51
|
Li R, Shi C, Wei C, Wang C, Du H, Hong Q, Chen X. Fufang shenhua tablet, astragali radix and its active component astragaloside IV: Research progress on anti-inflammatory and immunomodulatory mechanisms in the kidney. Front Pharmacol 2023; 14:1131635. [PMID: 37089929 PMCID: PMC10113559 DOI: 10.3389/fphar.2023.1131635] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Given the limited treatment options available for kidney disease, a significant number of patients turn to alternative therapies, including traditional Chinese medicine. Among these therapies, the Fufang Shenhua tablet (SHT) has garnered attention for its effectiveness in addressing the most common deficiency of Qi and Yin in chronic glomerulonephritis. Notably, the sovereign drug of SHT is Astragali Radix (AR), with the most abundant and effective component being Astragaloside IV (AS-IV). AS-IV has been shown to possess anti-inflammatory and immunomodulatory properties, and it is extensively used in treating kidney diseases. Nevertheless, the molecular mechanisms underlying its action are numerous and intricate, and a comprehensive understanding is yet to be achieved. Aim of the review: Thus, we have thoroughly examined the existing research and outlined the advancements made in investigating the anti-inflammatory and immunomodulatory mechanisms of SHT, AR and its active component AS-IV, in relation to kidney health. This serves as a dependable foundation for conducting more comprehensive investigations, evaluating efficacy, and making further improvements in the future. Materials and methods: We conducted a comprehensive literature search utilizing multiple globally recognized databases, including Web of Science, Google Scholar, PubMed, ScienceDirect, Wiley, ACS, Springer, and CNKI. The search keywords used in this study were "Fufang Shenhua tablet," "Astragali Radix," "Astragaloside IV," and "Anti-inflammatory" or "Immunity." Results: The mechanism of inflammation inhibition by SHT, AR and its active component AS-IV is mainly related to the signaling pathways such as NF-κB, TLRs, PI3K/AKT, Wnt/β-catenin, and JAK-STAT. Immunomodulation exerts not only activating, stimulating, and regulating effects on macrophages and dendritic cells, but also on immune organs, T-lymphocytes, B-lymphocytes, and a myriad of cytokines. Moreover, the SHT, AR and its active component AS-IV also demonstrate regulatory effects on renal cells, including glomerular mesangial cells, tubular epithelial cells, and podocytes. Conclusion: To summarize, SHT, AR and its active component AS-IV, exhibit notable therapeutic effects in kidney-related ailments, and their molecular mechanisms for anti-inflammatory and immunomodulatory effects have been extensively explored. However, further standard clinical trials are necessary to evaluate their safety and efficacy in the adjunctive treatment of kidney-related diseases. Moreover, in-depth studies of unverified chemical components and regulatory mechanisms in SHT are required. It is our belief that with continued research, SHT, AR and its active component AS-IV are poised to pave the way for enhancing therapeutic outcomes in kidney-related ailments.
Collapse
Affiliation(s)
- Run Li
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Cuiting Wei
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Chao Wang
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Hongjian Du
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| | - Xiangmei Chen
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People’s Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing, China
| |
Collapse
|
52
|
Astragaloside IV mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis. Eur J Pharmacol 2023; 944:175516. [PMID: 36758783 DOI: 10.1016/j.ejphar.2023.175516] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/22/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023]
Abstract
Cerebral ischaemia-reperfusion injury (CIRI) is a critical component of ischaemic stroke pathogenesis. Ferroptosis contributes to and aggravates CIRI, whereas the P62/Kelch-like ECH-associated protein 1 (Keap1)/NF-E2-related factor 2 (Nrf2) pathway exerts neuroprotective effects. Astragaloside IV (AST IV) is the primary active ingredient of Astragalus, an herb with anti-CIRI properties used in traditional Chinese medicine. However, the mechanism of its anti-CIRI action is unclear. This study examined the mechanisms underlying the anti-CIRI action of AST IV using a combination of in vitro and in vivo approaches. We established an erastin-induced ferroptosis model, oxygen and glucose deprivation/reoxygenation (OGD/R)-induced model in SH-SY5Y cells, and middle cerebral artery occlusion-reperfusion (MCAO/R) model using Sprague-Dawley rats. The extent of cell damage and brain damage in rats, ferroptosis indicator changes, and expression of P62, Keap1, and Nrf2 were investigated. AST IV inhibited erastin-induced ferroptosis, attenuated OGD/R-induced cell damage, and ameliorated sensorimotor dysfunction and injury in the MCAO/R model. Further, AST IV promoted Nrf2 activation, inhibited ferroptosis, and reduced cell damage. Notably, these effects were inhibited by ML385, an Nrf2 inhibitor. AST IV increased the P62 and Nrf2 levels and decreased the Keap1 levels. P62 silencing reduced the effects of AST IV on the P62/Keap1/Nrf2 pathway and ferroptosis. Our findings suggest that AST IV mitigates CIRI by inhibiting ferroptosis via activation of the P62/Keap1/Nrf2 pathway. This study provides an important scientific basis and direction for the application and research of AST IV and provides new potential targets and ideas for the study of the pathological mechanism of CIRI.
