51
|
Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. J Neural Transm (Vienna) 2017; 125:485-500. [PMID: 28176009 DOI: 10.1007/s00702-017-1693-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Thanks to the non-human primate (NHP), we have shown that the pharmacological disturbance of the anterior striatum or of external globus pallidus triggers a set of motivation and movement disorders, depending on the functional subterritory involved. One can, therefore, assume that the aberrant activity of the different subterritories of basal ganglia (BG) could lead to different behavioral disorders in neuropsychiatric disorders as Tourette's syndrome and Parkinson's disease. We are now addressing in the NHP the impact of modulating dopamine or serotonin within the BG on behavioral disorders. Indeed, we have shown a prominent role of serotonergic degeneration within the ventral striatum and caudate nucleus in neuropsychiatric symptoms in de novo PD patients. Of note, the serotonergic modulation of these BG regions in the NHP plays also a critical role in the induction or treatment of behavioral disorders. Given that both dopamine and serotonin are targeted to treat neuropsychiatric disorders, we are studying the effects of modulating dopamine and serotonin transporters in the different territories of the striatum, and more particularly within the ventral striatum on decision-making processing at both behavioral and neuronal levels. Finally, we evidence the need to extend the pharmacological approach to the receptors of these two neuromodulator systems as the use of substances targeting receptor subtypes preferentially localized in the associative and limbic territories of BG could be very effective to specifically improve the behavioral disorders in Parkinson's disease, Gilles de la Tourette syndrome but also in several psychiatric disorders such as depression, anxiety, anorexia, or impulse control disorders.
Collapse
|
52
|
Chen M, Sun Y, Lu L, Shi J. Similarities and Differences in Neurobiology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1010:45-58. [PMID: 29098667 DOI: 10.1007/978-981-10-5562-1_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Substance addiction is a chronic, relapsing brain disease characterized by compulsive drug seeking and use despite harmful consequences. Non-substance addiction is defined recently that people may compulsively engage in an activity despite any negative consequences to their lives. Despite differences with respect to their addictive object, substance addiction and non-substance addiction may share similarities with respect to biological, epidemiological, clinical, genetic and other features. Here we review the similarities and differences in neurobiology between these two addictions with a focus on dopamine, serotonin, opioid, glutamate and norepinephrine systems. Studies suggest the involvement of all these systems in both substance addiction and non-substance addiction while differences may exist with respect to their contributions.
Collapse
Affiliation(s)
- Manli Chen
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- National Institute on Drug Dependence, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Yan Sun
- National Institute on Drug Dependence, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Lin Lu
- Institute of Mental Health/Peking University Sixth Hospital and National Clinical Research Center for Mental Disorders & Key Laboratory of Mental Health, Peking University, Beijing, 100191, China
| | - Jie Shi
- National Institute on Drug Dependence, Peking University, No. 38, Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
53
|
Holtz NA, Tedford SE, Persons AL, Grasso SA, Napier TC. Pharmacologically distinct pramipexole-mediated akinesia vs. risk-taking in a rat model of Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70:77-84. [PMID: 27216282 PMCID: PMC5410378 DOI: 10.1016/j.pnpbp.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Pramipexole and ropinirole are dopamine agonists that are efficacious in treating motor disturbances of neuropathologies, e.g., Parkinson's disease and restless legs syndrome. A significant portion of treated patients develop impulsive/compulsive behaviors. Current treatment is dose reduction or switching to an alternative dopamine replacement, both of which can undermine the motor benefits. Needed is a preclinical model that can assist in identifying adjunct treatments to dopamine agonist therapy that reduce impulsive/compulsive behaviors without interfering with motor benefits of the dopamine agonist. Toward that objective, the current study implemented a rat model of Parkinson's disease to behaviorally profile chronically administered pramipexole. This was accomplished with male Sprague-Dawley rats wherein (i) 6-hydroxydopamine-induced lesions of the dorsolateral striatum produced Parkinson's disease-like akinesia, measured in the forelimbs, (ii) intracranial self-stimulation-mediated probability discounting indicated impulsivity/risk-taking, and (iii) two doses of pramipexole were continuously administered for 14-28days via osmotic minipumps to mirror the chronic, stable exposure achieved with extended release formulations. The atypical antidepressant, mirtazapine, is known to reduce behaviors associated with drug addiction in rats; thus, we demonstrated model utility here by determining the effects of mirtazapine on pramipexole-induced motor improvements versus probability discounting. We observed that forelimb akinesia subsequent to striatal lesions was attenuated by both pramipexole doses tested (0.3 and 1.2mg/kg/day) within 4h of pump implant dispensing 0.3mg/kg/day and 1h by 1.2mg/kg/day. By contrast, 12-14days of infusion with 0.3mg/kg/day did not alter discounting, but increases were obtained with 1.2mg/kg/day pramipexole, with 67% of 1.2mg/kg/day-treated rats meeting categorical criteria for 'high risk-taking'. Insertion of a second minipump delivering mirtazapine did not alter motor function during 14days of co-administration with pramipexole, but was sufficient to attenuate risk-taking. These outcomes revealed distinct probability discounting and anti-akinesia profiles for pramipexole, indicating that pharmacotherapy, (e.g., mirtazapine treatments), can be developed that reduce risk-taking while leaving motor benefits intact.
Collapse
Affiliation(s)
- Nathan A. Holtz
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Stephanie E. Tedford
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Amanda L. Persons
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - Salvatore A. Grasso
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| | - T. Celeste Napier
- Dept. of Pharmacology, Rush University Medical Center, Chicago, IL USA,Dept. of Psychiatry, Rush University Medical Center, Chicago, IL USA,Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
54
|
Sescousse G, Janssen LK, Hashemi MM, Timmer MHM, Geurts DEM, ter Huurne NP, Clark L, Cools R. Amplified Striatal Responses to Near-Miss Outcomes in Pathological Gamblers. Neuropsychopharmacology 2016; 41:2614-23. [PMID: 27006113 PMCID: PMC4987843 DOI: 10.1038/npp.2016.43] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 03/18/2016] [Indexed: 01/06/2023]
Abstract
Near-misses in gambling games are losing events that come close to a win. Near-misses were previously shown to recruit reward-related brain regions including the ventral striatum, and to invigorate gambling behavior, supposedly by fostering an illusion of control. Given that pathological gamblers are particularly vulnerable to such cognitive illusions, their persistent gambling behavior might result from an amplified striatal sensitivity to near-misses. In addition, animal studies have shown that behavioral responses to near-miss-like events are sensitive to dopamine, but this dopaminergic influence has not been tested in humans. To investigate these hypotheses, we recruited 22 pathological gamblers and 22 healthy controls who played a slot machine task delivering wins, near-misses and full-misses, inside an fMRI scanner. Each participant played the task twice, once under placebo and once under a dopamine D2 receptor antagonist (sulpiride 400 mg), in a double-blind, counter-balanced design. Participants were asked about their motivation to continue gambling throughout the task. Across all participants, near-misses elicited higher motivation to continue gambling and increased striatal responses compared with full-misses. Crucially, pathological gamblers showed amplified striatal responses to near-misses compared with controls. These group differences were not observed following win outcomes. In contrast to our hypothesis, sulpiride did not induce any reliable modulation of brain responses to near-misses. Together, our results demonstrate that pathological gamblers have amplified brain responses to near-misses, which likely contribute to their persistent gambling behavior. However, there is no evidence that these responses are influenced by dopamine. These results have implications for treatment and gambling regulation.
Collapse
Affiliation(s)
- Guillaume Sescousse
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Lieneke K Janssen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mahur M Hashemi
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Monique H M Timmer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dirk E M Geurts
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Niels P ter Huurne
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Luke Clark
- Department of Psychology, Centre for Gambling Research at UBC, University of British Columbia, Vancouver, British Columbia, Canada
| | - Roshan Cools
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
55
|
Leggio GM, Bucolo C, Platania CBM, Salomone S, Drago F. Current drug treatments targeting dopamine D3 receptor. Pharmacol Ther 2016; 165:164-77. [DOI: 10.1016/j.pharmthera.2016.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022]
|
56
|
Herbort MC, Soch J, Wüstenberg T, Krauel K, Pujara M, Koenigs M, Gallinat J, Walter H, Roepke S, Schott BH. A negative relationship between ventral striatal loss anticipation response and impulsivity in borderline personality disorder. NEUROIMAGE-CLINICAL 2016; 12:724-736. [PMID: 27766203 PMCID: PMC5067102 DOI: 10.1016/j.nicl.2016.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/08/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes. We investigated striatal reward and loss anticipation in patients with Borderline Personality Disorder (BPD) and controls BPD patients relative to controls exhibited reduced ventral striatal / nucleus accumbens (VS/NAcc) anticipation responses In healthy controls, VS responses to gains and losses correlated positively with impulsivity BPD patients exhibited a negative correlation between loss responses and impulsivity. Our results suggest that impulsivity in BPD patients may in part result from impaired anticipation of aversive outcomes.
