51
|
Ono E, Mise K, Takano Y. RLP23 is required for Arabidopsis immunity against the grey mould pathogen Botrytis cinerea. Sci Rep 2020; 10:13798. [PMID: 32796867 PMCID: PMC7428006 DOI: 10.1038/s41598-020-70485-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Necrosis- and ethylene-inducing-like proteins (NLPs) are secreted by fungi, oomycetes and bacteria. Conserved nlp peptides derived from NLPs are recognized as pathogen-associated molecular patterns (PAMPs), leading to PAMP-triggered immune responses. RLP23 is the receptor of the nlp peptides in Arabidopsis thaliana; however, its actual contribution to plant immunity is unclear. Here, we report that RLP23 is required for Arabidopsis immunity against the necrotrophic fungal pathogen Botrytis cinerea. Arabidopsis rlp23 mutants exhibited enhanced susceptibility to B. cinerea compared with the wild-type plants. Notably, microscopic observation of the B. cinerea infection behaviour indicated the involvement of RLP23 in pre-invasive resistance to the pathogen. B. cinerea carried two NLP genes, BcNEP1 and BcNEP2; BcNEP1 was expressed preferentially before/during invasion into Arabidopsis, whereas BcNEP2 was expressed at the late phase of infection. Importantly, the nlp peptides derived from both BcNEP1 and BcNEP2 induced the production of reactive oxygen species in an RLP23-dependent manner. In contrast, another necrotrophic fungus Alternaria brassicicola did not express the NLP gene in the early infection phase and exhibited no enhanced virulence in the rlp23 mutants. Collectively, these results strongly suggest that RLP23 contributes to Arabidopsis pre-invasive resistance to B. cinerea via NLP recognition at the early infection phase.
Collapse
Affiliation(s)
- Erika Ono
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuyuki Mise
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan.
| |
Collapse
|
52
|
Mochizuki S, Fukumoto T, Ohara T, Ohtani K, Yoshihara A, Shigematsu Y, Tanaka K, Ebihara K, Tajima S, Gomi K, Ichimura K, Izumori K, Akimitsu K. The rare sugar D-tagatose protects plants from downy mildews and is a safe fungicidal agrochemical. Commun Biol 2020; 3:423. [PMID: 32759958 PMCID: PMC7406649 DOI: 10.1038/s42003-020-01133-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/09/2020] [Indexed: 11/09/2022] Open
Abstract
The rare sugar D-tagatose is a safe natural product used as a commercial food ingredient. Here, we show that D-tagatose controls a wide range of plant diseases and focus on downy mildews to analyze its mode of action. It likely acts directly on the pathogen, rather than as a plant defense activator. Synthesis of mannan and related products of D-mannose metabolism are essential for development of fungi and oomycetes; D-tagatose inhibits the first step of mannose metabolism, the phosphorylation of D-fructose to D-fructose 6-phosphate by fructokinase, and also produces D-tagatose 6-phosphate. D-Tagatose 6-phosphate sequentially inhibits phosphomannose isomerase, causing a reduction in D-glucose 6-phosphate and D-fructose 6-phosphate, common substrates for glycolysis, and in D-mannose 6-phosphate, needed to synthesize mannan and related products. These chain-inhibitory effects on metabolic steps are significant enough to block initial infection and structural development needed for reproduction such as conidiophore and conidiospore formation of downy mildew.
Collapse
Affiliation(s)
- Susumu Mochizuki
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Takeshi Fukumoto
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Toshiaki Ohara
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Kouhei Ohtani
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Akihide Yoshihara
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Yoshio Shigematsu
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Keiji Tanaka
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Koichi Ebihara
- Agrochemical Research Center, Mitsui Chemicals Agro, Inc., 1358 Ichimiyake, Yasu, Shiga, 520-2362, Japan
| | - Shigeyuki Tajima
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kenji Gomi
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Ichimura
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Ken Izumori
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan
| | - Kazuya Akimitsu
- International Institute of Rare Sugar Research and Education & Faculty of Agriculture, Kagawa University, 2393, Miki, Kagawa, 761-0795, Japan.
| |
Collapse
|
53
|
He Q, Cai H, Bai M, Zhang M, Chen F, Huang Y, Priyadarshani SVGN, Chai M, Liu L, Liu Y, Chen H, Qin Y. A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant. Int J Mol Sci 2020; 21:E4701. [PMID: 32630201 PMCID: PMC7369738 DOI: 10.3390/ijms21134701] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 01/29/2023] Open
Abstract
The basic leucine zipper (bZIP) is a plant-specific transcription factor family that plays crucial roles in response to biotic and abiotic stresses. However, little is known about the function of bZIP genes in soybean. In this study, we isolated a bZIP gene, GmbZIP19, from soybean. A subcellular localization study of GmbZIP19 revealed its nucleus localization. We showed that GmbZIP19 expression was significantly induced by ABA (abscisic acid), JA (jasmonic acid) and SA (salicylic acid), but reduced under salt and drought stress conditions. Further, GmbZIP19 overexpression Arabidopsis lines showed increased resistance to S. sclerotiorum and Pseudomonas syringae associated with upregulated ABA-, JA-, ETH- (ethephon-)and SA-induced marker genes expression, but exhibited sensitivity to salt and drought stresses in association with destroyed stomatal closure and downregulated the salt and drought stresses marker genes' expression. We generated a soybean transient GmbZIP19 overexpression line, performed a Chromatin immunoprecipitation assay and found that GmbZIP19 bound to promoters of ABA-, JA-, ETH-, and SA-induced marker genes in soybean. The yeast one-hybrid verified the combination. The current study suggested that GmbZIP19 is a positive regulator of pathogen resistance and a negative regulator of salt and drought stress tolerance.
Collapse
Affiliation(s)
- Qing He
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Hanyang Cai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengyan Bai
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Man Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Fangqian Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Youmei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - S. V. G. N. Priyadarshani
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Mengnan Chai
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Liping Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Yanhui Liu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.B.); (L.L.); (Y.L.)
| | - Huihuang Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
| | - Yuan Qin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.H.); (H.C.); (M.Z.); (F.C.); (Y.H.); (S.V.G.N.P.); (M.C.); (H.C.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Lab of Sugarcane Biology, College of Agriculture, Guangxi University, Nanning 530004, China
| |
Collapse
|
54
|
Dunker F, Trutzenberg A, Rothenpieler JS, Kuhn S, Pröls R, Schreiber T, Tissier A, Kemen A, Kemen E, Hückelhoven R, Weiberg A. Oomycete small RNAs bind to the plant RNA-induced silencing complex for virulence. eLife 2020; 9:56096. [PMID: 32441255 PMCID: PMC7297541 DOI: 10.7554/elife.56096] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/21/2020] [Indexed: 12/21/2022] Open
Abstract
The exchange of small RNAs (sRNAs) between hosts and pathogens can lead to gene silencing in the recipient organism, a mechanism termed cross-kingdom RNAi (ck-RNAi). While fungal sRNAs promoting virulence are established, the significance of ck-RNAi in distinct plant pathogens is not clear. Here, we describe that sRNAs of the pathogen Hyaloperonospora arabidopsidis, which represents the kingdom of oomycetes and is phylogenetically distant from fungi, employ the host plant’s Argonaute (AGO)/RNA-induced silencing complex for virulence. To demonstrate H. arabidopsidis sRNA (HpasRNA) functionality in ck-RNAi, we designed a novel CRISPR endoribonuclease Csy4/GUS reporter that enabled in situ visualization of HpasRNA-induced target suppression in Arabidopsis. The significant role of HpasRNAs together with AtAGO1 in virulence was revealed in plant atago1 mutants and by transgenic Arabidopsis expressing a short-tandem-target-mimic to block HpasRNAs, that both exhibited enhanced resistance. HpasRNA-targeted plant genes contributed to host immunity, as Arabidopsis gene knockout mutants displayed quantitatively enhanced susceptibility.
Collapse
Affiliation(s)
- Florian Dunker
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Adriana Trutzenberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Jan S Rothenpieler
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Sarah Kuhn
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| | - Reinhard Pröls
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tom Schreiber
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ariane Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Eric Kemen
- Center for Plant Molecular Biology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Arne Weiberg
- Faculty of Biology, Genetics, Biocenter Martinsried, LMU Munich, Martinsried, Germany
| |
Collapse
|
55
|
Lee S, Kim MH, Lee JH, Jeon J, Kwak JM, Kim YJ. Glycosyltransferase-Like RSE1 Negatively Regulates Leaf Senescence Through Salicylic Acid Signaling in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:551. [PMID: 32499801 PMCID: PMC7242760 DOI: 10.3389/fpls.2020.00551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/14/2020] [Indexed: 06/01/2023]
Abstract
Leaf senescence is a developmental process designed for nutrient recycling and relocation to maximize growth competence and reproductive capacity of plants. Thus, plants integrate developmental and environmental signals to precisely control senescence. To genetically dissect the complex regulatory mechanism underlying leaf senescence, we identified an early leaf senescence mutant, rse1. RSE1 encodes a putative glycosyltransferase. Loss-of-function mutations in RSE1 resulted in precocious leaf yellowing and up-regulation of senescence marker genes, indicating enhanced leaf senescence. Transcriptome analysis revealed that salicylic acid (SA) and defense signaling cascades were up-regulated in rse1 prior to the onset of leaf senescence. We found that SA accumulation was significantly increased in rse1. The rse1 phenotypes are dependent on SA-INDUCTION DEFICIENT 2 (SID2), supporting a role of SA in accelerated leaf senescence in rse1. Furthermore, RSE1 protein was localized to the cell wall, implying a possible link between the cell wall and RSE1 function. Together, we show that RSE1 negatively modulates leaf senescence through an SID2-dependent SA signaling pathway.
Collapse
Affiliation(s)
- Seulbee Lee
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Myung-Hee Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| | - Jae Ho Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Jieun Jeon
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - June M. Kwak
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Yun Ju Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, South Korea
| |
Collapse
|
56
|
Wang T, Wang X, Zhu X, He Q, Guo L. A proper PiCAT2 level is critical for sporulation, sporangium function, and pathogenicity of Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2020; 21:460-474. [PMID: 31997544 PMCID: PMC7060140 DOI: 10.1111/mpp.12907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 05/04/2023]
Abstract
Catalase is present in prokaryotic and eukaryotic organisms and is important for the protective effects of the antioxidant system against free radicals. Many studies have confirmed that catalase is required for the growth, development, and pathogenesis of bacteria, plants, animals, and fungi. However, there has been relatively little research on the catalases in oomycetes, which form an important group of fungus-like eukaryotes that produce zoosporangia. In this study, we detected two Phytophthora infestans genes encoding catalases, but only PiCAT2 exhibited catalase activity in the sporulation stage and was highly produced during asexual reproduction and in the late infection stage. Compared with the wild-type strain, the PiCAT2-silenced P. infestans transformants were more sensitive to abiotic stress, were less pathogenic, and had a lower colony expansion rate and lower PiMPK7, PiVPS1, and PiGPG1 expression levels. In contrast, the PiCAT2-overexpressed transformants were slightly less sensitive to abiotic stress. Interestingly, increasing and decreasing PiCAT2 expression from the normal level inhibited sporulation, germination, and infectivity, and down-regulated PiCdc14 expression, but up-regulated PiSDA1 expression. These results suggest that PiCAT2 is required for P. infestans mycelial growth, asexual reproduction, abiotic stress tolerance, and pathogenicity. However, a proper PiCAT2 level is critical for the formation and normal function of sporangia. Furthermore, PiCAT2 affects P. infestans sporangial formation and function, pathogenicity, and abiotic stress tolerance by regulating the expression of cell cycle-related genes (PiCdc14 and PiSDA1) and MAPK pathway genes. Our findings provide new insights into catalase functions in eukaryotic pathogens.