Collapse
|
53
|
Kakoty V, Sarathlal KC, Gulati M, Bey Hing G, Dua K, Kumar Singh S. Senolytics: opening avenues in drug discovery to find novel therapeutics for Parkinson's disease. Drug Discov Today 2023; 28:103582. [PMID: 37023942 DOI: 10.1016/j.drudis.2023.103582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Aging is one of the major risk factors for most neurodegenerative disorders including Parkinson's disease (PD). More than 10 million people are affected with PD worldwide. One of the predominant factors accountable for progression of PD pathology could be enhanced accumulation of senescent cells in the brain with the progress of age. Recent investigations have highlighted that senescent cells can ignite PD pathology via increased oxidative stress and neuroinflammation. Senolytics are agents that kill senescent cells. This review mainly focuses on understanding the pathological connection between senescence and PD, with emphasis on some of the recent advances made in the area of senolytics and their evolution to potential clinical candidates for future pharmaceuticals against PD.
Collapse
Affiliation(s)
- Violina Kakoty
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - K C Sarathlal
- Department of Non-Communicable Disease, Translational Health Science and Technology Institute, Faridabad, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Goh Bey Hing
- Biofunctional Molecule Exploratory Research Group, School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan 47500, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
54
|
Sun Y, Ma Y, Sun F, Feng W, Ye H, Tian T, Lei M. Astragaloside IV attenuates lipopolysaccharide induced liver injury by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation. Heliyon 2023; 9:e15436. [PMID: 37113780 PMCID: PMC10126932 DOI: 10.1016/j.heliyon.2023.e15436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/26/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Aims and objectives Sepsis-associated liver injury is a common public health problem in intensive care units. Astragaloside IV (AS-IV) is an active component extracted from the Chinese herb Astragalus membranaceus, and has been shown to have anti-oxidation, anti-inflammation, and anti-apoptosis properties. The research aimed to investigate the protective effect of AS-IV in lipopolysaccharide (LPS)-induced liver injury. Methods Male C57BL/6 wild-type mice (6-8 week-old) were intraperitoneally injected with 10 mg/kg LPS for 24 h and AS-IV (80 mg/kg) 2 h before the LPS injection. Biochemical and histopathological analyses were carried out to assess liver injury. The RT-qPCR analyzed the mRNA expression of IL-1β, TNF-α, and IL-6. The mRNA and protein expression of SIRT1, nuclear Nrf2, Nrf2, and HO-1 were measured by Western blotting. Results Serum alanine/aspartate aminotransferases (ALT/AST) analysis, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) were showed that AS-IV protected against LPS-induced hepatotoxicity. The protection afforded by AS-IV was confirmed by pathological examination of the liver. Pro-inflammatory cytokines, including interleukin- 1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and interleukin 6 (IL-6), were observed to be reversed by AS-IV after exposure to LPS. Western blot analysis demonstrated that AS-IV enhanced the expression levels of Sirtuin 1 (SIRT1), nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase 1 (HO-1). Conclusions AS-IV protects against LPS-induced Liver Injury and Inflammation by modulating Nrf2-mediated oxidative stress and NLRP3-mediated inflammation.
Collapse
|
55
|
Wei X, He Y, Wan H, Yin J, Lin B, Ding Z, Yang J, Zhou H. Integrated transcriptomics, proteomics and metabolomics to identify biomarkers of astragaloside IV against cerebral ischemic injury in rats. Food Funct 2023; 14:3588-3599. [PMID: 36946308 DOI: 10.1039/d2fo03030f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The herb Astragali Radix is a food-medicine herb. A major component of Astragali Radix, astragaloside IV (AS-IV), has neuroprotective effects in IS, but its mechanisms are not well understood. Our research used a transient middle cerebral artery occlusion (MCAO) rat model for longitudinal multi-omics analyses of the side of the brain affected by ischemia. Based on transcriptomic and proteomic analysis, we found that 396 differential expression targets were up-regulated and 114 differential expression targets were down-regulated. A total of 117 differential metabolites were identified based on metabonomics. Finally, we found 8 hub genes corresponding to the compound-reaction-enzyme-gene network using the Metscape plug-in for Cytoscape 3.7.1. We found that the related key metabolites were 3,4-dihydroxy-L-phenylalanine, 2-aminomuconate semialdehyde, (R)-3-hydroxybutanoate, etc., and the affected pathways were tyrosine metabolism, tryptophan metabolism, butanoate metabolism, purine metabolism, etc. We further validated these targets using 4D-PRM proteomics and found that seven targets were significantly different, including Aprt, Atic, Gaa, Galk1, Glb1, Me2, and Hexa. We aimed to uncover the mechanism of AS-IV in the treatment of ischemic brain injury through a comprehensive strategy combining transcriptomics, proteomics, and metabolomics.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Junjun Yin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Bingying Lin
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, P. R. China.
