ethylene-responsive factor (AP2/ERF) proteins are key transcription factor (TF) regulators of plant development and stress resistance, but their roles in hybrid embryo development are poorly understood. In this study, we isolated a novel AP2/ERF TF, CmERF12, from chrysanthemum and show that it adversely affects embryo development during distant hybridization. Transcriptome and real-time quantitative PCR demonstrate that CmERF12 is expressed at significantly higher levels in aborted ovaries compared with normal ones. CmERF12 localizes to the cell nucleus and contains a conserved EAR motif that mediates its transcription repressor function in yeast and plant cells. We generated artificial microRNA (amiR) CmERF12 transgenic lines of Chrysanthemum morifolium var. 'Yuhualuoying' and conducted distant hybridization with the wild-type tetraploid, Chrysanthemum nankingense, and found that CmERF12-knock down significantly promoted embryo development and increased the seed-setting rates during hybridization. The expression of various genes related to embryo development was up-regulated in developing ovaries from the cross between female amiR-CmERF12 C. morifolium var. 'Yuhualuoying'× male C. nankingense. Furthermore, CmERF12 directly interacted with CmSUF4, which is known to affect flower development and embryogenesis, and significantly reduced its ability to activate its target gene CmEC1 (EGG CELL1). Our study provides a novel method to overcome barriers to distant hybridization in plants and reveals the mechanism by which CmERF12 negatively affects chrysanthemum embryo development.
Collapse
Affiliation(s)
- Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Huizhong Hou
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Jingya Zhao
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengjiao Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Renda Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| | - Fadi Chen
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Nanjing Agricultural University-Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Jiangsu Graduate Workstation/Nanjing Agricultural University, Baguazhou Modern Horticultural Industry Science and Technology Innovation Center, Nanjing 210043, China
| |
Collapse
|
84
|
Zolkiewicz K, Gruszka D. Glycogen synthase kinases in model and crop plants - From negative regulators of brassinosteroid signaling to multifaceted hubs of various signaling pathways and modulators of plant reproduction and yield. FRONTIERS IN PLANT SCIENCE 2022; 13:939487. [PMID: 35909730 PMCID: PMC9335153 DOI: 10.3389/fpls.2022.939487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 05/15/2023]
Abstract
Glycogen synthase kinases, also known as SHAGGY-like Kinases (GSKs/SKs), are highly conserved serine/threonine protein kinases present both in animals and plants. Plant genomes contain multiple homologs of the GSK3 genes which participate in various biological processes. Plant GSKs/SKs, and their best known representative in Arabidopsis thaliana - Brassinosteroid Insentisive2 (BIN2/SK21) in particular, were first identified as components of the brassinosteroid (BR) signaling pathway. As phytohormones, BRs regulate a wide range of physiological processes in plants - from germination, cell division, elongation and differentiation to leaf senescence, and response to environmental stresses. The GSKs/SKs proteins belong to a group of several highly conserved components of the BR signaling which evolved early during evolution of this molecular relay. However, recent reports indicated that the GSKs/SKs proteins are also implicated in signaling pathways of other phytohormones and stress-response processes. As a consequence, the GSKs/SKs proteins became hubs of various signaling pathways and modulators of plant development and reproduction. Thus, it is very important to understand molecular mechanisms regulating activity of the GSKs/SKs proteins, but also to get insights into role of the GSKs/SKs proteins in modulation of stability and activity of various substrate proteins which participate in the numerous signaling pathways. Although elucidation of these aspects is still in progress, this review presents a comprehensive and detailed description of these processes and their implications for regulation of development, stress response, and reproduction of model and crop species. The GSKs/SKs proteins and their activity are modulated through phosphorylation and de-phosphorylation reactions which are regulated by various proteins. Importantly, both phosphorylations and de-phosphorylations may have positive and negative effects on the activity of the GSKs/SKs proteins. Additionally, the activity of the GSKs/SKs proteins is positively regulated by reactive oxygen species, whereas it is negatively regulated through ubiquitylation, deacetylation, and nitric oxide-mediated nitrosylation. On the other hand, the GSKs/SKs proteins interact with proteins representing various signaling pathways, and on the basis of the complicated network of interactions the GSKs/SKs proteins differentially regulate various physiological, developmental, stress response, and yield-related processes.
