51
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
52
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
53
|
Grant A, Metzger GJ, Van de Moortele PF, Adriany G, Olman C, Zhang L, Koopermeiners J, Eryaman Y, Koeritzer M, Adams ME, Henry TR, Uğurbil K. 10.5 T MRI static field effects on human cognitive, vestibular, and physiological function. Magn Reson Imaging 2020; 73:163-176. [PMID: 32822819 DOI: 10.1016/j.mri.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/21/2020] [Accepted: 08/14/2020] [Indexed: 01/18/2023]
Abstract
PURPOSE To perform a pilot study to quantitatively assess cognitive, vestibular, and physiological function during and after exposure to a magnetic resonance imaging (MRI) system with a static field strength of 10.5 Tesla at multiple time scales. METHODS A total of 29 subjects were exposed to a 10.5 T MRI field and underwent vestibular, cognitive, and physiological testing before, during, and after exposure; for 26 subjects, testing and exposure were repeated within 2-4 weeks of the first visit. Subjects also reported sensory perceptions after each exposure. Comparisons were made between short and long term time points in the study with respect to the parameters measured in the study; short term comparison included pre-vs-isocenter and pre-vs-post (1-24 h), while long term compared pre-exposures 2-4 weeks apart. RESULTS Of the 79 comparisons, 73 parameters were unchanged or had small improvements after magnet exposure. The exceptions to this included lower scores on short term (i.e. same day) executive function testing, greater isocenter spontaneous eye movement during visit 1 (relative to pre-exposure), increased number of abnormalities on videonystagmography visit 2 versus visit 1 and a mix of small increases (short term visit 2) and decreases (short term visit 1) in blood pressure. In addition, more subjects reported metallic taste at 10.5 T in comparison to similar data obtained in previous studies at 7 T and 9.4 T. CONCLUSION Initial results of 10.5 T static field exposure indicate that 1) cognitive performance is not compromised at isocenter, 2) subjects experience increased eye movement at isocenter, and 3) subjects experience small changes in vital signs but no field-induced increase in blood pressure. While small but significant differences were found in some comparisons, none were identified as compromising subject safety. A modified testing protocol informed by these results was devised with the goal of permitting increased enrollment while providing continued monitoring to evaluate field effects.
Collapse
Affiliation(s)
- Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Cheryl Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, United States
| | - Lin Zhang
- School of Public Health Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Joseph Koopermeiners
- School of Public Health Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Margaret Koeritzer
- M Health Fairview, Department of Audiology, Minneapolis, MN, United States
| | - Meredith E Adams
- Department of Otolaryngology, Head and Neck Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Thomas R Henry
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
54
|
Kamimura HAS, Conti A, Toschi N, Konofagou EE. Ultrasound neuromodulation: mechanisms and the potential of multimodal stimulation for neuronal function assessment. FRONTIERS IN PHYSICS 2020; 8:150. [PMID: 32509757 PMCID: PMC7274478 DOI: 10.3389/fphy.2020.00150] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Focused ultrasound (FUS) neuromodulation has shown that mechanical waves can interact with cell membranes and mechanosensitive ion channels, causing changes in neuronal activity. However, the thorough understanding of the mechanisms involved in these interactions are hindered by different experimental conditions for a variety of animal scales and models. While the lack of complete understanding of FUS neuromodulation mechanisms does not impede benefiting from the current known advantages and potential of this technique, a precise characterization of its mechanisms of action and their dependence on experimental setup (e.g., tuning acoustic parameters and characterizing safety ranges) has the potential to exponentially improve its efficacy as well as spatial and functional selectivity. This could potentially reach the cell type specificity typical of other, more invasive techniques e.g., opto- and chemogenetics or at least orientation-specific selectivity afforded by transcranial magnetic stimulation. Here, the mechanisms and their potential overlap are reviewed along with discussions on the potential insights into mechanisms that magnetic resonance imaging sequences along with a multimodal stimulation approach involving electrical, magnetic, chemical, light, and mechanical stimuli can provide.
Collapse
Affiliation(s)
- Hermes A. S. Kamimura
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| | - Allegra Conti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
- Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, USA
| | - Elisa E. Konofagou
- Ultrasound Elasticity Imaging Laboratory, Department of Biomedical Engineering, Columbia University, New Yor, NY, USA
| |
Collapse
|
55
|
Ma R, Akçakaya M, Moeller S, Auerbach E, Uğurbil K, Van de Moortele PF. A field-monitoring-based approach for correcting eddy-current-induced artifacts of up to the 2 nd spatial order in human-connectome-project-style multiband diffusion MRI experiment at 7T: A pilot study. Neuroimage 2020; 216:116861. [PMID: 32305565 DOI: 10.1016/j.neuroimage.2020.116861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 01/30/2023] Open
Abstract
Over the recent years, significant advances in Spin-Echo (SE) Echo-Planar (EP) Diffusion MRI (dMRI) have enabled improved fiber tracking conspicuity in the human brain. At the same time, pushing the spatial resolution and using higher b-values inherently expose the acquired images to further eddy-current-induced distortion and blurring. Recently developed data-driven correction techniques, capable of significantly mitigating these defects, are included in the reconstruction pipelines developed for the Human Connectome Project (HCP) driven by the NIH BRAIN initiative. In this case, however, corrections are derived from the original diffusion-weighted (DW) magnitude images affected by distortion and blurring. Considering the complexity of k-space deviations in the presence of time varying high spatial order eddy currents, distortion and blurring may not be fully reversed when relying on magnitude DW images only. An alternative approach, consisting of iteratively reconstructing DW images based on the actual magnetic field spatiotemporal evolution measured with a magnetic field monitoring camera, has been successfully implemented at 3T in single band dMRI (Wilm et al., 2017, 2015). In this study, we aim to demonstrate the efficacy of this eddy current correction method in the challenging context of HCP-style multiband (MB = 2) dMRI protocol. The magnetic field evolution was measured during the EP-dMRI readout echo train with a field monitoring camera equipped with 16 19F NMR probes. The time variation of 0th, 1st and 2nd order spherical field harmonics were used to reconstruct DW images. Individual DW images reconstructed with and without field correction were compared. The impact of eddy current correction was evaluated by comparing the corresponding direction-averaged DW images and fractional anisotropy (FA) maps. 19F field monitoring data confirmed the existence of significant field deviations induced by the diffusion-encoding gradients, with variations depending on diffusion gradient amplitude and direction. In DW images reconstructed with the field correction, residual aliasing artifacts were reduced or eliminated, and when high b-values were applied, better gray/white matter delineation and sharper gyri contours were observed, indicating reduced signal blurring. The improvement in image quality further contributed to sharper contours and better gray/white matter delineation in mean DW images and FA maps. In conclusion, we demonstrate that up-to-2nd-order-eddy-current-induced field perturbation in multiband, in-plane accelerated HCP-style dMRI acquisition at 7T can be corrected by integrating the measured field evolution in image reconstruction.
Collapse
Affiliation(s)
- Ruoyun Ma
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mehmet Akçakaya
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Edward Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
56
|
Issa I, Ford KL, Rao M, Wild JM. A Magnetic Resonance Imaging Surface Coil Transceiver Employing a Metasurface for 1.5T Applications. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:1085-1093. [PMID: 32054570 DOI: 10.1109/tmi.2019.2942194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A capacitive impedance metasurface combined with a transceiver coil to improve the radio frequency magnetic field for 1.5T magnetic resonance imaging applications is presented. The novel transceiver provides localized enhancement in magnetic flux density when compared to a transceiver coil alone by incorporating an electrically small metasurface using an interdigital capacitance approach. Full field simulations employing the metasurface show a significant improvement in magnetic flux density inside a homogeneous dielectric phantom, which is also shown to perform well for a range of depths into the phantom. The concept was experimentally demonstrated through vector network analyzer measurements and images have been taken using a 1.5T MRI scanner. The results show there is a 216% improvement in transmission efficiency, a 133% improvement in receiver signal-to-noise-ratio (SNR), and a 415% improvement in transceiver SNR for a particular transmission power when compared against a surface coil positioned at the same distance from the phantom, where these improvements are the maximum observed during experiments.