Collapse
Affiliation(s)
- Tu‐Hong Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Xiao‐Wen Wang
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Xiao‐Qiong Zhu
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| | - Qun He
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Soil MicrobiologyCollege of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Li‐Yun Guo
- College of Plant Protection and Key Lab of Pest Monitoring and Green ManagementMOAChina Agricultural UniversityBeijingChina
| |
Collapse
|
57
|
Shikanai Y, Yoshida R, Hirano T, Enomoto Y, Li B, Asada M, Yamagami M, Yamaguchi K, Shigenobu S, Tabata R, Sawa S, Okada H, Ohya Y, Kamiya T, Fujiwara T. Callose Synthesis Suppresses Cell Death Induced by Low-Calcium Conditions in Leaves. PLANT PHYSIOLOGY 2020; 182:2199-2212. [PMID: 32024698 PMCID: PMC7140939 DOI: 10.1104/pp.19.00784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 12/17/2019] [Indexed: 05/08/2023]
Abstract
Despite the importance of preventing calcium (Ca) deficiency disorders in agriculture, knowledge of the molecular mechanisms underlying plant adaptations to low-Ca conditions is limited. In this study, we provide evidence for a crucial involvement of callose synthesis in the survival of Arabidopsis (Arabidopsis thaliana) under low-Ca conditions. A mutant sensitive to low-Ca conditions, low calcium sensitive3 (lcs3), exhibited high levels of cell death in emerging leaves and had defects in its expanding true leaves under low-Ca conditions. Further analyses showed that the causal mutation was located in a putative β-1,3-glucan (callose) synthase gene, GLUCAN SYNTHASE-LIKE10 (GSL10). Yeast complementation assay results showed that GSL10 encodes a functional callose synthase. Ectopic callose significantly accumulated in wild-type plants under low-Ca conditions, but at a low level in lcs3 The low-Ca sensitivity of lcs3 was phenocopied by the application of callose synthase inhibitors in wild-type plants, which resulted in leaf expansion failure, cell death, and reduced ectopic callose levels under low-Ca conditions. Transcriptome analyses showed that the expression of genes related to cell wall and defense responses was altered in both wild-type plants under low-Ca conditions and in lcs3 under normal-Ca conditions, suggesting that GSL10 is required for the alleviation of both cell wall damage and defense responses caused by low Ca levels. These results suggest that callose synthesis is essential for the prevention of cell death under low-Ca conditions and plays a key role in plants' survival strategies under low-Ca conditions.
Collapse
Affiliation(s)
- Yusuke Shikanai
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Ryosuke Yoshida
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Tomoko Hirano
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Yusuke Enomoto
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Baohai Li
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mayu Asada
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mutsumi Yamagami
- Department of Radioecology, Institute of Environmental Sciences, Aomori 039-3212, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Aichi 444-8585, Japan
| | - Ryo Tabata
- Graduate School of Bioagricultural Sciences, Nagoya University, Aichi 464-8601, Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Hiroki Okada
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, University of Tokyo, Chiba 277-8562, Japan
| | - Takehiro Kamiya
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
58
|
Li Y, Qiu L, Zhang Q, Zhuansun X, Li H, Chen X, Krugman T, Sun Q, Xie C. Exogenous sodium diethyldithiocarbamate, a Jasmonic acid biosynthesis inhibitor, induced resistance to powdery mildew in wheat. PLANT DIRECT 2020; 4:e00212. [PMID: 32285024 PMCID: PMC7146025 DOI: 10.1002/pld3.212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/08/2020] [Accepted: 03/08/2020] [Indexed: 05/22/2023]
Abstract
Jasmonic acid (JA) is an important plant hormone associated with plant-pathogen defense. To study the role of JA in plant-fungal interactions, we applied a JA biosynthesis inhibitor, sodium diethyldithiocarbamate (DIECA), on wheat leaves. Our results showed that application of 10 mM DIECA 0-2 days before inoculation effectively induced resistance to powdery mildew (Bgt) in wheat. Transcriptome analysis identified 364 up-regulated and 68 down-regulated differentially expressed genes (DEGs) in DIECA-treated leaves compared with water-treated leaves. Gene ontology (GO) enrichment analysis of the DEGs revealed important GO terms and pathways, in particular, response to growth hormones, activity of glutathione metabolism (e.g., glutathione transferase activity), oxalate oxidase, and chitinase activity. Gene annotaion revealed that some pathogenesis-related (PR) genes, such as PR1.1, PR1, PR10, PR4a, Chitinase 8, beta-1,3-glucanase, RPM1, RGA2, and HSP70, were induced by DIECA treatment. DIECA reduced JA and auxin (IAA) levels, while increased brassinosteroid, glutathione, and ROS lesions in wheat leaves, which corroborated with the transcriptional changes. Our results suggest that DIECA can be applied to increase plant immunity and reduce the severity of Bgt disease in wheat fields.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Huifang Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Xin Chen
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Tamar Krugman
- Institute of EvolutionUniversity of Haifa, Mt. CarmelHaifaIsrael
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for AgrobiotechnologyBeijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
| |
Collapse
|
59
|
Ting HM, Cheah BH, Chen YC, Yeh PM, Cheng CP, Yeo FKS, Vie AK, Rohloff J, Winge P, Bones AM, Kissen R. The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:257. [PMID: 32211010 PMCID: PMC7076197 DOI: 10.3389/fpls.2020.00257] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/19/2020] [Indexed: 05/17/2023]
Abstract
Glucosinolates are defense-related secondary metabolites found in Brassicaceae. When Brassicaceae come under attack, glucosinolates are hydrolyzed into different forms of glucosinolate hydrolysis products (GHPs). Among the GHPs, isothiocyanates are the most comprehensively characterized defensive compounds, whereas the functional study of nitriles, another group of GHP, is still limited. Therefore, this study investigates whether 3-butenenitrile (3BN), a nitrile, can trigger the signaling pathways involved in the regulation of defense responses in Arabidopsis thaliana against biotic stresses. Briefly, the methodology is divided into three stages, (i) evaluate the physiological and biochemical effects of exogenous 3BN treatment on Arabidopsis, (ii) determine the metabolites involved in 3BN-mediated defense responses in Arabidopsis, and (iii) assess whether a 3BN treatment can enhance the disease tolerance of Arabidopsis against necrotrophic pathogens. As a result, a 2.5 mM 3BN treatment caused lesion formation in Arabidopsis Columbia (Col-0) plants, a process found to be modulated by nitric oxide (NO). Metabolite profiling revealed an increased production of soluble sugars, Krebs cycle associated carboxylic acids and amino acids in Arabidopsis upon a 2.5 mM 3BN treatment, presumably via NO action. Primary metabolites such as sugars and amino acids are known to be crucial components in modulating plant defense responses. Furthermore, exposure to 2.0 mM 3BN treatment began to increase the production of salicylic acid (SA) and jasmonic acid (JA) phytohormones in Arabidopsis Col-0 plants in the absence of lesion formation. The production of SA and JA in nitrate reductase loss-of function mutant (nia1nia2) plants was also induced by the 3BN treatments, with a greater induction for JA. The SA concentration in nia1nia2 plants was lower than in Col-0 plants, confirming the previously reported role of NO in controlling SA production in Arabidopsis. A 2.0 mM 3BN treatment prior to pathogen assays effectively alleviated the leaf lesion symptom of Arabidopsis Col-0 plants caused by Pectobacterium carotovorum ssp. carotovorum and Botrytis cinerea and reduced the pathogen growth on leaves. The findings of this study demonstrate that 3BN can elicit defense response pathways in Arabidopsis, which potentially involves a coordinated crosstalk between NO and phytohormone signaling.
Collapse
Affiliation(s)
- Hieng-Ming Ting
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Boon Huat Cheah
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Chen
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Pei-Min Yeh
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chiu-Ping Cheng
- Institute of Plant Biology and Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Freddy Kuok San Yeo
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Malaysia
| | - Ane Kjersti Vie
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jens Rohloff
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Atle M. Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
60
|
Vieira P, Nemchinov LG. An Expansin-Like Candidate Effector Protein from Pratylenchus penetrans Modulates Immune Responses in Nicotiana benthamiana. PHYTOPATHOLOGY 2020; 110:684-693. [PMID: 31680651 DOI: 10.1094/phyto-09-19-0336-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The root lesion nematode (RLN) Pratylenchus penetrans is a migratory species that attacks a broad range of crops. After the RLN is initially attracted to host roots by root exudates and compounds, it releases secretions that are critical for successful parasitism. Among those secretions are nematode virulence factors or effectors that facilitate the entry and migration of nematodes through the roots and modulate plant immune defenses. The recognition of the effectors by host resistance proteins leads to effector-triggered immunity and incompatible plant-nematode interactions. Although many candidate effectors of the RLN and other plant-parasitic nematodes have been identified, the detailed mechanisms of their functions and particularly, their host targets remain largely unexplored. In this study, we sequenced and annotated genes encoding expansin-like proteins, which are major candidate effectors of P. penetrans. One of the genes, Pp-EXPB1, which was the most highly expressed during nematode infection in different plant species, was further functionally characterized via transient expression in the model plant Nicotiana benthamiana and global transcriptome profiling of gene expression changes triggered by this candidate effector in plants. As a result of this investigation, the biological roles of Pp-EXPB1 in nematode parasitism were proposed, the putative cellular targets of the proteins were identified, and the molecular mechanisms of plant responses to the nematode-secreted proteins were outlined.
Collapse
Affiliation(s)
- Paulo Vieira
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA 24061
| | - Lev G Nemchinov
- Molecular Plant Pathology Laboratory, U.S. Department of Agriculture-Agricultural Research Service, Beltsville, MD 20705-2350
| |
Collapse
|
61
|
A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew. Nat Commun 2020; 11:680. [PMID: 32015344 PMCID: PMC6997164 DOI: 10.1038/s41467-020-14294-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive diseases that pose a great threat to wheat production. Wheat landraces represent a rich source of powdery mildew resistance. Here, we report the map-based cloning of powdery mildew resistance gene Pm24 from Chinese wheat landrace Hulutou. It encodes a tandem kinase protein (TKP) with putative kinase-pseudokinase domains, designated WHEAT TANDEM KINASE 3 (WTK3). The resistance function of Pm24 was validated by transgenic assay, independent mutants, and allelic association analyses. Haplotype analysis revealed that a rare 6-bp natural deletion of lysine-glycine codons, endemic to wheat landraces of Shaanxi Province, China, in the kinase I domain (Kin I) of WTK3 is critical for the resistance function. Transgenic assay of WTK3 chimeric variants revealed that only the specific two amino acid deletion, rather than any of the single or more amino acid deletions, in the Kin I of WTK3 is responsible for gaining the resistance function of WTK3 against the Bgt fungus.
Collapse
|
62
|
Omidbakhshfard MA, Sujeeth N, Gupta S, Omranian N, Guinan KJ, Brotman Y, Nikoloski Z, Fernie AR, Mueller-Roeber B, Gechev TS. A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress. Int J Mol Sci 2020; 21:E474. [PMID: 31940839 PMCID: PMC7013732 DOI: 10.3390/ijms21020474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/26/2019] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
Abiotic stresses cause oxidative damage in plants. Here, we demonstrate that foliar application of an extract from the seaweed Ascophyllum nodosum, SuperFifty (SF), largely prevents paraquat (PQ)-induced oxidative stress in Arabidopsis thaliana. While PQ-stressed plants develop necrotic lesions, plants pre-treated with SF (i.e., primed plants) were unaffected by PQ. Transcriptome analysis revealed induction of reactive oxygen species (ROS) marker genes, genes involved in ROS-induced programmed cell death, and autophagy-related genes after PQ treatment. These changes did not occur in PQ-stressed plants primed with SF. In contrast, upregulation of several carbohydrate metabolism genes, growth, and hormone signaling as well as antioxidant-related genes were specific to SF-primed plants. Metabolomic analyses revealed accumulation of the stress-protective metabolite maltose and the tricarboxylic acid cycle intermediates fumarate and malate in SF-primed plants. Lipidome analysis indicated that those lipids associated with oxidative stress-induced cell death and chloroplast degradation, such as triacylglycerols (TAGs), declined upon SF priming. Our study demonstrated that SF confers tolerance to PQ-induced oxidative stress in A. thaliana, an effect achieved by modulating a range of processes at the transcriptomic, metabolic, and lipid levels.
Collapse
Affiliation(s)
- Mohammad Amin Omidbakhshfard
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
| | - Neerakkal Sujeeth
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 Co. Kerry, Ireland;
| | - Saurabh Gupta
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Kieran J. Guinan
- BioAtlantis Ltd., Clash Industrial Estate, Tralee, V92 RWV5 Co. Kerry, Ireland;
| | - Yariv Brotman
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
| | - Zoran Nikoloski
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Alisdair R. Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (M.A.O.); (S.G.); (N.O.); (Y.B.); (A.R.F.); (B.M.-R.)