Collapse
|
85
|
Jia MZ, Liu LY, Geng C, Jiang J. Activation of 1-Aminocyclopropane-1-Carboxylic Acid Synthases Sets Stomatal Density and Clustered Ratio on Leaf Epidermis of Arabidopsis in Response to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:758785. [PMID: 34938306 PMCID: PMC8685546 DOI: 10.3389/fpls.2021.758785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/16/2021] [Indexed: 06/14/2023]
Abstract
The adjustment of stomatal density and clustered ratio on the epidermis is the important strategy for plants to respond to drought, because the stoma-based water loss is directly related to plant growth and survival under drought conditions. But the relevant adjustment mechanism still needs to be explored. 1-Aminocyclopropane-1-carboxylate (ACC) is disclosed to promote stomatal development, while in vivo ACC levels depend on activation of ACC synthase (ACS) family members. Based on the findings of ACS expression involving in drought response and several ACS activity inhibitors reducing stomatal density and cluster in drought response, here we examined how ACS activation is involved in the establishment of stomatal density and cluster on the epidermis under drought conditions. Preliminary data indicated that activation of ACS2 and/or ACS6 (ACS2/6) increased stomatal density and clustered ratio on the Arabidopsis leaf epidermis by accumulating ACC under moderate drought, and raised the survival risk of seedlings under escalated drought. Further exploration indicated that, in Arabidopsis seedlings stressed by drought, the transcription factor SPEECHLESS (SPCH), the initiator of stomatal development, activates ACS2/6 expression and ACC production; and that ACC accumulation induces Ca2+ deficiency in stomatal lineage; this deficiency inactivates a subtilisin-like protease STOMATAL DENSITY AND DISTRIBUTION 1 (SDD1) by stabilizing the inhibition of the transcription factor GT-2 Like 1 (GTL1) on SDD1 expression, resulting in an increases of stomatal density and cluster ratio on the leaf epidermis. This work provides a novel evidence that ACS2/6 activation plays a key role in the establishment of stomatal density and cluster on the leaf epidermis of Arabidopsis in response to drought.
Collapse
|
86
|
Shohat H, Cheriker H, Kilambi HV, Illouz Eliaz N, Blum S, Amsellem Z, Tarkowská D, Aharoni A, Eshed Y, Weiss D. Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term 'drought avoidance' responses in tomato. THE NEW PHYTOLOGIST 2021; 232:1985-1998. [PMID: 34541677 DOI: 10.1111/nph.17709] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these 'drought avoidance' responses. Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants' smaller canopy areas. The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Hadar Cheriker
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Himabindu Vasuki Kilambi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Natanella Illouz Eliaz
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Shula Blum
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| | - Ziva Amsellem
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Institute of Experimental Botany, Czech Academy of Sciences and Palacky University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - Yuval Eshed
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, PO Box 26, Rehovot, 76100, Israel
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot, 76100, Israel
| |
Collapse
|
87
|
Li C, Zhang B, Yu H. GSK3s: nodes of multilayer regulation of plant development and stress responses. TRENDS IN PLANT SCIENCE 2021; 26:1286-1300. [PMID: 34417080 DOI: 10.1016/j.tplants.2021.07.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 05/28/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) family members are highly conserved serine/threonine protein kinases in eukaryotes. Unlike animals, plants have evolved with multiple homologs of GSK3s involved in a diverse array of biological processes. Emerging evidence suggests that GSK3s act as signaling hubs for integrating perception and transduction of diverse signals required for plant development and responses to abiotic and biotic cues. Here we review recent advances in understanding the molecular interactions between GSK3s and an expanding spectrum of their upstream regulators and downstream substrates in plants. We further discuss how GSK3s act as key signaling nodes of multilayer regulation of plant development and stress response through either being regulated at the post-translational level or regulating their substrates via phosphorylation.