Collapse
Affiliation(s)
- Maike C. Herbort
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychology, Humboldt University, Berlin, Germany
| | - Joram Soch
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Bernstein Center for Computational Neuroscience, Humboldt University, Berlin, Germany
| | - Torsten Wüstenberg
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Kerstin Krauel
- Department of Child and Adolescent Psychiatry and Psychotherapy, Otto von Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Maia Pujara
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Koenigs
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Eppendorf, Hamburg, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Roepke
- Department of Psychiatry and Psychotherapy, Campus Benjamin Franklin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Björn H. Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Campus Mitte, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Center for Behavioral Brain Sciences, Magdeburg, Germany
- Corresponding author at: Leibniz-Institut für Neurobiologie, Brenneckestr. 6, 39118 Magdeburg, Germany.Leibniz-Institut für NeurobiologieBrenneckestr. 6Magdeburg39118Germany
| |
Collapse
|
57
|
Tremblay M, Silveira MM, Kaur S, Hosking JG, Adams WK, Baunez C, Winstanley CA. Chronic D 2/3 agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. Eur J Neurosci 2016; 45:159-166. [PMID: 27422144 DOI: 10.1111/ejn.13332] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Revised: 06/08/2016] [Accepted: 07/03/2016] [Indexed: 12/17/2022]
Abstract
D2/3 receptor agonists are effective treatments for Parkinson's disease (PD), but can precipitate impulse control disorders (ICDs) including gambling disorder (GD). The neurobiological mechanisms underlying this devastating side-effect of dopamine agonist replacement therapy (DRT), and any dependence on the dopamine depletion caused by PD, are unclear. It is also unclear whether previous biases towards risk or uncertainty are a risk factor for developing these ICDs. We investigated whether chronic D2/3 agonist administration (5 mg/kg/day ropinirole for 28 days) altered performance of a rat model of gambling-like behaviour, the rodent betting task (rBT), and examined if baseline behaviour predicted this behavioural change. The rBT captures individual differences in subjective preference for uncertain outcomes: animals choose between guaranteed or probabilistic reinforcement of equal expected value. Chronic ropinirole dramatically increased selection of the uncertain option in two-thirds of animals, regardless of baseline preferences. The effect on choice in the rBT was replicated in a dorsolateral striatal 6-hydroxydopamine (6-OHDA) rat model of early PD. These studies are the first to look at individual differences in response to chronic, rather than pulsatile, dosing of DRT in a rodent model of gambling behaviour. These findings suggest that DRT-induced PG may stem from increases in subjective valuation of uncertainty. Such symptoms likely arise because of changes in dopaminergic striatal signalling caused by DRT rather than from an interaction between pre-morbid behaviours or PD itself.
Collapse
Affiliation(s)
- Melanie Tremblay
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mason M Silveira
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Sukhbir Kaur
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Jay G Hosking
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Wendy K Adams
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Christelle Baunez
- Institut de Neurosciences de la Timone (INT), UMR7289, Centre National de la Recherche Scientifique (CNRS) & Aix-Marseille Université (AMU), Marseille, France
| | - Catharine A Winstanley
- Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
58
|
Abstract
Neuroimaging studies examining the neurobiological basis of gambling disorder (GD) have increased over the past decade. Functional magnetic resonance imaging studies during appetitive cue and reward processing tasks demonstrate altered functioning in frontostriatal brain areas, including the ventral striatum and the ventromedial prefrontal cortex. Findings suggest differences in how the anticipation and outcome of rewards are processed in individuals with GD. Future research requires larger sample sizes and should include appropriate clinical reference groups. Overall, studies to date highlight a common pathophysiology between substance-based addictions and GD, the latter offering a unique condition in which to examine nonchemical factors in addiction.
Collapse
Affiliation(s)
- I M Balodis
- Yale University, New Haven, CT, United States
| | - M N Potenza
- Yale University, New Haven, CT, United States.
| |
Collapse
|
59
|
Deutschländer A, la Fougère C, Boetzel K, Albert NL, Gildehaus FJ, Bartenstein P, Xiong G, Cumming P. Occupancy of pramipexole (Sifrol) at cerebral dopamine D2/3 receptors in Parkinson's disease patients. NEUROIMAGE-CLINICAL 2016; 12:41-6. [PMID: 27408789 PMCID: PMC4925448 DOI: 10.1016/j.nicl.2016.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Whereas positron emission tomography (PET) with the antagonist ligand [18F]fallypride reveals the composite of dopamine D2 and D3 receptors in brain, treatment of Parkinson's disease (PD) patients with the D3-prefering agonist pramipexole should result in preferential occupancy in the nucleus accumbens, where the D3-subtype is most abundant. To test this prediction we obtained pairs of [18F]fallypride PET recordings in a group of nine PD patients, first in a condition of treatment as usual with pramipexole (ON-Sifrol; 3 × 0.7 mg p.d.), and again at a later date, after withholding pramipexole 48–72 h (OFF-Sifrol); in that condition the serum pramipexole concentration had declined by 90% and prolactin levels had increased four-fold, in conjunction with a small but significant worsening of PD motor symptoms. Exploratory comparison with historical control material showed 14% higher dopamine D2/3 availability in the more-affected putamen of patients OFF medication. On-Sifrol there was significant (p ˂ 0.01) occupancy at [18F]fallypride binding sites in globus pallidus (8%) thalamus (9%) and substantia nigra (19%), as well as marginally significant occupancy in frontal and temporal cortex of patients. Contrary to expectation, comparison of ON- and OFF-Sifrol results did not reveal any discernible occupancy in nucleus accumbens, or elsewhere in the extended striatum; present methods should be sensitive to a 10% change in dopamine D2/3 receptor availability in striatum; the significant findings elsewhere in the basal ganglia and in cerebral cortex are consistent with a predominance of D3 receptors in those structures, especially in substantia nigra, and imply that therapeutic effects of pramipexole may be obtained at sites outside the extended striatum. Fallypride PET recordings in nine PD patients, scanned on- and off medication with pramipexole No occupancy in the striatum, despite improved motor symptoms Substantial occupancy in substantia nigra, thalamus and globus pallidus
Collapse
Affiliation(s)
| | | | - Kai Boetzel
- Department of Neurology, Ludwig-Maximilians University of Munich, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, Ludwig-Maximilians University of Munich, Germany
| | | | - Peter Bartenstein
- Department of Nuclear Medicine, Ludwig-Maximilians University of Munich, Germany
| | - Guoming Xiong
- Department of Nuclear Medicine, Ludwig-Maximilians University of Munich, Germany
| | - Paul Cumming
- Department of Neuropsychiatry and Psychosomatic Medicine, Rikshospitalet, University of Oslo, Oslo, Norway; School of Psychology and Counselling, Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| |
Collapse
|
60
|
Aubert PM, Seibyl JP, Price JL, Harris TS, Filbey FM, Jacobe H, Devous MD, Adinoff B. Dopamine efflux in response to ultraviolet radiation in addicted sunbed users. Psychiatry Res 2016; 251:7-14. [PMID: 27085608 PMCID: PMC5241090 DOI: 10.1016/j.pscychresns.2016.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 04/03/2016] [Accepted: 04/05/2016] [Indexed: 01/21/2023]
Abstract
Compulsive tanning despite awareness of ultraviolet radiation (UVR) carcinogenicity may represent an "addictive" behavior. Many addictive disorders are associated with alterations in dopamine (D2/D3) receptor binding and dopamine reactivity in the brain's reward pathway. To determine if compulsive tanners exhibited neurobiologic responses similar to other addictive disorders, this study assessed basal striatal D2/D3 binding and UVR-induced striatal dopamine efflux in ten addicted and ten infrequent tanners. In a double-blind crossover trial, UVR or sham UVR was administered in separate sessions during brain imaging with single photon emission computerized tomography (SPECT). Basal D2/D3 receptor density and UVR-induced dopamine efflux in the caudate were assessed using (123)I-iodobenzamide ((123)I-IBZM) binding potential non-displaceable (BPnd). Basal BPnd did not significantly differ between addicted and infrequent tanners. Whereas neither UVR nor sham UVR induced significant changes in bilateral caudate BPnd in either group, post-hoc analyses revealed left caudate BPnd significantly decreased (reflecting increased dopamine efflux) in the addicted tanners - but not the infrequent tanners - during the UVR session only. Bilateral ∆BPnd correlated with tanning severity only in the addicted tanners. These preliminary findings are consistent with a stronger neural rewarding response to UVR in addicted tanners, supporting a cutaneous-neural connection driving excessive sunbed use.
