51
|
Fraga LN, Milenkovic D, Coutinho CP, Rozenbaum AC, Lajolo FM, Hassimotto NMA. Interaction between APOE, APOA1, and LPL Gene Polymorphisms and Variability in Changes in Lipid and Blood Pressure following Orange Juice Intake: A Pilot Study. Mol Nutr Food Res 2023; 67:e2200847. [PMID: 37128695 DOI: 10.1002/mnfr.202200847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 04/04/2023] [Indexed: 05/03/2023]
Abstract
SCOPE Chronic orange juice intake is associated with reduced risk of cardiovascular disease, however, a large inter-individual variability in response to orange juice for lipid profile and blood pressure has been observed. This heterogeneity in responsiveness could be associated with single nucleotide polymorphism (SNP), which has not been previously addressed. This study aims to investigate the influence of SNP in apolipoprotein E (APOE), apolipoprotein A1 (APOA1), mevalonate (MVK), and lipase lipoprotein (LPL) genes in the biological response after chronic orange juice intake. METHODS AND RESULTS Forty-six volunteers ingested 500 mL daily for 60 days and blood pressure and biochemical parameters are measured. Also, SNPs in APOE, APOA1, MVK, and LPL genes are genotyped in the volunteers that are medium/high excretors of flavanone metabolites. Genotypes CC (APOA1), AA, and GG (LPL) are associated with positive health effects of orange juice and the CC (APOE), GG (APOA1), GG, and AA (LPL) genotypes are associated with no effects of orange juice consumption (p < 0.05). CONCLUSION These results identify for the first-time SNP associated with effects of orange juice on lipid levels and blood pressure, results that may provide bases for future precise nutritional recommendations regarding this flavanone-rich food to lower the risk for cardiovascular disease.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, Davis, CA, 95616-5270, USA
| | - Camille Perella Coutinho
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Adriana Campos Rozenbaum
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Franco Maria Lajolo
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Food Research Center (FoRC) and School of Pharmaceutical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| |
Collapse
|
52
|
Pereira-Caro G, Cáceres-Jimenez S, Bresciani L, Mena P, Almutairi TM, Dobani S, Pourshahidi LK, Gill CIR, Moreno Rojas JM, Clifford MN, Crozier A. Excretion by subjects on a low (poly)phenol diet of phenolic gut microbiota catabolites sequestered in tissues or associated with catecholamines and surplus amino acids. Int J Food Sci Nutr 2023:1-12. [PMID: 37369137 DOI: 10.1080/09637486.2023.2226369] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Phenolic catabolites excreted by fasting subjects with a functioning colon and ileostomists on a low (poly)phenol diet have been investigated. Urine was collected over a 12 h fasting period after adherence to a low (poly)phenol diet for 36 h. UHPLC-HR-MS quantified 77 phenolics. Some were present in the urine of both groups in similar trace amounts and others were excreted in higher amounts by participants with a colon indicating the involvement of the microbiota. Most were present in sub- or low-µmol amounts, but hippuric acid dominated accounting on average for 60% of the total for both volunteer categories indicating significant production from sources other than non-nutrient dietary (poly)phenols. The potential origins of the phenolics associated with the low (poly)phenol diet, include endogenous catecholamines, surplus tyrosine and phenylalanine, and washout of catabolites derived from pre-study intakes of non-nutrient dietary (poly)phenols.
Collapse
Affiliation(s)
- Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| | - Salud Cáceres-Jimenez
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
- Departamento de Bromatología y Tecnología de los Alimentos, Universidad de Córdoba, Córdoba, Spain
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | | | - Sara Dobani
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - L Kirsty Pourshahidi
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - Chris I R Gill
- Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK
| | - José Manuel Moreno Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training, Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba Córdoba, Spain
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- Department of Nutrition, Dietetics, and Food, Monash University, Notting Hill, Victoria, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, Saudi Arabia
- School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, UK
| |
Collapse
|
53
|
Caleffi GS, Rosa AS, de Souza LG, Avelar JLS, Nascimento SMR, de Almeida VM, Tucci AR, Ferreira VN, da Silva AJM, Santos-Filho OA, Miranda MD, Costa PRR. Aurones: A Promising Scaffold to Inhibit SARS-CoV-2 Replication. JOURNAL OF NATURAL PRODUCTS 2023; 86:1536-1549. [PMID: 37257024 DOI: 10.1021/acs.jnatprod.3c00249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Aurones are a small subgroup of flavonoids in which the basic C6-C3-C6 skeleton is arranged as (Z)-2-benzylidenebenzofuran-3(2H)-one. These compounds are structural isomers of flavones and flavonols, natural products reported as potent inhibitors of SARS-CoV-2 replication. Herein, we report the design, synthesis, and anti-SARS-CoV-2 activity of a series of 25 aurones bearing different oxygenated groups (OH, OCH3, OCH2OCH3, OCH2O, OCF2H, and OCH2C6H4R) at the A- and/or B-rings using cell-based screening assays. We observed that 12 of the 25 compounds exhibit EC50 < 3 μM (8e, 8h, 8j, 8k, 8l, 8m, 8p, 8q, 8r, 8w, 8x, and 8y), of which five presented EC50 < 1 μM (8h, 8m, 8p, 8q, and 8w) without evident cytotoxic effect in Calu-3 cells. The substitution of the A- and/or B-ring with OCH3, OCH2OCH3, and OCF2H groups seems beneficial for the antiviral activity, while the corresponding phenolic derivatives showed a significant decrease in the anti-SARS-CoV-2 activity. The most potent compound of the series, aurone 8q (EC50 = 0.4 μM, SI = 2441.3), is 2 to 3 times more effective than the polyphenolic flavonoids myricetin (2) and baicalein (1), respectively. Investigation of the five more active compounds as inhibitors of SARS-CoV-2 3CLpro based on molecular dynamic calculations suggested that these aurones should detach from the active site of 3CLpro, and, probably, they could bind to another SARS-CoV-2 protein target (either receptor or enzyme).
Collapse
Affiliation(s)
| | - Alice S Rosa
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | | | | | - Amanda R Tucci
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | - Vivian N Ferreira
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | | | | - Milene D Miranda
- Laboratório de Morfologia e Morfogênese Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, 21040-900 Rio de Janeiro, Brazil
| | | |
Collapse
|
54
|
Dynamic gastrointestinal digestion/intestinal permeability of encapsulated and nonencapsulated Brazilian red propolis: Active compounds stability and bioactivity. Food Chem 2023; 411:135469. [PMID: 36681021 DOI: 10.1016/j.foodchem.2023.135469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The objectives were to investigate the effect of dynamic gastrointestinal digestion/Caco-2 cell transport on active compounds stability and antioxidant/anti-inflammatory activities of the ethanolic extract of Brazilian red propolis (EEBRP), whether encapsulated or not; and the in vivo acute toxicity of the EEBRP after digestion. Eight isoflavonoids, one flavanone, and one chalcone were identified by HPLC-ESI-QTOF-MS, and quantified by HPLC-PDA. Bioaccessibility was higher for the encapsulated EEBRP (21.4%-57.6%) than for the nonencapsulated (19.3%-30.2%). Conversely, the Caco-2 cell transport was higher for the nonencapsulated EEBRP. Similarly, the nonencapsulated EEBRP showed higher ability to scavenge reactive oxygen species, which was especially attributed to calycosin, and to decrease NF-κB activation, and the levels of TNF-α and CXCL2/MIP-2 after Caco-2 cell transport. Hence, there is an indication that EEBRP is a promising alternative dietary source of bioavailable isoflavonoids. Further studies on encapsulation should be encouraged to improve bioactivity, and expand its food applications.
Collapse
|
55
|
Grohmann T, Walker AW, Russell WR, Hoggard N, Zhang X, Horgan G, de Roos B. A grape seed and bilberry extract reduces blood pressure in individuals at risk of developing type 2 diabetes: the PRECISE study, a double-blind placebo-controlled cross-over intervention study. Front Nutr 2023; 10:1139880. [PMID: 37351191 PMCID: PMC10283353 DOI: 10.3389/fnut.2023.1139880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/26/2023] [Indexed: 06/24/2023] Open
Abstract
Background Type 2 Diabetes Mellitus (T2DM) is a major risk factor for the development of cardiometabolic diseases. T2DM prevention is largely based on weight-loss and whole diet changes, but intervention with dietary plant bioactives may also improve metabolic health. Objective To assess whether supplementation with bilberry and grape seed extract for 12 weeks improves cardiometabolic outcomes in individuals at risk of developing T2DM, and to determine whether individual treatment response is associated with differences in gut microbiota composition and levels of phenolic metabolites in blood and feces. Methods In the randomized, double-blind, placebo-controlled, cross-over PRECISE intervention study, 14 participants, aged ≥45 years, with a BMI >28 kg/m2, and having an increased risk of T2DM, received a supplement containing 250 mg of bilberry plus 300 mg of grape seed extract, or 550 mg of a control extract, per day, for 12 weeks each. Blood samples were obtained for the assessment of HbA1c, fasting glucose, oral glucose tolerance tests, insulin, glucagon levels, total, LDL and HDL cholesterol, and phenolic acids. We also assessed advanced glycation end products in the skin, ambulatory 24 hours blood pressure, 7-day dietary intake by weighed food diaries, fecal levels of phenolic metabolites using LC-MS/MS and gut microbiota composition using 16S rRNA gene sequencing analysis. Results The combined bilberry and grape seed extract did not affect glucose and cholesterol outcomes, but it decreased systolic and diastolic ambulatory blood pressure by 4.7 (p < 0.001) and 2.3 (p = 0.0009) mmHg, respectively. Eight out of fourteen participants were identified as blood pressure 'responders'. These responders had higher levels of phenylpropionic and phenyllactic acids in their fecal samples, and a higher proportional abundance of Fusicatenibacter-related bacteria (p < 0.01) in their baseline stool samples. Conclusion Long-term supplementation with bilberry and grape seed extract can improve systolic and diastolic blood pressure in individuals at risk of T2DM. Individual responsiveness was correlated with the presence of certain fecal bacterial strains, and an ability to metabolize (epi)catechin into smaller phenolic metabolites.Clinical trial registry number: Research Registry (number 4084).