Collapse
Affiliation(s)
- Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Bin Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore; Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
88
|
Xing H, Jiang Y, Zou Y, Long X, Wu X, Ren Y, Li Y, Li HL. Genome-wide investigation of the AP2/ERF gene family in ginger: evolution and expression profiling during development and abiotic stresses. BMC PLANT BIOLOGY 2021; 21:561. [PMID: 34823471 PMCID: PMC8620233 DOI: 10.1186/s12870-021-03329-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 11/08/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND AP2/ERF transcription factors (TFs) constitute one of the largest TF families in plants, which play crucial roles in plant metabolism, growth, and development as well as biotic and abiotic stresses responses. Although the AP2/ERF family has been thoroughly identified in many plant species and several AP2/ERF TFs have been functionally characterized, little is known about this family in ginger (Zingiber officinale Roscoe), an important affinal drug and diet vegetable. Recent completion of the ginger genome sequencing provides an opportunity to investigate the expression profiles of AP2/ERF genes in ginger on a genome-wide basis. RESULTS A total of 163 AP2/ERF genes were obtained in the Z.officinale genome and renamed according to the chromosomal distribution of the ZoAP2/ERF genes. Phylogenetic analysis divided them into three subfamilies, of which 35 belonged to the AP2 subfamily, 120 to ERF, three to RAV, and five to Sololist, respectively, which is in accordance with the number of conserved domains and gene structure analysis. A total of 10 motifs were detected in ZoAP2/ERF genes, and some of the unique motifs were found to be important for the function of ZoAP2/ERF genes. The chromosomal localization, gene structure, and conserved protein motif analyses, as well as the characterization of gene duplication events provided deep insight into the evolutionary features of these ZoAP2/ERF genes. The expression profiles derived from the RNA-seq data and quantitative reserve transcription (qRT-PCR) analysis of ZoAP2/ERFs during development and responses to abiotic stresses were investigated in ginger. CONCLUSION A comprehensive analysis of the AP2/ERF gene expression patterns in various tissues by RNA-seq and qRT-PCR showed that they played an important role in the growth and development of ginger, and genes that might regulate rhizome and flower development were preliminary identified. In additionally, the ZoAP2/ERF family genes that responded to abiotic stresses were also identified. This study is the first time to identify the ZoAP2/ERF family, which contributes to research on evolutionary characteristics and better understanding the molecular basis for development and abiotic stress response, as well as further functional characterization of ZoAP2/ERF genes with an aim of ginger crop improvement.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yusong Jiang
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yong Zou
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoling Long
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Xiaoli Wu
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yun Ren
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Hong-Lei Li
- College of Landscape Architecture and life Science/Institute of special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
89
|
Shohat H, Eliaz NI, Weiss D. Gibberellin in tomato: metabolism, signaling and role in drought responses. MOLECULAR HORTICULTURE 2021; 1:15. [PMID: 37789477 PMCID: PMC10515025 DOI: 10.1186/s43897-021-00019-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 11/05/2021] [Indexed: 10/05/2023]
Abstract
The growth-promoting hormone gibberellin (GA) regulates numerous developmental processes throughout the plant life cycle. It also affects plant response to biotic and abiotic stresses. GA metabolism and signaling in tomato (Solanum lycopersicum) have been studied in the last three decades and major components of the pathways were characterized. These include major biosynthesis and catabolism enzymes and signaling components, such as the three GA receptors GIBBERELLIN INSENSITIVE DWARF 1 (GID1) and DELLA protein PROCERA (PRO), the central response suppressor. The role of these components in tomato plant development and response to the environment have been investigated. Cultivated tomato, similar to many other crop plants, are susceptible to water deficiency. Numerous studies on tomato response to drought have been conducted, including the possible role of GA in tomato drought resistance. Most studies showed that reduced levels or activity of GA improves drought tolerance and drought avoidance. This review aims to provide an overview on GA biosynthesis and signaling in tomato, how drought affects these pathways and how changes in GA activity affect tomato plant response to water deficiency. It also presents the potential of using the GA pathway to generate drought-tolerant tomato plants with improved performance under both irrigation and water-limited conditions.
Collapse
Affiliation(s)
- Hagai Shohat
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel
| | - Natanella Illouz Eliaz
- Plant Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - David Weiss
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, 76100, Rehovot, Israel.