Collapse
Affiliation(s)
- Pamela M Aubert
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
| | - John P Seibyl
- Institute for Neurodegenerative Disorders, Molecular Neuroimaging, LLC, and Yale University, New Haven, MA, USA
| | - Julianne L Price
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX, USA
| | - Thomas S Harris
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| | | | - Heidi Jacobe
- Department of Dermatology, University of Texas Southwestern, Dallas, TX, USA
| | - Michael D Devous
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA; Avid Radiopharmaceuticals, Inc, Philadelphia, PA, USA
| | - Bryon Adinoff
- Department of Psychiatry, University of Texas Southwestern, Dallas, TX, USA; VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
61
|
Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, John U, Bischof A, Rumpf HJ. Dopamine-receptor 2 gene-methylation and gambling behavior in relation to impulsivity. Psychiatry Res 2016; 239:154-5. [PMID: 27137978 DOI: 10.1016/j.psychres.2016.03.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/08/2016] [Indexed: 11/20/2022]
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, Germany.
| | - Helge Frieling
- Molecular Neurosciences Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Vanessa Buchholz
- Molecular Neurosciences Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Rim Hussein
- Molecular Neurosciences Laboratory, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Social Psychiatry and Psychotherapy, Hannover Medical School, Carl-Neuberg-Str. 1, Germany
| | - Christian Meyer
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Germany
| | - Ulrich John
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany; German Centre for Cardiovascular Research (DZHK), Germany
| | - Anja Bischof
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Hans-Jürgen Rumpf
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| |
Collapse
|
62
|
Chamberlain SR, Lochner C, Stein DJ, Goudriaan AE, van Holst RJ, Zohar J, Grant JE. Behavioural addiction-A rising tide? Eur Neuropsychopharmacol 2016; 26:841-55. [PMID: 26585600 DOI: 10.1016/j.euroneuro.2015.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 07/17/2015] [Accepted: 08/15/2015] [Indexed: 01/21/2023]
Abstract
The term 'addiction' was traditionally used in relation to centrally active substances, such as cocaine, alcohol, or nicotine. Addiction is not a unitary construct but rather incorporates a number of features, such as repetitive engagement in behaviours that are rewarding (at least initially), loss of control (spiralling engagement over time), persistence despite untoward functional consequences, and physical dependence (evidenced by withdrawal symptoms when intake of the substance diminishes). It has been suggested that certain psychiatric disorders characterized by maladaptive, repetitive behaviours share parallels with substance addiction and therefore represent 'behavioural addictions'. This perspective has influenced the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5), which now has a category 'Substance Related and Addictive Disorders', including gambling disorder. Could other disorders characterised by repetitive behaviours, besides gambling disorder, also be considered 'addictions'? Potential examples include kleptomania, compulsive sexual behaviour, 'Internet addiction', trichotillomania (hair pulling disorder), and skin-picking disorder. This paper seeks to define what is meant by 'behavioural addiction', and critically considers the evidence for and against this conceptualisation in respect of the above conditions, from perspectives of aetiology, phenomenology, co-morbidity, neurobiology, and treatment. Research in this area has important implications for future diagnostic classification systems, neurobiological models, and novel treatment directions.
Collapse
Affiliation(s)
- Samuel R Chamberlain
- Department of Psychiatry, University of Cambridge, UK; Cambridge and Peterborough NHS Foundation Trust (CPFT), UK.
| | - Christine Lochner
- MRC Unit on Anxiety and Stress Disorders, Department of Psychiatry, Stellenbosch University, South Africa
| | - Dan J Stein
- MRC Unit on Anxiety and Stress Disorders, Department of Psychiatry and Mental Health, University of Cape Town, South Africa
| | - Anna E Goudriaan
- Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, The Netherlands and Arkin Mental Health, Amsterdam, The Netherlands
| | - Ruth Janke van Holst
- Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam, The Netherlands and Arkin Mental Health, Amsterdam, The Netherlands
| | - Joseph Zohar
- Division of Psychiatry, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Jon E Grant
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| |
Collapse
|
63
|
|
64
|
Grant JE, Odlaug BL, Chamberlain SR. Neural and psychological underpinnings of gambling disorder: A review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 65:188-93. [PMID: 26497079 DOI: 10.1016/j.pnpbp.2015.10.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 10/17/2015] [Accepted: 10/20/2015] [Indexed: 01/14/2023]
Abstract
Gambling disorder affects 0.4 to 1.6% of adults worldwide, and is highly comorbid with other mental health disorders. This article provides a concise primer on the neural and psychological underpinnings of gambling disorder based on a selective review of the literature. Gambling disorder is associated with dysfunction across multiple cognitive domains which can be considered in terms of impulsivity and compulsivity. Neuroimaging data suggest structural and functional abnormalities of networks involved in reward processing and top-down control. Gambling disorder shows 50-60% heritability and it is likely that various neurochemical systems are implicated in the pathophysiology (including dopaminergic, glutamatergic, serotonergic, noradrenergic, and opioidergic). Elevated rates of certain personality traits (e.g. negative urgency, disinhibition), and personality disorders, are found. More research is required to evaluate whether cognitive dysfunction and personality aspects influence the longitudinal course and treatment outcome for gambling disorder. It is hoped that improved understanding of the biological and psychological components of gambling disorder, and their interactions, may lead to improved treatment approaches and raise the profile of this neglected condition.
Collapse
Affiliation(s)
- Jon E Grant
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| | - Brian L Odlaug
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Samuel R Chamberlain
- Department of Psychiatry, University of UK, & Cambridge and Peterborough NHS Foundation Trust, United Kingdom
| |
Collapse
|
65
|
Kessler RM, Hutson PH, Herman BK, Potenza MN. The neurobiological basis of binge-eating disorder. Neurosci Biobehav Rev 2016; 63:223-38. [PMID: 26850211 DOI: 10.1016/j.neubiorev.2016.01.013] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 02/07/2023]
Abstract
Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms.
Collapse
Affiliation(s)
- Robert M Kessler
- Department of Radiology, University of Alabama at Birmingham School of Medicine, 619 19th St. South, Birmingham, AL 35249, United States.
| | - Peter H Hutson
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Barry K Herman
- Shire, 300 Shire Way, Lexington, MA 02421, United States.
| | - Marc N Potenza
- Department of Psychiatry, Department of Neurobiology, Child Study Center, CASAColumbia and Connecticut Mental Health Center, Yale University School of Medicine, 34 Park St., New Haven, CT 06519, United States.
| |
Collapse
|
66
|
|
67
|
Hillemacher T, Frieling H, Buchholz V, Hussein R, Bleich S, Meyer C, John U, Bischof A, Rumpf HJ. Alterations in DNA-methylation of the dopamine-receptor 2 gene are associated with abstinence and health care utilization in individuals with a lifetime history of pathologic gambling. Prog Neuropsychopharmacol Biol Psychiatry 2015; 63:30-4. [PMID: 26028496 DOI: 10.1016/j.pnpbp.2015.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/22/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Several studies point towards a role for dopaminergic circuits in the pathophysiology of problematic gambling behavior. The aim of the present study was to investigate alterations of DNA methylation in the dopamine D2 receptor (DRD2)-gene in participants with pathologic gambling behavior. RESULTS The study was part of a large epidemiological study on pathologic gambling in Germany. DNA methylation of the DRD2-gene was analyzed from oral mucosa using next generation bisulfite sequencing. The final sample included 77 participants. The study showed significantly lower methylation levels of the DRD2-gene in abstinent patients over the last 12 or 30months compared to non-abstinent participants. Furthermore, participants without any treatment utilization regarding gambling behavior showed higher DRD2-gene methylation levels compared to treatment-seeking participants. CONCLUSIONS DNA-methylation patterns in the DRD2-gene were altered in respect to abstinence over a 12-month or a 30-month period and to treatment utilization with higher methylation levels in non-abstinent and participants without treatment-seeking behavior. These results point towards a pathophysiologic relevance of altered DRD2-expression due to changes of DNA methylation in pathologic gambling behavior.
Collapse
Affiliation(s)
- Thomas Hillemacher
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany.
| | - Helge Frieling
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Vanessa Buchholz
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Rim Hussein
- Molecular Neurosciences Laboratory, Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Stefan Bleich
- Center for Addiction Research (CARe), Department of Psychiatry, Socialpsychiatry and Psychotherapy, Hannover Medical School, Germany
| | - Christian Meyer
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany
| | - Ulrich John
- Institute of Social Medicine and Prevention, University Medicine Greifswald, Germany
| | - Anja Bischof
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Hans-Jürgen Rumpf
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| |
Collapse
|
68
|
Banz BC, Yip SW, Yau YHC, Potenza MN. Behavioral addictions in addiction medicine: from mechanisms to practical considerations. PROGRESS IN BRAIN RESEARCH 2015; 223:311-28. [PMID: 26806783 DOI: 10.1016/bs.pbr.2015.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent progress has been made in our understanding of nonsubstance or "behavioral" addictions, although these conditions and their most appropriate classification remain debated and the knowledge basis for understanding the pathophysiology of and treatments for these conditions includes important gaps. Recent developments include the classification of gambling disorder as a "Substance-Related and Addictive Disorder" in the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and proposed diagnostic criteria for Internet Gaming Disorder in Section 3 of DSM-5. This chapter reviews current neuroscientific understandings of behavioral addictions and the potential of neurobiological data to assist in the development of improved policy, prevention, and treatment efforts.