Collapse
Affiliation(s)
- Teresa Grohmann
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Alan W. Walker
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Wendy R. Russell
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Nigel Hoggard
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | | | - Graham Horgan
- Biomathematics and Statistics Scotland, Aberdeen, United Kingdom
| | - Baukje de Roos
- Rowett Institute, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| |
Collapse
|
56
|
Andonova T, Muhovski Y, Apostolova E, Naimov S, Petkova Z, Teneva O, Antova G, Slavov I, Dimitrova-Dyulgerova I. Koelreuteria paniculata Seed Oil-A Rich Natural Source of Unsaturated Fatty Acids and Phytocompounds with DNA Protective Potential. Foods 2023; 12:foods12112230. [PMID: 37297478 DOI: 10.3390/foods12112230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The present work is focused on the physicochemical characteristics, chemical composition, and some biological activities of Koelreuteria paniculata seed oil. The glyceride oil, obtained with a Soxhlet apparatus by extraction with hexane, was characterized by a relatively high oil content (over 20%), and it is defined as a non-drying oil (iodine value-44 gI2/100 g) with good oxidative stability (over 50 h). There were identified 11 fatty acids, 6 sterols, 3 tocopherols, and 6 phospholipids, as the last group was reported for the first time. The major components among them were-monounsaturated eicosenoic and oleic acids, β-sitosterol, β-tocopherol, and phosphatidylcholine. The in vitro tests demonstrated DNA protective activity and a lack of cytotoxicity of the oil, data that has been reported for the first time. The in vitro MTT test of the oil on HT-29 and PC3 cell lines did not indicate antitumor activity. The seed oil studied contains valuable bio-components, which have proven benefits for human health, and that is why it could be used in food, cosmetic, and pharmaceutical products.
Collapse
Affiliation(s)
- Tsvetelina Andonova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Yordan Muhovski
- Life Sciences Department, Walloon Agricultural Research Centre, 5030 Gembloux, Belgium
| | - Elena Apostolova
- Department of Plant Physiology and Molecular Biology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Samir Naimov
- Department of Plant Physiology and Molecular Biology, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Zhana Petkova
- Department of Chemical Technology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Olga Teneva
- Department of Chemical Technology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Ginka Antova
- Department of Chemical Technology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| | - Iliya Slavov
- Department of Biology, Faculty of Pharmacy, Medical University of Varna, 9000 Varna, Bulgaria
| | - Ivanka Dimitrova-Dyulgerova
- Department of Botany and Biological Education, Faculty of Biology, University of Plovdiv "Paisii Hilendarski", 24 Tzar Asen Street, 4000 Plovdiv, Bulgaria
| |
Collapse
|
57
|
Bondonno NP, Liu YL, Zheng Y, Ivey K, Willett WC, Stampfer MJ, Rimm EB, Cassidy A. Change in habitual intakes of flavonoid-rich foods and mortality in US males and females. BMC Med 2023; 21:181. [PMID: 37173745 PMCID: PMC10182674 DOI: 10.1186/s12916-023-02873-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Higher baseline intakes of flavonoid-rich foods and beverages are associated with a lower risk of chronic disease and mortality in observational studies. However, associations between changes in intakes and mortality remain unclear. We aimed to evaluate associations between 8-year changes in intakes of (1) individual flavonoid-rich foods and (2) a composite measure (termed the 'flavodiet') of foods and beverages that are known to be main contributors to flavonoid intake and subsequent total and cause-specific mortality. METHODS We evaluated associations between 8-year changes in intakes of (1) individual flavonoid-rich foods and (2) a novel 'flavodiet' score and total and cause-specific mortality. We included 55,786 females from the Nurses' Health Study (NHS) and 29,800 males from the Health Professionals Follow-up Study (HPFS), without chronic disease at baseline in our analyses. Using multivariable-adjusted Cox proportional hazard models, we examined associations of 8-year changes in intakes of (1) flavonoid-rich foods and (2) the flavodiet score with subsequent 2-year lagged 6-year risk of mortality adjusting for baseline intakes. Data were pooled using fixed-effects meta-analyses. RESULTS We documented 15,293 deaths in the NHS and 8988 deaths in HPFS between 1986 and 2018. For blueberries, red wine and peppers, a 5%, 4% and 9% lower risk of mortality, respectively, was seen for each 3.5 servings/week increase in intakes while for tea, a 3% lower risk was seen for each 7 servings/week increase [Pooled HR (95% CI) for blueberries; 0.95 (0.91, 0.99); red wine: 0.96 (0.93, 0.99); peppers: 0.91 (0.88, 0.95); and tea: 0.97 (0.95, 0.98)]. Conversely, a 3.5 servings/week increase in intakes of onions and grapefruit plus grapefruit juice was associated with a 5% and 6% higher risk of total mortality, respectively. An increase of 3 servings per day in the flavodiet score was associated with an 8% lower risk of total mortality [Pooled HR: 0.92 (0.89, 0.96)], and a 13% lower risk of neurological mortality [Pooled HR: 0.87 (0.79, 0.97)], after multivariable adjustments. CONCLUSIONS Encouraging an increased intake of specific flavonoid-rich foods and beverages, namely tea, blueberries, red wine, and peppers, even in middle age, may lower early mortality risk.
Collapse
Affiliation(s)
- Nicola P Bondonno
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland
- Nutrition and Health Innovation Research Institute, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
- Danish Cancer Society Research Centre (DCRC), Copenhagen, Denmark
| | - Yan Lydia Liu
- Department Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Kerry Ivey
- Department Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Walter C Willett
- Department Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Meir J Stampfer
- Department Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Eric B Rimm
- Department Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aedín Cassidy
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland.
| |
Collapse
|
58
|
Naz R, Saqib F, Awadallah S, Wahid M, Latif MF, Iqbal I, Mubarak MS. Food Polyphenols and Type II Diabetes Mellitus: Pharmacology and Mechanisms. Molecules 2023; 28:molecules28103996. [PMID: 37241737 DOI: 10.3390/molecules28103996] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Type II diabetes mellitus and its related complications are growing public health problems. Many natural products present in our diet, including polyphenols, can be used in treating and managing type II diabetes mellitus and different diseases, owing to their numerous biological properties. Anthocyanins, flavonols, stilbenes, curcuminoids, hesperidin, hesperetin, naringenin, and phenolic acids are common polyphenols found in blueberries, chokeberries, sea-buckthorn, mulberries, turmeric, citrus fruits, and cereals. These compounds exhibit antidiabetic effects through different pathways. Accordingly, this review presents an overview of the most recent developments in using food polyphenols for managing and treating type II diabetes mellitus, along with various mechanisms. In addition, the present work summarizes the literature about the anti-diabetic effect of food polyphenols and evaluates their potential as complementary or alternative medicines to treat type II diabetes mellitus. Results obtained from this survey show that anthocyanins, flavonols, stilbenes, curcuminoids, and phenolic acids can manage diabetes mellitus by protecting pancreatic β-cells against glucose toxicity, promoting β-cell proliferation, reducing β-cell apoptosis, and inhibiting α-glucosidases or α-amylase. In addition, these phenolic compounds exhibit antioxidant anti-inflammatory activities, modulate carbohydrate and lipid metabolism, optimize oxidative stress, reduce insulin resistance, and stimulate the pancreas to secrete insulin. They also activate insulin signaling and inhibit digestive enzymes, regulate intestinal microbiota, improve adipose tissue metabolism, inhibit glucose absorption, and inhibit the formation of advanced glycation end products. However, insufficient data are available on the effective mechanisms necessary to manage diabetes.
Collapse
Affiliation(s)
- Rabia Naz
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Fatima Saqib
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Samir Awadallah
- Department of Medical Lab Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa 13110, Jordan
| | - Muqeet Wahid
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Muhammad Farhaj Latif
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | - Iram Iqbal
- Department of Pharmacology, Faculty of Pharmacy, Bahauddin Zakariya University, Multan 60000, Pakistan
| | | |
Collapse
|
59
|
Guo F, Peng L, Xiong H, Tsao R, Zhang H, Jiang L, Sun Y. Bioaccessibility and transport of lentil hull polyphenols in vitro, and their bioavailability and metabolism in rats. Food Res Int 2023; 167:112634. [PMID: 37087206 DOI: 10.1016/j.foodres.2023.112634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
Polyphenol-rich lentil hulls are a valuable by-product. In this study, lentil hulls were subjected to simulated in vitro digestion and caco-2 cell monolayer models to assess the bioaccessibility, transmembrane transport, and a rat model to examine the bioavailability and metabolism in vivo. Polyphenols were increasingly released during the in vitro digestion, and were found to contribute to the increased antioxidant activity. Among the bioaccessible polyphenols, catechin glucoside, kaempferol tetraglucoside, procyanidin dimer and dihydroxybenzoic acid-O-dipentoside were most efficiently transported across the caco-2 membrane, and responsible for promoting intestinal integrity as a result of enhanced expression of tight junction proteins. When ingested by rats, lentil hull polyphenols underwent extensive I and II phase metabolic reactions in vivo, including hydroxylation, methylation, glucuronidation and sulfation. Overall, results of this study showed that lentil hull polyphenols are bioaccessible and bioavailable, and lentil hulls as a by-product can be a valuable ingredient for future functional foods.
Collapse
Affiliation(s)
- Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Li Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China
| | - Rong Tsao
- Guelph Research and Development Centre, Agricultural and Agri-Food Canada, 93 Stone Road West, Guelph, ON N1G 5C9, Canada
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Li Jiang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, China.
| |
Collapse
|
60
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
61
|
Fraga LN, Milenkovic D, Anacleto SL, Salemi M, Lajolo FM, Hassimotto NMA. Citrus flavanone metabolites significantly modulate global proteomic profile in pancreatic β-cells under high-glucose-induced metabolic stress. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140898. [PMID: 36731758 DOI: 10.1016/j.bbapap.2023.140898] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023]
Abstract
Hesperidin and narirutin are the major citrus flavanones. Several studies have associated these compounds with pancreatic β-cell survival through their capacity to reduce oxidative stress, inflammation, and inhibit apoptosis. However, the molecular mechanisms of action of flavanones in pancreatic β-cells under high-glycemic stress is still largely unknown. Therefore, this study aimed to decipher molecular mechanisms of flavanone metabolites in pancreatic β-cells treated with high glucose concentration using untargeted shotgun proteomics. We identified 569 proteins differentially expressed in cells exposed to hesperetin 7-glucuronide (H7G) and 265 in cells exposed to 3-(4'-hydroxyphenyl) propanoic acid (PA). Comparison of global proteomic profiles suggest that these metabolites could counteract changes in protein expression induced by high glucose stress. The bioinformatic analyses suggested that H7G and PA modulated the expression of proteins involved in cell adhesion, cell signaling, metabolism, inflammation, and protein processing in endoplasmic reticulum (ER) pathways. Taken together, this study suggests that H7G and PA can modulate the expression of proteins that may prevent dysfunction of pancreatic β-cells under stress induced by high glucose.