Collapse
|
57
|
Gao Y, Mareyam A, Sun Y, Witzel T, Arango N, Kuang I, White J, Roe AW, Wald L, Stockmann J, Zhang X. A 16-channel AC/DC array coil for anesthetized monkey whole-brain imaging at 7T. Neuroimage 2020; 207:116396. [PMID: 31778818 PMCID: PMC7309650 DOI: 10.1016/j.neuroimage.2019.116396] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/07/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) in monkeys is important for bridging the gap between invasive animal brain studies and non-invasive human brain studies. To resolve the finer functional structure of the monkey brain, ultra-high-field (UHF) MR is essential, and high-performance, close-fitting RF receive coils are typically desired to fully leverage the intrinsic gains provided by UHF MRI. Moreover, static field (B0) inhomogeneity arising from the tissue susceptibility interface is more severe at UHF, presenting an obstacle to achieving high-resolution fMRI. B0 shim of the monkey head is challenging due to its smaller size and more complex sources of B0 offsets in multi-modal imaging tasks. In the present work, we have customized an array coil for lightly-anesthetized monkey fMRI in the 7T human scanner that combines RF and multi-coil (MC) B0 shim functionality (also referred to as AC/DC coils) to provide high imaging SNR and high-spatial-order, rapidly switchable B0-shim capability. Additional space was retained on the coil to render it compatible with monkey multi-modal imaging studies. Both MC global (whole-volume) and dynamic (slice-optimized) shim methods were tested and evaluated, and the benefits of MC shim for fMRI experiments was also studied. A minor reduction in RF coil performance was found after introducing additional B0 shim circuitry. However, the proposed RF coil provided higher image SNR and more uniform contrast compared to a commercially available coil for human knee imaging. Compared with static 2nd-order shim, the B0 inhomogeneity was reduced by 56.8%, and 95-percentile B0 offset was reduced to within 28.2 Hz through MC shim, versus 68.7 Hz with 2nd-order static shim. As a result, functional image quality could be improved, and brain activation can be better detected using the proposed AC/DC monkey coil.
Collapse
Affiliation(s)
- Yang Gao
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; School of Medicine, Zhejiang University, Hangzhou, China
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Nicolas Arango
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Irene Kuang
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Jacob White
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anna Wang Roe
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China
| | - Lawrence Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Xiaotong Zhang
- Interdisciplinary Institute of Neuroscience and Technology, Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China; School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
58
|
Enriquez AG, Vincent JM, Rispoli JV. Dual-Tuned Removable Common-Mode Current Trap for Magnetic Resonance Imaging and Spectroscopy .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:6802-6805. [PMID: 31947402 DOI: 10.1109/embc.2019.8857944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) are preferred methods of gathering structural and metabolic information from the body due to their non-invasive approach to obtaining a diagnosis. Dual-tuned radiofrequency (RF) coils can detect signals produced by both hydrogen and a second atomic nuclei of interest. However, undesired electromagnetic coupling often confounds both the design and utilization of RF coils. Coaxial shield currents, also known as common-mode currents, can be induced during MR scans and cause image distortion and reduction in signal-to-noise ratio (SNR); furthermore, the energy dissipated from the cabling can create heat that poses a risk of patient burns if the routed too closely. Thus, common-mode currents must be suppressed in RF coils by employing non-magnetic current traps. In this paper, we present a novel dual-tuned current trap that is fully removable and does not require soldering directly to the cable. The design was manufactured with 3D printing to support rapid fabrication and distribution. Bench measurements at the 3T Larmor frequencies for hydrogen and phosphorous-31 demonstrate common-mode attenuation of -18 dB and -8.4 dB respectively.
Collapse
|
59
|
Morris LS, Tan A, Smith DA, Grehl M, Han-Huang K, Naidich TP, Charney DS, Balchandani P, Kundu P, Murrough JW. Sub-millimeter variation in human locus coeruleus is associated with dimensional measures of psychopathology: An in vivo ultra-high field 7-Tesla MRI study. NEUROIMAGE-CLINICAL 2020; 25:102148. [PMID: 32097890 PMCID: PMC7037543 DOI: 10.1016/j.nicl.2019.102148] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 12/23/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023]
Abstract
We combined ultra-high field 7-Tesla and 0.4 × 0.4 × 0.5 mm quantitative MR imaging with a computational LC localization and segmentation algorithm. LC was delineated in 29 human subjects including subjects with and without an anxiety or stress-related disorder. Patients with an anxiety or stress-related disorder had larger LC compared to controls (Cohen's d = 1.08, p = 0.024). Larger LC was additionally associated with poorer attentional and inhibitory control and higher anxious arousal (FDR-corrected p's<0.025), trans-diagnostically across the full sample.
The locus coeruleus (LC) has a long-established role in the attentional and arousal response to threat, and in the emergence of pathological anxiety in pre-clinical models. However, human evidence of links between LC function and pathological anxiety has been restricted by limitations in discerning LC with current neuroimaging techniques. We combined ultra-high field 7-Tesla and 0.4 × 0.4 × 0.5 mm quantitative MR imaging with a computational LC localization and segmentation algorithm to delineate the LC in 29 human subjects including subjects with and without an anxiety or stress-related disorder. Our automated, data-driven LC segmentation algorithm provided LC delineations that corresponded well with postmortem anatomic definitions of the LC. There was variation of LC size in healthy subjects (125.7 +/- 59.3 mm3), which recapitulates histological reports. Patients with an anxiety or stress-related disorder had larger LC compared to controls (Cohen's d = 1.08, p = 0.024). Larger LC was additionally associated with poorer attentional and inhibitory control and higher anxious arousal (FDR-corrected p's<0.025), trans-diagnostically across the full sample. This study combined high-resolution and quantitative MR with a mixture of supervised and unsupervised computational techniques to provide robust, sub-millimeter measurements of the LC in vivo, which were additionally related to common psychopathology. This work has wide-reaching applications for a range of neurological and psychiatric disorders characterized by expected LC dysfunction.
Collapse
Affiliation(s)
- Laurel S Morris
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai.
| | - Aaron Tan
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai
| | - Derek A Smith
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine of Mount Sinai
| | - Mora Grehl
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai
| | - Kuang Han-Huang
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine of Mount Sinai
| | - Thomas P Naidich
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine of Mount Sinai; Department of Neurosurgery, Icahn School of Medicine of Mount Sinai; Department of Pediatrics, Icahn School of Medicine of Mount Sinai
| | | | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine of Mount Sinai
| | - Prantik Kundu
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine of Mount Sinai
| | - James W Murrough
- Depression and Anxiety Center for Discovery and Treatment, Department of Psychiatry, Icahn School of Medicine of Mount Sinai.
| |
Collapse
|
60
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
61
|
Juras V, Mlynarik V, Szomolanyi P, Valkovič L, Trattnig S. Magnetic Resonance Imaging of the Musculoskeletal System at 7T: Morphological Imaging and Beyond. Top Magn Reson Imaging 2019; 28:125-135. [PMID: 30951006 PMCID: PMC6565434 DOI: 10.1097/rmr.0000000000000205] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In 2017, a whole-body 7T magnetic resonance imaging (MRI) device was given regulatory approval for clinical use in both the EU and United States for neuro and musculoskeletal applications. As 7 Tesla allows for higher signal-to-noise , which results in higher resolution images than those obtained on lower-field-strength scanners, it has attracted considerable attention from the musculoskeletal field, as evidenced by the increasing number of publications in the last decade. Besides morphological imaging, the quantitative MR methods, such as T2, T2∗, T1ρ mapping, sodium imaging, chemical-exchange saturation transfer, and spectroscopy, substantially benefit from ultrahigh field scanning. In this review, we provide technical considerations for the individual techniques and an overview of (mostly) clinical applications for the assessment of cartilage, tendon, meniscus, and muscle. The first part of the review is dedicated to morphological applications at 7T, and the second part describes the most recent developments in quantitative MRI at 7T.
Collapse
Affiliation(s)
- Vladimir Juras
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Mlynarik
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Karl Landsteiner Society, St. Pölten, Austria
| | - Pavol Szomolanyi
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovič
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Oxford Centre for Clinical Magnetic Resonance Research, BHF Centre of Research Excellence, University of Oxford, Oxford, UK.,Department of Imaging Methods, Institute of Measurements Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Siegfried Trattnig
- High-field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| |
Collapse
|
62
|
Combined Use of MRI, fMRIand Cognitive Data for Alzheimer’s Disease: Preliminary Results. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9153156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
MRI can favor clinical diagnosis providing morphological and functional information of several neurological disorders. This paper deals with the problem of exploiting both data, in a combined way, to develop a tool able to support clinicians in the study and diagnosis of Alzheimer’s Disease (AD). In this work, 69 subjects from the ADNI open database, 33 AD patients and 36 healthy controls, were analyzed. The possible existence of a relationship between brain structure modifications and altered functions between patients and healthy controls was investigated performing a correlation analysis on brain volume, calculated from the MRI image, the clustering coefficient, derived from fRMI acquisitions, and the Mini Mental Score Examination (MMSE). A statistically-significant correlation was found only in four ROIs after Bonferroni’s correction. The correlation analysis alone was still not sufficient to provide a reliable and powerful clinical tool in AD diagnosis however. Therefore, a machine learning strategy was studied by training a set of support vector machine classifiers comparing different features. The use of a unimodal approach led to unsatisfactory results, whereas the multimodal approach, i.e., the synergistic combination of MRI, fMRI, and MMSE features, resulted in an accuracy of 95.65%, a specificity of 97.22%, and a sensibility of 93.93%.