| |
Collapse
|
56
|
Chen Y, Fang T, Su H, Duan S, Ma R, Wang P, Wu L, Sun W, Hu Q, Zhao M, Sun L, Dong X. A reference-grade genome assembly for Astragalus mongholicus and insights into the biosynthesis and high accumulation of triterpenoids and flavonoids in its roots. PLANT COMMUNICATIONS 2023; 4:100469. [PMID: 36307985 PMCID: PMC10030368 DOI: 10.1016/j.xplc.2022.100469] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/18/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Astragalus membranaceus var. mongholicus (AMM), a member of the Leguminosae, is one of the most important medicinal plants worldwide. The dried roots of AMM have a wide range of pharmacological effects and are a traditional Chinese medicine. Here, we report the first chromosome-level reference genome of AMM, comprising nine pseudochromosomes with a total size of 1.47 Gb and 27 868 protein-encoding genes. Comparative genomic analysis reveals that AMM has not experienced an independent whole-genome duplication (WGD) event after the WGD event shared by the Papilionoideae species. Analysis of long terminal repeat retrotransposons suggests a recent burst of these elements at approximately 0.13 million years ago, which may explain the large size of the AMM genome. Multiple gene families involved in the biosynthesis of triterpenoids and flavonoids were expanded, and our data indicate that tandem duplication has been the main driver for expansion of these families. Among the expanded families, the phenylalanine ammonia-lyase gene family was primarily expressed in the roots of AMM, suggesting their roles in the biosynthesis of phenylpropanoid compounds. The functional versatility of 2,3-oxidosqualene cyclase genes in cluster III may play a critical role in the diversification of triterpenoids in AMM. Our findings provide novel insights into triterpenoid and flavonoid biosynthesis and can facilitate future research on the genetics and medical applications of AMM.
Collapse
Affiliation(s)
- Yi Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ting Fang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - He Su
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou 510120, China
| | - Sifei Duan
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruirui Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Lin Wu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenbin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Qichen Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Meixia Zhao
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Lianjun Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xuehui Dong
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
57
|
Li X, Li Z, Dong X, Wu Y, Li B, Kuang B, Chen G, Zhang L. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother Res 2023. [PMID: 36882189 DOI: 10.1002/ptr.7798] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Diabetic cardiomyopathy (DCM), one of the major complications of type 2 diabetes, is a leading cause of heart failure and death in advanced diabetes. Although there is an association between DCM and ferroptosis in cardiomyocytes, the internal mechanism of ferroptosis leading to DCM development remains unknown. CD36 is a key molecule in lipid metabolism that mediates ferroptosis. Astragaloside IV (AS-IV) confers various pharmacological effects such as antioxidant, anti-inflammatory, and immunomodulatory. In this study, we demonstrated that AS-IV was able to recover the dysfunction of DCM. In vivo experiments showed that AS-IV ameliorated myocardial injury and improved contractile function, attenuated lipid deposition, and decreased the expression level of CD36 and ferroptosis-related factors in DCM rats. In vitro experiments showed that AS-IV decreased CD36 expression and inhibited lipid accumulation and ferroptosis in PA-induced cardiomyocytes. The results demonstrated that AS-IV decreased cardiomyocyte injury and myocardial dysfunction by inhibiting ferroptosis mediated by CD36 in DCM rats. Therefore, AS-IV regulated the lipid metabolism of cardiomyocytes and inhibited cellular ferroptosis, which may have potential clinical value in DCM treatment.
Collapse
Affiliation(s)
- Xin Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Ziwei Li
- Baiyun Hospital of The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Dong
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Yu Wu
- Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Baohua Li
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Bin Kuang
- Dongguan Hospital of Traditional Chinese Medicine, Dongguan, China
| | - Gangyi Chen
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Liangyou Zhang
- The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
58
|
Yang X, Yang Y, Liu K, Zhang C. Traditional Chinese medicine monomers: Targeting pulmonary artery smooth muscle cells proliferation to treat pulmonary hypertension. Heliyon 2023; 9:e14916. [PMID: 37128338 PMCID: PMC10147991 DOI: 10.1016/j.heliyon.2023.e14916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 02/01/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Pulmonary hypertension (PH) is a complex multifactorial disease characterized by increased pulmonary vascular resistance and pulmonary vascular remodeling (PVR), with high morbidity, disability, and mortality. The abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs) is the main pathological change causing PVR. At present, clinical treatment drugs for PH are limited, which can only improve symptoms and reduce hospitalization but cannot delay disease progression and reduce survival rate. In recent years, numerous studies have shown that traditional Chinese medicine monomers (TCMs) inhibit excessive proliferation of PASMCs resulting in alleviating PVR through multiple channels and multiple targets, which has attracted more and more attention in the treatment of PH. In this paper, the experimental evidence of inhibiting PASMCs proliferation by TCMs was summarized to provide some directions for the future development of these mentioned TCMs as anti-PH drugs in clinical.