Collapse
Affiliation(s)
- Barbara C Banz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Sarah W Yip
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yvonne H C Yau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Montreal Neurological Institute, 3801 Rue University, Montréal, QC, Canada
| | - Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Child Study Center, and CASA Columbia, Yale University School of Medicine, New Haven, CT, USA; Connecticut Mental Health Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
69
|
Hassan A, Benarroch EE. Heterogeneity of the midbrain dopamine system: Implications for Parkinson disease. Neurology 2015; 85:1795-805. [PMID: 26475693 DOI: 10.1212/wnl.0000000000002137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Anhar Hassan
- From the Department of Neurology, Mayo Clinic, Rochester, MN.
| | | |
Collapse
|
70
|
Abstract
Although most people consider gambling as a recreational activity, some individuals lose control over their behavior and enter a spiral of compulsive gambling leading to dramatic consequences. In its most severe form, pathological gambling is considered a behavioral addiction sharing many similarities with substance addiction. A number of neurobiological hypotheses have been investigated in the past ten years, relying mostly on neuroimaging techniques. Similarly to substance addiction, a number of observations indicate a central role for dopamine in pathological gambling. However, the underlying mechanism seems partly different and is still poorly understood. Neuropsychological studies have shown decision-making and behavioral inhibition deficits in pathological gamblers, likely reflecting frontal lobe dysfunction. Finally, functional MRI studies have revealed abnormal reactivity within the brain reward system, including the striatum and ventro-medial prefrontal cortex. These regions are over-activated by gambling cues, and under-activated by monetary gains. However, the scarcity and heterogeneity of brain imaging studies currently hinder the development of a coherent neurobiological model of pathological gambling. Further replications of results and diversification of approaches will be needed in the coming years in order to strengthen our current model.
Collapse
Affiliation(s)
- Guillaume Sescousse
- Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Kapittelweg 29 Box 9101, 6500 HB Nijmegen, Pays-Bas
| |
Collapse
|
71
|
Abstract
Gambling disorder recently was reclassified under the category “substance-related and addictive disorders.” With regard to the diagnostic criteria, it overlaps a great deal with substance use disorder, i.e., loss of control, craving/withdrawal, and neglect of other areas of life. However, the gambling disorder symptom “chasing one’s losses” is the only criterion absent from substance use disorder. Therefore, special forms of reward (i.e., gain/loss) processing, such as the processing of loss avoidance and loss aversion, have just recently attracted attention among gambling disorder researchers. Because gambling disorder might be considered an addiction in its “pure” form, i.e., without the influence of a drug of abuse, investigating brain volume changes in people with this behavioral addiction is an important task for neuroimaging researchers in exploring the neural signatures of addiction. Because the brain is a complex network, investigation of alterations in functional connectivity has gained interest among gambling disorder researchers in order to get a more complete picture of functional brain changes in people with gambling disorder. However, only a few studies on brain structure and functional connectivity in gambling disorder have been performed so far. This review focuses on brain imaging studies of reward and loss processing, with an emphasis on loss avoidance and aversion as well as brain volume and functional connectivity in gambling disorder.
Collapse
Affiliation(s)
- Saskia Quester
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité-Universitätsmedizin Berlin, Charité Campus Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
72
|
Paterson LM, Flechais RSA, Murphy A, Reed LJ, Abbott S, Boyapati V, Elliott R, Erritzoe D, Ersche KD, Faluyi Y, Faravelli L, Fernandez-Egea E, Kalk NJ, Kuchibatla SS, McGonigle J, Metastasio A, Mick I, Nestor L, Orban C, Passetti F, Rabiner EA, Smith DG, Suckling J, Tait R, Taylor EM, Waldman AD, Robbins TW, Deakin JFW, Nutt DJ, Lingford-Hughes AR. The Imperial College Cambridge Manchester (ICCAM) platform study: An experimental medicine platform for evaluating new drugs for relapse prevention in addiction. Part A: Study description. J Psychopharmacol 2015; 29:943-60. [PMID: 26246443 DOI: 10.1177/0269881115596155] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Drug and alcohol dependence are global problems with substantial societal costs. There are few treatments for relapse prevention and therefore a pressing need for further study of brain mechanisms underpinning relapse circuitry. The Imperial College Cambridge Manchester (ICCAM) platform study is an experimental medicine approach to this problem: using functional magnetic resonance imaging (fMRI) techniques and selective pharmacological tools, it aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development. Addiction studies typically involve small samples because of recruitment difficulties and attrition. We established the platform in three centres to assess the feasibility of a multisite approach to address these issues. Pharmacological modulation of reward, impulsivity and emotional reactivity were investigated in a monetary incentive delay task, an inhibitory control task, and an evocative images task, using selective antagonists for µ-opioid, dopamine D3 receptor (DRD3) and neurokinin 1 (NK1) receptors (naltrexone, GSK598809, vofopitant/aprepitant), in a placebo-controlled, randomised, crossover design. In two years, 609 scans were performed, with 155 individuals scanned at baseline. Attrition was low and the majority of individuals were sufficiently motivated to complete all five sessions (n=87). We describe herein the study design, main aims, recruitment numbers, sample characteristics, and explain the test hypotheses and anticipated study outputs.
Collapse
Affiliation(s)
- Louise M Paterson
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Remy S A Flechais
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Anna Murphy
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Laurence J Reed
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Sanja Abbott
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | | | - Rebecca Elliott
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David Erritzoe
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Karen D Ersche
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Yetunde Faluyi
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Luca Faravelli
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Emilio Fernandez-Egea
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Nicola J Kalk
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | - John McGonigle
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Antonio Metastasio
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK 5 Boroughs Partnership NHS Foundation Trust, Warrington, UK
| | - Inge Mick
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Liam Nestor
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Clinical Research Unit, GlaxoSmithKline, Cambridge, UK
| | - Csaba Orban
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | - Filippo Passetti
- Centre for Neuropsychopharmacology, Imperial College London, London, UK Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychiatry, University of Cambridge, Cambridge, UK
| | | | - Dana G Smith
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - John Suckling
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK
| | - Roger Tait
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Eleanor M Taylor
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - Adam D Waldman
- Centre for Neuroinflammation and Neurodegeneration, Imperial College London, London, UK
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK Department of Psychology, University of Cambridge, Cambridge, UK
| | - J F William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, UK
| | - David J Nutt
- Centre for Neuropsychopharmacology, Imperial College London, London, UK
| | | | | |
Collapse
|
73
|
Boileau I, Nakajima S, Payer D. Imaging the D3 dopamine receptor across behavioral and drug addictions: Positron emission tomography studies with [(11)C]-(+)-PHNO. Eur Neuropsychopharmacol 2015; 25:1410-20. [PMID: 26141509 DOI: 10.1016/j.euroneuro.2015.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 04/07/2015] [Accepted: 06/12/2015] [Indexed: 12/21/2022]
Abstract
Chronic drug use has been associated with dopaminergic abnormalities, detectable in humans with positron emission tomography (PET). Among these, a hallmark feature is low D2 dopamine receptor availability, which has been linked to clinical outcomes, but has not yet translated into a therapeutic strategy. The D3 dopamine receptor on the other hand has gained increasing attention, as, in contrast to D2, chronic exposure to drugs has been shown to up-regulate this receptor subtype in preclinical models of addiction-a phenomenon linked to dopamine system sensitization and drug-seeking. The present article summarizes the literature to date in humans, suggesting that the D3 receptor may indeed contribute to core features of addiction such as impulsiveness and cognitive impairment. A particularly useful tool in investigating this question is the PET imaging probe [(11)C]-(+)-PHNO, which binds to D2/3 dopamine receptors but has preferential affinity for D3. This technique has been used to demonstrate D3 up-regulation in humans, and can be applied to assess pharmacological interventions for development of D3-targeted strategies in addiction treatment.
Collapse
Affiliation(s)
- Isabelle Boileau
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Shinichiro Nakajima
- Multimodal Imaging Group & Geriatric Mental Health Division, Centre for Addiction and Mental Health, Toronto, ON, Canada; Keio University, School of Medicine, Department of Neuropsychiatry, Tokyo, Japan
| | - Doris Payer
- Addiction Imaging Research Group, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
74
|
Payer DE, Park MTM, Kish SJ, Kolla NJ, Lerch JP, Boileau I, Chakravarty MM. Personality disorder symptomatology is associated with anomalies in striatal and prefrontal morphology. Front Hum Neurosci 2015; 9:472. [PMID: 26379535 PMCID: PMC4553386 DOI: 10.3389/fnhum.2015.00472] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/12/2015] [Indexed: 01/18/2023] Open
Abstract
Personality disorder symptomatology (PD-Sx) can result in personal distress and impaired interpersonal functioning, even in the absence of a clinical diagnosis, and is frequently comorbid with psychiatric disorders such as substance use, mood, and anxiety disorders; however, they often remain untreated, and are not taken into account in clinical studies. To investigate brain morphological correlates of PD-Sx, we measured subcortical volume and shape, and cortical thickness/surface area, based on structural magnetic resonance images. We investigated 37 subjects who reported PD-Sx exceeding DSM-IV Axis-II screening thresholds, and 35 age, sex, and smoking status-matched control subjects. Subjects reporting PD-Sx were then grouped into symptom-based clusters: N = 20 into Cluster B (reporting Antisocial, Borderline, Histrionic, or Narcissistic PD-Sx) and N = 28 into Cluster C (reporting Obsessive–Compulsive, Avoidant, or Dependent PD-Sx); N = 11 subjects reported PD-Sx from both clusters, and none reported Cluster A (Paranoid, Schizoid, or Schizotypal) PD-Sx. Compared to control, Cluster C PD-Sx was associated with greater striatal surface area localized to the caudate tail, smaller ventral striatum volumes, and greater cortical thickness in right prefrontal cortex. Both Cluster B and C PD-Sx groups also showed trends toward greater posterior caudate volumes and orbitofrontal surface area anomalies, but these findings did not survive correction for multiple comparisons. The results point to morphological abnormalities that could contribute to Cluster C PD-Sx. In addition, the observations parallel those in substance use disorders, pointing to the importance of considering PD-Sx when interpreting findings in often-comorbid psychiatric disorders.