| |
Collapse
|
90
|
Wang P, Nolan TM, Clark NM, Jiang H, Montes-Serey C, Guo H, Bassham DC, Walley JW, Yin Y. The F-box E3 ubiquitin ligase BAF1 mediates the degradation of the brassinosteroid-activated transcription factor BES1 through selective autophagy in Arabidopsis. THE PLANT CELL 2021; 33:3532-3554. [PMID: 34436598 PMCID: PMC8566207 DOI: 10.1093/plcell/koab210] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/14/2021] [Indexed: 05/02/2023]
Abstract
Brassinosteroids (BRs) regulate plant growth, development, and stress responses by activating the core transcription factor BRI1-EMS-SUPPRESSOR1 (BES1), whose degradation occurs through the proteasome and autophagy pathways. The E3 ubiquitin ligase(s) that modify BES1 for autophagy-mediated degradation remain to be fully defined. Here, we identified an F-box family E3 ubiquitin ligase named BES1-ASSOCIATED F-BOX1 (BAF1) in Arabidopsis thaliana. BAF1 interacts with BES1 and mediates its ubiquitination and degradation. Our genetic data demonstrated that BAF1 inhibits BR signaling in a BES1-dependent manner. Moreover, BAF1 targets BES1 for autophagic degradation in a selective manner. BAF1-triggered selective autophagy of BES1 depends on the ubiquitin binding receptor DOMINANT SUPPRESSOR OF KAR2 (DSK2). Sucrose starvation-induced selective autophagy of BES1, but not bulk autophagy, was significantly compromised in baf1 mutant and BAF1-ΔF (BAF1 F-box decoy) overexpression plants, but clearly increased by BAF1 overexpression. The baf1 and BAF1-ΔF overexpression plants had increased BR-regulated growth but were sensitive to long-term sucrose starvation, while BAF1 overexpression plants had decreased BR-regulated growth but were highly tolerant of sucrose starvation. Our results not only established BAF1 as an E3 ubiquitin ligase that targets BES1 for degradation through selective autophagy pathway, but also revealed a mechanism for plants to reduce growth during sucrose starvation.
Collapse
Affiliation(s)
- Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
| | - Hao Jiang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | | | - Hongqing Guo
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa 50011
- Plant Sciences Institutes, Iowa State University, Ames, Iowa 50011
- Author for correspondence:
| |
Collapse
|
91
|
He Y, Li Y, Yao Y, Zhang H, Wang Y, Gao J, Fan M. Overexpression of watermelon m 6A methyltransferase ClMTB enhances drought tolerance in tobacco by mitigating oxidative stress and photosynthesis inhibition and modulating stress-responsive gene expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:340-352. [PMID: 34688195 DOI: 10.1016/j.plaphy.2021.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/11/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
N6-methyladenosine (m6A) in RNA is a very important post-transcriptional modification mechanism in eukaryotes. It has been reported to have important regulatory roles in some stress responses in model plants, but there has been no research regarding m6A modifications in watermelon. In this study, we cloned and characterized m6A methyltransferase, ClMTB (mRNA adenosine methylase B, METTL14 human homolog protein) in watermelon. ClMTB expression could be weakly induced by drought stress as determined by the quantitative real-time PCR (qRT-PCR) and Promoter::GUS analyses. ClMTB over-expressed in tobacco plants increased drought tolerance via enhancing reactive oxygen species (ROS) scavenging system and alleviating photosynthesis inhibition under drought. Transcriptome profiles indicated the multiple hormone and stress-responsive genes were specifically induced in over-expressed ClMTB plants under drought conditions. These results suggest that ClMTB-mediated m6A modification serves as a positive regulatory factor of drought tolerance. This study is the first one to provide an understanding of the specific roles of ClMTB in watermelon adaptation to drought stress, and may also provide important insights into the signaling pathway mediated by m6A modification in response to stress conditions.
Collapse
Affiliation(s)
- Yanjun He
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Yulin Li
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Yixiu Yao
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Huiqing Zhang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China
| | - Yuhuan Wang
- Zhejiang Academy of Agricultural Sciences, Institute of Vegetables, Hangzhou, 310021, China; College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Jie Gao
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China
| | - Min Fan
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, China.