Collapse
|
59
|
Astragaloside IV alleviates sepsis-induced muscle atrophy by inhibiting the TGF-β1/Smad signaling pathway. Int Immunopharmacol 2023; 115:109640. [PMID: 36586273 DOI: 10.1016/j.intimp.2022.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Muscle atrophy occurs in patients with sepsis and increases mortality and disability. Remission of muscle atrophy may improve the quality of life in patients with sepsis. Astragaloside IV (ASIV) has been shown to have excellent anti-inflammatory and anti-fibrotic effects and to reduce organ damage caused by sepsis. However, the effect of ASIV on sepsis-induced muscle atrophy has not been reported. Therefore, this study explored the pharmacological effects and mechanisms of ASIV in sepsis-induced muscle atrophy. METHODS Cecal ligation and puncture (CLP) was used to establish a mouse model of sepsis and lipopolysaccharide (LPS)-stimulated C2C12 myotubes. After administration of ASIV, the body weight, tibialis anterior (TA) and gastrocnemius muscle weight and fiber cross-sectional area of the mice were measured. The diameter of myotubes was observed by immunofluorescence staining. ELISA was used to assess inflammatory factors in plasma and cell culture supernatants. RT-PCR and Western blotting were used to detect the expression of MuRF1, Atrogin-1 and TGF-β1/Smad signaling pathway components in TA and C2C12 myotubes. RESULTS Our study found that ASIV reduced serum inflammatory factors and improved survival in septic mice. ASIV alleviated muscle mass reduction, myofiber cross-sectional area reduction, and C2C12 myotube atrophy by inhibiting the expression of the E3 ubiquitin ligases MuRF1 and atrogin-1. In addition, we observed that ASIV inhibited TGF-β1/Smad signaling. Inhibition of the TGF-β1/Smad signaling pathway partly blocked the anti-muscle atrophy effect of ASIV. CONCLUSION ASIV can alleviate sepsis-induced muscle atrophy, which may be related to the inhibition of the TGF-β1/Smad signaling pathway.
Collapse
|
60
|
Li L, Zhang Y, Luo Y, Meng X, Pan G, Zhang H, Li Y, Zhang B. The Molecular Basis of the Anti-Inflammatory Property of Astragaloside IV for the Treatment of Diabetes and Its Complications. Drug Des Devel Ther 2023; 17:771-790. [PMID: 36925998 PMCID: PMC10013573 DOI: 10.2147/dddt.s399423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 03/12/2023] Open
Abstract
Astragali Radix is a significant traditional Chinese medication, and has a long history of clinical application in the treatment of diabetes mellitus (DM) and its complications. AS-IV is an active saponin isolated from it. Modern pharmacological study shows that AS-IV has anti-inflammatory, anti-oxidant and immunomodulatory activities. The popular inflammatory etiology of diabetes suggests that DM is a natural immune and low-grade inflammatory disease. Pharmacological intervention of the inflammatory response may provide promising and alternative approaches for the prevention and treatment of DM and its complications. Therefore, this article focuses on the potential of AS-IV in the treatment of DM from the perspective of an anti-inflammatory molecular basis. AS-IV plays a role by regulating a variety of anti-inflammatory pathways in multiple organs, tissues and target cells throughout the body. The blockade of the NF-κB inflammatory signaling pathway may be the central link of AS-IV's anti-inflammatory effect, resulting in a reduction in the tissue structure and function damage stimulated by inflammatory factors. In addition, AS-IV can delay the onset of DM and its complications by inhibiting inflammation-related oxidative stress, fibrosis and apoptosis signals. In conclusion, AS-IV has therapeutic prospects from the perspective of reducing the inflammation of DM and its complications. An in-depth study on the anti-inflammatory mechanism of AS-IV is of great significance for the effective use of Chinese herbal medicine and the promotion of its status and influence on the world.
Collapse
Affiliation(s)
- Lin Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuwei Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yudan Luo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Xianghui Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Guixiang Pan
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300250, People's Republic of China
| | - Han Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Yuhong Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Boli Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
61
|
Yuan S, Zuo B, Zhou SC, Wang M, Tan KY, Chen ZW, Cao WF. Integrating Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanism of Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis. Drug Des Devel Ther 2023; 17:1289-1302. [PMID: 37138582 PMCID: PMC10150770 DOI: 10.2147/dddt.s404710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/14/2023] [Indexed: 05/05/2023] Open
Abstract
Purpose Our study aims to reveal the pharmacological mechanism of Astragaloside IV in the treatment of pulmonary fibrosis(PF) through network pharmacology and experimental validation. Methods We first determined the in vivo anti-pulmonary fibrosis effect of Astragaloside IV by HE, MASSON staining, and lung coefficients, then used network pharmacology to predict the signaling pathways and molecularly docked key pathway proteins, and finally validated the results by in vivo and in vitro experiments. Results In in vivo experiments, we found that Astragaloside IV improved body weight (P < 0.05), increased lung coefficients (P < 0.05), and reduced lung inflammation and collagen deposition in mice with pulmonary fibrosis. The network pharmacology results showed that Astragaloside IV had 104 cross-targets with idiopathic pulmonary fibrosis, and the results of KEGG enrichment analysis indicated that cellular senescence could be an important pathway for Astragaloside IV in the treatment of pulmonary fibrosis. Astragaloside IV also bound well to senescence-associated proteins, according to molecular docking results. The results of both in vivo and in vitro experiments showed that Astragaloside IV significantly inhibited senescence protein markers such as P53, P21, and P16 and delayed cellular senescence (P < 0.05). In in vivo experiments, we also found that Astragaloside IV reduced the production of SASPs (P < 0.05), and in in vitro experiments, Astragaloside IV also reduced the production of ROS. In addition, by detecting epithelial-mesenchymal transition(EMT)-related marker protein expression, we also found that Astragaloside IV significantly inhibited the development of EMT in both in vivo and in vitro experiments (P < 0.05). Conclusion Our research found that Astragaloside IV could alleviate bleomycin-induced PF by preventing cellular senescence and EMT.