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
| | - Tsanko S. Gechev
- Department of Molecular Stress Physiology, Center of Plant Systems Biology and Biotechnology, 139 Ruski blvd., 4000 Plovdiv, Bulgaria;
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen Str., 4000 Plovdiv, Bulgaria
| |
Collapse
|
63
|
Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee IJ, Yun BW. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:602. [PMID: 31888479 PMCID: PMC6937950 DOI: 10.1186/s12870-019-2210-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.
Collapse
Affiliation(s)
| | | | | | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - In-Jung Lee
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
64
|
Bilir Ö, Telli O, Norman C, Budak H, Hong Y, Tör M. Small RNA inhibits infection by downy mildew pathogen Hyaloperonospora arabidopsidis. MOLECULAR PLANT PATHOLOGY 2019; 20:1523-1534. [PMID: 31557400 PMCID: PMC6804343 DOI: 10.1111/mpp.12863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gene silencing exists in eukaryotic organisms as a conserved regulation of the gene expression mechanism. In general, small RNAs (sRNAs) are produced within the eukaryotic cells and incorporated into an RNA-induced silencing complex (RISC) within cells. However, exogenous sRNAs, once delivered into cells, can also silence target genes via the same RISC. Here, we explored this concept by targeting the Cellulose synthase A3 (CesA3) gene of Hyaloperonospora arabidopsidis (Hpa), the downy mildew pathogen of Arabidopsis thaliana. Hpa spore suspensions were mixed with sense or antisense sRNAs and inoculated onto susceptible Arabidopsis seedlings. While sense sRNAs had no obvious effect on Hpa pathogenicity, antisense sRNAs inhibited spore germination and hence infection. Such inhibition of infection was not race-specific, but dependent on the length and capping of sRNAs. Inhibition of infection by double stranded sRNA was more efficient than that observed with antisense sRNA. Thus, exogenous sRNA targeting conserved CesA3 could suppress Hpa infection in Arabidopsis, indicating the potential of this simple and efficient sRNA-based approach for deciphering gene functions in obligate biotrophic pathogens as well as for R-gene independent control of diseases in plants.
Collapse
Affiliation(s)
- Özlem Bilir
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
- Present address:
Directorate of Trakya Agricultural Research InstituteDepartment of BiotechnologyD‐100 Highway 22100EdirneTurkey
| | - Osman Telli
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| | - Chris Norman
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| | | | - Yiguo Hong
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
- Research Centre for Plant RNA SignalingCollege of Life and Environmental SciencesHangzhou Normal UniversityHangzhou310036China
| | - Mahmut Tör
- Department of BiologySchool of Science and the EnvironmentUniversity of WorcesterHenwick GroveWorcesterWR2 6AJUK
| |
Collapse
|
65
|
Manoharan B, Qi SS, Dhandapani V, Chen Q, Rutherford S, Wan JS, Jegadeesan S, Yang HY, Li Q, Li J, Dai ZC, Du DL. Gene Expression Profiling Reveals Enhanced Defense Responses in an Invasive Weed Compared to Its Native Congener During Pathogenesis. Int J Mol Sci 2019; 20:E4916. [PMID: 31623404 PMCID: PMC6801458 DOI: 10.3390/ijms20194916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022] Open
Abstract
Invasive plants are a huge burden on the environment, and modify local ecosystems by affecting the indigenous biodiversity. Invasive plants are generally less affected by pathogens, although the underlying molecular mechanisms responsible for their enhanced resistance are unknown. We investigated expression profiles of three defense hormones (salicylic acid, jasmonic acid, and ethylene) and their associated genes in the invasive weed, Alternanthera philoxeroides, and its native congener, A. sessilis, after inoculation with Rhizoctonia solani. Pathogenicity tests showed significantly slower disease progression in A. philoxeroides compared to A. sessilis. Expression analyses revealed jasmonic acid (JA) and ethylene (ET) expressions were differentially regulated between A. philoxeroides and A. sessilis, with the former having prominent antagonistic cross-talk between salicylic acid (SA) and JA, and the latter showing weak or no cross-talk during disease development. We also found that JA levels decreased and SA levels increased during disease development in A. philoxeroides. Variations in hormonal gene expression between the invasive and native species (including interspecific differences in the strength of antagonistic cross-talk) were identified during R. solani pathogenesis. Thus, plant hormones and their cross-talk signaling may improve the resistance of invasive A. philoxeroides to pathogens, which has implications for other invasive species during the invasion process.
Collapse
Affiliation(s)
- Bharani Manoharan
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Shan-Shan Qi
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Vignesh Dhandapani
- Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Qi Chen
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Susan Rutherford
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Justin Sh Wan
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- The Royal Botanic Gardens and Domain Trust, Mrs Macquaries Road, Sydney, NSW 2000, Australia.
| | - Sridharan Jegadeesan
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 761001, Israel.
| | - Hong-Yu Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Qin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jian Li
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhi-Cong Dai
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
- Institute of Agricultural Engineering, Jiangsu University, Xuefu Road 301, Zhenjiang 212013, China..
| | - Dao-Lin Du
- Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security, Jiangsu University, Zhenjiang 212013, China.
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
66
|
Goto F, Enomoto Y, Shoji K, Shimada H, Yoshihara T. Copper treatment of peach leaves causes lesion formation similar to the biotic stress response. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2019; 36:135-142. [PMID: 31768115 PMCID: PMC6854336 DOI: 10.5511/plantbiotechnology.19.0531b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/31/2019] [Indexed: 06/01/2023]
Abstract
Peach (Prunus persica (L.) Batsch) leaves are sensitive to copper (Cu) exposure. The symptoms of Cu exposure are similar to those of bacterial spot disease; however, the mechanism underlying lesion formation caused by Cu exposure is not clear. Here, we investigated whether lesion formation caused by Cu exposure was related to the mechanism underlying plant resistance to microbial pathogens. When Cu was applied to the centre of a pinhole on peach leaves, a two-step process was observed. A pale green section in the shape of a doughnut, located far from a Cu treatment point, first appeared on a leaf treated with 2 mM CuSO4. Next, a yellow-white section gradually spread from the Cu treatment point to the pale green section. Finally, a gap was formed in the middle of the pale green section. The inner part of the pale green section contained 96% of the Cu applied, indicating that Cu is retained in the lesion area. Real-time PCR analysis of the expression of genes encoding pathogenesis-related proteins and enzymes involved in phytoalexin synthesis revealed that three genes (encoding chitinase, pathogenesis-related protein 4, and β-1,3-glucanase-3) of the eight tested were upregulated by Cu treatment. Furthermore, treatment with caspase-1 inhibitors reduced lesion formation. These results show that Cu treatment of peach leaves causes cell death similar to that occurring during the biotic stress response.
Collapse
Affiliation(s)
- Fumiyuki Goto
- Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| | - Yusuke Enomoto
- Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kazuhiro Shoji
- Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| | - Hiroaki Shimada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijyuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Toshihiro Yoshihara
- Central Research Institute of Electric Power Industry, 1646 Abiko, Abiko-shi, Chiba 270-1194, Japan
| |
Collapse
|
67
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
68
|
Lenarčič T, Pirc K, Hodnik V, Albert I, Borišek J, Magistrato A, Nürnberger T, Podobnik M, Anderluh G. Molecular basis for functional diversity among microbial Nep1-like proteins. PLoS Pathog 2019; 15:e1007951. [PMID: 31479498 PMCID: PMC6743777 DOI: 10.1371/journal.ppat.1007951] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/13/2019] [Accepted: 06/29/2019] [Indexed: 11/18/2022] Open
Abstract
Necrosis and ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs) are secreted by several phytopathogenic microorganisms. They trigger necrosis in various eudicot plants upon binding to plant sphingolipid glycosylinositol phosphorylceramides (GIPC). Interestingly, HaNLP3 from the obligate biotroph oomycete Hyaloperonospora arabidopsidis does not induce necrosis. We determined the crystal structure of HaNLP3 and showed that it adopts the NLP fold. However, the conformations of the loops surrounding the GIPC headgroup-binding cavity differ from those of cytotoxic Pythium aphanidermatum NLPPya. Essential dynamics extracted from μs-long molecular dynamics (MD) simulations reveals a limited conformational plasticity of the GIPC-binding cavity in HaNLP3 relative to toxic NLPs. This likely precludes HaNLP3 binding to GIPCs, which is the underlying reason for the lack of toxicity. This study reveals that mutations at key protein regions cause a switch between non-toxic and toxic phenotypes within the same protein scaffold. Altogether, these data provide evidence that protein flexibility is a distinguishing trait of toxic NLPs and highlight structural determinants for a potential functional diversification of non-toxic NLPs utilized by biotrophic plant pathogens.
Collapse
Affiliation(s)
- Tea Lenarčič
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva, Ljubljana, Slovenia
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle, Tübingen, Germany
| | - Jure Borišek
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Alessandra Magistrato
- CNR-IOM-Democritos at International School for Advanced Studies (SISSA), Trieste, Italy
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle, Tübingen, Germany
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
- * E-mail: (MP); (GA)
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova, Ljubljana, Slovenia
- * E-mail: (MP); (GA)
| |
Collapse
|
69
|
Herlihy J, Ludwig NR, van den Ackerveken G, McDowell JM. Oomycetes Used in Arabidopsis Research. THE ARABIDOPSIS BOOK 2019; 17:e0188. [PMID: 33149730 PMCID: PMC7592078 DOI: 10.1199/tab.0188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Arabidopsis plants in their natural environment are susceptible to infection by oomycete pathogens, in particular to downy mildew and white rust diseases. These naturally occurring infectious agents have imposed evolutionary pressures on Arabidopsis populations and are therefore highly relevant for the study of host-pathogen co-evolution. In addition, the study of oomycete diseases, including infections caused by several Phytophthora species, has led to many scientific discoveries on Arabidopsis immunity and disease. Herein, we describe the major oomycete species used for experiments on Arabidopsis, and how these pathosystems have been used to provide significant insights into mechanistic and evolutionary aspects of plant-oomycete interactions. We also highlight understudied aspects of plant-oomycete interactions, as well as translational approaches, that can be productively addressed using the reference pathosystems described in this article.
Collapse
Affiliation(s)
- John Herlihy
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nora R. Ludwig
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Guido van den Ackerveken
- Plant–Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
70
|
Fu M, Yuan C, Song A, Lu J, Wang X, Sun S. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 285:44-54. [PMID: 31203893 DOI: 10.1016/j.plantsci.2019.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 06/09/2023]
Abstract
Although the involvement of ROS (reactive oxygen species) in leaf senescence is well known, the factors governing this accumulation of ROS are not fully characterized. In this study, analysis of transgenic overexpressing and knock out lines of AtWDS1 (encoding a WD repeat protein), indicates that AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence. Furthermore, we observed ROS accumulation and altered tolerance of oxidative stress in atwds1 plants, as well as upregulated expression of oxidative stress-responsive genes. The location of an EGFP-AtWDS1 fusion protein in the nucleus of transformed cells and plants indicates that AtWDS1 is a nuclear protein, and, using a Dual-Luciferase assay, we showed that AtWDS1 can act as a transcription activator. However, the lack of a nuclear localization sequence in AtWDS1 suggests that its presence in the nucleus must depend on interactions with other proteins. Indeed, we found that AtWDS1 interacts directly with AtRanBPM, and that mutation of the AtRanBPM gene results in partial mislocalization of AtWDS1 in the cytoplasm. Together, these results suggest a role for AtWDS1 as a novel modulator of redox homeostasis, which responds to developmental and stress signals to regulate leaf senescence.