Collapse
Affiliation(s)
- Doris E Payer
- Addictions Program, Centre for Addiction and Mental Health, Toronto ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto ON, Canada ; Department of Psychiatry, University of Toronto, Toronto ON, Canada
| | - Min Tae M Park
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto ON, Canada ; Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun QC, Canada ; Schulich School of Medicine and Dentistry, Western University, London ON, Canada
| | - Stephen J Kish
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto ON, Canada ; Department of Psychiatry, University of Toronto, Toronto ON, Canada
| | - Nathan J Kolla
- Department of Psychiatry, University of Toronto, Toronto ON, Canada ; Complex Mental Illness Program, Forensic Service, Centre for Addiction and Mental Health, Toronto ON, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, Toronto ON, Canada ; Mouse Imaging Centre, Hospital for Sick Children, Toronto ON, Canada
| | - Isabelle Boileau
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto ON, Canada ; Department of Psychiatry, University of Toronto, Toronto ON, Canada
| | - M M Chakravarty
- Research Imaging Centre, Centre for Addiction and Mental Health, Toronto ON, Canada ; Cerebral Imaging Centre, Douglas Mental Health University Institute, Verdun QC, Canada ; Department of Psychiatry and Biomedical Engineering, McGill University, Montreal QC, Canada
| |
Collapse
|
75
|
Aracil-Bolaños I, Strafella AP. Molecular imaging and neural networks in impulse control disorders in Parkinson's disease. Parkinsonism Relat Disord 2015; 22 Suppl 1:S101-5. [PMID: 26298389 DOI: 10.1016/j.parkreldis.2015.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/02/2015] [Accepted: 08/05/2015] [Indexed: 11/25/2022]
Abstract
Impulse control disorders (ICDs) may arise in Parkinson's disease (PD) in relation to the use of dopamine agonists (DA). A dysfunction of reward circuits is considered the main underlying mechanism. Neuroimaging has been largely used in this setting to understand the structure of the reward system and its abnormalities brought by exogenous stimulation in PD. Dopaminergic changes, such as increased dopamine release, reduced dopamine transporter activity and other changes, have been shown to be a consistent feature of ICDs in PD. Beyond the striatum, alterations of prefrontal cortical function may also impact an individuals' propensity for impulsivity. Neuroimaging is advancing our knowledge of the mechanisms involved in the development of these behavioral addictions. An increased understanding of these disorders may lead to the discovery of new therapeutic targets, or the identification of risk factors for the development of these disorders.
Collapse
Affiliation(s)
- I Aracil-Bolaños
- Morton and Gloria Shulman Movement Disorder Unit & Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Ontario, Canada
| | - A P Strafella
- Morton and Gloria Shulman Movement Disorder Unit & Edmond J. Safra Program in Parkinson Disease, Toronto Western Hospital, UHN, University of Toronto, Ontario, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, UHN, University of Toronto, Ontario, Canada.
| |
Collapse
|
76
|
Lobo DSS, Aleksandrova L, Knight J, Casey DM, el-Guebaly N, Nobrega JN, Kennedy JL. Addiction-related genes in gambling disorders: new insights from parallel human and pre-clinical models. Mol Psychiatry 2015; 20:1002-10. [PMID: 25266122 DOI: 10.1038/mp.2014.113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 07/30/2014] [Accepted: 08/04/2014] [Indexed: 11/09/2022]
Abstract
Neurobiological research supports the characterization of disordered gambling (DG) as a behavioral addiction. Recently, an animal model of gambling behavior was developed (rat gambling task, rGT), expanding the available tools to investigate DG neurobiology. We investigated whether rGT performance and associated risk gene expression in the rat's brain could provide cross-translational understanding of the neuromolecular mechanisms of addiction in DG. We genotyped tagSNPs (single-nucleotide polymorphisms) in 38 addiction-related genes in 400 DG and 345 non-DG subjects. Genes with P<0.1 in the human association analyses were selected to be investigated in the animal arm to determine whether their mRNA expression in rats was associated with the rat's performance on the rGT. In humans, DG was significantly associated with tagSNPs in DRD3 (rs167771) and CAMK2D (rs3815072). Our results suggest that age and gender might moderate the association between CAMK2D and DG. Moderation effects could not be investigated due to sample power. In the animal arm, only the association between rGT performance and Drd3 expression remained significant after Bonferroni correction for 59 brain regions. As male rats were used, gender effects could not be investigated. Our results corroborate previous findings reporting the involvement of DRD3 receptor in addictions. To our knowledge, the use of human genetics, pre-clinical models and gene expression as a cross-translation paradigm has not previously been attempted in the field of addictions. The cross-validation of human findings in animal models is crucial for improving the translation of basic research into clinical treatments, which could accelerate neurobiological and pharmacological investigations in addictions.
Collapse
Affiliation(s)
- D S S Lobo
- 1] Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, Toronto, ON, Canada [2] Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - L Aleksandrova
- 1] Centre for Addiction and Mental Health, Toronto, ON, Canada [2] Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - J Knight
- 1] Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, Toronto, ON, Canada [2] Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - D M Casey
- Mental Health Commission of Canada, Calgary, AB, Canada
| | - N el-Guebaly
- Division of Addiction, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - J N Nobrega
- 1] Centre for Addiction and Mental Health, Toronto, ON, Canada [2] Departments of Pharmacology and Toxicology, Psychiatry, and Psychology, University of Toronto, Toronto, ON, Canada
| | - J L Kennedy
- 1] Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, Toronto, ON, Canada [2] Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
77
|
Norbury A, Husain M. Sensation-seeking: Dopaminergic modulation and risk for psychopathology. Behav Brain Res 2015; 288:79-93. [DOI: 10.1016/j.bbr.2015.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 12/22/2022]
|
78
|
Abstract
As a popular form of recreational risk taking, gambling games offer a paradigm for decision neuroscience research. As an individual behavior, gambling becomes dysfunctional in a subset of the population, with debilitating consequences. Gambling disorder has been recently reconceptualized as a "behavioral addiction" in the DSM-5, based on emerging parallels with substance use disorders. Why do some individuals undergo this transition from recreational to disordered gambling? The biomedical model of problem gambling is a "brain disorder" account that posits an underlying neurobiological abnormality. This article first delineates the neural circuitry that underpins gambling-related decision making, comprising ventral striatum, ventromedial prefrontal cortex, dopaminergic midbrain, and insula, and presents evidence for pathophysiology in this circuitry in gambling disorder. These biological dispositions become translated into clinical disorder through the effects of gambling games. This influence is better articulated in a public health approach that describes the interplay between the player and the (gambling) product. Certain forms of gambling, including electronic gambling machines, appear to be overrepresented in problem gamblers. These games harness psychological features, including variable ratio schedules, near-misses, "losses disguised as wins," and the illusion of control, which modulate the core decision-making circuitry that is perturbed in gambling disorder.
Collapse
Affiliation(s)
- W Spencer Murch
- Centre for Gambling Research at UBC, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Luke Clark
- Centre for Gambling Research at UBC, Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
79
|
Oswald LM, Wand GS, Wong DF, Brown CH, Kuwabara H, Brašić JR. Risky decision-making and ventral striatal dopamine responses to amphetamine: a positron emission tomography [(11)C]raclopride study in healthy adults. Neuroimage 2015; 113:26-36. [PMID: 25795343 PMCID: PMC4433778 DOI: 10.1016/j.neuroimage.2015.03.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/05/2015] [Accepted: 03/10/2015] [Indexed: 02/06/2023] Open
Abstract
Recent functional magnetic resonance imaging (fMRI) studies have provided compelling evidence that corticolimbic brain regions are integrally involved in human decision-making. Although much less is known about molecular mechanisms, there is growing evidence that the mesolimbic dopamine (DA) neurotransmitter system may be an important neural substrate. Thus far, direct examination of DA signaling in human risk-taking has centered on gambling disorder. Findings from several positron emission tomography (PET) studies suggest that dysfunctions in mesolimbic DA circuits may play an important role in gambling behavior. Nevertheless, interpretation of these findings is currently hampered by a need for better understanding of how individual differences in regional DA function influence normative decision-making in humans. To further our understanding of these processes, we used [(11)C]raclopride PET to examine associations between ventral striatal (VS) DA responses to amphetamine (AMPH) and risky decision-making in a sample of healthy young adults with no history of psychiatric disorder, Forty-five male and female subjects, ages 18-29 years, completed a computerized version of the Iowa Gambling Task. Participants then underwent two 90-minute PET studies with high specific activity [(11)C]raclopride. The first scan was preceded by intravenous saline; the second, by intravenous AMPH (0.3mg/kg). Findings of primary analyses showed that less advantageous decision-making was associated with greater right VS DA release; the relationship did not differ as a function of gender. No associations were observed between risk-taking and left VS DA release or baseline D2/D3 receptor availability in either hemisphere. Overall, the results support notions that variability in striatal DA function may mediate inter-individual differences in risky decision-making in healthy adults, further suggesting that hypersensitive DA circuits may represent a risk pathway in this population.