Collapse
Affiliation(s)
- Su Yuan
- Department of Combination of Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
| | - Biao Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Si-Cong Zhou
- Department of Combination of Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Kai-Yue Tan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Zhi-Wei Chen
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wen-Fu Cao
- Department of Combination of Chinese and Western Medicine, the First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, People’s Republic of China
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Wen-Fu Cao, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, 400016, People’s Republic of China, Email
| |
Collapse
|
62
|
Niu W, Cao W, Wu F, Liang C. SUV39H1 Inhibits Angiogenesis in Limb Ischemia of Mice. Cell Transplant 2023; 32:9636897231198167. [PMID: 37811706 PMCID: PMC10563463 DOI: 10.1177/09636897231198167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/07/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023] Open
Abstract
Peripheral arterial disease (PAD), characterized by atherosclerosis of the peripheral arteries or even amputation, has threatened public life and health. However, the underlying mechanism remains largely obscure. SUV39H1, a histone methyltransferase, could specifically methylate lysine 9 of histone H3 and act as a repressor in transcriptional activity. The study aimed to investigate the role of SUV39H1 in limb ischemia. C57BL/6 male mice were randomly divided into Sham or Model groups to investigate the expression of SUV39H1 in the ischemic limbs. Then, pharmaceutical inhibition or genetic deletion of SUV39H1 in the limb ischemia mice model was performed to confirm its effect on limb ischemia. The blood perfusion was quantified by laser speckle contrast imaging (LSCI). Capillary density and muscle edema were measured by CD31 immunohistochemical staining and HE staining. The expressions of SUV39H1 and Catalase were confirmed by western blot. Transcriptome sequencing of siSUV39H1 in human umbilical vein endothelial cells (HUVECs) was used to explore the regulation mechanism of SUV39H1 on angiogenesis. The results showed that SUV39H1 was highly expressed in the ischemic muscle tissue of the mice. Pharmaceutical inhibition or genetic deletion of SUV39H1 significantly improved blood perfusion, capillary density, and angiogenesis in ischemic muscle tissue. Cell experiments showed that SUV39H1 knockdown promoted cell migration, tube formation, and mitochondrial membrane potential in endothelial cells under oxidative stress. The transcriptome sequencing results unmasked mechanisms of the regulation of angiogenesis induced by SUV39H1. Finally, Salvianolic acid B and Astragaloside IV were identified as potential drug candidates for the improvement of endothelial function by repressing SUV39H1. Our study reveals a new mechanism in limb ischemia. Targeting SUV39H1 could improve endothelial dysfunction and thus prevent limb ischemia.
Collapse
Affiliation(s)
- Wenhao Niu
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenyue Cao
- Department of Ultrasonography, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Wu
- Department of Cardiology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun Liang
- Department of Cardiology, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
63
|
Study on the Mechanism of Radix Astragali against Renal Aging Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6987677. [PMID: 36561604 PMCID: PMC9767736 DOI: 10.1155/2022/6987677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022]
Abstract
Radix Astragali is widely used in the traditional Chinese medicine with the effect of antiaging. The purpose of this study is to explore the main active ingredients and targets of Radix Astragali against renal aging by network pharmacology and further to verify the mechanism of the main active ingredients in vitro. TCMSP, ETCM, and TCMID databases were used to screen active ingredients of Radix Astragali. Targets of active ingredients were predicted using BATMAN-TCM and cross validated using kidney aging-related genes obtained from GeneCards and NCBI database. Pathways enrichment and protein-protein interaction (PPI) analysis were performed on core targets. Additionally, a pharmacological network was constructed based on the active ingredients-targets-pathways. HK-2 cell was treated with D-galactose to generate a cell model of senescence. CCK-8 and β-galactosidase were used to detect the effect of Radix Astragali active components on cell proliferation and aging. ELISA was used to detect the expression of senescence-associated secreted protein (TGF-β and IL-6) in the cell culture supernatant. Western blot was used to detect the expression of key proteins in the SIRT1/p53 pathway. Five active ingredients (Astragaloside I, II, III, IV and choline) were identified from Radix Astragali, and all these active ingredients target a total of 128 genes. Enrichment analysis showed these genes were implicated in 153 KEGG pathways, including the p53, FoxO, and AMPK pathway. 117 proteins and 572 interactions were found in PPI network. TP53 and SIRT1 were two hub genes in PPI network, which interacted with each other. The pharmacological network showed that the five main active ingredients target on some coincident genes, including TP53 and SIRT1. These targeted genes were involved in the p53, FoxO, and AMPK pathway. Proliferation of HK-2 cells was increased by Astragaloside IV treatment compared with that of the D-Gal treatment group. However, the proliferation of the SA-β-gal positive cells were inhibited. The expression of TGF-β and IL-6 in the D-Gal group was higher than that in the normal group, and the treatment of Astragaloside IV could significantly reduce the expression of TGF-β and IL-6. The expression of SIRT1 in the Astragaloside IV group was higher than that in the D-Gal group. However, the expression of p53 and p21 was less in the Astragaloside IV group than that in the D-Gal group. This study suggested that Astragaloside IV is an important active ingredient of Radix Astragali in the treatment of kidney aging via the SITR1-p53 pathway.