Collapse
Affiliation(s)
- Layanne Nascimento Fraga
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil; Food Research Center-(FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil
| | - Dragan Milenkovic
- Department of Nutrition, University of California Davis, 95616 Davis, CA, USA
| | - Sara Lima Anacleto
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil; Food Research Center-(FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil
| | - Michelle Salemi
- Proteomics Core Facility, University of California, 451 East Health Sciences Drive, 95616 Davis, CA, USA
| | - Franco Maria Lajolo
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil; Food Research Center-(FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil
| | - Neuza Mariko Aymoto Hassimotto
- Department of Food Science and Nutrition, School of Pharmaceutical Science, University of São Paulo, Av. Prof Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil; Food Research Center-(FoRC-CEPID), University of São Paulo, Av. Prof. Lineu Prestes 580, Bloco 14, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
62
|
Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. JOURNAL OF NATURAL PRODUCTS 2023; 86:1087-1119. [PMID: 36848595 DOI: 10.1021/acs.jnatprod.2c00720] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Flavonoids play diverse roles in plants, comprise a non-negligible fraction of net primary photosynthetic production, and impart beneficial effects in human health from a plant-based diet. Absorption spectroscopy is an essential tool for quantitation of flavonoids isolated from complex plant extracts. The absorption spectra of flavonoids typically consist of two major bands, band I (300-380 nm) and band II (240-295 nm), where the former engenders a yellow color; in some flavonoids the absorption tails to 400-450 nm. The absorption spectra of 177 flavonoids and analogues of natural or synthetic origin have been assembled, including molar absorption coefficients (109 from the literature, 68 measured here). The spectral data are in digital form and can be viewed and accessed at http://www.photochemcad.com. The database enables comparison of the absorption spectral features of 12 distinct types of flavonoids including flavan-3-ols (e.g., catechin, epigallocatechin), flavanones (e.g., hesperidin, naringin), 3-hydroxyflavanones (e.g., taxifolin, silybin), isoflavones (e.g., daidzein, genistein), flavones (e.g., diosmin, luteolin), and flavonols (e.g., fisetin, myricetin). The structural features that give rise to shifts in wavelength and intensity are delineated. The availability of digital absorption spectra for diverse flavonoids facilitates analysis and quantitation of these valuable plant secondary metabolites. Four examples are provided of calculations─multicomponent analysis, solar ultraviolet photoprotection, sun protection factor (SPF), and Förster resonance energy transfer (FRET)─for which the spectra and accompanying molar absorption coefficients are sine qua non.
Collapse
Affiliation(s)
- Masahiko Taniguchi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Connor A LaRocca
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jake D Bernat
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Jonathan S Lindsey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
63
|
Van der Auwera A, Peeters L, Foubert K, Piazza S, Vanden Berghe W, Hermans N, Pieters L. In Vitro Biotransformation and Anti-Inflammatory Activity of Constituents and Metabolites of Filipendula ulmaria. Pharmaceutics 2023; 15:pharmaceutics15041291. [PMID: 37111776 PMCID: PMC10146082 DOI: 10.3390/pharmaceutics15041291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Filipendula ulmaria (L.) Maxim. (Rosaceae) (meadowsweet) is widely used in phytotherapy against inflammatory diseases. However, its active constituents are not exactly known. Moreover, it contains many constituents, such as flavonoid glycosides, which are not absorbed, but metabolized in the colon by gut microbiota, producing potentially active metabolites that can be absorbed. The aim of this study was to characterize the active constituents or metabolites. (2) Methods: A F. ulmaria extract was processed in an in vitro gastrointestinal biotransformation model, and the metabolites were characterized using UHPLC-ESI-QTOF-MS analysis. In vitro anti-inflammatory activity was evaluated by testing the inhibition of NF-κB activation, COX-1 and COX-2 enzyme inhibition. (3) Results: The simulation of gastrointestinal biotransformation showed a decrease in the relative abundance of glycosylated flavonoids such as rutin, spiraeoside and isoquercitrin in the colon compartment, and an increase in aglycons such as quercetin, apigenin, naringenin and kaempferol. The genuine as well as the metabolized extract showed a better inhibition of the COX-1 enzyme as compared to COX-2. A mix of aglycons present after biotransformation showed a significant inhibition of COX-1. (4) Conclusions: The anti-inflammatory activity of F. ulmaria may be explained by an additive or synergistic effect of genuine constituents and metabolites.
Collapse
Affiliation(s)
- Anastasia Van der Auwera
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Laura Peeters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Kenn Foubert
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Stefano Piazza
- Laboratory of Pharmacognosy, Department of Pharmacological and Biomolecular Sciences, University of Milan, 20134 Milan, Italy
| | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics & Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Nina Hermans
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Luc Pieters
- Natural Products & Food Research and Analysis (NatuRA), Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| |
Collapse
|
64
|
Shala AL, Arduino I, Salihu MB, Denora N. Quercetin and Its Nano-Formulations for Brain Tumor Therapy—Current Developments and Future Perspectives for Paediatric Studies. Pharmaceutics 2023; 15:pharmaceutics15030963. [PMID: 36986827 PMCID: PMC10057501 DOI: 10.3390/pharmaceutics15030963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The development of efficient treatments for tumors affecting the central nervous system (CNS) remains an open challenge. Particularly, gliomas are the most malignant and lethal form of brain tumors in adults, causing death in patients just over 6 months after diagnosis without treatment. The current treatment protocol consists of surgery, followed using synthetic drugs and radiation. However, the efficacy of these protocols is associated with side effects, poor prognosis and with a median survival of fewer than two years. Recently, many studies were focused on applying plant-derived products to manage various diseases, including brain cancers. Quercetin is a bioactive compound derived from various fruits and vegetables (asparagus, apples, berries, cherries, onions and red leaf lettuce). Numerous in vivo and in vitro studies highlighted that quercetin through multitargeted molecular mechanisms (apoptosis, necrosis, anti-proliferative activity and suppression of tumor invasion and migration) effectively reduces the progression of tumor cells. This review aims to summarize current developments and recent advances of quercetin’s anticancer potential in brain tumors. Since all reported studies demonstrating the anti-cancer potential of quercetin were conducted using adult models, it is suggested to expand further research in the field of paediatrics. This could offer new perspectives on brain cancer treatment for paediatric patients.
Collapse
Affiliation(s)
- Aida Loshaj Shala
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Ilaria Arduino
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
| | - Mimoza Basholli Salihu
- Department of Drug Analysis and Pharmaceutical Technology, Faculty of Medicine, University of Prishtina, 10000 Prishtina, Kosovo
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari “Aldo Moro”, Orabona St. 4, 70125 Bari, Italy
- Correspondence:
| |
Collapse
|
65
|
Velasco-Ruiz I, De Santiago E, Ordóñez-Díaz JL, Pereira-Caro G, Moreno-Rojas JM. Effect of In Vitro Gastrointestinal Digestion and Colonic Fermentation on the Stability of Polyphenols in Pistachio ( Pistacia Vera L.). Int J Mol Sci 2023; 24:ijms24054975. [PMID: 36902411 PMCID: PMC10003603 DOI: 10.3390/ijms24054975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The aim of this study was to evaluate the impact of in vitro gastrointestinal digestion and colonic fermentation on the polyphenol compounds from different varieties of pistachio by UHPLC-HRMS analysis. The total polyphenol content decreased significantly, mostly during oral (recoveries of 27 to 50%) and gastric digestion (recoveries of 10 to 18%), with no significant changes after the intestinal phase. After in vitro digestion, the hydroxybenzoic acids and the flavan-3-ols were the main compounds found in pistachio, with respective total polyphenol contents of 73 to 78% and 6 to 11%. More specifically, the main compounds determined after in vitro digestion were 3,4,5-trihydroxybenzoic acid, vanillic hexoside and epigallocatechin gallate. The colonic fermentation affected the total phenolic content of the six varieties studied, with a recovery range of 11 to 25% after 24 h of fecal incubation. A total of twelve catabolites were identified after fecal fermentation, the main compounds being the 3-(3'-hydroxyphenyl)propanoic, 3-(4'-hydroxyphenyl)propanoic, 3-(3',4'-dihydroxyphenyl)propanoic, 3-hydroxyphenylacetic acids and 3,4-dihydroxyphenyl-ɣ-valerolactone. Based on these data, a catabolic pathway for colonic microbial degradation of phenolic compounds is proposed. The catabolites identified at the end of the process are potentially responsible for the health properties attributed to pistachio consumption.
Collapse
Affiliation(s)
- Isabel Velasco-Ruiz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Departamento de Bromatología y Tecnología de los Alimentos, Campus Rabanales, Ed. Darwin-Anexo, Universidad de Córdoba, 14014 Córdoba, Spain
| | - Elsy De Santiago
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
| | - José Luis Ordóñez-Díaz
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
| | - Gema Pereira-Caro
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Correspondence: (G.P.-C.); (J.M.M.-R.)
| | - José Manuel Moreno-Rojas
- Department of Agroindustry and Food Quality, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Alameda del Obispo, Avda. Menéndez-Pidal, s/n., 14004 Córdoba, Spain
- Foods for Health Group, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Correspondence: (G.P.-C.); (J.M.M.-R.)
| |
Collapse
|
66
|
Sousa-Filho CPB, Silva V, Bolin AP, Rocha ALS, Otton R. Green tea actions on miRNAs expression – An update. Chem Biol Interact 2023; 378:110465. [PMID: 37004950 DOI: 10.1016/j.cbi.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023]
Abstract
Compounds derived from plants have been widely studied in the context of metabolic diseases and associated clinical conditions. In this regard, although the effects of Camellia sinensis plant, from which various types of teas, such as green tea, originate, have been vastly reported in the literature, the mechanisms underlying these effects remain elusive. A deep search of the literature showed that green tea's action in different cells, tissues, and diseases is an open field in the research of microRNAs (miRNAs). miRNAs are important communicator molecules between cells in different tissues implicated in diverse cellular pathways. They have emerged as an important linkage between physiology and pathophysiology, raising the issue of polyphenols can act also by changing miRNA expression. miRNAs are short, non-coding endogenous RNA, which silence the gene functions by targeting messenger RNA (mRNA) through degradation or translation repression. Therefore, the aim of this review is to present the studies that show the main compounds of green tea modulating the expression of miRNAs in inflammation, adipose tissue, skeletal muscle, and liver. We provide an overview of a few studies that have tried to demonstrate the role of miRNAs associated with the beneficial effects of compounds from green tea. We have emphasized that there is still a considerable gap in the literature investigating the role and likely involvement of miRNAs in the extensive beneficial health effects of green tea compounds already described, indicating miRNAs as potential polyphenols' mediators with a promising field to be investigated.