Collapse
Affiliation(s)
- Lynn M Oswald
- Department of Family and Community Health, University of Maryland School of Nursing, Baltimore, MD 21201, USA; Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Gary S Wand
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dean F Wong
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Environmental Health Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Clayton H Brown
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hiroto Kuwabara
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - James R Brašić
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
80
|
Vousooghi N, Zarei SZ, Sadat-Shirazi MS, Eghbali F, Zarrindast MR. mRNA expression of dopamine receptors in peripheral blood lymphocytes of computer game addicts. J Neural Transm (Vienna) 2015; 122:1391-8. [DOI: 10.1007/s00702-015-1408-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/04/2015] [Indexed: 12/24/2022]
|
81
|
Sul S. Determinants of internet game addiction and therapeutic role of family leisure participation. J INCL PHENOM MACRO 2015. [DOI: 10.1007/s10847-015-0508-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
82
|
Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PRA. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci 2015; 16:305-12. [PMID: 25873042 DOI: 10.1038/nrn3939] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
For several decades, addiction has come to be viewed as a disorder of the dopamine neurotransmitter system; however, this view has not led to new treatments. In this Opinion article, we review the origins of the dopamine theory of addiction and discuss the ability of addictive drugs to elicit the release of dopamine in the human striatum. There is robust evidence that stimulants increase striatal dopamine levels and some evidence that alcohol may have such an effect, but little evidence, if any, that cannabis and opiates increase dopamine levels. Moreover, there is good evidence that striatal dopamine receptor availability and dopamine release are diminished in individuals with stimulant or alcohol dependence but not in individuals with opiate, nicotine or cannabis dependence. These observations have implications for understanding reward and treatment responses in various addictions.
Collapse
Affiliation(s)
- David J Nutt
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK
| | - Anne Lingford-Hughes
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK
| | - David Erritzoe
- Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK
| | - Paul R A Stokes
- 1] Centre for Neuropsychopharmacology, Division of Brain Sciences, Burlington Danes Building, Imperial College London, London W12 0NN, UK. [2] Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 8AF, UK
| |
Collapse
|
83
|
Seeman P. Parkinson's disease treatment may cause impulse-control disorder via dopamine D3 receptors. Synapse 2015; 69:183-9. [DOI: 10.1002/syn.21805] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 12/23/2014] [Accepted: 01/09/2015] [Indexed: 01/15/2023]
Affiliation(s)
- Philip Seeman
- Departments of Pharmacology and Psychiatry; Faculty of Medicine, University of Toronto; 260 Heath Street West, Unit 605, Toronto Ontario M5P 3L6 Canada
| |
Collapse
|
84
|
Naganawa M, Zheng MQ, Henry S, Nabulsi N, Lin SF, Ropchan J, Labaree D, Najafzadeh S, Kapinos M, Tauscher J, Neumeister A, Carson RE, Huang Y. Test-retest reproducibility of binding parameters in humans with 11C-LY2795050, an antagonist PET radiotracer for the κ opioid receptor. J Nucl Med 2015; 56:243-8. [PMID: 25593119 DOI: 10.2967/jnumed.114.147975] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED (11)C-LY2795050 is a new antagonist PET radioligand for the κ opioid receptor (KOR). In this study, we assessed the reproducibility of the binding parameters of (11)C-LY2795050 in healthy human subjects. METHODS Sixteen healthy subjects (11 men and 5 women) underwent 2 separate 90-min PET scans with arterial input function and plasma free fraction (fP) measurements. The 2-tissue-compartment model and multilinear analysis-1 were applied to calculate 5 outcome measures in 14 brain regions: distribution volume (VT), VT normalized by fP (VT/fP), and 3 binding potentials (nondisplaceable binding potential, binding potential relative to total plasma concentration, and binding potential relative to free plasma concentration: BPND, BPP, BPF, respectively). Since KOR is distributed ubiquitously throughout the brain, there are no suitable reference regions. We used a fixed fraction of individual cerebellar VT value (VT,CER) as the nondisplaceable VT (VND) (VND = VT,CER/1.17). The relative and absolute test-retest variability and intraclass correlation coefficient were evaluated for the outcome measures of (11)C-LY2795050. RESULTS The test-retest variability of (11)C-LY2795050 for VT was no more than 10% in any region and was 12% in the amygdala. For binding potential (BPND and BPP), the test-retest variability was good in regions of moderate and high KOR density (BPND > 0.4) and poor in regions of low density. Correction by fP (VT/fP or BPF) did not improve the test-retest performance. CONCLUSION Our results suggest that quantification of (11)C-LY2795050 imaging is reproducible and reliable in regions with moderate and high KOR density. Therefore, we conclude that this first antagonist radiotracer is highly useful for PET studies of KOR.
Collapse
Affiliation(s)
- Mika Naganawa
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ming-Qiang Zheng
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Shannan Henry
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Nabeel Nabulsi
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Shu-Fei Lin
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Jim Ropchan
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - David Labaree
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Soheila Najafzadeh
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Michael Kapinos
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | | | - Alexander Neumeister
- Department of Psychiatry and Radiology, New York University School of Medicine, New York, New York
| | - Richard E Carson
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yiyun Huang
- PET Center, Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
85
|
Payer DE, Guttman M, Kish SJ, Tong J, Strafella A, Zack M, Adams JR, Rusjan P, Houle S, Furukawa Y, Wilson AA, Boileau I. [11
C]-(+)-PHNO PET imaging of dopamine D2/3
receptors in Parkinson's disease with impulse control disorders. Mov Disord 2015; 30:160-6. [DOI: 10.1002/mds.26135] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Affiliation(s)
- Doris E. Payer
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Mark Guttman
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Centre for Movement Disorders; Markham Ontario Canada
| | - Stephen J. Kish
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
| | - Junchao Tong
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Antonio Strafella
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Movement Disorder Unit & E.J. Safra Parkinson Disease Program; Toronto Western Hospital, UHN, University of Toronto; Ontario Canada
- Division of Brain, Imaging and Behaviour-Systems Neuroscience; Toronto Western Research Institute, UHN, University of Toronto; Ontario Canada
| | - Martin Zack
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
- Department of Pharmacology; University of Toronto; Toronto Ontario Canada
- Clinical Neuroscience Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - John R. Adams
- Centre for Movement Disorders; Markham Ontario Canada
| | - Pablo Rusjan
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Sylvain Houle
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
| | - Yoshiaki Furukawa
- Human Brain Laboratory; Centre for Addiction and Mental Health; Toronto Ontario Canada
| | - Alan A. Wilson
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| | - Isabelle Boileau
- Addictions Program; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Research Imaging Centre; Centre for Addiction and Mental Health; Toronto Ontario Canada
- Campbell Family Mental Health Research Institute; Toronto Ontario Canada
- Department of Psychiatry; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
86
|
Abnormal modulation of reward versus punishment learning by a dopamine D2-receptor antagonist in pathological gamblers. Psychopharmacology (Berl) 2015; 232:3345-53. [PMID: 26092311 PMCID: PMC4537492 DOI: 10.1007/s00213-015-3986-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/01/2015] [Indexed: 11/04/2022]
Abstract
RATIONALE Pathological gambling has been associated with dopamine transmission abnormalities, in particular dopamine D2-receptor deficiency, and reversal learning deficits. Moreover, pervasive theoretical accounts suggest a key role for dopamine in reversal learning. However, there is no empirical evidence for a direct link between dopamine, reversal learning and pathological gambling. OBJECTIVE The aim of the present study is to triangulate dopamine, reversal learning, and pathological gambling. METHODS Here, we assess the hypothesis that pathological gambling is accompanied by dopamine-related problems with learning from reward and punishment by investigating effects of the dopamine D2-receptor antagonist sulpiride (400 mg) on reward- and punishment-based reversal learning in 18 pathological gamblers and 22 healthy controls, using a placebo-controlled, double-blind, counter-balanced design. RESULTS In line with previous studies, blockade of D2 receptors with sulpiride impaired reward versus punishment reversal learning in controls. By contrast, sulpiride did not have any outcome-specific effects in gamblers. CONCLUSION These data demonstrate that pathological gambling is associated with a dopamine-related anomaly in reversal learning from reward and punishment.