Collapse
|
64
|
Zhou R, Guo T, Li J. Research progress on the antitumor effects of astragaloside IV. Eur J Pharmacol 2022; 938:175449. [PMID: 36473596 DOI: 10.1016/j.ejphar.2022.175449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
One of the most important and effective components of Astragalus membranaceus is astragaloside IV (AS-IV), which can exert anti-tumor effects through various pathways. For instance, AS-IV exerts an anti-tumor effect by acting at the cellular level, regulating the phenotype switch of tumor-associated macrophages, or inhibiting the development of tumor cells. Furthermore, AS-IV inhibits tumor cell progression by enhancing its sensitivity to antitumor drugs or reversing the drug resistance of tumor cells. This article reviews the different mechanisms of AS-IV inhibition of epithelial-mesenchymal transition (EMT), migration, proliferation, and invasion of tumor cells, inducing apoptosis and improving the sensitivity of anti-tumor drugs. This review summarizes recent progress in the current research into AS-IV anti-tumor effect and provides insight on the next anti-tumor research of AS-IV.
Collapse
Affiliation(s)
- Ruixi Zhou
- The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China
| | - Tiankang Guo
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China
| | - Junliang Li
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou 730030, China; The First School of Clinical Medical, Gansu University of Chinese Medicine, Lanzhou 730030, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
| |
Collapse
|
65
|
Szabo K, Ranga F, Elemer S, Varvara RA, Diaconeasa Z, Dulf FV, Vodnar DC. Evaluation of the Astragalus exscapus L. subsp. transsilvanicus Roots' Chemical Profile, Phenolic Composition and Biological Activities. Int J Mol Sci 2022; 23:ijms232315161. [PMID: 36499484 PMCID: PMC9739471 DOI: 10.3390/ijms232315161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/04/2022] Open
Abstract
Novel and natural molecules for pharmaceutical applications are a contemporary preoccupation in science which prompts research in underexplored environments. Astragalus exscapus ssp. transsilvanicus (Schur) Nyár. (ASTRA) is a plant species endemic to Transylvania, having a very similar root system with that of A. membranaceus (Fisch.) Bunge, known for its health promoting properties. The present study endeavored to perform basic characterization of the ASTRA roots by proximate analysis, to investigate the fatty acid profile of the lipids extracted from the ASTRA roots, to examine the phenolic composition of the root extracts by liquid chromatography, and to evaluate the biological activities through determination of the antioxidant, antimicrobial and cytotoxic capacities of the extracts. The primary compounds found in the ASTRA roots were carbohydrates and lipids, and the fatty acid composition determined by GC-MS showed linoleic acid as preponderant compound with 31.10%, followed by palmitic, oleic and α-linolenic acids with 17.30%, 15.61% and 14.21%, respectively. The methanol extract of the ASTRA roots presented highest phenolic content, Astragaloside IV being the predominant compound with 425.32 ± 0.06 µg/g DW. The antimicrobial assay showed remarkable antimicrobial potential of the extract at a concentration of 0.356 and 0.703 mg ASTRA root powder (DW)/mL, highlighting its efficacy to inhibit S. aureus and S. epidermidis bacterial strains. Furthermore, the cell proliferation assessment showed the noteworthy proficiency of the treatment in inhibiting the proliferation of B16F10 melanoma cells.
Collapse
Affiliation(s)
- Katalin Szabo
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Technological Transfer Center COMPAC, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Floricuta Ranga
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Simon Elemer
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Rodica Anita Varvara
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Zorita Diaconeasa
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Francisc Vasile Dulf
- Faculty of Agriculture, Department of Environmental and Plant Protection, University of Agricultural Sciences and Veterinary Medicine, Calea Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
- Correspondence:
| |
Collapse
|
66
|
Astragaloside IV in Hypoxic Pulmonary Hypertension: an In Vivo and In Vitro Experiments. Appl Biochem Biotechnol 2022; 194:6319-6334. [PMID: 35917100 DOI: 10.1007/s12010-022-04027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 01/20/2023]
Abstract
The objective of study was to find the actions of astragaloside IV (ASIV) on PAH due to monocrotaline (MCT) in rats. Intraperitoneal injection of 60 mg/ kg MCT was injected to rats, come after by ASIV treatment with doses of 10 mg/kg daily once or 30 mg/kg of dose for twenty one days once daily. RVSP, serum inflammatory cytokines, RVH, and the other pathological parameters of the pulmonary arteries were evaluated. ASIV attenuated the increased pulmonary artery pressure and its structure in rat modification due to MCT. Additionally, ASIV avoided the rise in tumor necrosis factor (TNF)-α and interleukin (IL)-1β levels in the blood serum, and their expression of gene in the pleural parts, which was caused by MCT. ASIV promoted apoptotic resistance of HPASMCs and weakened the hypoxia-induced proliferation. ASIV shows over expression of caspase-3, caspase-9, p21, p27, and Bax, while ASIV downregulated Bcl-2, phospho-ERK, HIF-1α, and protein appearance in HPASMCs. These findings of the in vitro and the in vivo experiment indicate that astragaloside IV exerts protective effects against pulmonary arterial pressure, and may have action to be improved into pharmacological drug for pulmonary arterial pressure treatment.