Collapse
Affiliation(s)
| | - Victoria Silva
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Rosemari Otton
- Interdisciplinary Post-graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil.
| |
Collapse
|
67
|
Anti-Inflammatory Effects of Flavonoids in Common Neurological Disorders Associated with Aging. Int J Mol Sci 2023; 24:ijms24054297. [PMID: 36901731 PMCID: PMC10001833 DOI: 10.3390/ijms24054297] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Aging reduces homeostasis and contributes to increasing the risk of brain diseases and death. Some of the principal characteristics are chronic and low-grade inflammation, a general increase in the secretion of proinflammatory cytokines, and inflammatory markers. Aging-related diseases include focal ischemic stroke and neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Flavonoids are the most common class of polyphenols and are abundantly found in plant-based foods and beverages. A small group of individual flavonoid molecules (e.g., quercetin, epigallocatechin-3-gallate, and myricetin) has been used to explore the anti-inflammatory effect in vitro studies and in animal models of focal ischemic stroke and AD and PD, and the results show that these molecules reduce the activated neuroglia and several proinflammatory cytokines, and also, inactivate inflammation and inflammasome-related transcription factors. However, the evidence from human studies has been limited. In this review article, we highlight the evidence that individual natural molecules can modulate neuroinflammation in diverse studies from in vitro to animal models to clinical studies of focal ischemic stroke and AD and PD, and we discuss future areas of research that can help researchers to develop new therapeutic agents.
Collapse
|
68
|
In Vitro Gastrointestinal Digestion Affects the Bioaccessibility of Bioactive Compounds in Hibiscus sabdariffa Beverages. Molecules 2023; 28:molecules28041824. [PMID: 36838811 PMCID: PMC9960968 DOI: 10.3390/molecules28041824] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Hibiscus sabdariffa possess great versatility to be used as an ingredient for a whole range of products with natural-based ingredients, which are growing in popularity due to the health benefits of bioactive compounds (BC). Therefore, the objective of this study was to characterize the BC content in Hibiscus beverages and to evaluate their in vitro bioaccessibility. Results showed significant differences (p < 0.05) in the total contents of BC prior to the in vitro intestinal digestion. Hibiscus acid was the most abundant compound identified. Thirty-five compounds were identified in the Hibiscus beverage at the initial stage, while a maximum of 15 compounds were quantified in the different fractions of gastrointestinal digestion. After digestion, significant differences were found compared with the initial content of BC. That phenolic acids were the less bioaccessible group, while flavonoids were the most diverse. Principal components analysis showed different clusters and changes in the profiles of BC present at the initial stage and those bioaccessible, showing that intestinal digestion significantly affects the BC profile of the beverage.
Collapse
|
69
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
70
|
Zorzi G, Gambini S, Negri S, Guzzo F, Commisso M. Untargeted Metabolomics Analysis of the Orchid Species Oncidium sotoanum Reveals the Presence of Rare Bioactive C-Diglycosylated Chrysin Derivatives. PLANTS (BASEL, SWITZERLAND) 2023; 12:655. [PMID: 36771739 PMCID: PMC9920315 DOI: 10.3390/plants12030655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Plants are valuable sources of secondary metabolites with pharmaceutical properties, but only a small proportion of plant life has been actively exploited for medicinal purposes to date. Underexplored plant species are therefore likely to contain novel bioactive compounds. In this study, we investigated the content of secondary metabolites in the flowers, leaves and pseudobulbs of the orchid Oncidium sotoanum using an untargeted metabolomics approach. We observed the strong accumulation of C-diglycosylated chrysin derivatives, which are rarely found in nature. Further characterization revealed evidence of antioxidant activity (FRAP and DPPH assays) and potential activity against neurodegenerative disorders (MAO-B inhibition assay) depending on the specific molecular structure of the metabolites. Natural product bioprospecting in underexplored plant species based on untargeted metabolomics can therefore help to identify novel chemical structures with diverse pharmaceutical properties.
Collapse
Affiliation(s)
- Gianluca Zorzi
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Sofia Gambini
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Stefano Negri
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Mauro Commisso
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
71
|
Haeri V, Karimi E, Oskoueian E. Synthesized nanoliposome-encapsulated kaempferol attenuates liver health parameters and gene expression in mice challenged by cadmium-induced toxicity. Biotechnol Appl Biochem 2023; 70:429-438. [PMID: 35696633 DOI: 10.1002/bab.2368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 05/01/2022] [Indexed: 11/08/2022]
Abstract
In the present research, we encapsulated a flavonoid called kaempferol into nanoliposomal structures and the health-promoting effects of synthesized nanoliposome-loaded kaempferol (NLK) were evaluated in mice challenged by cadmium-induced . The NLK characteristics, such as size, zeta potential, and polydispersity index, were 218.4 nm, -28.55 mV, and 0.29, respectively. The in vivo experiment revealed that the mice receiving water containing cadmium (2 mg/kg body weight/day) showed significant (p < 0.05) weight loss, an increase in liver enzyme activities, and hepatic oxidative stress. Dietary supplementation with NLK at concentrations of 2.5 and 5 mg/kg mice body weight notably (p < 0.05) improved the body weight, liver enzyme activities, hepatic oxidative stress, and antioxidant potential of the liver. Our findings elucidated that NLK could alleviate the toxicity of cadmium in mice challenged by cadmium-induced toxicity.
Collapse
Affiliation(s)
- Vahideh Haeri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, IRAN
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, IRAN
| | - Ehsan Oskoueian
- Department of Research and Development, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
72
|
Oteiza PI, Cremonini E, Fraga CG. Anthocyanin actions at the gastrointestinal tract: Relevance to their health benefits. Mol Aspects Med 2023; 89:101156. [PMID: 36379746 DOI: 10.1016/j.mam.2022.101156] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
Abstract
Anthocyanins (AC) are flavonoids abundant in the human diet, which consumption has been associated to several health benefits, including the mitigation of cardiovascular disease, type 2 diabetes, non-alcoholic fatty liver disease, and neurological disorders. It is widely recognized that the gastrointestinal (GI) tract is not only central for food digestion but actively participates in the regulation of whole body physiology. Given that AC, and their metabolites reach high concentrations in the intestinal lumen after food consumption, their biological actions at the GI tract can in part explain their proposed local and systemic health benefits. In terms of mechanisms of action, AC have been found to: i) inhibit GI luminal enzymes that participate in the absorption of lipids and carbohydrates; ii) preserve intestinal barrier integrity and prevent endotoxemia, inflammation and oxidative stress; iii) sustain goblet cell number, immunological functions, and mucus production; iv) promote a healthy microbiota; v) be metabolized by the microbiota to AC metabolites which will be absorbed and have systemic effects; and vi) modulate the metabolism of GI-generated hormones. This review will summarize and discuss the latest information on AC actions at the GI tract and their relationship to overall health benefits.
Collapse
Affiliation(s)
- Patricia I Oteiza
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA.
| | - Eleonora Cremonini
- Department of Nutrition, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Cesar G Fraga
- Department of Nutrition, University of California, Davis, USA; Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL), UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
73
|
Di Pede G, Mena P, Bresciani L, Almutairi TM, Del Rio D, Clifford MN, Crozier A. Human colonic catabolism of dietary flavan-3-ol bioactives. Mol Aspects Med 2023; 89:101107. [PMID: 35931563 DOI: 10.1016/j.mam.2022.101107] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 02/04/2023]
Abstract
Understanding the fate of ingested polyphenols is crucial in elucidating the molecular mechanisms underlying the beneficial effects of a fruit and vegetable-based diet. This review focuses on the colon microbiota-mediated transformation of the flavan-3-ols and the structurally related procyanidins found in dietary plant foods and beverages, plus the flavan-3-ol-derived theaflavins of black tea, and the post-absorption phase II metabolism of the gut microbiota catabolites. Despite significant advances in the last decade major analytical challenges remain. Strategies to address them are presented.
Collapse
Affiliation(s)
- Giuseppe Di Pede
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Letizia Bresciani
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy
| | - Tahani M Almutairi
- Department of Chemistry, King Saud University, Riyadh, 11363, Saudi Arabia
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43125, Parma, Italy; Microbiome Research Hub, University of Parma, 43124, Parma, Italy
| | - Michael N Clifford
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK; Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, Victoria, 3168, Australia
| | - Alan Crozier
- Department of Chemistry, King Saud University, Riyadh, 11363, Saudi Arabia; School of Medicine, Dentistry and Nursing, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.
| |
Collapse
|
74
|
Zhao Q, Yan X, Yue Y, Yue T, Yuan Y. Improved flavonoid content in mulberry leaves by solid-state fermentation: Metabolic profile, activity, and mechanism. INNOV FOOD SCI EMERG 2023. [DOI: 10.1016/j.ifset.2023.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
75
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
76
|
Borel P, Dangles O, Kopec RE. Fat-soluble vitamin and phytochemical metabolites: Production, gastrointestinal absorption, and health effects. Prog Lipid Res 2023; 90:101220. [PMID: 36657621 DOI: 10.1016/j.plipres.2023.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/18/2023]
Abstract
Consumption of diets rich in fruits and vegetables, which provide some fat-soluble vitamins and many phytochemicals, is associated with a lower risk of developing certain degenerative diseases. It is well accepted that not only the parent compounds, but also their derivatives formed upon enzymatic or nonenzymatic transformations, can produce protective biological effects. These derivatives can be formed during food storage, processing, or cooking. They can also be formed in the lumen of the upper digestive tract during digestion, or via metabolism by microbiota in the colon. This review compiles the known metabolites of fat-soluble vitamins and fat-soluble phytochemicals (FSV and FSP) that have been identified in food and in the human digestive tract, or could potentially be present based on the known reactivity of the parent compounds in normal or pathological conditions, or following surgical interventions of the digestive tract or consumption of xenobiotics known to impair lipid absorption. It also covers the very limited data available on the bioavailability (absorption, intestinal mucosa metabolism) and summarizes their effects on health. Notably, despite great interest in identifying bioactive derivatives of FSV and FSP, studying their absorption, and probing their putative health effects, much research remains to be conducted to understand and capitalize on the potential of these molecules to preserve health.