Collapse
|
87
|
Winstanley CA, Clark L. Translational Models of Gambling-Related Decision-Making. Curr Top Behav Neurosci 2015; 28:93-120. [PMID: 27418069 DOI: 10.1007/7854_2015_5014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Gambling is a harmless, recreational pastime that is ubiquitous across cultures. However, for some, gambling becomes a maladaptive and compulsive, and this syndrome is conceptualized as a behavioural addiction. Laboratory models that capture the key cognitive processes involved in gambling behaviour, and that can be translated across species, have the potential to make an important contribution to both decision neuroscience and the study of addictive disorders. The Iowa gambling task has been widely used to assess human decision-making under uncertainty, and this paradigm can be successfully modelled in rodents. Similar neurobiological processes underpin choice behaviour in humans and rats, and thus, a preference for the disadvantageous "high-risk, high-reward" options may reflect meaningful vulnerability for mental health problems. However, the choice behaviour operationalized by these tasks does not necessarily approximate the vulnerability to gambling disorder (GD) per se. We consider a number of psychological challenges that apply to modelling gambling in a translational way, and evaluate the success of the existing models. Heterogeneity in the structure of gambling games, as well as in the motivations of individuals with GD, is highlighted. The potential issues with extrapolating too directly from established animal models of drug dependency are discussed, as are the inherent difficulties in validating animal models of GD in the absence of any approved treatments for GD. Further advances in modelling the cognitive biases endemic in human decision-making, which appear to be exacerbated in GD, may be a promising line of research.
Collapse
Affiliation(s)
- Catharine A Winstanley
- Department of Psychology, University of British Columbia, Vancouver, Canada. .,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada.
| | - Luke Clark
- Department of Psychology, University of British Columbia, Vancouver, Canada.,Centre for Gambling Research, University of British Columbia, Vancouver, Canada
| |
Collapse
|
88
|
Abstract
Addiction professionals and the public are recognizing that certain nonsubstance behaviors--such as gambling, Internet use, video-game playing, sex, eating, and shopping--bear resemblance to alcohol and drug dependence. Growing evidence suggests that these behaviors warrant consideration as nonsubstance or "behavioral" addictions and has led to the newly introduced diagnostic category "Substance-Related and Addictive Disorders" in DSM-5. At present, only gambling disorder has been placed in this category, with insufficient data for other proposed behavioral addictions to justify their inclusion. This review summarizes recent advances in our understanding of behavioral addictions, describes treatment considerations, and addresses future directions. Current evidence points to overlaps between behavioral and substance-related addictions in phenomenology, epidemiology, comorbidity, neurobiological mechanisms, genetic contributions, responses to treatments, and prevention efforts. Differences also exist. Recognizing behavioral addictions and developing appropriate diagnostic criteria are important in order to increase awareness of these disorders and to further prevention and treatment strategies.
Collapse
|
89
|
Abstract
The reclassification of gambling disorder within the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) addictions category marks an important step for addiction science. The similarities between gambling disorder and the substance use disorders have been well documented. As gambling is unlikely to exert actively damaging effects on the brain, the cognitive sequelae of gambling disorder may provide insights into addictive vulnerabilities; this idea is critically evaluated in light of recent structural imaging data. The second part of the review analyzes a fundamental question of how a behavior can become addictive in the absence of exogenous drug stimulation. The relative potency of drug and nondrug rewards is considered, alongside evidence that cognitive distortions in the processing of chance (for example, the illusion of control and the gambler's fallacy) may constitute an important added ingredient in gambling. Further understanding of these mechanisms at neural and behavioral levels will be critical for the classification of future behavioral addictions, and I consider the current research data for obesity and binge eating, compulsive shopping, and internet gaming disorder.
Collapse
Affiliation(s)
- Luke Clark
- Department of Psychology, Centre for Gambling Research, University of British Columbia, Vancouver, Canada
| |
Collapse
|
90
|
In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Mol Psychiatry 2014; 19:1305-13. [PMID: 24322203 DOI: 10.1038/mp.2013.163] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 08/06/2013] [Accepted: 09/30/2013] [Indexed: 01/09/2023]
Abstract
Drug addiction has been associated with deficits in mesostriatal dopamine (DA) function, but whether this state extends to behavioral addictions such as pathological gambling (PG) is unclear. Here we used positron emission tomography and the D3 receptor-preferring radioligand [(11)C]-(+)-PHNO during a dual-scan protocol to investigate DA release in response to oral amphetamine in pathological gamblers (n=12) and healthy controls (n=11). In contrast with human neuroimaging findings in drug addiction, we report the first evidence that PG is associated with greater DA release in dorsal striatum (54-63% greater [(11)C]-(+)-PHNO displacement) than controls. Importantly, dopaminergic response to amphetamine in gamblers was positively predicted by D3 receptor levels (measured in substantia nigra), and related to gambling severity, allowing for construction of a mechanistic model that could help explain DA contributions to PG. Our results are consistent with a hyperdopaminergic state in PG, and support the hypothesis that dopaminergic sensitization involving D3-related mechanisms might contribute to the pathophysiology of behavioral addictions.
Collapse
|
91
|
DRD2-related TaqIA genotype is associated with dopamine release during a gambling task. J Addict Med 2014; 8:294-5. [PMID: 25089954 DOI: 10.1097/adm.0000000000000037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
92
|
Potenza MN. The neural bases of cognitive processes in gambling disorder. Trends Cogn Sci 2014; 18:429-38. [PMID: 24961632 PMCID: PMC4112163 DOI: 10.1016/j.tics.2014.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 12/30/2022]
Abstract
Functional imaging is offering powerful new tools to investigate the neurobiology of cognitive functioning in people with and without psychiatric conditions like gambling disorder. Based on similarities between gambling and substance-use disorders in neurocognitive and other domains, gambling disorder has recently been classified in the Diagnostic and Statistical Manual of Mental Disorders (5th edn) (DSM-5) as a behavioral addiction. Despite the advances in understanding, there exist multiple unanswered questions about the pathophysiology underlying gambling disorder and the promise for translating the neurobiological understanding into treatment advances remains largely unrealized. Here we review the neurocognitive underpinnings of gambling disorder with a view to improving prevention, treatment, and policy efforts.
Collapse
Affiliation(s)
- Marc N Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; Department of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
93
|
Le Foll B, Wilson AA, Graff A, Boileau I, Di Ciano P. Recent methods for measuring dopamine D3 receptor occupancy in vivo: importance for drug development. Front Pharmacol 2014; 5:161. [PMID: 25071579 PMCID: PMC4090596 DOI: 10.3389/fphar.2014.00161] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 06/19/2014] [Indexed: 01/09/2023] Open
Abstract
There is considerable interest in developing highly selective dopamine (DA) D3 receptor ligands for a variety of mental health disorders. DA D3 receptors have been implicated in Parkinson's disease, schizophrenia, anxiety, depression, and substance use disorders. The most concrete evidence suggests a role for the D3 receptor in drug-seeking behaviors. D3 receptors are a subtype of D2 receptors, and traditionally the functional role of these two receptors has been difficult to differentiate. Over the past 10-15 years a number of compounds selective for D3 over D2 receptors have been developed. However, translating these findings into clinical research has been difficult as many of these compounds cannot be used in humans. Therefore, the functional data involving the D3 receptor in drug addiction mostly comes from pre-clinical studies. Recently, with the advent of [(11)C]-(+)-PHNO, it has become possible to image D3 receptors in the human brain with increased selectivity and sensitivity. This is a significant innovation over traditional methods such as [(11)C]-raclopride that cannot differentiate between D2 and D3 receptors. The use of [(11)C]-(+)-PHNO will allow for further delineation of the role of D3 receptors. Here, we review recent evidence that the role of the D3 receptor has functional importance and is distinct from the role of the D2 receptor. We then introduce the utility of analyzing [(11)C]-(+)-PHNO binding by region of interest. This novel methodology can be used in pre-clinical and clinical approaches for the measurement of occupancy of both D3 and D2 receptors. Evidence that [(11)C]-(+)-PHNO can provide insights into the function of D3 receptors in addiction is also presented.
Collapse
Affiliation(s)
- Bernard Le Foll
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Alcohol Research and Treatment Clinic, Addiction Medicine Services, Ambulatory Care and Structured Treatments, Centre for Addiction and Mental Health Toronto, ON, Canada ; Department of Family and Community Medicine, University of Toronto Toronto, ON, Canada ; Department of Pharmacology, University of Toronto Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada
| | - Alan A Wilson
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Ariel Graff
- Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Multimodal Imaging Group, Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Isabelle Boileau
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada ; Division of Brain and Therapeutics, Department of Psychiatry, University of Toronto Toronto, ON, Canada ; Institute of Medical Sciences, University of Toronto Toronto, ON, Canada ; Research Imaging Centre, Centre for Addiction and Mental Health Toronto, ON, Canada ; Addiction Imaging Research Group, Centre for Addiction and Mental Health Toronto, ON, Canada
| | - Patricia Di Ciano
- Translational Addiction Research Laboratory, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health Toronto, ON, Canada
| |
Collapse
|
94
|
Gambling disorder during dopamine replacement treatment in Parkinson's disease: a comprehensive review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:728038. [PMID: 25114917 PMCID: PMC4119624 DOI: 10.1155/2014/728038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 06/25/2014] [Indexed: 12/30/2022]
Abstract
Gambling Disorder (GD) is characterized by “the failure to resist gambling impulses despite severe personal, family or occupational consequences”. In the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V), GD replaces the DSM-IV diagnosis of Pathological Gambling (PG). GD estimated prevalence ranges between 0.4% and 3.4% within the adult population and it seems to be more common in patients with Parkinson's disease (PD). In this population, GD recently has become more widely recognized as a possible complication of dopamine agonist (DA) therapy. This association has aroused great interest for the dramatic impact GD has on patients' quality of life. Management of PG in patients with PD could be demanding. It is based on patient and caregiver education, modification of dopamine replacement therapy, and in some cases psychoactive drug administration. In this review article, the authors provide an overview of GD pathogenesis during DA therapy as well as a summary of available treatment options.