Collapse
|
67
|
Zhang J, Hu Y, Wang H, Hou J, Xiao W, Wen X, Wang T, Long P, Jiang H, Wang Z, Liu H, Chen X. Advances in research on the protective mechanisms of traditional Chinese medicine (TCM) in myocardial ischaemia-reperfusion injury. PHARMACEUTICAL BIOLOGY 2022; 60:931-948. [PMID: 35587352 PMCID: PMC9132412 DOI: 10.1080/13880209.2022.2063342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Developing effective drugs to treat myocardial ischaemia-reperfusion (MI/R) injury is imperative. Traditional Chinese medicines (TCMs) have had considerable success in the treatment of cardiovascular diseases. Elucidating the mechanisms by which TCMs improve MI/R injury can supplement the literature on MI/R prevention and treatment. OBJECTIVE To summarise TCMs and their main protective mechanisms against MI/R injury reported over the past 40 years. METHODS Relevant literature published between 1980 and 2020 in Chinese and English was retrieved from the Web of Science, PubMed, SpringerLink, PubMed Central, Scopus, and Chinese National Knowledge Infrastructure (CNKI) databases. Search terms included 'medicinal plants', 'myocardial ischaemia reperfusion injury', 'Chinese medicine prescriptions', 'mechanisms', 'prevention', 'treatment' and 'protection'. For inclusion in the analysis, medicinal plants had to be searchable in the China Medical Information Platform and Plant Database. RESULTS We found 71 medicinal species (from 40 families) that have been used to prevent MI/R injury, of which Compositae species (8 species) and Leguminosae species (7 species) made up the majority. Most of the effects associated with these plants are described as antioxidant and anti-inflammatory. Furthermore, we summarised 18 kinds of Chinese compound prescriptions, including the compound Danshen tablet and Baoxin pill, which mainly reduce oxidative stress and regulate mitochondrial energy metabolism. DISCUSSION AND CONCLUSIONS We summarised TCMs that protect against MI/R injury and their pharmacological mechanisms. This in-depth explanation of the roles of TCMs in MI/R injury protection provides a theoretical basis for the research and development of TCM-based treatment drugs.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yonghe Hu
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Han Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wenjing Xiao
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xudong Wen
- Department of Gastroenterology, The First People’s Hospital of Chengdu, Chengdu, Sichuan, China
| | - Tingting Wang
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Long
- Department of Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Hezhong Jiang
- Faculty of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Zhanhao Wang
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Huawei Liu
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, The Third People’s Hospital of Chengdu/Affiliated Hospital of Southwest, Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
68
|
Shi X, Chang M, Zhao M, Shi Y, Zhang Y. Traditional Chinese medicine compounds ameliorating glomerular diseases via autophagy: A mechanism review. Biomed Pharmacother 2022; 156:113916. [DOI: 10.1016/j.biopha.2022.113916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 11/29/2022] Open
|
69
|
Liu K, Wan G, Jiang R, Zou L, Wan D, Zhu H, Feng S. Astragalus injection ameliorates lipopolysaccharide-induced cognitive decline via relieving acute neuroinflammation and BBB damage and upregulating the BDNF-CREB pathway in mice. PHARMACEUTICAL BIOLOGY 2022; 60:825-839. [PMID: 35587259 PMCID: PMC9122367 DOI: 10.1080/13880209.2022.2062005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/24/2022] [Accepted: 03/26/2022] [Indexed: 05/26/2023]
Abstract
CONTEXT Post-sepsis cognitive impairment is one of the major sequelae observed in survivors of sepsis. Astragalus injection is the normally preferred treatment in sepsis in clinical settings. OBJECTIVE This study evaluated the benefits and related mechanism of Astragalus injection on post-sepsis cognitive impairment. MATERIALS AND METHODS C57BL/6J mice were divided into three groups: Control, LPS (2.5 mg/kg, i.p.), and LPS + Astragalus injection (5.0 mL/kg). The surviving mice from sepsis were injected with material named Astragalus injection continuously for 13 days. Behavioural tests were first conducted to evaluate the benefits. Second, inflammatory cytokines secretion, BBB integrity, neurodegeneration, and protein expression was evaluated in vivo and in vitro. RESULTS Compared with the LPS group, mice in Astragalus injection group exhibited shorter escape latency (34.6 s versus 24.5 s) in the Morris water maze test. Treatment with Astragalus injection could reverse LPS-induced neuroinflammation in mice and BV2 cells. Continuous Astragalus injection treatment not only prevented blood-brain barrier dysfunction, but also prevented neurodegeneration. Further molecular docking tests and western blot results reflected that the main constituents of Astragalus injection could interact with TrkB (the estimated binding energy values were -7.0 to -5.0 kcal/mol) and upregulate the protein expression of BDNF/TrkB/CREB signalling pathway during the chronic stage in mice. DISCUSSION Astragalus injection treatment could reduce neuroinflammation, reverse BBB dysfunction, prevent neurodegeneration, and upregulate BDNF-CREB pathway during LPS-induced sepsis, ultimately preventing the development of cognitive decline. CONCLUSION Astragalus injection could be a potential preventive and therapeutic strategy for sepsis survivors in clinical settings.