Collapse
Affiliation(s)
- Patrick Borel
- C2VN, INRAE, INSERM, Aix-Marseille Univ, Marseille, France.
| | | | - Rachel E Kopec
- Human Nutrition Program, Department of Human Sciences, Foods for Health Discovery Theme, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
77
|
Zahid HF, Ali A, Ranadheera CS, Fang Z, Ajlouni S. Identification of Phenolics Profile in Freeze-Dried Apple Peel and Their Bioactivities during In Vitro Digestion and Colonic Fermentation. Int J Mol Sci 2023; 24:ijms24021514. [PMID: 36675061 PMCID: PMC9864335 DOI: 10.3390/ijms24021514] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Freeze-dried apple peel powder (Fd-APP) was subjected to in vitro digestion and colonic fermentation to evaluate the variations in its phenolic composition, bioactivities (antioxidant activity, α-amylase, and α-glucosidase inhibition), and fecal metabolic outputs. A total of 88 phenolics were tentatively identified, of which 51 phenolic compounds were quantitated in Fd-APP sample extracts before digestion, and 34 were released during subsequent phases of digestion. Among these, phenolic acids showed the highest bio accessibility index (BI) of 68%, followed by flavonoids (63%) and anthocyanins (52%). The inhibitory functions of Fd-APP extract against α-amylase and α-glucosidase pre- and post-digestion were moderate and ranged from 41.88 to 44.08% and 35.23 to 41.13%, respectively. Additionally, the antioxidant activities revealed a significant (p ≤ 0.05) decline during the in vitro digestion. However, the colonic fermentation stage presented different products where the intact parent phenolic compounds present in Fd-APP were utilized by gut microbes and produced various phenolic metabolites such as 3- hydroxyphenyl acetic acid (3-HPAA), ferulic acid (FA), 3-(4-hydroxyphenyl) propionic acid (3,4 HPPA) and 4- hydroxybenzoic acid (4-HBA). Furthermore, colonic fermentation of Fd-APP accelerated the production of short-chain fatty acids (SCFAs), with acetic acid being the most prevalent (97.53 ± 9.09 mM). The decrease in pH of fermentation media to 4.3 significantly (p ≤ 0.05) enhanced counts of Bifidobacterium (10.27 log CFU/mL), which demonstrated the potential prebiotic effects of Fd-APP. These findings indicated that the consumption of apple peel as a constituent of novel functional foods may support and protect the intestinal microbiota and consequently promote human health.
Collapse
|
78
|
Nieman DC, Omar AM, Kay CD, Kasote DM, Sakaguchi CA, Lkhagva A, Weldemariam MM, Zhang Q. Almond intake alters the acute plasma dihydroxy-octadecenoic acid (DiHOME) response to eccentric exercise. Front Nutr 2023; 9:1042719. [PMID: 36698469 PMCID: PMC9868138 DOI: 10.3389/fnut.2022.1042719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/28/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction This investigation determined if 4-weeks ingestion of nutrient-dense almonds mitigated post-exercise inflammation and muscle soreness and damage. Methods An acute 90-min of eccentric exercise (90-EE) was used to induce muscle damage in 64 non-obese adults not engaging in regular resistance training (ages 30-65 years, BMI < 30 kg/m2). Using a parallel group design, participants were randomized to almond (AL) (57 g/d) or cereal bar (CB) (calorie matched) treatment groups for a 4-week period prior to the 90-EE (17 exercises). Blood and 24-h urine samples were collected before and after supplementation, with additional blood samples collected immediately post-90-EE, and then daily during 4 additional days of recovery. Changes in plasma oxylipins, urinary gut-derived phenolics, plasma cytokines, muscle damage biomarkers, mood states, and exercise performance were assessed. Results The 90-EE protocol induced significant muscle damage, delayed onset of muscle soreness (DOMS), inflammation, reduced strength and power performance, and mood disturbance. Interaction effects (2 group × 7 time points) supported that AL vs. CB was associated with reduced post-exercise fatigue and tension (p = 0.051, 0.033, respectively) and higher levels of leg-back strength (p = 0.029). No group differences were found for post-90-EE increases in DOMS and six cytokines. AL was associated with lower levels of serum creatine kinase immediately- and 1-day post-exercise (p = 0.034 and 0.013, respectively). The 90-EE bout increased plasma levels immediately post-exercise for 13 oxylipins. Interaction effects revealed significantly higher levels for AL vs. CB for 12,13-DiHOME (p < 0.001) and lower levels for 9,10-DiHOME (p < 0.001). Urine levels increased in AL vs. CB for seven gut-derived phenolics including 5-(3',4'-dihydroxyphenyl)-γ-valerolactone that was inversely related to changes in plasma 9,10-DiHOME (r = -0.029, p = 0.021). Discussion These data support some positive effects of almond intake in improving mood state, retaining strength, decreasing muscle damage, increasing the generation of gut-derived phenolic metabolites, and altering the plasma oxylipin DiHOME response to unaccustomed eccentric exercise in untrained adults. The elevated post-exercise plasma levels of 12,13-DiHOME with almond intake support positive metabolic outcomes for adults engaging in unaccustomed eccentric exercise bouts.
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States,*Correspondence: David C. Nieman,
| | - Ashraf M. Omar
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Colin D. Kay
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Deepak M. Kasote
- Department of Food, Bioprocessing and Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Camila A. Sakaguchi
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, NC, United States
| | - Ankhbayar Lkhagva
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Mehari Muuz Weldemariam
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| | - Qibin Zhang
- UNCG Center for Translational Biomedical Research, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, United States
| |
Collapse
|
79
|
Antioxidant Phytochemicals as Potential Therapy for Diabetic Complications. Antioxidants (Basel) 2023; 12:antiox12010123. [PMID: 36670985 PMCID: PMC9855127 DOI: 10.3390/antiox12010123] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
The global prevalence of diabetes continues to increase partly due to rapid urbanization and an increase in the aging population. Consequently, this is associated with a parallel increase in the prevalence of diabetic vascular complications which significantly worsen the burden of diabetes. For these diabetic vascular complications, there is still an unmet need for safe and effective alternative/adjuvant therapeutic interventions. There is also an increasing urge for therapeutic options to come from natural products such as plants. Hyperglycemia-induced oxidative stress is central to the development of diabetes and diabetic complications. Furthermore, oxidative stress-induced inflammation and insulin resistance are central to endothelial damage and the progression of diabetic complications. Human and animal studies have shown that polyphenols could reduce oxidative stress, hyperglycemia, and prevent diabetic complications including diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy. Part of the therapeutic effects of polyphenols is attributed to their modulatory effect on endogenous antioxidant systems. This review attempts to summarize the established effects of polyphenols on endogenous antioxidant systems from the literature. Moreover, potential therapeutic strategies for harnessing the potential benefits of polyphenols for diabetic vascular complications are also discussed.
Collapse
|
80
|
Hepatoprotective Effect of Kaempferol: A Review of the Dietary Sources, Bioavailability, Mechanisms of Action, and Safety. Adv Pharmacol Pharm Sci 2023; 2023:1387665. [PMID: 36891541 PMCID: PMC9988374 DOI: 10.1155/2023/1387665] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/27/2022] [Accepted: 02/03/2023] [Indexed: 03/02/2023] Open
Abstract
The liver is the body's most critical organ that performs vital functions. Hepatic disorders can affect the physiological and biochemical functions of the body. Hepatic disorder is a condition that describes the damage to cells, tissues, structures, and functions of the liver, which can cause fibrosis and ultimately result in cirrhosis. These diseases include hepatitis, ALD, NAFLD, liver fibrosis, liver cirrhosis, hepatic failure, and HCC. Hepatic diseases are caused by cell membrane rupture, immune response, altered drug metabolism, accumulation of reactive oxygen species, lipid peroxidation, and cell death. Despite the breakthrough in modern medicine, there is no drug that is effective in stimulating the liver function, offering complete protection, and aiding liver cell regeneration. Furthermore, some drugs can create adverse side effects, and natural medicines are carefully selected as new therapeutic strategies for managing liver disease. Kaempferol is a polyphenol contained in many vegetables, fruits, and herbal remedies. We use it to manage various diseases such as diabetes, cardiovascular disorders, and cancers. Kaempferol is a potent antioxidant and has anti-inflammatory effects, which therefore possesses hepatoprotective properties. The previous research has studied the hepatoprotective effect of kaempferol in various hepatotoxicity protocols, including acetaminophen (APAP)-induced hepatotoxicity, ALD, NAFLD, CCl4, HCC, and lipopolysaccharide (LPS)-induced acute liver injury. Therefore, this report aims to provide a recent brief overview of the literature concerning the hepatoprotective effect of kaempferol and its possible molecular mechanism of action. It also provides the most recent literature on kaempferol's chemical structure, natural source, bioavailability, and safety.