Collapse
|
63
|
Philips BWJ, Stijns RCH, Rietsch SHG, Brunheim S, Barentsz JO, Fortuin AS, Quick HH, Orzada S, Maas MC, Scheenen TWJ. USPIO-enhanced MRI of pelvic lymph nodes at 7-T: preliminary experience. Eur Radiol 2019; 29:6529-6538. [PMID: 31201525 PMCID: PMC6828641 DOI: 10.1007/s00330-019-06277-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Purpose To evaluate the technical feasibility of high-resolution USPIO-enhanced magnetic resonance imaging of pelvic lymph nodes (LNs) at ultrahigh magnetic field strength. Materials and methods The ethics review board approved this study and written informed consent was obtained from all patients. Three patients with rectal cancer and three selected patients with (recurrent) prostate cancer were examined at 7-T 24–36 h after intravenous ferumoxtran-10 administration; rectal cancer patients also received a 3-T MRI. Pelvic LN imaging was performed using the TIAMO technique in combination with water-selective multi-GRE imaging and lipid-selective GRE imaging with a spatial resolution of 0.66 × 0.66 × 0.66mm3. T2*-weighted images of the water-selective imaging were computed from the multi-GRE images at TE = 0, 8, and 14 ms and used for the assessment of USPIO uptake. Results High-resolution 7-T MR gradient-echo imaging was obtained robustly in all patients without suffering from RF-related signal voids. USPIO signal decay in LNs was visualized using computed TE imaging at TE = 8 ms and an R2* map derived from water-selective imaging. Anatomically, LNs were identified on a combined reading of computed TE = 0 ms images from water-selective scans and images from lipid-selective scans. A range of 3–48 LNs without USPIO signal decay was found per patient. These LNs showed high signal intensity on computed TE = 8 and 14 ms imaging and low R2* (corresponding to high T2*) values on the R2* map. Conclusion USPIO-enhanced MRI of the pelvis at 7-T is technically feasible and offers opportunities for detecting USPIO uptake in normal-sized LNs, due to its high intrinsic signal-to-noise ratio and spatial resolution. Key Points • USPIO-enhanced MRI at 7-T can indicate USPIO uptake in lymph nodes based on computed TE images. • Our method promises a high spatial resolution for pelvic lymph node imaging.
Collapse
Affiliation(s)
- Bart W J Philips
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.
| | - Rutger C H Stijns
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Stefan H G Rietsch
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Sascha Brunheim
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Jelle O Barentsz
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Ansje S Fortuin
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.,Department of Radiology, Ziekenhuis Gelderse Vallei, Ede, The Netherlands
| | - Harald H Quick
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Orzada
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Marnix C Maas
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.,Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
64
|
Neuroimaging Technological Advancements for Targeting in Functional Neurosurgery. Curr Neurol Neurosci Rep 2019; 19:42. [DOI: 10.1007/s11910-019-0961-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
65
|
Kay K, Jamison KW, Vizioli L, Zhang R, Margalit E, Ugurbil K. A critical assessment of data quality and venous effects in sub-millimeter fMRI. Neuroimage 2019; 189:847-869. [PMID: 30731246 PMCID: PMC7737092 DOI: 10.1016/j.neuroimage.2019.02.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
Advances in hardware, pulse sequences, and reconstruction techniques have made it possible to perform functional magnetic resonance imaging (fMRI) at sub-millimeter resolution while maintaining high spatial coverage and acceptable signal-to-noise ratio. Here, we examine whether sub-millimeter fMRI can be used as a routine method for obtaining accurate measurements of fine-scale local neural activity. We conducted fMRI in human visual cortex during a simple event-related visual experiment (7 T, gradient-echo EPI, 0.8-mm isotropic voxels, 2.2-s sampling rate, 84 slices), and developed analysis and visualization tools to assess the quality of the data. Our results fall along three lines of inquiry. First, we find that the acquired fMRI images, combined with appropriate surface-based processing, provide reliable and accurate measurements of fine-scale blood oxygenation level dependent (BOLD) activity patterns. Second, we show that the highly folded structure of cortex causes substantial biases on spatial resolution and data visualization. Third, we examine the well-recognized issue of venous contributions to fMRI signals. In a systematic assessment of large sections of cortex measured at a fine scale, we show that time-averaged T2*-weighted EPI intensity is a simple, robust marker of venous effects. These venous effects are unevenly distributed across cortex, are more pronounced in gyri and outer cortical depths, and are, to a certain degree, in consistent locations across subjects relative to cortical folding. Furthermore, we show that these venous effects are strongly correlated with BOLD responses evoked by the experiment. We conclude that sub-millimeter fMRI can provide robust information about fine-scale BOLD activity patterns, but special care must be exercised in visualizing and interpreting these patterns, especially with regards to the confounding influence of the brain's vasculature. To help translate these methodological findings to neuroscience research, we provide practical suggestions for both high-resolution and standard-resolution fMRI studies.
Collapse
Affiliation(s)
- Kendrick Kay
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA.
| | - Keith W Jamison
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Luca Vizioli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Ruyuan Zhang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| | - Eshed Margalit
- Stanford Neurosciences Institute, Stanford University, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, USA
| |
Collapse
|
66
|
Bluem P, Van de Moortele PF, Adriany G, Popović Z. Excitation and RF Field Control of a Human-Size 10.5-T MRI System. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES 2019; 67:1184-1196. [PMID: 31749460 PMCID: PMC6867708 DOI: 10.1109/tmtt.2018.2884405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This paper presents an investigation of methods for improving homogeneity inside various dielectric phantoms situated in a 10.5 T human-sized MRI. The transmit B1 (B 1 + ) field is excited with a quadrature fed circular patch-probe and a 12 element capacitively-loaded microstrip array. Both simulations and measurements show improved homogeneity in a cylindrical water phantom, an inhomogeneous phantom (pineapple), and a NIST standard phantom. The simulations are performed using a full-wave finite-difference time-domain solver (Sim4Life) in order to find theB 1 + field distribution and compared to the gradient recalled echo image and efficiency result. For additional field uniformity, the wall electromagnetic boundary conditions are modified with a passive quadrifilar helix. Finally, these methods are applied in simulation to head imaging of an anatomically correct human body model (Duke, IT'IS Virtual Population) showing improved homogeneity and specific absorption rate for various excitations.
Collapse
Affiliation(s)
- Patrick Bluem
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN 55455
| | - Zoya Popović
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, CO 80309-0425 USA
| |
Collapse
|
67
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
68
|
Temporal multivariate pattern analysis (tMVPA): A single trial approach exploring the temporal dynamics of the BOLD signal. J Neurosci Methods 2018; 308:74-87. [PMID: 29969602 PMCID: PMC6447290 DOI: 10.1016/j.jneumeth.2018.06.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 01/09/2023]
Abstract
Background: fMRI provides spatial resolution that is unmatched by non-invasive neuroimaging techniques. Its temporal dynamics however are typically neglected due to the sluggishness of the hemodynamic signal. New Methods: We present temporal multivariate pattern analysis (tMVPA), a method for investigating the temporal evolution of neural representations in fMRI data, computed on single-trial BOLD time-courses, leveraging both spatial and temporal components of the fMRI signal. We implemented an expanding sliding window approach that allows identifying the time-window of an effect. Results: We demonstrate that tMVPA can successfully detect condition-specific multivariate modulations over time, in the absence of mean BOLD amplitude differences. Using Monte-Carlo simulations and synthetic data, we quantified family-wise error rate (FWER) and statistical power. Both at the group and single-subject levels, FWER was either at or significantly below 5%. We reached the desired power with 18 subjects and 12 trials for the group level, and with 14 trials in the single-subject scenario. Comparison with existing methods: We compare the tMVPA statistical evaluation to that of a linear support vector machine (SVM). SVM outperformed tMVPA with large N and trial numbers. Conversely, tMVPA, leveraging on single trials analyses, outperformed SVM in low N and trials and in a single-subject scenario. Conclusion: Recent evidence suggesting that the BOLD signal carries finer-grained temporal information than previously thought, advocates the need for analytical tools, such as tMVPA, tailored to investigate BOLD temporal dynamics. The comparable performance between tMVPA and SVM, a powerful and reliable tool for fMRI, supports the validity of our technique.