| |
Collapse
|
92
|
Yang G, Peng S, Wang T, Gao X, Li D, Li M, Chen S, Xu Z. Walnut ethylene response factor JrERF2-2 interact with JrWRKY7 to regulate the GSTs in plant drought tolerance. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112945. [PMID: 34737155 DOI: 10.1016/j.ecoenv.2021.112945] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Juglans regia is a world-famous woody oil plant, whose yield and quality are affected by drought stress. Ethylene-responsive factors (ERFs) play vital role in plant stress response. In current study, to comprehend the walnut molecular mechanism of drought stress response, an ERF transcription factor was clarified from J. regia (JrERF2-2) and its potential function mechanism to drought was clarified. The results showed that JrERF2-2 could be induced significantly by drought. The transgenic Arabidopsis over-expression of JrERF2-2 displayed enhanced growth, antioxidant enzyme vitalities, reactive oxygen species scavenging and proline produce under drought stress. Especial the glutathione-S-transferase (GST) activity and most GST genes' transcription were elevated obviously. Yeast one-hybrid (Y1H) and co-transient expression (CTE) methods revealed that JrERF2-2 could recognize JrGST4, JrGST6, JrGST7, JrGST8, and JrGSTF8 by binding to GCC-box, and recognize JrGST11, JrGST12, and JrGSTN2 by binding to DRE motif. Meanwhile, the binding activity was strengthened by drought stress. Moreover, JrERF2-2 could interact with JrWRKY7 to promote plant drought tolerance; JrWRKY7 could also distinguish JrGST4, JrGST7, JrGST8, JrGST11, JrGST12, and JrGSTF8 via binding to W-Box motif. These results suggested that JrERF2-2 could effectively improve plant drought tolerance through interacting with JrWRKY7 to control the expression of GSTs. JrERF2-2 is a useful plant representative gene for drought response in molecular breeding.
Collapse
Affiliation(s)
- Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Tianyu Wang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Xiangqian Gao
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Mengge Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China; Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China
| | - Zhenggang Xu
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi, China.
| |
Collapse
|
93
|
Clark NM, Nolan TM, Wang P, Song G, Montes C, Valentine CT, Guo H, Sozzani R, Yin Y, Walley JW. Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis. Nat Commun 2021; 12:5858. [PMID: 34615886 PMCID: PMC8494934 DOI: 10.1038/s41467-021-26165-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/22/2021] [Indexed: 11/14/2022] Open
Abstract
Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Trevor M Nolan
- Department of Genetics, Developmental, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Ping Wang
- Department of Genetics, Developmental, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Gaoyuan Song
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Christian Montes
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Conner T Valentine
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Hongqing Guo
- Department of Genetics, Developmental, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yanhai Yin
- Department of Genetics, Developmental, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Justin W Walley
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
94
|
Wang Y, Mao Z, Jiang H, Zhang Z, Wang N, Chen X. Brassinolide inhibits flavonoid biosynthesis and red-flesh coloration via the MdBEH2.2-MdMYB60 complex in apple. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6382-6399. [PMID: 34128531 DOI: 10.1093/jxb/erab284] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/12/2021] [Indexed: 05/28/2023]
Abstract
Flavonoid content, which is an important indicator of the nutritional value of fruits and vegetables, directly determines the marketability of many fruit crops, including apple (Malus domestica). Brassinosteroids (BRs) are steroid hormones that affect flavonoid biosynthesis in plants, but the underlying regulatory mechanism remains unclear. In this study, treatments with brassinolide (the most active BR) and brassinazole (a BR biosynthesis inhibitor) decreased and increased, respectively, the flavonoid, anthocyanin, and proanthocyanidin (PA) content in red-fleshed apple seedlings and calli. We subsequently demonstrated that a BZR (BRI1-EMS-suppressor (BES)/brassinazole-resistant) family transcription factor, MdBEH2.2, participates in BR-regulated flavonoid biosynthesis. Specifically, MdBEH2.2 inhibits the accumulation of flavonoids, anthocyanins, and PAs in apple seedlings; however, brassinazole treatment weakens the inhibitory effect. Additionally, we confirmed that a BR-induced MYB TF, MdMYB60, interacts with MdBEH2.2. The resulting MdBEH2.2-MdMYB60 complex further enhances the inhibitory effect of MdBEH2.2 or MdMYB60 on the transcription of flavonoid biosynthesis-related genes. These results indicate that brassinolide decreases flavonoid content through the MdBEH2.2-MdMYB60 regulatory module. Our findings further clarify the molecular mechanism mediating the regulation of flavonoid biosynthesis by BR signals in horticultural crops.