Collapse
Affiliation(s)
- Mengni Fu
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Changshun Yuan
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Aihua Song
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jun Lu
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaojing Wang
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shulan Sun
- Guangdong Provincial Key Labratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
71
|
Dutton C, Hõrak H, Hepworth C, Mitchell A, Ton J, Hunt L, Gray JE. Bacterial infection systemically suppresses stomatal density. PLANT, CELL & ENVIRONMENT 2019; 42:2411-2421. [PMID: 31042812 PMCID: PMC6771828 DOI: 10.1111/pce.13570] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 03/08/2019] [Accepted: 04/27/2019] [Indexed: 05/20/2023]
Abstract
Many plant pathogens gain entry to their host via stomata. On sensing attack, plants close these pores to restrict pathogen entry. Here, we show that plants exhibit a second longer term stomatal response to pathogens. Following infection, the subsequent development of leaves is altered via a systemic signal. This reduces the density of stomata formed, thus providing fewer entry points for pathogens on new leaves. Arabidopsis thaliana leaves produced after infection by a bacterial pathogen that infects through the stomata (Pseudomonas syringae) developed larger epidermal pavement cells and stomata and consequently had up to 20% reductions in stomatal density. The bacterial peptide flg22 or the phytohormone salicylic acid induced similar systemic reductions in stomatal density suggesting that they might mediate this effect. In addition, flagellin receptors, salicylic acid accumulation, and the lipid transfer protein AZI1 were all required for this developmental response. Furthermore, manipulation of stomatal density affected the level of bacterial colonization, and plants with reduced stomatal density showed slower disease progression. We propose that following infection, development of new leaves is altered by a signalling pathway with some commonalities to systemic acquired resistance. This acts to reduce the potential for future infection by providing fewer stomatal openings.
Collapse
Affiliation(s)
- Christian Dutton
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
- Grantham Centre for Sustainable FuturesUniversity of SheffieldSheffieldS10 2TNUK
| | - Hanna Hõrak
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Christopher Hepworth
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Alice Mitchell
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Jurriaan Ton
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldS10 2TNUK
| | - Lee Hunt
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| | - Julie E. Gray
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldS10 2TNUK
| |
Collapse
|
72
|
Shen Y, Li J, Xiang J, Wang J, Yin K, Liu Q. Isolation and identification of a novel protein elicitor from a Bacillus subtilis strain BU412. AMB Express 2019; 9:117. [PMID: 31352630 PMCID: PMC6661057 DOI: 10.1186/s13568-019-0822-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/24/2019] [Indexed: 12/29/2022] Open
Abstract
Here, we report a novel protein elicitor from Bacillus subtilis BU412 which could cause hypersensitive response (HR) and systemic acquired resistance (SAR) in tobacco. The purification was executed by ion-exchange and size exclusion chromatography. The target band on SDS-PAGE was analyzed by mass spectrometry, and the peptide mass fingerprinting matched an uncharacterized protein (WP_017418614.1), which was then named AMEP412. AMEP412 could cause a clearly defined HR necrosis in tobacco leaves, which was less affected by thermal treatment. The sub-cellular localization assay revealed that AMEP412 localized on the cell surface. This protein could also trigger early defense events such as the generation of reactive oxygen species (H2O2 and O2-) and the induction of defense enzymes, including superoxide dismutase (SOD), peroxidase (POD), polyphenol oxidase (PPO) and phenylalanine ammonia-lyase (PAL). Moreover, AMEP412 could stimulate plant systemic resistance against Pseudomonas syringae pv. tomato DC3000.
Collapse
|
73
|
Li S, Nie H, Qiu D, Shi M, Yuan Q. A novel protein elicitor PeFOC1 from Fusarium oxysporum triggers defense response and systemic resistance in tobacco. Biochem Biophys Res Commun 2019; 514:1074-1080. [PMID: 31097222 DOI: 10.1016/j.bbrc.2019.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 11/20/2022]
Abstract
In recent years, it is a hotspot research field on interaction mechanism between elicitor and plant. In this study, a novel hypersensitive response (HR)-inducing protein elicitor was isolated from the culture filtrate of Fusarium oxysporum f. sp. cubense and named PeFOC1, which consisted of 321 amino acids with a molecular weight of approximately 35 kDa. After the inducible expression in Escherichia coli and purification by ÄKTA explore system, the recombinant PeFOC1 also triggered a typical HR in tobacco. In addition, PeFOC1 induced a cascade of defense response in tobacco including production of hydrogen peroxide, deposition of callose, and accumulation of phenolic compounds. Moreover, PeFOC1 significantly improved systemic resistance of tobacco seedlings to tobacco mosaic virus and Pseudomonas syringae pv. tabaci. Real-time quantitative-PCR analysis indicated that several defense-related genes in tobacco, such as NtPR1a, NtNPR1, NtPAL, NtEDS1, NtPDF, and NtLOX, were all up-regulated by the treatment of PeFOC1. All these results collectively demonstrated that PeFOC1 triggered defense response and systemic acquired resistance (SAR) in tobacco. This research not only provides further research on immune mechanism between plant and elicitor, but also sheds new light on strategy for biocontrol in the future.
Collapse
Affiliation(s)
- Songwei Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, Institute of Tropical Agriculture and Forestry, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China; School of Resources and Environment Science, Henan Institute of Science and Technology, East Section of Hualan Avenue, Xinxiang, 453003, China
| | - Haizhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, NO.12 Zhong guan cun South Street, Beijing, 100082, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, NO.12 Zhong guan cun South Street, Beijing, 100082, China
| | - Mingwang Shi
- School of Resources and Environment Science, Henan Institute of Science and Technology, East Section of Hualan Avenue, Xinxiang, 453003, China.
| | - Qianhua Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, Institute of Tropical Agriculture and Forestry, Hainan University, No. 58 Renmin Avenue, Haikou, 570228, China.
| |
Collapse
|
74
|
Deremetz A, Le Roux C, Idir Y, Brousse C, Agorio A, Gy I, Parker JE, Bouché N. Antagonistic Actions of FPA and IBM2 Regulate Transcript Processing from Genes Containing Heterochromatin. PLANT PHYSIOLOGY 2019; 180:392-403. [PMID: 30814131 PMCID: PMC6501070 DOI: 10.1104/pp.18.01106] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/21/2019] [Indexed: 05/06/2023]
Abstract
Repressive epigenetic marks, such as DNA and histone methylation, are sometimes located within introns. In Arabidopsis (Arabidopsis thaliana), INCREASE IN BONSAI METHYLATION2 (IBM2), an RNA-binding protein containing a bromo-adjacent homology domain, is required to process functional transcript isoforms of genes carrying intronic heterochromatin. In a genetic screen for suppressors of the ibm2 mutation, we identified FPA, an RNA-binding protein that promotes use of proximal polyadenylation sites in genes targeted by IBM2, including IBM1 encoding an essential H3K9 histone demethylase and the disease resistance gene RECOGNITION OF PERONOSPORA PARASITICA7 Both IBM2 and FPA are involved in the processing of their common mRNA targets: Transcription of IBM2 target genes is restored when FPA is mutated in ibm2 and impaired in transgenic plants overexpressing FPA By contrast, transposons targeted by IBM2 and localized outside introns are not under this antagonistic control. The DNA methylation patterns of some genes and transposons are modified in fpa plants, including the large intron of IBM1, but these changes are rather limited and reversed when the mutant is complemented, indicating that FPA has a restricted role in mediating silencing. These data reveal a complex regulation by IBM2 and FPA pathways in processing mRNAs of genes bearing heterochromatic marks.
Collapse
Affiliation(s)
- Aurélie Deremetz
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Clémentine Le Roux
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Yassir Idir
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Cécile Brousse
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Astrid Agorio
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Isabelle Gy
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| | - Jane E Parker
- Max-Planck Institute for Plant Breeding Research, Department of Plant-Microbe Interactions, D-50829 Cologne, Germany
| | - Nicolas Bouché
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique, 78000 Versailles, France
| |
Collapse
|
75
|
Wang X, Du Y, Yu D. Trehalose phosphate synthase 5-dependent trehalose metabolism modulates basal defense responses in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:509-527. [PMID: 30058771 DOI: 10.1111/jipb.12704] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Despite the recent discovery that trehalose synthesis is important for plant development and abiotic stress tolerance, the effects of trehalose on biotic stress responses remain relatively unknown. In this study, we demonstrate that TREHALOSE PHOSPHATE SYNTHASE 5 (TPS5)-dependent trehalose metabolism regulates Arabidopsis thaliana defenses against pathogens (necrotrophic Botrytis cinerea and biotrophic Pseudomonas syringae). Pathogen infection increased trehalose levels and upregulated TPS5 expression. Application of exogenous trehalose significantly improved plant defenses against B. cinerea, but increased the susceptibility of plants to P. syringae. We demonstrate that elevated trehalose biosynthesis, in transgenic plants over-expressing TPS5, also increased the susceptibility to P. syringae, but decreased the disease symptoms caused by B. cinerea. The knockout of TPS5 prevented the accumulation of trehalose and enhanced defense responses against P. syringae. Additionally, we observed that a TPS5-interacting protein (multiprotein bridging factor 1c) was required for induced expression of TPS5 during pathogen infections. Furthermore, we show that trehalose promotes P. syringae growth and disease development, via a mechanism involving suppression of the plant defense gene, Pathogenesis-Related Protein 1. These findings provide insight into the function of TPS5-dependent trehalose metabolism in plant basal defense responses.
Collapse
Affiliation(s)
- Xuelan Wang
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Du
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Plant Resources and Sustainable Use,, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
76
|
Brulé D, Villano C, Davies LJ, Trdá L, Claverie J, Héloir M, Chiltz A, Adrian M, Darblade B, Tornero P, Stransfeld L, Boutrot F, Zipfel C, Dry IB, Poinssot B. The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:812-825. [PMID: 30256508 PMCID: PMC6419575 DOI: 10.1111/pbi.13017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/23/2018] [Indexed: 05/05/2023]
Abstract
Chitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM-RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM-RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin-induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1-1, -2, or -3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1-1 and VvLYK1-2 participate in chitin- and chitosan-triggered immunity and that VvLYK1-1 plays an important role in basal resistance against E. necator.
Collapse
Affiliation(s)
- Daphnée Brulé
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | | | - Laura J. Davies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)AdelaideSAAustralia
| | - Lucie Trdá
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Justine Claverie
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Marie‐Claire Héloir
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Annick Chiltz
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Marielle Adrian
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | | | - Pablo Tornero
- Instituto de Biología Molecular y Celular de PlantasUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasValenciaSpain
| | | | | | - Cyril Zipfel
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Ian B. Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)AdelaideSAAustralia
| | - Benoit Poinssot
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| |
Collapse
|
77
|
Sui W, Guo K, Li L, Liu S, Takano T, Zhang X. Arabidopsis Ca 2+-dependent nuclease AtCaN2 plays a negative role in plant responses to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:213-222. [PMID: 30824054 DOI: 10.1016/j.plantsci.2018.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/16/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Eukaryotic nucleases are involved in processes such as DNA restriction digestion, repair, recombination, transposition, and programmed cell death (PCD). Studies on the role of nucleases have mostly focused on PCD during plant development, while the information on nucleases involved in responses to different abiotic stress conditions remains limited. Here, we identified a Ca2+-dependent nuclease, AtCaN2, in Arabidopsis thaliana and characterized its activity, expression patterns, and involvement in plant responses to salt stress. AtCaN2 showed a dual endonuclease and exonuclease activity, being able to degrade circular plasmids, RNA, single-stranded DNA, and double-stranded DNA. Expression analysis showed that AtCaN2 was strongly induced in senescent siliques and by salt stress. Overexpression of AtCaN2 decreased the plant tolerance to salt stress conditions, leading to an excessive H2O2 accumulation. However, an atcan2 mutant showed better tolerance to salt stress and a lower level of H2O2 accumulation. Moreover, the expression of several genes (AtAPX1, AtGPX8, and AtSOD1), encoding reactive oxygen species-scavenging enzymes (ascorbate peroxidase 1, glutathione peroxidase 8, and superoxide dismutase 1, respectively), was highly induced in the atcan2 mutant under salt stress conditions. In addition, salt-stress-induced cell death was increased in the AtCaN2-overexpressing transgenic plant but decreased in the atcan2 mutant. On the basis of these findings, we conclude that AtCaN2 plays a negative role in plant tolerance to salt stress. A AtCaN2 knock out could reduce ROS accumulation, decrease ROS-induced PCD, and improve overall plant tolerance.