Collapse
|
95
|
Payer D, Balasubramaniam G, Boileau I. What is the role of the D3 receptor in addiction? A mini review of PET studies with [(11)C]-(+)-PHNO. Prog Neuropsychopharmacol Biol Psychiatry 2014; 52:4-8. [PMID: 23999545 DOI: 10.1016/j.pnpbp.2013.08.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/15/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
The chronic use of drugs, including psychostimulants such as cocaine and amphetamine, has been associated with low D2/3 dopamine receptor availability, which in turn has been linked to poor clinical outcome. In contrast, recent studies focused on the D3 receptor (a member of the D2-like receptor family) suggest that chronic exposure to stimulant drugs can up-regulate this receptor subtype, which, in preclinical models, is linked to dopamine system sensitization - a process hypothesized to contribute to relapse in addiction. In this mini review we present recent human data suggesting that the D3 receptor may contribute to core features of addiction, and discuss the usefulness of the PET imaging probe [(11)C]-(+)-PHNO in investigating this question.
Collapse
Affiliation(s)
- Doris Payer
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | | - Isabelle Boileau
- Addiction Imaging Research Group, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Campbell Family Mental Health Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Addictions, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Schizophrenia Programs, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
96
|
Matuskey D, Gallezot JD, Pittman B, Williams W, Wanyiri J, Gaiser E, Lee DE, Hannestad J, Lim K, Zheng MQ, Lin SF, Labaree D, Potenza MN, Carson RE, Malison RT, Ding YS. Dopamine D₃ receptor alterations in cocaine-dependent humans imaged with [¹¹C](+)PHNO. Drug Alcohol Depend 2014; 139:100-5. [PMID: 24717909 PMCID: PMC4071607 DOI: 10.1016/j.drugalcdep.2014.03.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/21/2014] [Accepted: 03/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Evidence from animal models and postmortem human studies points to the importance of the dopamine D₃ receptor (D₃R) in cocaine dependence (CD). The objective of this pilot study was to use the D₃R-preferring radioligand [(11)C](+)PHNO to compare receptor availability in groups with and without CD. METHODS Ten medically healthy, non-treatment seeking CD subjects (mean age 41 ± 8) in early abstinence were compared to 10 healthy control (HC) subjects (mean age 41 ± 6) with no history of cocaine or illicit substance abuse. Binding potential (BPND), a measure of available receptors, was determined with parametric images, computed using the simplified reference tissue model (SRTM2) with the cerebellum as the reference region. RESULTS BPND in CD subjects was higher in D₃R-rich areas including the substantia nigra ((SN) 29%; P=0.03), hypothalamus (28%; P=0.02) and amygdala (35%; P=0.03). No between-group differences were observed in the striatum or pallidum. BPND values in the SN (r=+0.83; P=0.008) and pallidum (r=+0.67; P=0.03) correlated with years of cocaine use. CONCLUSIONS Between-group differences suggest an important role for dopaminergic transmission in the SN, hypothalamus and amygdala in CD. Such findings also highlight the potential relevance of D₃R as a medication development target in CD.
Collapse
Affiliation(s)
- David Matuskey
- Department of Psychiatry, Yale University, New Haven, CT, USA; Department of Diagnostic Radiology, Yale University, New Haven, CT, USA.
| | | | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Wendol Williams
- Department of Psychiatry, Yale University, New Haven, CT, USA,Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jane Wanyiri
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Edward Gaiser
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Dianne E. Lee
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Jonas Hannestad
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Keunpoong Lim
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Minq-Qiang Zheng
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Shu-fei Lin
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - David Labaree
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | - Marc N. Potenza
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Richard E. Carson
- Department of Diagnostic Radiology, Yale University, New Haven, CT, USA
| | | | - Yu-Shin Ding
- Department of Radiology and Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
97
|
Goudriaan AE, Yücel M, van Holst RJ. Getting a grip on problem gambling: what can neuroscience tell us? Front Behav Neurosci 2014; 8:141. [PMID: 24904328 PMCID: PMC4033022 DOI: 10.3389/fnbeh.2014.00141] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 04/08/2014] [Indexed: 01/27/2023] Open
Abstract
In problem gamblers, diminished cognitive control and increased impulsivity is present compared to healthy controls. Moreover, impulsivity has been found to be a vulnerability marker for the development of pathological gambling (PG) and problem gambling (PrG) and to be a predictor of relapse. In this review, the most recent findings on functioning of the brain circuitry relating to impulsivity and cognitive control in PG and PrG are discussed. Diminished functioning of several prefrontal areas and of the anterior cingulate cortex (ACC) indicate that cognitive-control related brain circuitry functions are diminished in PG and PrG compared to healthy controls. From the available cue reactivity studies on PG and PrG, increased responsiveness towards gambling stimuli in fronto-striatal reward circuitry and brain areas related to attentional processing is present compared to healthy controls. At this point it is unresolved whether PG is associated with hyper- or hypo-activity in the reward circuitry in response to monetary cues. More research is needed to elucidate the complex interactions for reward responsivity in different stages of gambling and across different types of reward. Conflicting findings from basic neuroscience studies are integrated in the context of recent neurobiological addiction models. Neuroscience studies on the interface between cognitive control and motivational processing are discussed in light of current addiction theories. Clinical implications: We suggest that innovation in PG therapy should focus on improvement of dysfunctional cognitive control and/or motivational functions. The implementation of novel treatment methods like neuromodulation, cognitive training and pharmacological interventions as add-on therapies to standard treatment in PG and PrG, in combination with the study of their effects on brain-behavior mechanisms could prove an important clinical step forward towards personalizing and improving treatment results in PG.
Collapse
Affiliation(s)
- Anna E Goudriaan
- Department of Psychiatry and Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | - Murat Yücel
- Monash Clinical and Imaging Neuroscience (MCIN) Laboratory, Monash Biomedical Imaging and School of Psychological Sciences, Monash University Monash, VIC, Australia
| | - Ruth J van Holst
- Department of Psychiatry and Amsterdam Institute for Addiction Research, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands ; Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Nijmegen, Netherlands
| |
Collapse
|
98
|
Linnet J. Neurobiological underpinnings of reward anticipation and outcome evaluation in gambling disorder. Front Behav Neurosci 2014; 8:100. [PMID: 24723865 PMCID: PMC3971161 DOI: 10.3389/fnbeh.2014.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/10/2014] [Indexed: 02/02/2023] Open
Abstract
Gambling disorder is characterized by persistent and recurrent maladaptive gambling behavior, which leads to clinically significant impairment or distress. The disorder is associated with dysfunctions in the dopamine system. The dopamine system codes reward anticipation and outcome evaluation. Reward anticipation refers to dopaminergic activation prior to reward, while outcome evaluation refers to dopaminergic activation after reward. This article reviews evidence of dopaminergic dysfunctions in reward anticipation and outcome evaluation in gambling disorder from two vantage points: a model of reward prediction and reward prediction error by Wolfram Schultz et al. and a model of “wanting” and “liking” by Terry E. Robinson and Kent C. Berridge. Both models offer important insights on the study of dopaminergic dysfunctions in addiction, and implications for the study of dopaminergic dysfunctions in gambling disorder are suggested.
Collapse
Affiliation(s)
- Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital Aarhus, Denmark ; Center of Functionally Integrative Neuroscience, Aarhus University Aarhus, Denmark ; Division on Addiction, Cambridge Health Alliance Cambridge, MA, USA ; Department of Psychiatry, Harvard Medical School, Harvard University Cambridge, MA, USA
| |
Collapse
|
99
|
Abstract
Impulsive–compulsive disorders such as pathological gambling, hypersexuality, compulsive eating, and shopping are side effects of the dopaminergic therapy for Parkinson’s disease. With a lower prevalence, these disorders also appear in the general population. Research in the last few years has discovered that these pathological behaviors share features similar to those of substance use disorders (SUD), which has led to the term “behavioral addictions”. As in SUDs, the behaviors are marked by a compulsive drive toward and impaired control over the behavior. Furthermore, animal and medication studies, research in the Parkinson’s disease population, and neuroimaging findings indicate a common neurobiology of addictive behaviors. Changes associated with addictions are mainly seen in the dopaminergic system of a mesocorticolimbic circuit, the so-called reward system. Here we outline neurobiological findings regarding behavioral addictions with a focus on dopaminergic systems, relate them to SUD theories, and try to build a tentative concept integrating genetics, neuroimaging, and behavioral results.
Collapse
|
100
|
|