Collapse
|
69
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
70
|
Gulban OF, Schneider M, Marquardt I, Haast RAM, De Martino F. A scalable method to improve gray matter segmentation at ultra high field MRI. PLoS One 2018; 13:e0198335. [PMID: 29874295 PMCID: PMC5991408 DOI: 10.1371/journal.pone.0198335] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/17/2018] [Indexed: 11/19/2022] Open
Abstract
High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields (7 Tesla and above) enables researchers to study how anatomical and functional properties change within the cortical ribbon, along surfaces and across cortical depths. These studies require an accurate delineation of the gray matter ribbon, which often suffers from inclusion of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are commonly corrected by browsing the data slice-by-slice and manually changing labels. This task becomes increasingly laborious and prone to error at higher resolutions since both work and error scale with the number of voxels. Here we show that many mislabeled, non-brain voxels can be corrected more efficiently and semi-automatically by representing three-dimensional anatomical images using two-dimensional histograms. We propose both a uni-modal (based on first spatial derivative) and multi-modal (based on compositional data analysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine volunteers. We present an openly accessible Python implementation of these approaches and demonstrate that editing cortical segmentations using two-dimensional histogram representations as an additional post-processing step aids existing algorithms and yields improved gray matter borders. By making our data and corresponding expert (ground truth) segmentations openly available, we facilitate future efforts to develop and test segmentation algorithms on this challenging type of data.
Collapse
Affiliation(s)
- Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Marian Schneider
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Ingo Marquardt
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Roy A. M. Haast
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, The Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
71
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
72
|
Liu J, de Zwart JA, van Gelderen P, Murphy-Boesch J, Duyn JH. Effect of head motion on MRI B 0 field distribution. Magn Reson Med 2018; 80:2538-2548. [PMID: 29770481 PMCID: PMC6239980 DOI: 10.1002/mrm.27339] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE To identify and characterize the sources of B0 field changes due to head motion, to reduce motion sensitivity in human brain MRI. METHODS B0 fields were measured in 5 healthy human volunteers at various head poses. After measurement of the total field, the field originating from the subject was calculated by subtracting the external field generated by the magnet and shims. A subject-specific susceptibility model was created to quantify the contribution of the head and torso. The spatial complexity of the field changes was analyzed using spherical harmonic expansion. RESULTS Minor head pose changes can cause substantial and spatially complex field changes in the brain. For rotations and translations of approximately 5 º and 5 mm, respectively, at 7 T, the field change that is associated with the subject's magnetization generates a standard deviation (SD) of about 10 Hz over the brain. The stationary torso contributes to this subject-associated field change significantly with a SD of about 5 Hz. The subject-associated change leads to image-corrupting phase errors in multi-shot <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> -weighted acquisitions. CONCLUSION The B0 field changes arising from head motion are problematic for multishot <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:msubsup><mml:mi>T</mml:mi> <mml:mn>2</mml:mn> <mml:mo>*</mml:mo></mml:msubsup> </mml:mrow> </mml:math> -weighted imaging. Characterization of the underlying sources provides new insights into mitigation strategies, which may benefit from individualized predictive field models in addition to real-time field monitoring and correction strategies.
Collapse
Affiliation(s)
- Jiaen Liu
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jacco A de Zwart
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Peter van Gelderen
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Joseph Murphy-Boesch
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
73
|
Gulban OF, De Martino F, Vu AT, Yacoub E, Uğurbil K, Lenglet C. Cortical fibers orientation mapping using in-vivo whole brain 7 T diffusion MRI. Neuroimage 2018; 178:104-118. [PMID: 29753105 DOI: 10.1016/j.neuroimage.2018.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/28/2018] [Accepted: 05/02/2018] [Indexed: 01/11/2023] Open
Abstract
Diffusion MRI of the cortical gray matter is challenging because the micro-environment probed by water molecules is much more complex than within the white matter. High spatial and angular resolutions are therefore necessary to uncover anisotropic diffusion patterns and laminar structures, which provide complementary (e.g. to anatomical and functional MRI) microstructural information about the cortex architectonic. Several ex-vivo and in-vivo MRI studies have recently addressed this question, however predominantly with an emphasis on specific cortical areas. There is currently no whole brain in-vivo data leveraging multi-shell diffusion MRI acquisition at high spatial resolution, and depth dependent analysis, to characterize the complex organization of cortical fibers. Here, we present unique in-vivo human 7T diffusion MRI data, and a dedicated cortical depth dependent analysis pipeline. We leverage the high spatial (1.05 mm isotropic) and angular (198 diffusion gradient directions) resolution of this whole brain dataset to improve cortical fiber orientations mapping, and study neurites (axons and/or dendrites) trajectories across cortical depths. Tangential fibers in superficial cortical depths and crossing fiber configurations in deep cortical depths are identified. Fibers gradually inserting into the gyral walls are visualized, which contributes to mitigating the gyral bias effect. Quantitative radiality maps and histograms in individual subjects and cortex-based aligned datasets further support our results.
Collapse
Affiliation(s)
- Omer F Gulban
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Federico De Martino
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - An T Vu
- Veterans Affairs Health Care System, San Francisco, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
74
|
Brink WM, Wu Z, Webb AG. A simple head-sized phantom for realistic static and radiofrequency characterization at high fields. Magn Reson Med 2018; 80:1738-1745. [PMID: 29498102 DOI: 10.1002/mrm.27153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/12/2018] [Accepted: 02/05/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE To demonstrate a simple head-sized phantom for realistic static and RF field characterization in high field systems. METHODS The head-sized phantom was composed of an ellipsoidal compartment and a spherical cavity to mimic the nasal cavity. The phantom was filled with an aqueous solution of polyvinylpyrrolidone (PVP), to mimic the average dielectric properties of brain tissue. The static and RF field distributions were characterized on a 7T MRI system and compared to in vivo measurements and simulations. MR thermometry was performed, and the results were compared to thermal simulations for RF validation purposes. RESULTS Accurate reproduction of both static and RF fields patterns observed in vivo was confirmed experimentally and was shown to be strongly affected by the inclusion of the spherical cavity. MR thermometry and transmit efficiency ( B1+) measurements were obtained in close agreement with simulations (peak values agreeing within 0.3 °C and 0.02 μT/√W) as well as fiber optic thermal probes (RMSE < 0.18 °C). CONCLUSIONS A simple head-sized phantom has been presented that produces B0 and B1+ nonuniformities similar to those encountered in the human head and allows for accurate MR thermometry measurements, making this a suitable reference phantom for RF validation and methodological development in high field MRI.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Zhiyi Wu
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
75
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
76
|
How to choose the right MR sequence for your research question at 7 T and above? Neuroimage 2018; 168:119-140. [DOI: 10.1016/j.neuroimage.2017.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 12/29/2022] Open
|
77
|
Alon L, Lattanzi R, Lakshmanan K, Brown R, Deniz CM, Sodickson DK, Collins CM. Transverse slot antennas for high field MRI. Magn Reson Med 2018; 80:1233-1242. [PMID: 29388250 PMCID: PMC5985532 DOI: 10.1002/mrm.27095] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 12/28/2017] [Accepted: 12/28/2017] [Indexed: 11/23/2022]
Abstract
Purpose Introduce a novel coil design using an electrically long transversely oriented slot in a conductive sheet. Theory and Methods Theoretical considerations, numerical simulations, and experimental measurements are presented for transverse slot antennas as compared with electric dipole antennas. Results Simulations show improved central and average transmit and receive efficiency, as well as larger coverage in the transverse plane, for a single slot as compared to a single dipole element. Experiments on a body phantom confirm the simulation results for a slot antenna relative to a dipole, demonstrating a large region of relatively high sensitivity and homogeneity. Images in a human subject also show a large imaging volume for a single slot and six slot antenna array. High central transmit efficiency was observed for slot arrays relative to dipole arrays. Conclusion Transverse slots can exhibit improved sensitivity and larger field of view compared with traditional conductive dipoles. Simulations and experiments indicate high potential for slot antennas in high field MRI. Magn Reson Med 80:1233–1242, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Leeor Alon
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,RF Test Labs, Inc., New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Karthik Lakshmanan
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Cem M Deniz
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,RF Test Labs, Inc., New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R), and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA
| |
Collapse
|
78
|
Abstract
Imaging genetics is a research methodology studying the effect of genetic variation on brain structure, function, behavior, and risk for psychopathology. Since the early 2000s, imaging genetics has been increasingly used in the research of schizophrenia (SZ). SZ is a severe mental disorder with no precise knowledge of its underlying neurobiology, however, new genetic and neurobiological data generate a climate for new avenues. The accumulating data of genome wide association studies (GWAS) continuously decode SZ risk genes. Global neuroimaging consortia produce collections of brain phenotypes from tens of thousands of people. In this context, imaging genetics will be strategically important both for the validation and discovery of SZ related findings. Thus, the study of GWAS supported risk variants as candidate genes to validate by neuroimaging is one trend. The study of epigenetic differences in relation to variations of brain phenotypes and the study of large scale multivariate analysis of genome wide and brain wide associations are other trends. While these studies hold a big potential for understanding the neurobiology of SZ, the problem of reproducibility appears as a major challenge, which requires standardizations in study designs and compensations of methodological limitations such as sensitivity and specificity. On the other hand, advancements of neuroimaging, optical and electron microscopy along with the use of genetically encoded fluorescent probes and robust statistical approaches will not only catalyze integrative methodologies but also will help better design the imaging genetics studies. In this invited paper, I will discuss the current perspective of imaging genetics and emerging opportunities of SZ research.