Collapse
Affiliation(s)
- Wenting Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Kunyuan Guo
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Li Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
78
|
Zhang M, Liu Y, Liu Z, Wang J, Gong M, Ge H, Li X, Yang Y, Zou Z. Hyper-acidic fusion minipeptides escort the intrinsic antioxidative ability of the pattern recognition receptor CRP in non-animal organisms. Sci Rep 2019; 9:3032. [PMID: 30816172 PMCID: PMC6395739 DOI: 10.1038/s41598-019-39388-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/18/2019] [Indexed: 01/15/2023] Open
Abstract
C-reactive protein (CRP) is widely used as a biomarker of inflammation. It plays important roles in innate immunity response as a member of pattern recognition receptors, by binding oxidation-specific epitopes including some intermediates of lipid oxidative chain reaction. The inferred antioxidative ability of CRP was ever demonstrated by only few in vitro evidences, and needs to be clarified especially in vivo. Herein, we expressed human CRP in three representative non-animal organisms (Escherichia coli, Saccharomyces cerevisiae, and tobacco) inherently lacking the milieu for CRP signalling, and found CRP did possess an intrinsic antioxidative ability. Heterologous CRP could confer increased oxidative resistance in its recombinant E. coli and yeast cells and transgenic tobaccos. We also revealed a positive correlation between the antioxidative effect of CRP and its solubility. Only soluble CRP could exhibit distinct antioxidative activity, while the CRP aggregates might be instead toxic (probably pro-oxidative) to cells. Moreover, fusion with hyper-acidic minipeptides could remarkably improve CRP solubility, and meanwhile guarantee or enhance CRP antioxidative ability. These results not only provide a new insight for understanding the etiology of CRP-involved inflammations and diseases, and also endorse a potential of CRP biotechnological applications in developing new pharmaceutical therapies and improving plant oxidative resistance.
Collapse
Affiliation(s)
- Mengru Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yanjuan Liu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Ming Gong
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China
| | - Hu Ge
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xufeng Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Zhurong Zou
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, School of Life Sciences, Yunnan Normal University, Kunming, 650500, China.
| |
Collapse
|
79
|
Chiesa MA, Roeschlin RA, Favaro MA, Uviedo F, Campos‐Beneyto L, D’Andrea R, Gadea J, Marano MR. Plant responses underlying nonhost resistance of Citrus limon against Xanthomonas campestris pv. campestris. MOLECULAR PLANT PATHOLOGY 2019; 20:254-269. [PMID: 30260546 PMCID: PMC6637874 DOI: 10.1111/mpp.12752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Citrus is an economically important fruit crop that is severely afflicted by citrus canker, a disease caused by Xanthomonas citri ssp. citri (X. citri); thus, new sustainable strategies to manage this disease are needed. Although all Citrus spp. are susceptible to this pathogen, they are resistant to other Xanthomonas species, exhibiting non-host resistance (NHR), for example, to the brassica pathogen X. campestris pv. campestris (Xcc) and a gene-for-gene host defence response (HDR) to the canker-causing X. fuscans ssp. aurantifolii (Xfa) strain C. Here, we examine the plant factors associated with the NHR of C. limon to Xcc. We show that Xcc induced asymptomatic type I NHR, allowing the bacterium to survive in a stationary phase in the non-host tissue. In C. limon, this NHR shared some similarities with HDR; both defence responses interfered with biofilm formation, and were associated with callose deposition, induction of the salicylic acid (SA) signalling pathway and the repression of abscisic acid (ABA) signalling. However, greater stomatal closure was seen during NHR than during HDR, together with different patterns of accumulation of reactive oxygen species and phenolic compounds and the expression of secondary metabolites. Overall, these differences, independent of Xcc type III effector proteins, could contribute to the higher protection elicited against canker development. We propose that Xcc may have the potential to steadily activate inducible defence responses. An understanding of these plant responses (and their triggers) may allow the development of a sustained and sustainable resistance to citrus canker.
Collapse
Affiliation(s)
- María A. Chiesa
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
- Laboratorio de Fisiología VegetalInstituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR)‐UNR/CONICETParque Villarino S/N, 2125 ZavallaSanta FeArgentina
| | - Roxana A. Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
- Facultad de Ciencias AgropecuariasUniversidad Católica de Santa FeLudueña 612, S3560DYR ReconquistaSanta FeArgentina
| | - María A. Favaro
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
- Facultad de Ciencias AgrariasUniversidad Nacional del LitoralProducción Vegetal, Kreder 2805, 3080 HOF EsperanzaSanta FeArgentina
| | - Facundo Uviedo
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
| | - Laura Campos‐Beneyto
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia‐C.S.I.CIngeniero Fausto Elio, S/N46022ValenciaEspaña
| | - Rodrigo D’Andrea
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia‐C.S.I.CIngeniero Fausto Elio, S/N46022ValenciaEspaña
| | - María R. Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)—Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Ocampo y Esmeralda S/NS2002LRKRosarioArgentina
- Área Virología, Facultad de Ciencias Bioquímicas y FarmacéuticasUniversidad Nacional de Rosario (UNR)Suipacha 590S2002LRKRosarioArgentina
| |
Collapse
|
80
|
Jalil SU, Zahera M, Khan MS, Ansari MI. Biochemical synthesis of gold nanoparticles from leaf protein of Nicotiana tabacum L. cv. xanthi and their physiological, developmental, and ROS scavenging responses on tobacco plant under stress conditions. IET Nanobiotechnol 2019; 13:23-29. [PMID: 30964033 PMCID: PMC8676148 DOI: 10.1049/iet-nbt.2018.5148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/01/2018] [Accepted: 07/16/2018] [Indexed: 08/06/2023] Open
Abstract
The stress conditions imposed by the impact of metal and non-metal oxide nanoparticles over plant systems enhances the synthesis of reactive oxygen species (ROS), resulting in oxidative damage at cellular level. The objective of this study was to synthesise the gold nanoparticles (GNps) from the leaves protein of Nicotiana tabacum L. cv. xanthi, its characterisation, and response on plant physiology and ROS scavenging activity on plants after exposure to different stresses. The authors have treated N. tabacum L. cv. xanthi plants with 100, 200, 300, 400, and 500 ppm biochemically synthesised GNps and examined physiological as well as biochemical changes. Results showed that biochemically synthesised GNps exposure significantly increased the seed germination (P < 0.001), root (P < 0.001), shoot growth (P < 0.001), and antioxidant ability (P < 0.05) of plants depending on bioengineered GNPs concentrations. Low concentrations (200-300 ppm) of GNps boosted growth by ∼50% and significantly increase in photosynthetic parameters such as total chlorophyll content (P < 0.05), membrane ion leakage (P < 0.05) as well as malondialdehyde (P < 0.05) content with respect to untreated plants under stress conditions. The high concentration (400-500 ppm) of GNps affected these parameters in a negative manner. The total antioxidant activity was also elevated in the exposed plants in a dose-dependent manner.
Collapse
Affiliation(s)
- Syed Uzma Jalil
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Manaal Zahera
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohd Sajid Khan
- Nanomedicine and Nanobiotechnology Lab, Department of Biosciences, Integral University, Lucknow, India
| | - Mohammad Israil Ansari
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India.
| |
Collapse
|
81
|
Furci L, Jain R, Stassen J, Berkowitz O, Whelan J, Roquis D, Baillet V, Colot V, Johannes F, Ton J. Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. eLife 2019; 8:40655. [PMID: 30608232 PMCID: PMC6342528 DOI: 10.7554/elife.40655] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
Variation in DNA methylation enables plants to inherit traits independently of changes to DNA sequence. Here, we have screened an Arabidopsis population of epigenetic recombinant inbred lines (epiRILs) for resistance against Hyaloperonospora arabidopsidis (Hpa). These lines share the same genetic background, but show variation in heritable patterns of DNA methylation. We identified four epigenetic quantitative trait loci (epiQTLs) that provide quantitative resistance without reducing plant growth or resistance to other (a)biotic stresses. Phenotypic characterisation and RNA-sequencing analysis revealed that Hpa-resistant epiRILs are primed to activate defence responses at the relatively early stages of infection. Collectively, our results show that hypomethylation at selected pericentromeric regions is sufficient to provide quantitative disease resistance, which is associated with genome-wide priming of defence-related genes. Based on comparisons of global gene expression and DNA methylation between the wild-type and resistant epiRILs, we discuss mechanisms by which the pericentromeric epiQTLs could regulate the defence-related transcriptome. In plants, animals and microbes genetic information is encoded by DNA, which are made up of sequences of building blocks, called nucleotide bases. These sequences can be separated into sections known as genes that each encode specific traits. It was previously thought that only changes to the sequence of bases in a DNA molecule could alter the traits passed on to future generations. However, it has recently become clear that some traits can also be inherited through modifications to the DNA that do not alter its sequence. One such modification is to attach a tag, known as a methyl group, to a nucleotide base known as cytosine. These methyl tags can be added to, or removed from, DNA to create different patterns of methylation. Previous studies have shown that plants whose DNA is less methylated than normal (‘hypo-methylated’) are more resistant to plant diseases. However, the location and identity of the hypo-methylated DNA regions controlling this resistance remained unknown. To address this problem, Furci, Jain et al. studied how DNA methylation in a small weed known as Arabidopsis thaliana affects how well the plants can resist a disease known as downy mildew. Furci, Jain et al. studied a population of over 100 A. thaliana lines that have the same DNA sequences but different patterns of DNA methylation. The experiments identified four DNA locations that were less methylated in lines with enhanced resistance to downy mildew. Importantly, this form of resistance did not appear to reduce how well the plants grew, or make them less able to resist other diseases or environmental stresses. The results of further experiments suggested that reduced methylation at the four DNA regions prime the plant’s immune system, enabling a faster and stronger activation of a multitude of defence genes across the genome after attack by downy mildew. The next steps following on from this work are to investigate exactly how the four DNA regions with reduced methylation can prime so many different defence genes in the plant. Further research is also needed to determine whether it is possible to breed crop plants with lower levels of methylation at specific DNA locations to improve disease resistance, but without decreasing the amount and quality of food produced.
Collapse
Affiliation(s)
- Leonardo Furci
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Ritushree Jain
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Joost Stassen
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - James Whelan
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Melbourne, Australia
| | - David Roquis
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Victoire Baillet
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Vincent Colot
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), PSL Université Paris, Paris, France
| | - Frank Johannes
- Department of Plant Sciences, Technical University of Munich, Freising, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Jurriaan Ton
- P3 Centre for Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
82
|
Liu J, Chang X, Ding B, Zhong S, Peng L, Wei Q, Meng J, Yu Y. PhDHS Is Involved in Chloroplast Development in Petunia. FRONTIERS IN PLANT SCIENCE 2019; 10:284. [PMID: 30930919 PMCID: PMC6424912 DOI: 10.3389/fpls.2019.00284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/20/2019] [Indexed: 05/06/2023]
Abstract
Deoxyhypusine synthase (DHS) is encoded by a nuclear gene and is the key enzyme involved in the post-translational activation of the eukaryotic translation initiation factor eIF5A. DHS plays important roles in plant growth and development. To gain a better understanding of DHS, the petunia (Petunia hybrida) PhDHS gene was isolated, and the role of PhDHS in plant growth was analyzed. PhDHS protein was localized to the nucleus and cytoplasm. Virus-mediated PhDHS silencing caused a sectored chlorotic leaf phenotype. Chlorophyll levels and photosystem II activity were reduced, and chloroplast development was abnormal in PhDHS-silenced leaves. In addition, PhDHS silencing resulted in extended leaf longevity and thick leaves. A proteome assay revealed that 308 proteins are upregulated and 266 proteins are downregulated in PhDHS-silenced plants compared with control, among the latter, 21 proteins of photosystem I and photosystem II and 12 thylakoid (thylakoid lumen and thylakoid membrane) proteins. In addition, the mRNA level of PheIF5A-1 significantly decreased in PhDHS-silenced plants, while that of another three PheIF5As were not significantly affected in PhDHS-silenced plants. Thus, silencing of PhDHS affects photosynthesis presumably as an indirect effect due to reduced expression of PheIF5A-1 in petunia. Significance: PhDHS-silenced plants develop yellow leaves and exhibit a reduced level of photosynthetic pigment in mesophyll cells. In addition, arrested development of chloroplasts is observed in the yellow leaves.