Collapse
|
81
|
de Souza GR, De-Oliveira ACAX, Soares V, De-Souza TP, Barbi NS, Paumgartten FJR, da Silva AJR. Protective effects of a chemically characterized extract from solanum torvum leaves on acetaminophen-induced liver injury. Drug Chem Toxicol 2023; 46:122-135. [PMID: 35105269 DOI: 10.1080/01480545.2021.2012905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Distinct parts of Solanum torvum Swartz. (Solanaceae) are popularly used for a variety of therapeutic purposes. This study determined the phytochemical composition of a phenolic fraction of S. torvum leaf aqueous extract and investigated its antioxidant and liver-protective properties. A phenolic compound-enriched fraction, or phenolic fraction (STLAE-PF) of an infusion (STLAE) of S. torvum leaves, was tested in vitro (antagonism of H2O2 in cytotoxicity and DCF assays with HepG2/C3A cells), and in vivo for antioxidant activity and protective effects against acetaminophen (APAP)-induced liver injury in mice. Thirty-eight compounds (flavonoids, esters of hydroxycinnamic acid, and chlorogenic acid isomers) were tentatively identified (high-performance liquid chromatography coupled to high-resolution electrospray mass spectrometry) in the STLAE-PF fraction. In vitro assays in HepG2/C3A cells showed that STLAE-PF and some flavonoids contained in this phenolic fraction, at noncytotoxic levels, antagonized in a concentration-dependent manner the effects of a powerful oxidant agent (H2O2). In C57BL/6 mice, oral administration of STLAE (600 and 1,200 mg/kg bw) or STLAE-PF (300 mg/kg bw) prevented the rise in serum transaminases (ALT and AST), depletion of reduced glutathione (GSH) and elevation of thiobarbituric acid reactive species (TBARs) levels in the liver caused by APAP (600 mg/kg bw, i.p.). The hepatoprotective effects of STLAE-PF (300 mg/kg bw) against APAP-caused liver injury were comparable to those of N-acetyl-cysteine (NAC 300 or 600 mg/kg bw i.p.). These findings indicate that a phenolic fraction of S. torvum leaf extract (STLAE-PF) is a new phytotherapeutic agent potentially useful for preventing/treating liver injury caused by APAP overdosing.
Collapse
Affiliation(s)
- Gabriela R de Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Ana Cecilia A X De-Oliveira
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Vitor Soares
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thamyris Perez De-Souza
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Nancy S Barbi
- Department of Clinical and Toxicological Analyses, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Francisco J R Paumgartten
- Department of Biological Sciences, National School of Public Health, Oswaldo Cruz Foundation, Rio de Janeiro
| | - Antonio J R da Silva
- Institute for Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
82
|
Tew WY, Tan CS, Yan CS, Loh HW, Wen X, Wei X, Yam MF. Evaluation of vasodilatory effect and antihypertensive effect of chrysin through in vitro and sub-chronic in vivo study. Biomed Pharmacother 2023; 157:114020. [PMID: 36469968 DOI: 10.1016/j.biopha.2022.114020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/07/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
Abstract
Chrysin, a bioflavonoid belonging to the flavone, occurs naturally in plants such as the passionflower, honey and propolis. Few studies have demonstrated that chrysin can promote vasorelaxant activities in rats' aorta and mesenteric arteries. To date, no research has explored the signalling system routes that chrysin may utilise to produce its vasorelaxant action. Therefore, this study aimed to investigate the underlying mechanisms involved in chrysin-induced vasorelaxant in rats' aortic rings and assess the antihypertensive effect of chrysin in spontaneously hypertensive rats (SHRs). The findings revealed that chrysin utilised both endothelium-dependent and endothelium-independent mechanisms. The presence of L-NAME (endothelial NO synthase inhibitor), ODQ (sGC inhibitor), methylene blue (cGMP lowering agent), 4-AP (voltage-gated potassium channel inhibitor), atropine (muscarinic receptors inhibitor) and propranolol (β-adrenergic receptors inhibitor) significantly reduced the chrysin's vasorelaxant action. Furthermore, chrysin can reduce intracellular Ca2+ levels by limiting the extracellular intake of Ca2+ through voltage-operated calcium channels and blocking the intracellular release of Ca2+ from the sarcoplasmic reticulum via the IP3 receptor. These indicate that chrysin-induced vasorelaxants involved NO/sGC/cGMP signalling cascade, muscarinic and β-adrenergic receptors, also the potassium and calcium channels. Although chrysin had vasorelaxant effects in in vitro studies, the in vivo antihypertensive experiment discovered chrysin does not significantly reduce the blood pressure of SHRs following 21 days of oral treatment. This study proved that chrysin utilised multiple signalling pathways to produce its vasorelaxant effect in the thoracic aorta of rats; however, it had no antihypertensive effect on SHRs.
Collapse
Affiliation(s)
- Wan Yin Tew
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chu Shan Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chong Seng Yan
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Hui Wei Loh
- Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Xu Wen
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China
| | - Xu Wei
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China.
| | - Mun Fei Yam
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, 1 Qiuyang Road, Shangjie, Minhou, Fuzhou 350122, Fujian, China; Department of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
83
|
Sengani M, Chakraborty S, Balaji MP, Govindasamy R, Alahmadi TA, Al Obaid S, Karuppusamy I, Lan Chi NT, Brindhadevi K, V DR. Anti-diabetic efficacy and selective inhibition of methyl glyoxal, intervention with biogenic Zinc oxide nanoparticle. ENVIRONMENTAL RESEARCH 2023; 216:114475. [PMID: 36244440 DOI: 10.1016/j.envres.2022.114475] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Non-enzymatic glycation of biomolecules results in advanced glycation end products (AGEs), which are responsible for secondary complications in diabetes. Inhibiting methyl glyoxal (MGO) induced advanced glycation end product (AGE) formation is the only way to alleviate diabetic complications. This study aimed to look into the abilities of herbal extract Kigelia africana and K. africana synthesized zinc oxide nanoparticles (ZnONPs) to inhibit the emergence of MG-derived AGEs. The study intended to determine antioxidant and AGE inhibition of the plant extract and ZnONPs. ZnONPs were tested for the efficiency of anti-diabetic activity in streptozotocin-induced diabetic Wister rats. We discovered that the MGO-trapping effects on the prevention of AGE production were mediated by the downregulation of the amplification of MGO-trapping impacts on the hypoglycemic and antihyperlipidemic mechanisms of ZnONPs. According to histological findings, the treatment with ZnONPs also successfully lowers inflammation in the hepatic and renal tissues. Overall, future mechanistic research could establish ZnONPs potential anti-diabetic properties.
Collapse
Affiliation(s)
- Manimegalai Sengani
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Rampuram, Chennai, 87, India
| | - Shreya Chakraborty
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 14, Tamil Nadu, India
| | - Menaka Priya Balaji
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 14, Tamil Nadu, India
| | - Rajakumar Govindasamy
- Department of Orthodontics Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Sami Al Obaid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Indira Karuppusamy
- Research Center for Strategic Materials, Corrosion Resistant Steel Group, National Institute for Materials Science (NIMS), Tsukuba, Japan
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam
| | - Kathirvel Brindhadevi
- Computational Engineering and Design Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Devi Rajeswari V
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 14, Tamil Nadu, India.
| |
Collapse
|
84
|
Unique roles in health promotion of dietary flavonoids through gut microbiota regulation: Current understanding and future perspectives. Food Chem 2023; 399:133959. [DOI: 10.1016/j.foodchem.2022.133959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 08/08/2022] [Accepted: 08/13/2022] [Indexed: 11/21/2022]
|
85
|
Chen J, Ning S, Lu X, Xiang W, Zhou X, Bu Y, Li L, Huang R. Variation in flavonoid and antioxidant activities of Pyrrosia petiolosa (Christ) Ching from different geographic origins. FRONTIERS IN PLANT SCIENCE 2023; 14:1173489. [PMID: 37123848 PMCID: PMC10140315 DOI: 10.3389/fpls.2023.1173489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Pyrrosia petiolosa (Christ) Ching has both medicinal and health benefits in China. The potential antioxidant activities of P. petiolosa, which are mainly attributed to its flavonoids, have attracted much attention in recent years. The present study aimed to determine the concentration of flavonoid components and evaluate the relative antioxidant activities of P. petiolosa from different geographic origins using a UPLC-MRM-MS-based metabolomics approach. In total, 97 flavonoid components were identified, and their concentrations in the samples from different geographic locations showed significant variation. Thirteen flavonoid components were identified as potential biomarkers for distinguishing between the two major regions, Guizhou (GZ) and Guangxi (GX). The GZ group showed higher total flavonoid content, free radical scavenging activities, and ferric reducing antioxidant power. The well positive correlations were found between the antioxidant capacities and some flavonoid markers. The ecogeographic factors, namely altitude and longitude, play a crucial role in the difference of antioxidant activities and flavonoids concentration. These results indicate that P. petiolosa is rich in flavonoid compounds and is a promising source of natural antioxidants, providing a basis for the quality control of P. petiolosa.
Collapse
Affiliation(s)
- Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
| | - Shan Ning
- Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning, China
| | - Xuan Lu
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
| | - Wei Xiang
- College of Horticulture, Hunan Agricultural University, Hunan, China
| | - Xiao Zhou
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuanyuan Bu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
- *Correspondence: Liangbo Li, ; Rongshao Huang,
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- Key Laboratory of Protection and Utilization of Traditional Chinese Medicine and Ethnic Medicine Resources, Education Department of Guangxi, Nanning, China
- *Correspondence: Liangbo Li, ; Rongshao Huang,
| |
Collapse
|
86
|
Huang F, Wang T, Zhang J, Tahir M, Sun J, Liu Y, Yun F, Xia T, Teng K, Wang J, Zhong J. Exploring the bacterial community succession and metabolic profiles of Lonicera japonica Thunb. residues during anaerobic fermentation. BIORESOURCE TECHNOLOGY 2023; 367:128264. [PMID: 36343778 DOI: 10.1016/j.biortech.2022.128264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Discarding Lonicera japonica Thunb. (LJT) residues containing many active metabolites create tremendous waste. This study aimed to effectively use LJT residues by anaerobic fermentation. Fermentation significantly decreased the pH values and reduced the abundance of undesirable bacteria (potential pathogenic and biofilm-forming) while increasing Lactobacillus abundance. Compound additive use further improved fermentation quality (significantly increased the lactic acid (LA) content and decreased the pH values and ammonia nitrogen (a-N) content) and nutrient quality (significantly decreased the acid detergent fiber (ADF) content and increased the water-soluble carbohydrate (WSC) content) and optimized the microbial community (increased the Lactobacillus abundance). Fermentation also altered the flavonoids, alkaloids and phenols contents in the residues with minor effects on the functional metabolites amounts. The LJT residues metabolic profile was mainly attributed to its epiphytic bacteria, with a small contribution from the compound additive. Thus, compound additives may improve anaerobic LJT residue fermentation without functionally impairing the metabolites.