Collapse
Affiliation(s)
- Yicheng Wang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Zuolin Mao
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Huiyan Jiang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Zongying Zhang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Nan Wang
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| | - Xuesen Chen
- College of Horticulture, Shandong Agricultural University, Taian 271000, Shandong, China
| |
Collapse
|
95
|
Chen X, Wu X, Qiu S, Zheng H, Lu Y, Peng J, Wu G, Chen J, Rao S, Yan F. Genome-Wide Identification and Expression Profiling of the BZR Transcription Factor Gene Family in Nicotiana benthamiana. Int J Mol Sci 2021; 22:10379. [PMID: 34638720 PMCID: PMC8508657 DOI: 10.3390/ijms221910379] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Brassinazole-resistant (BZR) family genes encode plant-specific transcription factors (TFs), play essential roles in the regulation of plant growth and development, and have multiple stress-resistance functions. Nicotiana benthamiana is a model plant widely used in basic research. However, members of the BZR family in N. benthamiana have not been identified, and little is known about their function in abiotic stress. In this study, a total of 14 BZR members were identified in the N. benthamiana genome, which could be divided into four groups according to a phylogenetic tree. NbBZRs have similar exon-intron structures and conserved motifs, and may be regulated by cis-acting elements such as STRE, TCA, and ARE, etc. Organ-specific expression analysis showed that NbBZR members have different and diverse expression patterns in different tissues, and most of the members are expressed in roots, stems, and leaves. The analysis of the expression patterns in response to different abiotic stresses showed that all the tested NbBZR members showed a significant down-regulation after drought treatment. Many NbBZR genes also responded in various ways to cold, heat and salt stress treatments. The results imply that NbBZRs have multiple functions related to stress resistance.
Collapse
Affiliation(s)
- Xuwei Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Xinyang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
- College of Life Science, China Jiliang University, Hangzhou 310058, China
| | - Shiyou Qiu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China; (X.C.); (X.W.); (S.Q.); (H.Z.); (Y.L.); (J.P.); (G.W.); (J.C.)
| |
Collapse
|
96
|
Xiang L, Nolan TM, Bao Y, Elmore M, Tuel T, Gai J, Shah D, Wang P, Huser NM, Hurd AM, McLaughlin SA, Howell SH, Walley JW, Yin Y, Tang L. Robotic Assay for Drought (RoAD): an automated phenotyping system for brassinosteroid and drought responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1837-1853. [PMID: 34216161 DOI: 10.1111/tpj.15401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Brassinosteroids (BRs) are a group of plant steroid hormones involved in regulating growth, development, and stress responses. Many components of the BR pathway have previously been identified and characterized. However, BR phenotyping experiments are typically performed in a low-throughput manner, such as on Petri plates. Additionally, the BR pathway affects drought responses, but drought experiments are time consuming and difficult to control. To mitigate these issues and increase throughput, we developed the Robotic Assay for Drought (RoAD) system to perform BR and drought response experiments in soil-grown Arabidopsis plants. RoAD is equipped with a robotic arm, a rover, a bench scale, a precisely controlled watering system, an RGB camera, and a laser profilometer. It performs daily weighing, watering, and imaging tasks and is capable of administering BR response assays by watering plants with Propiconazole (PCZ), a BR biosynthesis inhibitor. We developed image processing algorithms for both plant segmentation and phenotypic trait extraction to accurately measure traits including plant area, plant volume, leaf length, and leaf width. We then applied machine learning algorithms that utilize the extracted phenotypic parameters to identify image-derived traits that can distinguish control, drought-treated, and PCZ-treated plants. We carried out PCZ and drought experiments on a set of BR mutants and Arabidopsis accessions with altered BR responses. Finally, we extended the RoAD assays to perform BR response assays using PCZ in Zea mays (maize) plants. This study establishes an automated and non-invasive robotic imaging system as a tool to accurately measure morphological and growth-related traits of Arabidopsis and maize plants in 3D, providing insights into the BR-mediated control of plant growth and stress responses.