Collapse
|
83
|
Fahlberg P, Buhot N, Johansson ON, Andersson MX. Involvement of lipid transfer proteins in resistance against a non-host powdery mildew in Arabidopsis thaliana. MOLECULAR PLANT PATHOLOGY 2019; 20:69-77. [PMID: 30102837 PMCID: PMC6430466 DOI: 10.1111/mpp.12740] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Non-specific lipid transfer proteins (LTPs) are involved in the transport of lipophilic compounds to the cuticular surface in epidermal cells and in the defence against pathogens. The role of glycophosphatidylinositol (GPI)-anchored LTPs (LTPGs) in resistance against non-host mildews in Arabidopsis thaliana was investigated using reverse genetics. Loss of either LTPG1, LTPG2, LTPG5 or LTPG6 increased the susceptibility to penetration of the epidermal cell wall by Blumeria graminis f. sp. hordei (Bgh). However, no impact on pre-penetration defence against another non-host mildew, Erysiphe pisi (Ep), was observed. LTPG1 was localized to papillae at the sites of Bgh penetration. This study shows that, in addition to the previously known functions, LTPGs contribute to pre-invasive defence against certain non-host powdery mildew pathogens.
Collapse
Affiliation(s)
- Per Fahlberg
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Nathalie Buhot
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Oskar N. Johansson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| | - Mats X. Andersson
- Department of Biology and Environmental SciencesUniversity of GothenburgGothenburgSE‐405 30GöteborgSweden
| |
Collapse
|
84
|
Sierla M, Hõrak H, Overmyer K, Waszczak C, Yarmolinsky D, Maierhofer T, Vainonen JP, Salojärvi J, Denessiouk K, Laanemets K, Tõldsepp K, Vahisalu T, Gauthier A, Puukko T, Paulin L, Auvinen P, Geiger D, Hedrich R, Kollist H, Kangasjärvi J. The Receptor-like Pseudokinase GHR1 Is Required for Stomatal Closure. THE PLANT CELL 2018; 30:2813-2837. [PMID: 30361234 PMCID: PMC6305979 DOI: 10.1105/tpc.18.00441] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/18/2018] [Indexed: 05/18/2023]
Abstract
Guard cells control the aperture of stomatal pores to balance photosynthetic carbon dioxide uptake with evaporative water loss. Stomatal closure is triggered by several stimuli that initiate complex signaling networks to govern the activity of ion channels. Activation of SLOW ANION CHANNEL1 (SLAC1) is central to the process of stomatal closure and requires the leucine-rich repeat receptor-like kinase (LRR-RLK) GUARD CELL HYDROGEN PEROXIDE-RESISTANT1 (GHR1), among other signaling components. Here, based on functional analysis of nine Arabidopsis thaliana ghr1 mutant alleles identified in two independent forward-genetic ozone-sensitivity screens, we found that GHR1 is required for stomatal responses to apoplastic reactive oxygen species, abscisic acid, high CO2 concentrations, and diurnal light/dark transitions. Furthermore, we show that the amino acid residues of GHR1 involved in ATP binding are not required for stomatal closure in Arabidopsis or the activation of SLAC1 anion currents in Xenopus laevis oocytes and present supporting in silico and in vitro evidence suggesting that GHR1 is an inactive pseudokinase. Biochemical analyses suggested that GHR1-mediated activation of SLAC1 occurs via interacting proteins and that CALCIUM-DEPENDENT PROTEIN KINASE3 interacts with GHR1. We propose that GHR1 acts in stomatal closure as a scaffolding component.
Collapse
Affiliation(s)
- Maija Sierla
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Kirk Overmyer
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Cezary Waszczak
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Tobias Maierhofer
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Julia P Vainonen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | | | | | - Kadri Tõldsepp
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Triin Vahisalu
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Adrien Gauthier
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Tuomas Puukko
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, FI-00014 Helsinki, Finland
| | - Dietmar Geiger
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Rainer Hedrich
- Institute for Molecular Plant Physiology and Biophysics, Biocenter, University of Würzburg, D-97082 Würzburg, Germany
| | - Hannes Kollist
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Jaakko Kangasjärvi
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, and Viikki Plant Science Centre, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
85
|
Chen YE, Mao JJ, Sun LQ, Huang B, Ding CB, Gu Y, Liao JQ, Hu C, Zhang ZW, Yuan S, Yuan M. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. PHYSIOLOGIA PLANTARUM 2018; 164:349-363. [PMID: 29633289 DOI: 10.1111/ppl.12737] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/14/2018] [Accepted: 03/23/2018] [Indexed: 05/20/2023]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is an important biological hormone in many abiotic stress responses and developmental processes. In this study, the protective roles of melatonin were investigated by measuring the antioxidant defense system and photosynthetic characteristics in maize under salt stress. The results indicated that NaCl treatment led to the decrease in plant growth, chlorophyll contents and photochemical activity of photosystem II (PSII). However, the levels of reactive oxygen species increased significantly under salt stress. Meanwhile, we found that application of exogenous melatonin alleviated reactive oxygen species burst and protected the photosynthetic activity in maize seedlings under salt stress through the activation of antioxidant enzymes. In addition, 100 μM melatonin-treated plants showed high photosynthetic efficiency and salinity. Immunoblotting analysis of PSII proteins showed that melatonin application alleviated the decline of 34 kDa PSII reaction center protein (D1) and the increase of PSII subunit S protein. Taken together, our study promotes more comprehensive understanding in the protective effects of exogenous melatonin in maize under salt stress, and it may be involved in activation of antioxidant enzymes and regulation of PSII proteins.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jing-Jing Mao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Liang-Qi Sun
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Bo Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chun-Bang Ding
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jin-Qiu Liao
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Chao Hu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhong-Wei Zhang
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shu Yuan
- College of Resources Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| |
Collapse
|
86
|
Herz K, Dietz S, Gorzolka K, Haider S, Jandt U, Scheel D, Bruelheide H. Linking root exudates to functional plant traits. PLoS One 2018; 13:e0204128. [PMID: 30281675 PMCID: PMC6169879 DOI: 10.1371/journal.pone.0204128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 09/03/2018] [Indexed: 12/27/2022] Open
Abstract
Primary and secondary metabolites exuded by plant roots have mainly been studied under laboratory conditions, while knowledge of root exudate patterns of plants growing in natural communities is very limited. Focusing on ten common European grassland plant species, we asked to which degree exuded metabolite compositions are specific to species or growth forms (forbs and grasses), depend on environments and local neighbourhoods, and reflect traditional plant functional traits. Root exudates were collected under field conditions and analysed using a non-targeted gas chromatography coupled mass spectrometry (GC-MS) approach. In total, we annotated 153 compounds of which 36 were identified by structure and name as metabolites mainly derived from the primary metabolism. Here we show by using variance partitioning, that the composition of exuded polar metabolites was mostly explained by plot identity, followed by plant species identity while plant species composition of the local neighbourhood played no role. Total and root dry biomass explained the largest proportion of variance in exudate composition, with additional variance explained by traditional plant traits. Although the exudate composition was quite similar between the two growth forms, we found some metabolites that occurred only in one of the two growth forms. Our study demonstrated the feasibility of measuring polar exudates under non-sterile field conditions by mass spectrometry, which opens new avenues of research for functional plant ecology.
Collapse
Affiliation(s)
- Katharina Herz
- Martin Luther University Halle-Wittenberg, Institute of Biology / Geobotany and Botanical Garden, Halle (Saale), Germany
| | - Sophie Dietz
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Karin Gorzolka
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Sylvia Haider
- Martin Luther University Halle-Wittenberg, Institute of Biology / Geobotany and Botanical Garden, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Ute Jandt
- Martin Luther University Halle-Wittenberg, Institute of Biology / Geobotany and Botanical Garden, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Dierk Scheel
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Helge Bruelheide
- Martin Luther University Halle-Wittenberg, Institute of Biology / Geobotany and Botanical Garden, Halle (Saale), Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
87
|
Tomczynska I, Stumpe M, Mauch F. A conserved RxLR effector interacts with host RABA-type GTPases to inhibit vesicle-mediated secretion of antimicrobial proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:187-203. [PMID: 29671919 DOI: 10.1111/tpj.13928] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 05/20/2023]
Abstract
Plant pathogens of the oomycete genus Phytophthora produce virulence factors, known as RxLR effector proteins that are transferred into host cells to suppress disease resistance. Here, we analyse the function of the highly conserved RxLR24 effector of Phytophthora brassicae. RxLR24 was expressed early in the interaction with Arabidopsis plants and ectopic expression in the host enhanced leaf colonization and zoosporangia formation. Co-immunoprecipitation (Co-IP) experiments followed by mass spectrometry identified different members of the RABA GTPase family as putative RxLR24 targets. Physical interaction of RxLR24 or its homologue from the potato pathogen Phytophthora infestans with different RABA GTPases of Arabidopsis or potato, respectively, was confirmed by reciprocal Co-IP. In line with the function of RABA GTPases in vesicular secretion, RxLR24 co-localized with RABA1a to vesicles and the plasma membrane. The effect of RxLR24 on the secretory process was analysed with fusion constructs of secreted antimicrobial proteins with a pH-sensitive GFP tag. PATHOGENESIS RELATED PROTEIN 1 (PR-1) and DEFENSIN (PDF1.2) were efficiently exported in control tissue, whereas in the presence of RxLR24 they both accumulated in the endoplasmic reticulum. Together our results imply a virulence function of RxLR24 effectors as inhibitors of RABA GTPase-mediated vesicular secretion of antimicrobial PR-1, PDF1.2 and possibly other defence-related compounds.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, chemin du musée 10, 1700, Fribourg, Switzerland
| |
Collapse
|
88
|
Rahnama M, Johnson RD, Voisey CR, Simpson WR, Fleetwood DJ. The Global Regulatory Protein VelA Is Required for Symbiosis Between the Endophytic Fungus Epichloë festucae and Lolium perenne. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:591-604. [PMID: 29315021 DOI: 10.1094/mpmi-11-17-0286-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Epichloë species fungi form bioprotective endophytic symbioses with many cool-season grasses, including agriculturally important forage grasses. Despite its importance, relatively little is known about the molecular details of the interaction and the regulatory genes involved. The conserved velvet-domain protein VelA (or VeA) is a global regulator of a number of cellular and developmental functions in fungi. In this study, the E. festucae velA gene was functionally characterized in vitro and during interaction with perennial ryegrass. The velA gene is required in E. festucae for resistance to osmotic and cell wall-damaging stresses, repression of conidiation, and normal hyphal morphology during nutrient-limited in-vitro conditions. Expression of velA in E. festucae is light- and nitrogen-dependent and is tissue-specific in mature infected plants. In-planta studies showed that velA is required in E. festucae for a compatible interaction. Inoculating seedlings with mutant ΔvelA induced callose deposition and H2O2 production, and a high level of seedling death was observed. In surviving plants infected with ΔvelA mutant fungi, plants were stunted and we observed increased biomass and invasion of vascular bundles. Overall, this work characterizes a key fungal regulatory factor in this increasingly important model symbiotic association.