Collapse
Affiliation(s)
- Ayla Arslan
- Faculty of Engineering and Natural Sciences, Department of Genetics and Bioengineering, International University of Sarajevo, Sarajevo, Bosnia and Herzegovina; Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Uskudar University, Istanbul, Turkey.
| |
Collapse
|
79
|
de Azevedo Neto RM, Amaro Júnior E. Bilateral dorsal fronto-parietal areas are associated with integration of visual motion information and timed motor action. Behav Brain Res 2018; 337:91-98. [DOI: 10.1016/j.bbr.2017.09.046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
|
80
|
Kameda H, Kudo K, Matsuda T, Harada T, Iwadate Y, Uwano I, Yamashita F, Yoshioka K, Sasaki M, Shirato H. Improvement of the repeatability of parallel transmission at 7T using interleaved acquisition in the calibration scan. J Magn Reson Imaging 2017; 48:94-101. [PMID: 29205623 DOI: 10.1002/jmri.25903] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 11/07/2017] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Respiration-induced phase shift affects B0 /B1+ mapping repeatability in parallel transmission (pTx) calibration for 7T brain MRI, but is improved by breath-holding (BH). However, BH cannot be applied during long scans. PURPOSE To examine whether interleaved acquisition during calibration scanning could improve pTx repeatability and image homogeneity. STUDY TYPE Prospective. SUBJECTS Nine healthy subjects. FIELD STRENGTH/SEQUENCE 7T MRI with a two-channel RF transmission system was used. ASSESSMENT Calibration scanning for B0 /B1+ mapping was performed under sequential acquisition/free-breathing (Seq-FB), Seq-BH, and interleaved acquisition/FB (Int-FB) conditions. The B0 map was calculated with two echo times, and the B1+ map was obtained using the Bloch-Siegert method. Actual flip-angle imaging (AFI) and gradient echo (GRE) imaging were performed using pTx and quadrature-Tx (qTx). All scans were acquired in five sessions. Repeatability was evaluated using intersession standard deviation (SD) or coefficient of variance (CV), and in-plane homogeneity was evaluated using in-plane CV. STATISTICAL TESTS A paired t-test with Bonferroni correction for multiple comparisons was used. RESULTS The intersession CV/SDs for the B0 /B1+ maps were significantly smaller in Int-FB than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The intersession CVs for the AFI and GRE images were also significantly smaller in Int-FB, Seq-BH, and qTx than in Seq-FB (Bonferroni-corrected P < 0.05 for all). The in-plane CVs for the AFI and GRE images in Seq-FB, Int-FB, and Seq-BH were significantly smaller than in qTx (Bonferroni-corrected P < 0.01 for all). DATA CONCLUSION Using interleaved acquisition during calibration scans of pTx for 7T brain MRI improved the repeatability of B0 /B1+ mapping, AFI, and GRE images, without BH. LEVEL OF EVIDENCE 1 Technical Efficacy Stage 1 J. Magn. Reson. Imaging 2017.
Collapse
Affiliation(s)
- Hiroyuki Kameda
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kohsuke Kudo
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tsuyoshi Matsuda
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Taisuke Harada
- Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Yuji Iwadate
- Global MR Applications and Workflow, GE Healthcare, Hino, Japan
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Fumio Yamashita
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, School of Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Iwate, Japan
| | - Hiroki Shirato
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
81
|
Ugurbil K. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0361. [PMID: 27574313 DOI: 10.1098/rstb.2015.0361] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2016] [Indexed: 12/12/2022] Open
Abstract
When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
82
|
Ianniello C, de Zwart JA, Duan Q, Deniz CM, Alon L, Lee JS, Lattanzi R, Brown R. Synthesized tissue-equivalent dielectric phantoms using salt and polyvinylpyrrolidone solutions. Magn Reson Med 2017; 80:413-419. [PMID: 29159985 DOI: 10.1002/mrm.27005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 10/03/2017] [Accepted: 10/23/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To explore the use of polyvinylpyrrolidone (PVP) for simulated materials with tissue-equivalent dielectric properties. METHODS PVP and salt were used to control, respectively, relative permittivity and electrical conductivity in a collection of 63 samples with a range of solute concentrations. Their dielectric properties were measured with a commercial probe and fitted to a 3D polynomial in order to establish an empirical recipe. The material's thermal properties and MR spectra were measured. RESULTS The empirical polynomial recipe (available at https://www.amri.ninds.nih.gov/cgi-bin/phantomrecipe) provides the PVP and salt concentrations required for dielectric materials with permittivity and electrical conductivity values between approximately 45 and 78, and 0.1 to 2 siemens per meter, respectively, from 50 MHz to 4.5 GHz. The second- (solute concentrations) and seventh- (frequency) order polynomial recipe provided less than 2.5% relative error between the measured and target properties. PVP side peaks in the spectra were minor and unaffected by temperature changes. CONCLUSION PVP-based phantoms are easy to prepare and nontoxic, and their semitransparency makes air bubbles easy to identify. The polymer can be used to create simulated material with a range of dielectric properties, negligible spectral side peaks, and long T2 relaxation time, which are favorable in many MR applications. Magn Reson Med 80:413-419, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Carlotta Ianniello
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Duan
- Laboratory of Functional and Molecular Imaging, NINDS, National Institutes of Health, Bethesda, Maryland, USA
| | - Cem M Deniz
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Leeor Alon
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Jae-Seung Lee
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,The Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York, USA
| | - Ryan Brown
- Center for Advanced Imaging Innovation and Research (CAI2R) and Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
83
|
Laader A, Beiderwellen K, Kraff O, Maderwald S, Wrede K, Ladd ME, Lauenstein TC, Forsting M, Quick HH, Nassenstein K, Umutlu L. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study. PLoS One 2017; 12:e0187528. [PMID: 29125850 PMCID: PMC5695282 DOI: 10.1371/journal.pone.0187528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/21/2017] [Indexed: 01/04/2023] Open
Abstract
Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.
Collapse
Affiliation(s)
- Anja Laader
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- * E-mail:
| | - Karsten Beiderwellen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Thomas C. Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Institute of Radiology, Evangelisches Krankenhaus Düsseldorf, Kirchfeldstr. 40, Düsseldorf, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| |
Collapse
|
84
|
Tsukimura I, Murakami H, Sasaki M, Endo H, Yamabe D, Oikawa R, Doita M. Assessment of magnetic field interactions and radiofrequency-radiation-induced heating of metallic spinal implants in 7 T field. J Orthop Res 2017; 35:1831-1837. [PMID: 27769107 PMCID: PMC5573950 DOI: 10.1002/jor.23464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 10/14/2016] [Indexed: 02/04/2023]
Abstract
The safety of metallic spinal implants in magnetic resonance imaging (MRI) performed using ultrahigh fields has not been established. Hence, we examined whether the displacement forces caused by a static magnetic field and the heating induced by radiofrequency radiation are substantial for spinal implants in a 7 T field. We investigated spinal rods of various lengths and materials, a screw, and a cross-linking bridge in accordance with the American Society for Testing and Materials guidelines. The displacement forces of the metallic implants in static 7 T and 3 T static magnetic fields were measured and compared. The temperature changes of the implants during 15-min-long fast spin-echo and balanced gradient-echo image acquisition sequences were measured in the 7 T field. The deflection angles of the metallic spinal materials in the 7 T field were 5.0-21.0° [median: 6.7°], significantly larger than those in the 3 T field (1.0-6.3° [2.2°]). Among the metallic rods, the cobalt-chrome rods had significantly larger deflection angles (17.8-21.0° [19.8°]) than the pure titanium and titanium alloy rods (5.0-7.7° [6.2°]). The temperature changes of the implants, including the cross-linked rods, were 0.7-1.0°C [0.8°C] and 0.6-1.0°C [0.7°C] during the fast spin-echo and balanced gradient-echo sequences, respectively; these changes were slightly larger than those of the controls (0.4-1.1°C [0.5°C] and 0.3-0.9°C [0.6°C], respectively). All of the metallic spinal implants exhibited small displacement forces and minimal heating, indicating that MRI examinations using 7 T fields may be performed safely on patients with these implants. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 35:1831-1837, 2017.