Collapse
Affiliation(s)
- Fuqing Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tianwei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiaqi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Muhammad Tahir
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jiahao Sun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yayong Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Fangfei Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Tianqi Xia
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kunling Teng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiwen Wang
- Institute of Biology Co., Ltd., Henan Academy of Science, Zhengzhou 450008, China
| | - Jin Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
87
|
He Y, Peng L, Xiong H, Liu W, Zhang H, Peng X, Zhu X, Guo F, Sun Y. The profiles of durian (Durio zibethinus Murr.) shell phenolics and their antioxidant effects on H 2O 2-treated HepG2 cells as well as the metabolites and organ distribution in rats. Food Res Int 2023; 163:112122. [PMID: 36596090 DOI: 10.1016/j.foodres.2022.112122] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/28/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Durian is a nutritious tropical fruit with potent antioxidant, anti-inflammatory, antibacterial and anti-cancer effects. However, the durian shell was mainly discarded as waste, while there were few studies on the characterization of its phenolic profiles, antioxidant activities, and in vivo metabolites. In the present study, a total of 17 compounds were identified in durian shell extract (DSE) by using an ultra-high-performance liquid chromatography coupled with linear ion trap quadrupole Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap-MS/MS), while 33 metabolites were found in rats' plasma, urine and organ. Moreover, DSE could effectively reduce H2O2-induced oxidative damage in HepG2 cells, reduce the expression of Reactive Oxygen Species (ROS), Malondialdehyde (MDA) and Lactate Dehydrogenase (LDH) and inhibit apoptosis by regulating the expression of Bcl-2-Associated X (BAX), B-Cell Lymphoma 2 (BCL-2), Caspase-3 and Caspase-9 genes and proteins related to mitochondrial pathway apoptosis. This is the first comprehensive report on Durian shell phenolics, their metabolic profiles and underlying mechanisms of the in vitro antioxidant activities.
Collapse
Affiliation(s)
- Yangzheng He
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Li Peng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Hua Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Wenqiang Liu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Hua Zhang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi, PR China
| | - Xin Peng
- Ningbo Municipal Hospital of TCM, Affiliated Hospital of Zhejiang Chinese Medical University, Ningbo 315010, PR China
| | - Xuemei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Fanghua Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, Jiangxi, PR China.
| |
Collapse
|
88
|
A Scoping Review on the Effects of Carotenoids and Flavonoids on Skin Damage Due to Ultraviolet Radiation. Nutrients 2022; 15:nu15010092. [PMID: 36615749 PMCID: PMC9824837 DOI: 10.3390/nu15010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Skin exposure to ultraviolet (UV) rays in the sun causes premature ageing and may predispose to skin cancers. UV radiation generates excessive free radical species, resulting in oxidative stress, which is responsible for cellular and DNA damage. There is growing evidence that phytonutrients such as flavonoids and carotenoids may impede oxidative stress and prevent photodamage. We conducted a systematic review of the literature to explore the effects of certain phytonutrients in preventing skin photodamage. We searched the electronic Medline (Ovid) and Pubmed databases for relevant studies published between 2002 and 2022. The main inclusion criteria were articles written in English, and studies reporting the effects of phytonutrient-containing plants of interest on the skin or skin cells exposed to UV radiation. We focused on tea, blueberries, lemon, carrot, tomato, and grapes, which are rich in flavonoids and/or carotenoids. Out of 434 articles retrieved, 40 were identified as potentially relevant. Based on our inclusion criteria, nine articles were included in the review. The review comprises three combined in vitro and animal studies, four human studies, one in vitro research, and one mixed in vitro and human study. All the studies reported positive effects of flavonoids and carotenoid-containing plant extract on UV-induced skin damage. This evidence-based review highlights the potential use of flavonoids and carotenoids found in plants in preventing the deleterious effects of UV radiation on the skin. These compounds may have a role in clinical and aesthetic applications for the prevention and treatment of sunburn and photoaging, and may potentially be used against UV-related skin cancers.
Collapse
|
89
|
Li MM, Chen YT, Ruan JC, Wang WJ, Chen JG, Zhang QF. Structure-activity relationship of dietary flavonoids on pancreatic lipase. Curr Res Food Sci 2022; 6:100424. [PMID: 36618100 PMCID: PMC9813676 DOI: 10.1016/j.crfs.2022.100424] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lipase is a very important digestive enzyme for triglyceride absorption in vivo. The inhibitory activities of 26 dietary flavonoids, including flavone, flavanone, isoflavone and flavanol, on lipase were determined. Flavone exhibited stronger inhibitory activity than other types of flavonoids. Among them, luteolin exhibited the strongest inhibitory activity with IC50 value of 99 ± 11 μM, followed by quercetin and baicalein. The binding affinity of these flavonoids with lipase was investigated by fluorescence titration method. The binding affinity of flavones was stronger than flavanones, and was linearly positively correlated with their inhibitory activity. The binding of flavones on lipase caused the blue-shift of fluorescence, while flavanones caused red-shift. The analysis of structure-activity relationship of flavonoids on lipase revealed that the structure of C ring is very crucial. The hydrogenation of C2=C3 bond and the absence of C=O group in C ring both caused significant decrease of inhibitory activity. Besides, the hydroxylation on ring A and B of flavones increased the activity, while glycosylation weakened the activity. Molecular docking analysis confirmed that C2=C3 bond in C ring of flavones increases the π-conjugation and contributes to maintaining the planarity of flavonoid structure, which favour its Pi-Pi interaction with lipase.
Collapse
|
90
|
Shen X, Xue S, Tan Y, Zhong W, Liang X, Wang J. Binding of Licochalcone A to Whey Protein Enhancing Its Antioxidant Activity and Maintaining Its Antibacterial Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15917-15927. [PMID: 36484772 DOI: 10.1021/acs.jafc.2c06125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Incorporating LA into whey protein by forming whey protein isolate-LA (WPI-LA) and polymerized whey protein-LA (PWP-LA) complexes is a good way to maintain its bioactivity and improve its functional performance within food matrices. Herein, we found that WPI and PWP were able to interact with LA as suggested by multi-spectroscopy, molecular docking, and molecular dynamics simulations. The interaction between whey protein and LA was a spontaneous non-covalent binding process, while PWP had a higher affinity for LA than WPI, resulting from its more negatively binding free energy with LA. Hydrogen bonds, van der Waals forces, and electrostatic interactions were responsible for WPI-LA interactions. Hydrophobic forces, van der Waals, and hydrogen bonds positively accounted for PWP-LA interactions. The antioxidant activity of LA was improved by complexation with whey proteins as identified by DPPH and ABTS. The antimicrobial efficiency of LA was partially screened by complexation with whey protein with MIC values increased by seven-fold compared to free LA but successfully recovered to its original efficiency upon isolating it from the complex. This work demonstrates the promising antioxidant and antibacterial activities of the whey protein-LA complex and provides a good candidate for developing a new class of natural functional ingredients for food systems.
Collapse
Affiliation(s)
- Xue Shen
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| | - Shiqi Xue
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Yuying Tan
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Weigang Zhong
- Department of Food Science, College of Food Science and Engineering, Jilin University, Changchun130062, China
| | - Xiaoying Liang
- Department of Internal Medicine, University of South Florida, Tampa, Florida33612, United States
| | - Jianfeng Wang
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun130062, China
| |
Collapse
|
91
|
Improved enzyme thermal stability, loading and bioavailability using alginate encapsulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
92
|
Waqar K, Engholm-Keller K, Joehnke MS, Chatterton DE, Poojary MM, Lund MN. Covalent bonding of 4-methylcatechol to β-lactoglobulin results in the release of cysteine-4-methylcatechol adducts after in vitro digestion. Food Chem 2022; 397:133775. [DOI: 10.1016/j.foodchem.2022.133775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 01/02/2023]
|
93
|
Periferakis A, Periferakis K, Badarau IA, Petran EM, Popa DC, Caruntu A, Costache RS, Scheau C, Caruntu C, Costache DO. Kaempferol: Antimicrobial Properties, Sources, Clinical, and Traditional Applications. Int J Mol Sci 2022; 23:ijms232315054. [PMID: 36499380 PMCID: PMC9740324 DOI: 10.3390/ijms232315054] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
Flavonoids are a category of plant-derived compounds which exhibit a large number of health-related effects. One of the most well-known and studied flavonoids is kaempferol, which can be found in a wide variety of herbs and plant families. Apart from their anticarcinogenic and anti-inflammatory effects, kaempferol and its associated compounds also exhibit antibacterial, antifungal, and antiprotozoal activities. The development of drugs and treatment schemes based on these compounds is becoming increasingly important in the face of emerging resistance of numerous pathogens as well as complex molecular interactions between various drug therapies. In addition, many of the kaempferol-containing plants are used in traditional systems all over the world for centuries to treat numerous conditions. Due to its variety of sources and associated compounds, some molecular mechanisms of kaempferol antimicrobial activity are well known while others are still under analysis. This paper thoroughly documents the vegetal and food sources of kaempferol as well as the most recent and significant studies regarding its antimicrobial applications.