Collapse
Affiliation(s)
- M Rahnama
- 1 AgResearch, Grasslands Research Centre, Palmerston North, New Zealand; and
- 2 School of Biological Sciences, University of Auckland, New Zealand
| | - R D Johnson
- 1 AgResearch, Grasslands Research Centre, Palmerston North, New Zealand; and
| | - C R Voisey
- 1 AgResearch, Grasslands Research Centre, Palmerston North, New Zealand; and
| | - W R Simpson
- 1 AgResearch, Grasslands Research Centre, Palmerston North, New Zealand; and
| | - D J Fleetwood
- 1 AgResearch, Grasslands Research Centre, Palmerston North, New Zealand; and
| |
Collapse
|
89
|
Zhang ZW, Li MX, Huang B, Feng LY, Wu F, Fu YF, Zheng XJ, Peng HQ, Chen YE, Yang HN, Wu LT, Yuan M, Yuan S. Nitric oxide regulates chlorophyllide biosynthesis and singlet oxygen generation differently between Arabidopsis and barley. Nitric Oxide 2018; 76:6-15. [PMID: 29510200 DOI: 10.1016/j.niox.2018.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/30/2018] [Accepted: 03/01/2018] [Indexed: 11/19/2022]
Abstract
Nitric oxide (NO) has a general inhibitory effects on chlorophyll biosynthesis, especially to the step of 5-aminolevulinic acid (ALA) biosynthesis and protochlorophyllide (Pchlide) to chlorophyllide (Chlide) conversion (responsible by the NADPH:Pchlide oxidoreductase POR). Previous study suggested that barley large POR aggregates may be generated by dithiol oxidation of cysteines of two POR monomers, which can be disconnected by some reducing agents. POR aggregate assembly may be correlated with seedling greening in barley, but not in Arabidopsis. Thus, NO may affect POR activity and seedling greening differently between Arabidopsis and barley. We proved this assumption by non-denaturing gel-analysis and reactive oxygen species (ROS) monitoring during the greening. NO treatments cause S-nitrosylation to POR cysteine residues and disassembly of POR aggregates. This modification reduces POR activity and induces Pchlide accumulation and singlet oxygen generation upon dark-to-high-light shift (and therefore inducing photobleaching lesions) in barley leaf apex, but not in Arabidopsis seedlings. ROS staining and ROS-related-gene expression detection confirmed that superoxide anion and singlet oxygen accumulated in barley etiolated seedlings after the NO treatments, when exposed to a fluctuating light. The data suggest that POR aggregate assembly may be correlated with barley chlorophyll biosynthesis and redox homeostasis during greening. Cysteine S-nitrosylation may be one of the key reasons for the NO-induced inhibition to chlorophyll biosynthetic enzymes.
Collapse
Affiliation(s)
- Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Meng-Xia Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Huang
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Ling-Yang Feng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Fan Wu
- Sichuan Provincial Academy of Natural Resource Sciences, Chengdu 610015, China
| | - Yu-Fan Fu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiao-Jian Zheng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Hong-Qian Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China
| | - Hai-Ning Yang
- Nanchong Academy of Agricultural Sciences, Nanchong 637000, China
| | - Lin-Tao Wu
- Rape Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550008, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an 625014, China.
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
90
|
Zou S, Wang H, Li Y, Kong Z, Tang D. The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. THE NEW PHYTOLOGIST 2018; 218:298-309. [PMID: 29281751 DOI: 10.1111/nph.14964] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Powdery mildew is one of the most devastating diseases of wheat. To date, few powdery mildew resistance genes have been cloned from wheat due to the size and complexity of the wheat genome. Triticum urartu is the progenitor of the A genome of wheat and is an important source for powdery mildew resistance genes. Using molecular markers designed from scaffolds of the sequenced T. urartu accession and standard map-based cloning, a powdery mildew resistance locus was mapped to a 356-kb region, which contains two nucleotide-binding and leucine-rich repeat domain (NB-LRR) protein-encoding genes. Virus-induced gene silencing, single-cell transient expression, and stable transformation assays demonstrated that one of these two genes, designated Pm60, confers resistance to powdery mildew. Overexpression of full-length Pm60 and two allelic variants in Nicotiana benthamiana leaves induced hypersensitive cell death response, but expression of the coiled-coil domain alone was insufficient to induce hypersensitive response. Yeast two-hybrid, bimolecular fluorescence complementation and luciferase complementation imaging assays showed that Pm60 protein interacts with its neighboring NB-containing protein, suggesting that they might be functionally related. The identification and cloning of this novel wheat powdery mildew resistance gene will facilitate breeding for disease resistance in wheat.
Collapse
Affiliation(s)
- Shenghao Zou
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huan Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiwen Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Development Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
91
|
Lai J, Jiang J, Wu Q, Mao N, Han D, Hu H, Yang C. The Transcriptional Coactivator ADA2b Recruits a Structural Maintenance Protein to Double-Strand Breaks during DNA Repair in Plants. PLANT PHYSIOLOGY 2018; 176:2613-2622. [PMID: 29463775 PMCID: PMC5884601 DOI: 10.1104/pp.18.00123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 06/01/2023]
Abstract
DNA damage occurs in all cells and can hinder chromosome stability and cell viability. Structural Maintenance of Chromosomes5/6 (SMC5/6) is a protein complex that functions as an evolutionarily conserved chromosomal ATPase critical for repairing DNA double-strand breaks (DSBs). However, the mechanisms regulating this complex in plants are poorly understood. Here, we identified the transcriptional coactivator ALTERATION/DEFICIENCY IN ACTIVATION2B (ADA2b) as an interactor of SMC5 in Arabidopsis (Arabidopsis thaliana). ADA2b is a conserved component of the Spt-Ada-Gcn5 acetyltransferase complex, which functions in transcriptional regulation. Characterization of mutant and knockdown Arabidopsis lines showed that disruption of either SMC5 or ADA2b resulted in enhanced DNA damage. Both SMC5 and ADA2b were associated with γ-H2AX, a marker of DSBs, and the recruitment of SMC5 onto DSBs was dependent on ADA2b. In addition, overexpression of SMC5 in the ada2b mutant background stimulated cell death. Collectively, our results show that the interaction between ADA2b and SMC5 mediates DNA repair in plant cells, suggesting a functional association between these conserved proteins and further elucidating mechanisms of DNA damage repair in plants.
Collapse
Affiliation(s)
- Jianbin Lai
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jieming Jiang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ning Mao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Danlu Han
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Huan Hu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Chengwei Yang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
92
|
The Arabidopsis thaliana Mediator subunit MED8 regulates plant immunity to Botrytis Cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor FAMA. PLoS One 2018. [PMID: 29513733 PMCID: PMC5841781 DOI: 10.1371/journal.pone.0193458] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The Mediator complex is at the core of transcriptional regulation and plays a central role in plant immunity. The MEDIATOR25 (MED25) subunit of Arabidopsis thaliana regulates jasmonate-dependent resistance to Botrytis cinerea through interacting with the basic helix-loop-helix (bHLH) transcription factor of jasmonate signaling, MYC2. Another Mediator subunit, MED8, acts independently or together with MED25 in plant immunity. However, unlike MED25, the underlying action mechanisms of MED8 in regulating B. cinerea resistance are still unknown. Here, we demonstrated that MED8 regulated plant immunity to B. cinerea through interacting with another bHLH transcription factor, FAMA, which was previously shown to control the final proliferation/differentiation switch during stomatal development. Our research demonstrates that FAMA is also an essential component of B. cinerea resistance. The fama loss-of-function mutants (fama-1 and fama-2) increased susceptibility to B. cinerea infection and reduced defense-gene expression. On the contrary, transgenic lines constitutively overexpressing FAMA showed opposite B. cinerea responses compared with the fama loss-of-function mutants. FAMA-overexpressed plants displayed enhanced resistance to B. cinerea infection and increased expression levels of defensin genes following B. cinerea treatment. Genetic analysis of MED8 and FAMA suggested that FAMA-regulated pathogen resistance was dependent on MED8. In addition, MED8 and FAMA were both associated with the G-box region in the promoter of ORA59. Our findings indicate that the MED8 subunit of the A. thaliana Mediator regulates plant immunity to B. cinerea through interacting with the transcription factor FAMA, which was discovered to be a key component in B. cinerea resistance.
Collapse
|
93
|
Woods-Tör A, Studholme DJ, Cevik V, Telli O, Holub EB, Tör M. A Suppressor/Avirulence Gene Combination in Hyaloperonospora arabidopsidis Determines Race Specificity in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:265. [PMID: 29545818 PMCID: PMC5838922 DOI: 10.3389/fpls.2018.00265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/14/2018] [Indexed: 05/23/2023]
Abstract
The pathosystem of Arabidopsis thaliana and diploid biotrophic oomycete Hyaloperonospora arabidopsidis (Hpa) has been a model for investigating the molecular basis of Flor's gene-for-gene hypothesis. The isolates Hpa-Noks1 and Hpa-Cala2 are virulent on Arabidopsis accession RMX-A02 whilst an F1 generated from a cross between these two isolates was avirulent. The F2 progeny segregated 3,1 (avirulent, virulent), indicating a single major effect AVR locus in this pathogen. SNP-based linkage mapping confirmed a single AVR locus within a 14 kb map interval containing two genes encoding putative effectors. The Hpa-Cala2 allele of one gene, designated H. arabidopsidiscryptic1 (HAC1), encodes a protein with a signal peptide and an RxLR/dEER motif, and triggers a defense response in RMX-A02. The second gene is heterozygous in Hpa-Cala2. One allele, designated Suppressor ofHAC1Cala2 (S-HAC1Cala2 ) encodes a protein with a signal peptide and a dKEE motif with no RxLR motif; the other allele (s-hac1Cala2 ) encodes a protein with a signal peptide, a dEEE motif and is divergent in sequence from the S-HAC1Cala2 allele. In selfed progeny from Hpa-Cala2, dominant S-HAC1Cala2 allele carrying progeny correlates with virulence in RMX-A02, whereas homozygous recessive s-hac1Cala2 carrying progeny were avirulent. Genetic investigations suggested other heterozygous suppressor loci might exist in the Hpa-Cala2 genome.
Collapse
Affiliation(s)
- Alison Woods-Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Volkan Cevik
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Osman Telli
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Eric B. Holub
- Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Mahmut Tör
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
94
|
Gao X, Cui Q, Cao QZ, Zhao YQ, Liu Q, He HB, Jia GX, Zhang DM. Evaluation of resistance to Botrytis elliptica in Lilium hybrid cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:392-399. [PMID: 29304484 DOI: 10.1016/j.plaphy.2017.12.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 05/28/2023]
Abstract
Gray mold disease, caused by the fungus Botrytis elliptica, is one of the major diseases affecting Lilium species, and it has become a limiting factor in the production of ornamental lilies. To support selecting and breeding Botrytis-resistant cultivars, a total of 50 Lilium cultivars belonging to seven hybrid types were evaluated using a detached leaf technique for resistance to B. elliptica. Through resistance evaluations, Oriental × Trumpet and Oriental hybrid cultivars were classified as resistant lines, while Asiatic and Trumpet hybrids were classified as susceptible lines. A highly resistant (HR) Oriental hybrid, 'Sorbonne', and a highly susceptible (HS) Asiatic hybrid, 'Tresor', were selected for further study of early host-parasite interactions. After infection, B. elliptica grew faster and more easily on the leaves of 'Tresor' than on those of 'Sorbonne' during initial infection; when 'Tresor' leaves were completely infected, only a few lesions were observed on 'Sorbonne' leaves. Biochemical differences between these two cultivars were found following inoculation with B. elliptica, as shown by studies of reactive oxygen species (ROS) and the enzymatic antioxidant system. Rapid accumulation of H2O2 and ·O2- to trigger a defense response was detected in HR 'Sorbonne'. Meanwhile, higher levels of antioxidant activity, including SOD, POD and CAT, were found in HR 'Sorbonne' than in HS 'Tresor' before 48 h post-inoculation, but antioxidant activity was reduced with subsequent infection progress. These large and timely increases in ROS and antioxidant activities could be the main contributors to the high resistance of the 'Sorbonne' cultivar.
Collapse
Affiliation(s)
- Xue Gao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Qi Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Qin-Zheng Cao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Yu-Qian Zhao
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Qiang Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Heng-Bin He
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China
| | - Gui-Xia Jia
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing 100083, PR China.
| | - Dong-Mei Zhang
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai Engineering Research Center of Landscaping on Challenging Urban Sites, Shanghai 200232, PR China,.
| |
Collapse
|
95
|
Mandal S, Rajarammohan S, Kaur J. Alternaria brassicae interactions with the model Brassicaceae member Arabidopsis thaliana closely resembles those with Mustard ( Brassica juncea). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:51-59. [PMID: 29398838 PMCID: PMC5787117 DOI: 10.1007/s12298-017-0486-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 10/04/2017] [Accepted: 11/07/2017] [Indexed: 05/18/2023]
Abstract
Alternaria leaf blight, a disease of oilseed Brassicas is caused by a necrotrophic phytopathogenic fungus Alternaria brassicae. The details of its pathogenesis and defence responses elicited in the host upon infection have not been thoroughly investigated. Here, Arabidopsis accession Gre-0 was identified to be highly susceptible to A. brassicae. A comparative histopathological analysis for disease progression and plant responses to A. brassicae in Arabidopsis and Brassica juncea revealed significant similarities between the two compatible pathosystems. Interestingly, in both the compatible hosts, ROS accumulation, cell death and callose deposition correlated with the development of the disease. Based on our results we propose that Arabidopsis-Alternaria brassicae can be an apt model pathosystem since it emulates the dynamics of the pathogen interaction with its natural host- Brassicas. The existing genetic diversity in Arabidopsis can be a starting point to screen for variation in responses to Alternaria leaf blight. Furthermore, several tools available for Arabidopsis can facilitate the dissection of genetic and molecular basis of resistance.