Collapse
Affiliation(s)
- Lirong Xiang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Trevor M Nolan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Yin Bao
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Mitch Elmore
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Taylor Tuel
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Jingyao Gai
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Dylan Shah
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Ping Wang
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Nicole M Huser
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Ashley M Hurd
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Sean A McLaughlin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Stephen H Howell
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Justin W Walley
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Yanhai Yin
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| | - Lie Tang
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, 50011, USA
- Plant Sciences Institutes, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
97
|
Zhang J, Huang D, Zhao X, Zhang M. Evaluation of drought resistance and transcriptome analysis for the identification of drought-responsive genes in Iris germanica. Sci Rep 2021; 11:16308. [PMID: 34381085 PMCID: PMC8358056 DOI: 10.1038/s41598-021-95633-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Iris germanica, a species with very high ornamental value, exhibits the strongest drought resistance among the species in the genus Iris, but the molecular mechanism underlying its drought resistance has not been evaluated. To investigate the gene expression profile changes exhibited by high-drought-resistant I. germanica under drought stress, 10 cultivars with excellent characteristics were included in pot experiments under drought stress conditions, and the changes in the chlorophyll (Chl) content, plasma membrane relative permeability (RP), and superoxide dismutase (SOD), malondialdehyde (MDA), free proline (Pro), and soluble protein (SP) levels in leaves were compared among these cultivars. Based on their drought-resistance performance, the 10 cultivars were ordered as follows: 'Little Dream' > 'Music Box' > 'X'Brassie' > 'Blood Stone' > 'Cherry Garden' > 'Memory of Harvest' > 'Immortality' > 'White and Gold' > 'Tantara' > 'Clarence'. Using the high-drought-resistant cultivar 'Little Dream' as the experimental material, cDNA libraries from leaves and rhizomes treated for 0, 6, 12, 24, and 48 h with 20% polyethylene glycol (PEG)-6000 to simulate a drought environment were sequenced using the Illumina sequencing platform. We obtained 1, 976, 033 transcripts and 743, 982 unigenes (mean length of 716 bp) through a hierarchical clustering analysis of the resulting transcriptome data. The unigenes were compared against the Nr, Nt, Pfam, KOG/COG, Swiss-Prot, KEGG, and gene ontology (GO) databases for functional annotation, and the gene expression levels in leaves and rhizomes were compared between the 20% PEG-6000 stress treated (6, 12, 24, and 48 h) and control (0 h) groups using DESeq2. 7849 and 24,127 differentially expressed genes (DEGs) were obtained from leaves and rhizomes, respectively. GO and KEGG enrichment analyses of the DEGs revealed significantly enriched KEGG pathways, including ribosome, photosynthesis, hormone signal transduction, starch and sucrose metabolism, synthesis of secondary metabolites, and related genes, such as heat shock proteins (HSPs), transcription factors (TFs), and active oxygen scavengers. In conclusion, we conducted the first transcriptome sequencing analysis of the I. germanica cultivar 'Little Dream' under drought stress and generated a large amount of genetic information. This study lays the foundation for further exploration of the molecular mechanisms underlying the responses of I. germanica to drought stress and provides valuable genetic resources for the breeding of drought-resistant plants.
Collapse
Affiliation(s)
- Jingwei Zhang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Dazhuang Huang
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Xiaojie Zhao
- grid.274504.00000 0001 2291 4530College of Landscape Architecture and Tourism, Hebei Agricultural University, Baoding, China
| | - Man Zhang
- grid.274504.00000 0001 2291 4530State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
| |
Collapse
|
98
|
Woods P, Campbell BJ, Nicodemus TJ, Cahoon EB, Mullen JL, McKay JK. Quantitative Trait Loci Controlling Agronomic and Biochemical Traits in Cannabis sativa. Genetics 2021; 219:6310019. [PMID: 34173826 PMCID: PMC9335937 DOI: 10.1093/genetics/iyab099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding the genetic basis of complex traits is a fundamental goal of evolutionary genetics. Yet, the genetics controlling complex traits in many important species such as hemp (Cannabis sativa) remain poorly investigated. Because hemp’s change in legal status with the 2014 and 2018 U.S. Federal Farm Bills, interest in the genetics controlling its numerous agriculturally important traits has steadily increased. To better understand the genetics of agriculturally important traits in hemp, we developed an F2 population by crossing two phenotypically distinct hemp cultivars (Carmagnola and USO31). Using whole-genome sequencing, we mapped quantitative trait loci (QTL) associated with variation in numerous agronomic and biochemical traits. A total of 69 loci associated with agronomic (34) and biochemical (35) trait variation were identified. We found that most QTL co-localized, suggesting that the phenotypic distinctions between Carmagnola and USO31 are largely controlled by a small number of loci. We identified TINY and olivetol synthase as candidate genes underlying co-localized QTL clusters for agronomic and biochemical traits, respectively. We functionally validated the olivetol synthase candidate by expressing the alleles in yeast. Gas chromatography-mass spectrometry assays of extracts from these yeast colonies suggest that the USO31 olivetol synthase is functionally less active and potentially explains why USO31 produces lower cannabinoids compared to Carmagnola. Overall, our results help modernize the genomic understanding of complex traits in hemp.