Collapse
Affiliation(s)
- Itsuko Tsukimura
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| | - Hideki Murakami
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRIInstitute of Biomedical SciencesIwate Medical UniversityMoriokaJapan
| | - Hirooki Endo
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| | - Daisuke Yamabe
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| | - Ryosuke Oikawa
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| | - Minoru Doita
- Department of Orthopedic SurgerySchool of MedicineIwate Medical University19‐1 UchimaruMorioka020‐8505Japan
| |
Collapse
|
85
|
Mohammadi S, Weiskopf N. [Computational neuroanatomy and microstructure imaging using magnetic resonance imaging]. DER NERVENARZT 2017; 88:839-849. [PMID: 28721539 DOI: 10.1007/s00115-017-0373-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Current computational neuroanatomy focuses on morphological measurements of the brain using standard magnetic resonance imaging (MRI) techniques. In comparison quantitative MRI (qMRI) typically provides a better tissue contrast and also greatly improves the sensitivity and specificity with respect to the microstructural characteristics of tissue. OBJECTIVE Current methodological developments in qMRI are presented, which go beyond morphology because this provides standardized measurements of the microstructure of the brain. The concept of in-vivo histology is introduced, based on biophysical modelling of qMRI data (hMRI) for determination of quantitative histology-like markers of the microstructure. RESULTS The qMRI metrics can be used as direct biomarkers of the microstructural mechanisms driving observed morphological findings. The hMRI metrics utilize biophysical models of the MRI signal in order to determine 3‑dimensional maps of histology-like measurements in the white matter. CONCLUSION Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both scientific and clinical applications. Both approaches improve the comparability across sites and time points, facilitate multicenter and longitudinal studies as well as standardized diagnostics. The hMRI is expected to shed new light on the relationship between brain microstructure, function and behavior both in health and disease. In the future hMRI will play an indispensable role in the field of computational neuroanatomy.
Collapse
Affiliation(s)
- S Mohammadi
- Institut für systemische Neurowissenschaften, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Max-Planck-Institut für Kognitions- und Neurowissenschaften, Stephanstr. 1a, 04103, Leipzig, Deutschland
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, Großbritannien
| | - N Weiskopf
- Max-Planck-Institut für Kognitions- und Neurowissenschaften, Stephanstr. 1a, 04103, Leipzig, Deutschland.
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, London, Großbritannien.
| |
Collapse
|
86
|
Priovoulos N, Jacobs HIL, Ivanov D, Uludağ K, Verhey FRJ, Poser BA. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage 2017; 168:427-436. [PMID: 28743460 DOI: 10.1016/j.neuroimage.2017.07.045] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
Locus Coeruleus (LC) is a neuromelanin-rich brainstem structure that is the source of noradrenaline in the cortex and is thought to modulate attention and memory. LC imaging in vivo is commonly performed with a 2D T1-weighted Turbo Spin Echo (TSE) MRI sequence, an approach that suffers from several drawbacks at 3T, including long acquisition times and highly anisotropic spatial resolution. In this study, we developed a high-resolution Magnetization Transfer (MT) sequence for LC imaging at both 7T and 3T and compared its performance to a TSE sequence. Results indicate that LC imaging can be achieved with an MT sequence at both 7 and 3T at higher spatial resolution than the 3T TSE. Furthermore, we investigated whether the currently disputed source of contrast in the LC region with a TSE sequence relates to MT effects or shortened T1 and T2* due to increased iron concentration. Our results suggest that the contrast in the LC area relates to MT effects. To conclude, in this study we managed to image the LC, for the first time, at 7T and at an increased resolution compared to the current state-of-the-art. Imaging the LC is highly relevant for clinical diagnostics as structural tissue properties of the LC may hold promise as a biomarker in neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikos Priovoulos
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
| | - Heidi I L Jacobs
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Kâmil Uludağ
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Frans R J Verhey
- Alzheimer Center Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
87
|
Niendorf T, Barth M, Kober F, Trattnig S. From ultrahigh to extreme field magnetic resonance: where physics, biology and medicine meet. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 29:309-11. [PMID: 27221262 DOI: 10.1007/s10334-016-0564-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrueck Center for Molecular Medicine in the Helmholtz Association, Robert Roessle Strasse 10, 13125, Berlin, Germany.
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Building 57, Research Road, St Lucia, QLD, 4072, Australia
| | - Frank Kober
- Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Aix-Marseille Université, CNRS UMR7339, 13385, Marseille Cedex 05, France
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image Guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria
| |
Collapse
|
88
|
Vu AT, Phillips JS, Kay K, Phillips ME, Johnson MR, Shinkareva SV, Tubridy S, Millin R, Grossman M, Gureckis T, Bhattacharyya R, Yacoub E. Using precise word timing information improves decoding accuracy in a multiband-accelerated multimodal reading experiment. Cogn Neuropsychol 2017; 33:265-75. [PMID: 27686111 DOI: 10.1080/02643294.2016.1195343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The blood-oxygen-level-dependent (BOLD) signal measured in functional magnetic resonance imaging (fMRI) experiments is generally regarded as sluggish and poorly suited for probing neural function at the rapid timescales involved in sentence comprehension. However, recent studies have shown the value of acquiring data with very short repetition times (TRs), not merely in terms of improvements in contrast to noise ratio (CNR) through averaging, but also in terms of additional fine-grained temporal information. Using multiband-accelerated fMRI, we achieved whole-brain scans at 3-mm resolution with a TR of just 500 ms at both 3T and 7T field strengths. By taking advantage of word timing information, we found that word decoding accuracy across two separate sets of scan sessions improved significantly, with better overall performance at 7T than at 3T. The effect of TR was also investigated; we found that substantial word timing information can be extracted using fast TRs, with diminishing benefits beyond TRs of 1000 ms.
Collapse
Affiliation(s)
- An T Vu
- a Center for Magnetic Resonance Research , University of Minnesota , Minneapolis , MN , USA
| | - Jeffrey S Phillips
- b Department of Neurology , University of Pennsylvania , Philadelphia , PA , USA
| | - Kendrick Kay
- c Department of Psychology , Washington University in St. Louis , St. Louis , MO , USA
| | | | | | | | - Shannon Tubridy
- g Department of Psychology , New York University , New York , NY , USA
| | | | - Murray Grossman
- b Department of Neurology , University of Pennsylvania , Philadelphia , PA , USA
| | - Todd Gureckis
- g Department of Psychology , New York University , New York , NY , USA
| | | | - Essa Yacoub
- a Center for Magnetic Resonance Research , University of Minnesota , Minneapolis , MN , USA
| |
Collapse
|
89
|
Harada T, Kudo K, Uwano I, Yamashita F, Kameda H, Matsuda T, Sasaki M, Shirato H. Breath-holding during the Calibration Scan Improves the Reproducibility of Parallel Transmission at 7T for Human Brain. Magn Reson Med Sci 2017; 16:23-31. [PMID: 27001392 PMCID: PMC5600040 DOI: 10.2463/mrms.mp.2015-0137] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Purpose: The B0 and B1+ maps required for calculation of the radiofrequency (RF) pulse of parallel transmission (pTx) are obtained in calibration scans; however, they may be affected by respiratory motion. We aimed to compare the reproducibility of B0 and B1+ maps and gradient echo (GRE) images of the brain scanned with pTx at 7T between free-breathing (FB) and breath-holding (BH) conditions during the calibration scan. Methods: Nine healthy volunteers were scanned by 7T MRI using a two-channel quadrature head coil. In the pTx calibration scans performed with FB and BH, the B0 map was obtained from two different TE images and the B1+ map was calculated by the Bloch-Siegert method. A GRE image (gradient-recalled-acquisition in steady state) was also obtained with RF shimming and RF design of pTx with spoke method, as well as quadrature transmission (qTx). All the scans were repeated over five sessions. The reproducibility of the B0 and B1+ maps and GRE image was evaluated with region-of-interest measurements using inter-session standard deviation (SD) and coefficient of variation (CV) values. Intensity homogeneity of GRE images was also assessed with in-plane CV. Results: Inter-session SDs of B0 and B1+ maps were significantly smaller in BH (P < 0.01). Inter-session CVs of GRE images were significantly smaller in qTx than BH and FB (P < 0.01, both); however, the CVs of BH were significantly smaller (P < 0.01). In-plane CVs of FB and BH with RF shimming were not significantly different with qTx; however, CVs of FB and BH with RF design were significantly smaller than those of qTx (P < 0.05 and P < 0.01, respectively). Conclusion: BH could improve the reproducibility of B0 and B1+ maps in pTx calibration scans and GRE images. These results might facilitate the development of pTx in human brain at 7T.