Collapse
Affiliation(s)
- Sayanti Mandal
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| | | | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, New Delhi, 110021 India
| |
Collapse
|
96
|
Imanifard Z, Vandelle E, Bellin D. Measurement of Hypersensitive Cell Death Triggered by Avirulent Bacterial Pathogens in Arabidopsis. Methods Mol Biol 2018; 1743:39-50. [PMID: 29332284 DOI: 10.1007/978-1-4939-7668-3_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hypersensitive response is one of the most powerful and complex defense reactions to survive to pathogen attacks during an incompatible plant-pathogen interaction. Local programmed cell death accompanies the hypersensitive response at the site of infection to prevent pathogen growth and spread. A precise quantitative assessment of this form of programmed cell death is essential to unravel the genetic and molecular mechanisms underlying the process. Here, we first describe the optimization of a Trypan Blue staining protocol for quantitatively measuring the HR-cell death in Arabidopsis. Furthermore, we provide an electrolyte leakage protocol based on pathogen vacuum infiltration, which allows its simultaneous application to a large number of plants as well as to Arabidopsis mutants affected by small size phenotype.
Collapse
Affiliation(s)
- Zahra Imanifard
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
97
|
Li Q, Wang W, Wang W, Zhang G, Liu Y, Wang Y, Wang W. Wheat F-Box Protein Gene TaFBA1 Is Involved in Plant Tolerance to Heat Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:521. [PMID: 29740462 PMCID: PMC5928245 DOI: 10.3389/fpls.2018.00521] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/04/2018] [Indexed: 05/03/2023]
Abstract
Adverse environmental conditions, including high temperature, often affect the growth and production of crops worldwide. F-box protein, a core component of the Skp1-Cullin-F-box (SCF) E3 ligase complex, plays an important role in abiotic stress responses. A previously cloned gene from wheat, TaFBA1, encodes a homologous F-box protein. A Yeast two-Hybrid (Y2H) assay showed that TaFBA1 interacted with other SCF proteins. We found that the expression of TaFBA1 could be induced by heat stress (45°C). Overexpression of TaFBA1 enhanced heat stress tolerance in transgenic tobacco, because growth inhibition was reduced and photosynthesis increased as compared with those in the wild type (WT) plants. Furthermore, the accumulation of H2O2, O2-, and carbonyl protein decreased and cell damage was alleviated in transgenic plants under heat stress, which resulted in less oxidative damage. However, the transgenic plants contained more enzymatic antioxidants after heat stress, which might be related to the regulation of some antioxidant gene expressions. The qRT-PCR analysis showed that the overexpression of TaFBA1 upregulated the expression of genes involved in reactive oxygen species (ROS) scavenging, proline biosynthesis, and abiotic stress responses. We identified the interaction of TaFBA1 with Triticum aestivum stress responsive protein 1 (TaASRP1) by Y2H assay and bimolecular fluorescence complementation (BiFC) assay. The results suggested that TaFBA1 may improve enzymatic antioxidant levels and regulate gene expression by interacting with other proteins, such as TaASRP1, which leads to the enhanced heat stress tolerance seen in the transgenic plants.
Collapse
|
98
|
Roeschlin RA, Favaro MA, Chiesa MA, Alemano S, Vojnov AA, Castagnaro AP, Filippone MP, Gmitter FG, Gadea J, Marano MR. Resistance to citrus canker induced by a variant of Xanthomonas citri ssp. citri is associated with a hypersensitive cell death response involving autophagy-associated vacuolar processes. MOLECULAR PLANT PATHOLOGY 2017; 18:1267-1281. [PMID: 27647752 PMCID: PMC6638218 DOI: 10.1111/mpp.12489] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/25/2016] [Accepted: 08/31/2016] [Indexed: 05/14/2023]
Abstract
Xanthomonas citri ssp. citri (X. citri) is the causal agent of Asiatic citrus canker, a disease that seriously affects most commercially important Citrus species worldwide. We have identified previously a natural variant, X. citri AT , that triggers a host-specific defence response in Citrus limon. However, the mechanisms involved in this canker disease resistance are unknown. In this work, the defence response induced by X. citri AT was assessed by transcriptomic, physiological and ultrastructural analyses, and the effects on bacterial biofilm formation were monitored in parallel. We show that X. citri AT triggers a hypersensitive response associated with the interference of biofilm development and arrest of bacterial growth in C. limon. This plant response involves an extensive transcriptional reprogramming, setting in motion cell wall reinforcement, the oxidative burst and the accumulation of salicylic acid (SA) and phenolic compounds. Ultrastructural analyses revealed subcellular changes involving the activation of autophagy-associated vacuolar processes. Our findings show the activation of SA-dependent defence in response to X. citri AT and suggest a coordinated regulation between the SA and flavonoid pathways, which is associated with autophagy mechanisms that control pathogen invasion in C. limon. Furthermore, this defence response protects C. limon plants from disease on subsequent challenges by pathogenic X. citri. This knowledge will allow the rational exploitation of the plant immune system as a biotechnological approach for the management of the disease.
Collapse
Affiliation(s)
- Roxana A. Roeschlin
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - María A. Favaro
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - María A. Chiesa
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico‐Químicas y NaturalesUniversidad Nacional de Río Cuarto, Ruta 36 Km. 601Río Cuarto X5804ZABCórdobaArgentina
| | - Adrián A. Vojnov
- Instituto de Ciencia y Tecnología Dr. Cesar MilsteinFundación Pablo Cassará‐CONICET, Saladillo 2468Ciudad de Buenos AiresC1440FFXArgentina
| | - Atilio P. Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITA‐NOA)Estación Experimental Agroindustrial Obispo Colombres (EEAOC)‐CONICET, Av. William Cross 3150Las TalitasTucumánT4101XACArgentina
| | - María P. Filippone
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITA‐NOA)Estación Experimental Agroindustrial Obispo Colombres (EEAOC)‐CONICET, Av. William Cross 3150Las TalitasTucumánT4101XACArgentina
| | - Frederick G. Gmitter
- Citrus Research and Education Center (CREC)University of Florida, 700 Experiment Station Rd.Lake AlfredFL33850USA
| | - José Gadea
- Instituto de Biología Molecular y Celular de Plantas (IBMCP)Universidad Politécnica de Valencia (UPV)‐Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Ed. 8E, C/Ingeniero Fausto Elio s/nValencia46022Spain
| | - María R. Marano
- Instituto de Biología Molecular y Celular de Rosario (IBR)–Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)Área Virología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda s/nRosarioS2000FHNArgentina
| |
Collapse
|
99
|
Matsui H, Nomura Y, Egusa M, Hamada T, Hyon GS, Kaminaka H, Watanabe Y, Ueda T, Trujillo M, Shirasu K, Nakagami H. The GYF domain protein PSIG1 dampens the induction of cell death during plant-pathogen interactions. PLoS Genet 2017; 13:e1007037. [PMID: 29073135 PMCID: PMC5657617 DOI: 10.1371/journal.pgen.1007037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/20/2017] [Indexed: 11/19/2022] Open
Abstract
The induction of rapid cell death is an effective strategy for plants to restrict biotrophic and hemi-biotrophic pathogens at the infection site. However, activation of cell death comes at a high cost, as dead cells will no longer be available for defense responses nor general metabolic processes. In addition, necrotrophic pathogens that thrive on dead tissue, take advantage of cell death-triggering mechanisms. Mechanisms by which plants solve this conundrum remain described. Here, we identify PLANT SMY2-TYPE ILE-GYF DOMAIN-CONTAINING PROTEIN 1 (PSIG1) and show that PSIG1 helps to restrict cell death induction during pathogen infection. Inactivation of PSIG1 does not result in spontaneous lesions, and enhanced cell death in psig1 mutants is independent of salicylic acid (SA) biosynthesis or reactive oxygen species (ROS) production. Moreover, PSIG1 interacts with SMG7, which plays a role in nonsense-mediated RNA decay (NMD), and the smg7-4 mutant allele mimics the cell death phenotype of the psig1 mutants. Intriguingly, the psig1 mutants display enhanced susceptibility to the hemi-biotrophic bacterial pathogen. These findings point to the existence and importance of the SA- and ROS-independent cell death constraining mechanism as a part of the plant immune system. Programmed cell death (PCD) has crucial roles in development and immunity in multicellular organisms. In plants, rapid PCD induction, so-called hypersensitive response (HR) cell death, can be triggered as a part of immune system, and plays an important role in restricting pathogen growth. Despite its importance, cell death induction can backfire on plants because of the diversified infection strategies of plant pathogens. It is therefore assumed that plants have mechanisms by which they are able to minimize PCD induction during plant-pathogen interactions. However, their existence and biological significance are not clear yet. Here, we demonstrate that PSIG1, which has the GYF domain that is highly conserved among diverse eukaryotic species, restricts cell death induction during pathogen invasions. Importantly, psig1 mutants do not display autoimmune phenotypes, and are more susceptible to the virulent bacterial pathogen. Our findings suggest that the restriction of cell death can have benefits for plants to defend themselves against hemi-biotrophic bacterial pathogen infections. We further provide evidence suggesting a mechanism by which PSIG1 may contain cell death by regulating the RNA metabolism machinery.
Collapse
Affiliation(s)
- Hidenori Matsui
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuko Nomura
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayumi Egusa
- Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Takahiro Hamada
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Gang-Su Hyon
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
- Japan Science and Technology Agency (JST), PRESTO, Kawaguchi, Japan
| | - Marco Trujillo
- Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hirofumi Nakagami
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- * E-mail:
| |
Collapse
|
100
|
Chen YE, Cui JM, Su YQ, Zhang CM, Ma J, Zhang ZW, Yuan M, Liu WJ, Zhang HY, Yuan S. Comparison of phosphorylation and assembly of photosystem complexes and redox homeostasis in two wheat cultivars with different drought resistance. Sci Rep 2017; 7:12718. [PMID: 28983110 PMCID: PMC5629198 DOI: 10.1038/s41598-017-13145-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/19/2017] [Indexed: 12/31/2022] Open
Abstract
Reversible phosphorylation of proteins and the assembly of thylakoid complexes are the important protective mechanism against environmental stresses in plants. This research was aimed to investigate the different responses of the antioxidant defense system and photosystem II (PSII) to osmotic stress between drought-resistant and drought-susceptible wheat cultivars. Results showed that the decrease in PSII photochemistry and six enzyme activities was observed in drought-susceptible wheat compared with drought-resistant wheat under osmotic stress. In addition, a lower accumulation of reactive oxygen species (ROS) and cell death were found in the resistant wheat compared with the susceptible wheat under osmotic stress. Western blot analysis revealed that osmotic stress led to a remarkable decline in the steady state level of D1 protein in drought-susceptible wheat. However, the CP29 protein was strongly phosphorylated in drought-resistant wheat compared with the susceptible wheat under osmotic stress. Our results also showed that drought-resistant wheat presented higher phosphorylated levels of the light-harvesting complex II (LHCII), D1, and D2 proteins and a more rapid dephosphorylated rate than drought-susceptible wheat under osmotic stress. Furthermore, the PSII-LHCII supercomplexes and LHCII trimers were more rapidly disassembled in drought-susceptible wheat than the drought-resistant wheat under osmotic stress. These findings provide that reversible phosphorylation of thylakoid membrane proteins and assembly of thylakoid membrane complexes play important roles in plant adaptation to environmental stresses.
Collapse
Affiliation(s)
- Yang-Er Chen
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| | - Jun-Mei Cui
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan University, Chengdu, 610064, China
| | - Chao-Ming Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jie Ma
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Wen-Juan Liu
- Center of Analysis and Testing, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Huai-Yu Zhang
- College of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|