Collapse
Affiliation(s)
- Patrick Woods
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, United States of America.,Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Brian J Campbell
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - Timothy J Nicodemus
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Edgar B Cahoon
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588, United States of America
| | - Jack L Mullen
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado, 80523, United States of America
| |
Collapse
|
99
|
Mushtaq N, Munir F, Gul A, Amir R, Zafar Paracha R. Genome-wide analysis, identification, evolution and genomic organization of dehydration responsive element-binding (DREB) gene family in Solanum tuberosum. PeerJ 2021; 9:e11647. [PMID: 34221730 PMCID: PMC8236231 DOI: 10.7717/peerj.11647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/29/2021] [Indexed: 01/19/2023] Open
Abstract
Background The dehydration responsive element-binding (DREB) gene family plays a crucial role as transcription regulators and enhances plant tolerance to abiotic stresses. Although the DREB gene family has been identified and characterized in many plants, knowledge about it in Solanum tuberosum (Potato) is limited. Results In the present study, StDREB gene family was comprehensively analyzed using bioinformatics approaches. We identified 66 StDREB genes through genome wide screening of the Potato genome based on the AP2 domain architecture and amino acid conservation analysis (Valine at position 14th). Phylogenetic analysis divided them into six distinct subgroups (A1–A6). The categorization of StDREB genes into six subgroups was further supported by gene structure and conserved motif analysis. Potato DREB genes were found to be distributed unevenly across 12 chromosomes. Gene duplication proved that StDREB genes experienced tandem and segmental duplication events which led to the expansion of the gene family. The Ka/Ks ratios of the orthologous pairs also demonstrated the StDREB genes were under strong purification selection in the course of evolution. Interspecies synteny analysis revealed 45 and 36 StDREB genes were orthologous to Arabidopsis and Solanum lycopersicum, respectively. Moreover, subcellular localization indicated that StDREB genes were predominantly located within the nucleus and the StDREB family’s major function was DNA binding according to gene ontology (GO) annotation. Conclusions This study provides a comprehensive and systematic understanding of precise molecular mechanism and functional characterization of StDREB genes in abiotic stress responses and will lead to improvement in Solanum tuberosum.
Collapse
Affiliation(s)
- Nida Mushtaq
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Faiza Munir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rabia Amir
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Rehan Zafar Paracha
- Research Centre for Modelling & Simulation, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
100
|
Xiao S, Hu Q, Zhang X, Si H, Liu S, Chen L, Chen K, Berne S, Yuan D, Lindsey K, Zhang X, Zhu L. Orchestration of plant development and defense by indirect crosstalk of salicylic acid and brassinosteorid signaling via transcription factor GhTINY2. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4721-4743. [PMID: 33928361 DOI: 10.1093/jxb/erab186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Salicylic acid (SA) and brassinosteroids (BRs) are well known to regulate diverse processes of plant development and stress responses, but the mechanisms by which these phytohormones mediate the growth and defense trade-off are largely unclear. In addition, little is known about the roles of DEHYDRATION RESPONSIVE ELEMENT BINDING transcription factors, especially in biotic stress and plant growth. Here, we identified a cotton (Gossypium hirsutum) APETALA2/ETHYLENE RESPONSIVE FACTOR gene GhTINY2 that is strongly induced by Verticillium dahliae. Overexpression of GhTINY2 in cotton and Arabidopsis enhanced tolerance to V. dahliae, while knockdown of expression increased the susceptibility of cotton to the pathogen. GhTINY2 was found to promote SA accumulation and SA signaling transduction by directly activating expression of WRKY51. Moreover, GhTINY2-overexpressing cotton and Arabidopsis showed retardation of growth, increased sensitivity to inhibitors of BR biosynthesis, down-regulation of several BR-induced genes, and up-regulation of BR-repressed genes, while GhTINY2-RNAi cotton showed the opposite effects. We further determined that GhTINY2 negatively regulates BR signaling by interacting with BRASSINAZOLE-RESISTANT 1 (BZR1) and restraining its transcriptional activation of the expression of INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19). These findings indicate that GhTINY2 fine-tunes the trade-off between immunity and growth via indirect crosstalk between WRKY51-mediated SA biosynthesis and BZR1-IAA19-regulated BR signaling.
Collapse
Affiliation(s)
- Shenghua Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430000, Hubei, China
| | - Xiaojun Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Huan Si
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Lin Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Sabina Berne
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|