Collapse
Affiliation(s)
- Taisuke Harada
- Department of Radiation Medicine, Hokkaido University Graduate School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Gross S, Barmet C, Dietrich BE, Brunner DO, Schmid T, Pruessmann KP. Dynamic nuclear magnetic resonance field sensing with part-per-trillion resolution. Nat Commun 2016; 7:13702. [PMID: 27910860 PMCID: PMC5146285 DOI: 10.1038/ncomms13702] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 10/17/2016] [Indexed: 11/08/2022] Open
Abstract
High-field magnets of up to tens of teslas in strength advance applications in physics, chemistry and the life sciences. However, progress in generating such high fields has not been matched by corresponding advances in magnetic field measurement. Based mostly on nuclear magnetic resonance, dynamic high-field magnetometry is currently limited to resolutions in the nanotesla range. Here we report a concerted approach involving tailored materials, magnetostatics and detection electronics to enhance the resolution of nuclear magnetic resonance sensing by three orders of magnitude. The relative sensitivity thus achieved amounts to 1 part per trillion (10-12). To exemplify this capability we demonstrate the direct detection and relaxometry of nuclear polarization and real-time recording of dynamic susceptibility effects related to human heart function. Enhanced high-field magnetometry will generally permit a fresh look at magnetic phenomena that scale with field strength. It also promises to facilitate the development and operation of high-field magnets.
Collapse
Affiliation(s)
- Simon Gross
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Christoph Barmet
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
- Skope Magnetic Resonance Technologies AG, Gladbachstrasse 105, 8044 Zurich, Switzerland
| | - Benjamin E. Dietrich
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - David O. Brunner
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Thomas Schmid
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| | - Klaas P. Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Gloriastrasse 35, Zurich 8092, Switzerland
| |
Collapse
|
91
|
Sohrabpour A, Ye S, Worrell GA, Zhang W, He B. Noninvasive Electromagnetic Source Imaging and Granger Causality Analysis: An Electrophysiological Connectome (eConnectome) Approach. IEEE Trans Biomed Eng 2016; 63:2474-2487. [PMID: 27740473 PMCID: PMC5152676 DOI: 10.1109/tbme.2016.2616474] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Combined source-imaging techniques and directional connectivity analysis can provide useful information about the underlying brain networks in a noninvasive fashion. Source-imaging techniques have been used successfully to either determine the source of activity or to extract source time-courses for Granger causality analysis, previously. In this work, we utilize source-imaging algorithms to both find the network nodes [regions of interest (ROI)] and then extract the activation time series for further Granger causality analysis. The aim of this work is to find network nodes objectively from noninvasive electromagnetic signals, extract activation time-courses, and apply Granger analysis on the extracted series to study brain networks under realistic conditions. METHODS Source-imaging methods are used to identify network nodes and extract time-courses and then Granger causality analysis is applied to delineate the directional functional connectivity of underlying brain networks. Computer simulations studies where the underlying network (nodes and connectivity pattern) is known were performed; additionally, this approach has been evaluated in partial epilepsy patients to study epilepsy networks from interictal and ictal signals recorded by EEG and/or Magnetoencephalography (MEG). RESULTS Localization errors of network nodes are less than 5 mm and normalized connectivity errors of ∼20% in estimating underlying brain networks in simulation studies. Additionally, two focal epilepsy patients were studied and the identified nodes driving the epileptic network were concordant with clinical findings from intracranial recordings or surgical resection. CONCLUSION Our study indicates that combined source-imaging algorithms with Granger causality analysis can identify underlying networks precisely (both in terms of network nodes location and internodal connectivity). SIGNIFICANCE The combined source imaging and Granger analysis technique is an effective tool for studying normal or pathological brain conditions.
Collapse
Affiliation(s)
- Abbas Sohrabpour
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - Shuai Ye
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | | | - Wenbo Zhang
- Minnesota Epilepsy Group, United Hospital, MN 55102 USA and also with the Department of Neurology, University of Minnesota, Minneapolis, 55455 USA
| | - Bin He
- Department of Biomedical Engineering, and the Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
92
|
T Vu A, Jamison K, Glasser MF, Smith SM, Coalson T, Moeller S, Auerbach EJ, Uğurbil K, Yacoub E. Tradeoffs in pushing the spatial resolution of fMRI for the 7T Human Connectome Project. Neuroimage 2016; 154:23-32. [PMID: 27894889 DOI: 10.1016/j.neuroimage.2016.11.049] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022] Open
Abstract
Whole-brain functional magnetic resonance imaging (fMRI), in conjunction with multiband acceleration, has played an important role in mapping the functional connectivity throughout the entire brain with both high temporal and spatial resolution. Ultrahigh magnetic field strengths (7T and above) allow functional imaging with even higher functional contrast-to-noise ratios for improved spatial resolution and specificity compared to traditional field strengths (1.5T and 3T). High-resolution 7T fMRI, however, has primarily been constrained to smaller brain regions given the amount of time it takes to acquire the number of slices necessary for high resolution whole brain imaging. Here we evaluate a range of whole-brain high-resolution resting state fMRI protocols (0.9, 1.25, 1.5, 1.6 and 2mm isotropic voxels) at 7T, obtained with both in-plane and slice acceleration parallel imaging techniques to maintain the temporal resolution and brain coverage typically acquired at 3T. Using the processing pipeline developed by the Human Connectome Project, we demonstrate that high resolution images acquired at 7T provide increased functional contrast to noise ratios with significantly less partial volume effects and more distinct spatial features, potentially allowing for robust individual subject parcellations and descriptions of fine-scaled patterns, such as visuotopic organization.
Collapse
Affiliation(s)
- An T Vu
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA; Helen Wills Institute for Neuroscience, University of California, Berkeley, CA, USA; Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Keith Jamison
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Matthew F Glasser
- Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Stephen M Smith
- FMRIB (Oxford Centre for Functional MRI of the Brain), Oxford University, Oxford, UK
| | - Timothy Coalson
- Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
93
|
Bergmann E, Zur G, Bershadsky G, Kahn I. The Organization of Mouse and Human Cortico-Hippocampal Networks Estimated by Intrinsic Functional Connectivity. Cereb Cortex 2016; 26:4497-4512. [PMID: 27797832 PMCID: PMC5193145 DOI: 10.1093/cercor/bhw327] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/12/2016] [Indexed: 12/11/2022] Open
Abstract
While the hippocampal memory system has been relatively conserved across mammals, the cerebral cortex has undergone massive expansion. A central question in brain evolution is how cortical development affected the nature of cortical inputs to the hippocampus. To address this question, we compared cortico-hippocampal connectivity using intrinsic functional connectivity MRI (fcMRI) in awake mice and humans. We found that fcMRI recapitulates anatomical connectivity, demonstrating sensory mapping within the mouse parahippocampal region. Moreover, we identified a similar topographical modality-specific organization along the longitudinal axis of the mouse hippocampus, indicating that sensory information arriving at the hippocampus is only partly integrated. Finally, comparing cortico-hippocampal connectivity across species, we discovered preferential hippocampal connectivity of sensory cortical networks in mice compared with preferential connectivity of association cortical networks in humans. Supporting this observation in humans but not in mice, sensory and association cortical networks are connected to spatially distinct subregions within the parahippocampal region. Collectively, these findings indicate that sensory cortical networks are coupled to the mouse but not the human hippocampal memory system, suggesting that the emergence of expanded and new association areas in humans resulted in the rerouting of cortical information flow and dissociation of primary sensory cortices from the hippocampus.
Collapse
Affiliation(s)
- Eyal Bergmann
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Gil Zur
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Guy Bershadsky
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| | - Itamar Kahn
- Department of Neuroscience, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
94
|
Naumova AV, Akulov AE, Khodanovich MY, Yarnykh VL. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage 2016; 147:985-993. [PMID: 27646128 DOI: 10.1016/j.neuroimage.2016.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/24/2022] Open
Abstract
A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue characterization based on the myelin content and high-resolution neuroanatomical visualization with high contrast between white and gray matter.