Collapse
Affiliation(s)
- Argyrios Periferakis
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
| | - Konstantinos Periferakis
- Akadimia of Ancient Greek and Traditional Chinese Medicine, 16675 Athens, Greece
- Pan-Hellenic Organization of Educational Programs (P.O.E.P), 17236 Athens, Greece
- Orasis Acupuncture Institute, 11526 Athens, Greece
| | - Ioana Anca Badarau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Elena Madalina Petran
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Toxicology, Grigore Alexandrescu Emergency Children’s Hospital, 011743 Bucharest, Romania
| | - Delia Codruta Popa
- Department of Biochemistry, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Hematology, Fundeni Clinical Institute, 022328 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Ana Caruntu
- Department of Oral and Maxillofacial Surgery, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, ‘Titu Maiorescu’ University, 031593 Bucharest, Romania
| | - Raluca Simona Costache
- Department of Gastroenterology, Gastroenterology and Internal Medicine Clinic, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
- Department of Internal Medicine and Gastroenterology, ‘Carol Davila’ University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Cristian Scheau
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Correspondence: (D.C.P.); (C.S.)
| | - Constantin Caruntu
- Department of Physiology, The “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Dermatology, ‘Prof. N.C. Paulescu’ National Institute of Diabetes, Nutrition and Metabolic Diseases, 011233 Bucharest, Romania
| | - Daniel Octavian Costache
- Department of Dermatology, ‘Dr. Carol Davila’ Central Military Emergency Hospital, 010825 Bucharest, Romania
| |
Collapse
|
94
|
Biochemistry of Antioxidants: Mechanisms and Pharmaceutical Applications. Biomedicines 2022; 10:biomedicines10123051. [PMID: 36551806 PMCID: PMC9776363 DOI: 10.3390/biomedicines10123051] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Natural antioxidants from fruits and vegetables, meats, eggs and fish protect cells from the damage caused by free radicals. They are widely used to reduce food loss and waste, minimizing lipid oxidation, as well as for their effects on health through pharmaceutical preparations. In fact, the use of natural antioxidants is among the main efforts made to relieve the pressure on natural resources and to move towards more sustainable food and pharmaceutical systems. Alternative food waste management approaches include the valorization of by-products as a source of phenolic compounds for functional food formulations. In this review, we will deal with the chemistry of antioxidants, including their molecular structures and reaction mechanisms. The biochemical aspects will also be reviewed, including the effects of acidity and temperature on their partitioning in binary and multiphasic systems. The poor bioavailability of antioxidants remains a huge constraint for clinical applications, and we will briefly describe some delivery systems that provide for enhanced pharmacological action of antioxidants via drug targeting and increased bioavailability. The pharmacological activity of antioxidants can be improved by designing nanotechnology-based formulations, and recent nanoformulations include nanoparticles, polymeric micelles, liposomes/proliposomes, phytosomes and solid lipid nanoparticles, all showing promising outcomes in improving the efficiency and bioavailability of antioxidants. Finally, an overview of the pharmacological effects, therapeutic properties and future choice of antioxidants will be incorporated.
Collapse
|
95
|
Wang HY, Qu C, Li MN, Li CR, Liu RZ, Guo Z, Li P, Gao W, Yang H. Time-Series-Dependent Global Data Filtering Strategy for Mining and Profiling of Xenobiotic Metabolites in a Dynamic Complex Matrix: Application to Biotransformation of Flavonoids in the Extract of Ginkgo biloba by Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14386-14394. [PMID: 36331925 DOI: 10.1021/acs.jafc.2c03080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Efficient characterization of xenobiotic metabolites and their dynamics in a changing complex matrix remains difficult. Herein, we proposed a time-series-dependent global data filtering strategy for the rapid and comprehensive characterization of xenobiotic metabolites and their dynamic variation based on metabolome data. A set of data preprocessing methods was used to screen potential xenobiotic metabolites, considering the differences between the treated and control groups and the fluctuations over time. To further identify metabolites of the target, an in-house accurate mass database was constructed by potential metabolic pathways and applied. Taking the extract of Ginkgo biloba (EGB) co-incubated with gut microbiota as an example, 107 compounds were identified as flavonoid-derived metabolites (including 67 original from EGB and 40 new) from 7468 ions. Their temporal metabolic profiles and regularities were also investigated. This study provided a systematic and feasible method to elucidate and profile xenobiotic metabolism.
Collapse
Affiliation(s)
- Hui-Ying Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Cheng Qu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Meng-Ning Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Chao-Ran Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zifan Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Wen Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
96
|
J-Shaped Association of Tomato Intake with New-Onset Hypertension in General Adults: A Nationwide Prospective Cohort Study. Nutrients 2022; 14:nu14224813. [PMID: 36432500 PMCID: PMC9696212 DOI: 10.3390/nu14224813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
We aim to examine the prospective association between the intake of dietary tomatoes and the risk of new-onset hypertension and its modifiable factors in general adults. A total of 11,460 adults without hypertension from the China Health and Nutrition Survey (CHNS) were enrolled, with follow-up beginning in 1997 and ending in 2015. Dietary tomato intake was measured by three consecutive 24-h dietary recalls combined with a household food inventory. The study outcome was new-onset hypertension, defined as systolic blood pressure ≥ 140 mmHg or diastolic blood pressure ≥ 90 mmHg or diagnosed by physicians or under anti-hypertensive treatment during the follow-up. Finally, 4015 subjects developed new-onset hypertension during 92,335.5 person-years of follow-up. After multivariate adjustment for dietary and non-dietary risk factors, hazard ratios for increased consumption of dietary tomatoes were 0.42 (95% confidence interval, 0.37−0.47), 0.51 (0.46−0.57), and 0.82 (0.74−0.92) compared with non-consumers. Overall, cubic spline regression suggested a novel J-shaped association between dietary tomato intake and new-onset hypertension, with the lowest risk observed at approximately 10 to 13 g/day (p < 0.001 for curvature). Moreover, the association between dietary tomato intake and risk of new-onset hypertension was stronger in females or individuals who refrained from smoking or drinking (p = 0.024, p = 0.043, and p = 0.044 for interaction, respectively).
Collapse
|
97
|
Ouerfelli M, Metón I, Codina-Torrella I, Almajano MP. Antibacterial and Antiproliferative Activities of Azadirachta indica Leaf Extract and Its Effect on Oil-in-Water Food Emulsion Stability. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227772. [PMID: 36431873 PMCID: PMC9698279 DOI: 10.3390/molecules27227772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
The present study aims to identify and quantify the phenolic compounds of Azadirachta indica leaf extract using HPLC-MS and to evaluate the antioxidant, antibacterial (against different Gram-positive and negative bacteria) and in vitro anti-proliferative activities of this extract (against breast, human liver and cervix adenocarcinoma-derived cells). The application of this extract as a natural antioxidant for food preservation was also tested on oil-in-water food emulsions for the first time in the present work in order to determine the use of Azadirachta indica leaves as a natural additive to preserve the food against lipid oxidation and rancidity. The results obtained revealed that 50%-aqueous ethanol leaf extract showed the best extraction yield (25.14%), which was characterized by a high content in phenolic compounds and strong antioxidant activity. Moreover, this leaf extract inhibited the growth of the bacterial strains tested (Staphylococcus aureus, Escherichia coli, Salmonella paratyphi and Micrococcus luteus) and showed better anti-proliferative activity against breast and cervix adenocarcinoma-derived cells than human liver cancer cells after 48 h of treatment. Additionally, Azadirachta indica leaf extract showed almost similar effects as gallic acid solutions (0.25% and 0.5%) in preserving the oxidation of oil-in-water food emulsions and prevented the formation of secondary oxidation products (malondialdehyde) as well. The results obtained suggested that extracts of Azadirachta indica leaves are a potential source of antioxidant and antibacterial compounds and pointed to the potential of these natural extracts as therapeutic agents.
Collapse
Affiliation(s)
- Manel Ouerfelli
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Biology Department, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 2092, Tunisia
| | - Isidoro Metón
- Biochemistry and Physiology Departament, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Joan XXIII 27-31, 08028 Barcelona, Spain
| | - Idoia Codina-Torrella
- Agri-Food Engineering and Biotechnology Department, Escola d’Enginyeria Agroalimentària i de Biosistemes de Bacelona (EEABB), Universitat Politècnica de Catalunya, Esteve Terrades, 8, 08860 Castelldefels, Spain
| | - María Pilar Almajano
- Chemical Engineering Department, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain
- Correspondence: ; Tel.: +34-934-016-686
| |
Collapse
|
98
|
Liang F, Shi Y, Shi J, Cao W. Exploring the binding mechanism of pumpkin seed protein and apigenin: Spectroscopic analysis, molecular docking and molecular dynamics simulation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
99
|
Williamson G. Effects of Polyphenols on Glucose-Induced Metabolic Changes in Healthy Human Subjects and on Glucose Transporters. Mol Nutr Food Res 2022; 66:e2101113. [PMID: 35315210 PMCID: PMC9788283 DOI: 10.1002/mnfr.202101113] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/14/2022] [Indexed: 12/30/2022]
Abstract
Dietary polyphenols interact with glucose transporters in the small intestine and modulate glucose uptake after food or beverage consumption. This review assesses the transporter interaction in vitro and how this translates to an effect in healthy volunteers consuming glucose. As examples, the apple polyphenol phlorizin inhibits sodium-glucose linked transporter-1; in the intestinal lumen, it is converted to phloretin, a strong inhibitor of glucose transporter-2 (GLUT2), by the brush border digestive enzyme lactase. Consequently, an apple extract rich in phlorizin attenuates blood glucose and insulin in healthy volunteers after a glucose challenge. On the other hand, the olive phenolic, oleuropein, inhibits GLUT2, but the strength of the inhibition is not enough to modulate blood glucose after a glucose challenge in healthy volunteers. Multiple metabolic effects and oxidative stresses after glucose consumption include insulin, incretin hormones, fatty acids, amino acids, and protein markers. However, apart from acute postprandial effects on glucose, insulin, and some incretin hormones, very little is known about the acute effects of polyphenols on these glucose-induced secondary effects. In summary, attenuation of the effect of a glucose challenge in vivo is only observed when polyphenols are strong inhibitors of glucose transporters.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics, and Food, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing and Health SciencesMonash UniversityBASE Facility, 264 Ferntree Gully RoadNotting HillVIC 3168Australia
| |
Collapse
|
100
|
Islam F, Islam MM, Khan Meem AF, Nafady MH, Islam MR, Akter A, Mitra S, Alhumaydhi FA, Emran TB, Khusro A, Simal-Gandara J, Eftekhari A, Karimi F, Baghayeri M. Multifaceted role of polyphenols in the treatment and management of neurodegenerative diseases. CHEMOSPHERE 2022; 307:136020. [PMID: 35985383 DOI: 10.1016/j.chemosphere.2022.136020] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/21/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Md Mohaimenul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Atkia Farzana Khan Meem
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Mohamed H Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, 12568, Egypt
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, 52571, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh; Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| | - Ameer Khusro
- Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India; Centre for Research and Development, Department of Biotechnology, Hindustan College of Arts & Science, Padur, OMR, Chennai, 603103, India
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004, Ourense, Spain.
| | - Aziz Eftekhari
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Pharmacology & Toxicology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, PO. Box 397, Sabzevar, Iran.
| |
Collapse
|