Collapse
Affiliation(s)
- Anna V Naumova
- University of Washington, Department of Radiology, 850 Republican Street, Seattle, WA, USA; National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia
| | - Andrey E Akulov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk, Russia
| | - Marina Yu Khodanovich
- National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia
| | - Vasily L Yarnykh
- University of Washington, Department of Radiology, 850 Republican Street, Seattle, WA, USA; National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia.
| |
Collapse
|
95
|
Chang C, Raven EP, Duyn JH. Brain-heart interactions: challenges and opportunities with functional magnetic resonance imaging at ultra-high field. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0188. [PMID: 27044994 PMCID: PMC4822447 DOI: 10.1098/rsta.2015.0188] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/05/2016] [Indexed: 05/24/2023]
Abstract
Magnetic resonance imaging (MRI) at ultra-high field (UHF) strengths (7 T and above) offers unique opportunities for studying the human brain with increased spatial resolution, contrast and sensitivity. However, its reliability can be compromised by factors such as head motion, image distortion and non-neural fluctuations of the functional MRI signal. The objective of this review is to provide a critical discussion of the advantages and trade-offs associated with UHF imaging, focusing on the application to studying brain-heart interactions. We describe how UHF MRI may provide contrast and resolution benefits for measuring neural activity of regions involved in the control and mediation of autonomic processes, and in delineating such regions based on anatomical MRI contrast. Limitations arising from confounding signals are discussed, including challenges with distinguishing non-neural physiological effects from the neural signals of interest that reflect cardiorespiratory function. We also consider how recently developed data analysis techniques may be applied to high-field imaging data to uncover novel information about brain-heart interactions.
Collapse
Affiliation(s)
- Catie Chang
- Advanced Magnetic Resonance Imaging Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Erika P Raven
- Advanced Magnetic Resonance Imaging Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jeff H Duyn
- Advanced Magnetic Resonance Imaging Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
96
|
The traveling heads: multicenter brain imaging at 7 Tesla. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:399-415. [PMID: 27097904 DOI: 10.1007/s10334-016-0541-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/08/2016] [Accepted: 02/25/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths. MATERIALS AND METHODS The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites. RESULTS Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites. CONCLUSION Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.
Collapse
|
97
|
Abstract
PURPOSE OF REVIEW Current computational neuroanatomy based on MRI focuses on morphological measures of the brain. We present recent methodological developments in quantitative MRI (qMRI) that provide standardized measures of the brain, which go beyond morphology. We show how biophysical modelling of qMRI data can provide quantitative histological measures of brain tissue, leading to the emerging field of in-vivo histology using MRI (hMRI). RECENT FINDINGS qMRI has greatly improved the sensitivity and specificity of computational neuroanatomy studies. qMRI metrics can also be used as direct indicators of the mechanisms driving observed morphological findings. For hMRI, biophysical models of the MRI signal are being developed to directly access histological information such as cortical myelination, axonal diameters or axonal g-ratio in white matter. Emerging results indicate promising prospects for the combined study of brain microstructure and function. SUMMARY Non-invasive brain tissue characterization using qMRI or hMRI has significant implications for both research and clinics. Both approaches improve comparability across sites and time points, facilitating multicentre/longitudinal studies and standardized diagnostics. hMRI is expected to shed new light on the relationship between brain microstructure, function and behaviour, both in health and disease, and become an indispensable addition to computational neuroanatomy.
Collapse
|
98
|
Sohn SM, DelaBarre L, Gopinath A, Vaughan JT. Design of an Electrically Automated RF Transceiver Head Coil in MRI. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2015; 9:725-32. [PMID: 25361512 PMCID: PMC4412778 DOI: 10.1109/tbcas.2014.2360383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetic resonance imaging (MRI) is a widely used nonionizing and noninvasive diagnostic instrument to produce detailed images of the human body. The radio-frequency (RF) coil is an essential part of MRI hardware as an RF front-end. RF coils transmit RF energy to the subject and receive the returning MR signal. This paper presents an MRI-compatible hardware design of the new automatic frequency tuning and impedance matching system. The system automatically corrects the detuned and mismatched condition that occurs due to loading effects caused by the variable subjects (i.e., different human heads or torsos). An eight-channel RF transceiver head coil with the automatic system has been fabricated and tested at 7 Tesla (T) MRI system. The automatic frequency tuning and impedance matching system uses digitally controlled capacitor arrays with real-time feedback control capability. The hardware design is not only compatible with current MRI scanners in all aspects but also it operates the tuning and matching function rapidly and accurately. The experimental results show that the automatic function increases return losses from 8.4 dB to 23.7 dB (maximum difference) and from 12.7 dB to 19.6 dB (minimum difference) among eight channels within 550 ms . The reflected RF power decrease from 23.1% to 1.5% (maximum difference) and from 5.3% to 1.1% (minimum difference). Therefore, these results improve signal-to-noise ratio (SNR) in MR images with phantoms.
Collapse
Affiliation(s)
- Sung-Min Sohn
- Department of Electrical and Computer Engineering, University of Minnesota; Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55454
| | - Anand Gopinath
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455 USA
| | - John Thomas Vaughan
- Department of Electrical and Computer Engineering and with the Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
99
|
Barakat N, Gorman MP, Benson L, Becerra L, Borsook D. Pain and spinal cord imaging measures in children with demyelinating disease. NEUROIMAGE-CLINICAL 2015; 9:338-47. [PMID: 26509120 PMCID: PMC4588416 DOI: 10.1016/j.nicl.2015.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/19/2015] [Accepted: 08/28/2015] [Indexed: 12/15/2022]
Abstract
Pain is a significant problem in diseases affecting the spinal cord, including demyelinating disease. To date, studies have examined the reliability of clinical measures for assessing and classifying the severity of spinal cord injury (SCI) and also to evaluate SCI-related pain. Most of this research has focused on adult populations and patients with traumatic injuries. Little research exists regarding pediatric spinal cord demyelinating disease. One reason for this is the lack of reliable and useful approaches to measuring spinal cord changes since currently used diagnostic imaging has limited specificity for quantitative measures of demyelination. No single imaging technique demonstrates sufficiently high sensitivity or specificity to myelin, and strong correlation with clinical measures. However, recent advances in diffusion tensor imaging (DTI) and magnetization transfer imaging (MTI) measures are considered promising in providing increasingly useful and specific information on spinal cord damage. Findings from these quantitative imaging modalities correlate with the extent of demyelination and remyelination. These techniques may be of potential use for defining the evolution of the disease state, how it may affect specific spinal cord pathways, and contribute to the management of pediatric demyelination syndromes. Since pain is a major presenting symptom in patients with transverse myelitis, the disease is an ideal model to evaluate imaging methods to define these regional changes within the spinal cord. In this review we summarize (1) pediatric demyelinating conditions affecting the spinal cord; (2) their distinguishing features; and (3) current diagnostic and classification methods with particular focus on pain pathways. We also focus on concepts that are essential in developing strategies for the detection, monitoring, treatment and repair of pediatric myelitis. Pain is a major presenting symptom in children with myelitis. Currently used imaging has limited sensitivity to myelin content. We provide a summary on pediatric demyelinating conditions. We review pain involvement and pathways affected by demyelination. We review imaging modalities for the diagnosis and monitoring of myelitis.
Collapse
Affiliation(s)
- Nadia Barakat
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mark P Gorman
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Leslie Benson
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Lino Becerra
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA ; Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| | - David Borsook
- Center for Pain and the Brain, Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, USA ; Department of Radiology, Boston Children's Hospital, Boston, MA, USA
| |
Collapse
|
100
|
Vu AT, Auerbach E, Lenglet C, Moeller S, Sotiropoulos SN, Jbabdi S, Andersson J, Yacoub E, Ugurbil K. High resolution whole brain diffusion imaging at 7T for the Human Connectome Project. Neuroimage 2015; 122:318-31. [PMID: 26260428 DOI: 10.1016/j.neuroimage.2015.08.004] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 11/16/2022] Open
Abstract
Mapping structural connectivity in healthy adults for the Human Connectome Project (HCP) benefits from high quality, high resolution, multiband (MB)-accelerated whole brain diffusion MRI (dMRI). Acquiring such data at ultrahigh fields (7T and above) can improve intrinsic signal-to-noise ratio (SNR), but suffers from shorter T2 and T2(⁎) relaxation times, increased B1(+) inhomogeneity (resulting in signal loss in cerebellar and temporal lobe regions), and increased power deposition (i.e. specific absorption rate (SAR)), thereby limiting our ability to reduce the repetition time (TR). Here, we present recent developments and optimizations in 7T image acquisitions for the HCP that allow us to efficiently obtain high quality, high resolution whole brain in-vivo dMRI data at 7T. These data show spatial details typically seen only in ex-vivo studies and complement already very high quality 3T HCP data in the same subjects. The advances are the result of intensive pilot studies aimed at mitigating the limitations of dMRI at 7T. The data quality and methods described here are representative of the datasets that will be made freely available to the community in 2015.
Collapse
Affiliation(s)
- A T Vu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA.
| | - E Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - C Lenglet
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - S Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - S N Sotiropoulos
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - S Jbabdi
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - J Andersson
- Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - E Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| | - K Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|