Collapse
Affiliation(s)
- Ke Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Guoran Wan
- Department of Emergency & Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruhong Jiang
- Department of Psychiatry, First Clinical College of Chongqing Medical University, Chongqing, China
| | - Li Zou
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Dong Wan
- Department of General Practice, Fifth Clinical College of Chongqing Medical University, Chongqing, China
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
70
|
Wei C, Qiu J, Wu Y, Chen Z, Yu Z, Huang Z, Yang K, Hu H, Liu F. Promising traditional Chinese medicine for the treatment of cholestatic liver disease process (cholestasis, hepatitis, liver fibrosis, liver cirrhosis). JOURNAL OF ETHNOPHARMACOLOGY 2022; 297:115550. [PMID: 35863612 DOI: 10.1016/j.jep.2022.115550] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cholestatic liver disease (CLD) is mainly characterized by cholestasis. If not treated, it will deteriorate to cholestatic hepatitis, liver fibrosis, liver cirrhosis, and even liver failure. CLD has a high clinical incidence, and limited treatment with single therapy. In the long-term clinical exploration, traditional Chinese medicine (TCM) has been corroborated with unique therapeutic effects on the CLD process. AIM OF THIS REVIEW This paper summarizes the effective single and compound TCMs for the treatment of CLD. According to 4 important clinical stages of CLD: cholestasis, hepatitis, liver fibrosis, liver cirrhosis, pharmacological effects and mechanisms of 5 typical TCM examples are reviewed, aims to provide basis for clinical drug selection in different processes of CLD. MATERIALS AND METHODS Relevant scientific articles regarding therapeutic effects of TCM for the CLD were collected from different databases. We collated three single herbs including Artemisia scoparia Waldst. et Kit. or Artemisia capillaris Thunb. (Artemisiae Scopariae Herba, Yin Chen in Chinese), Paeonia lactiflora Pall. or Paeonia veitchii Lynch. (Paeoniae radix rubra, Chi Shao in Chinese), Poria cocos (Schw.) Wolf (Poria, Fu Ling in Chinese), and two compound herbs of Huang Qi Decoction (HQD) and Yin Chen Hao Decoction (YCHD) to studied and analyzed. RESULTS We proposed five promising TCMs treatments for the important developmental stages of CLD. Among them, Yin Chen is an essential medicine for protecting liver and gallbladder, and its TCM prescription is also a promising strategy for cholestasis. Based on clinical evidence, high-dose application of Chi Shao is a clinical special treatment of cholestasis hepatitis. Fu Ling can regulate immune cells and increase antibody levels in serum, which is expected to be an emerging therapy to prevent cholestatic liver fibrosis to cirrhosis. HQD can be used as routine clinical medicine for liver fibrosis. In addition, YCHD can exert better comprehensive advantages with multiple components, can treat the whole course of CLD and prevent it from developing to the end-stage. CONCLUSION Yin Chen, Chi Shao, Fu Ling, HQD and YCHD have shown good clinical efficacy in controlling the development of CLD. Clinically, it is easier to curb the development of CLD by adopting graded diagnosis and treatment measures. We suggest that CLD should be risk stratified in clinical treatment to ensure personalized treatment for patients, so as to slow down the development of the disease.
Collapse
Affiliation(s)
- Chunlei Wei
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Jing Qiu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Yuyi Wu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziqiang Chen
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ziwei Yu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Zecheng Huang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Ke Yang
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Huiling Hu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| | - Fang Liu
- Key Laboratory of Standardization of Chinese Herbal Medicine, Ministry of Education, State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, Chengdu, 611137, China.
| |
Collapse
|
71
|
Yeh TS, Lei TH, Barnes MJ, Zhang L. Astragalosides Supplementation Enhances Intrinsic Muscle Repair Capacity Following Eccentric Exercise-Induced Injury. Nutrients 2022; 14:4339. [PMID: 36297022 PMCID: PMC9608496 DOI: 10.3390/nu14204339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 10/26/2023] Open
Abstract
Astragalosides have been shown to enhance endurance exercise capacity in vivo and promote muscular hypertrophy in vitro. However, it remains unknown whether astragalosides supplementation can alter inflammatory response and enhance muscle recovery after damage in humans. We therefore aimed to evaluate the effect of astragalosides supplementation on muscle's intrinsic capacity to regenerate and repair itself after exercise-induced damage. Using a randomized double-blind placebo-controlled cross-over design, eleven male participants underwent 7 days of astragalosides supplementation (in total containing 4 mg of astragalosides per day) or a placebo control, following an eccentric exercise protocol. Serum blood samples and variables related to muscle function were collected prior to and immediately following the muscle damage protocol and also at 2 h, and 1, 2, 3, 5, and 7 days of the recovery period, to assess the pro-inflammatory cytokine response, the secretion of muscle regenerative factors, and muscular strength. Astragalosides supplementation reduced biomarkers of skeletal muscle damage (serum CK, LDH, and Mb), when compared to the placebo, at 1, 2, and 3 days following the muscle damage protocol. Astragalosides supplementation suppressed the secretion of IL-6 and TNF-α, whilst increasing the release of IGF-1 during the initial stages of muscle recovery. Furthermore, following astragaloside supplementation, muscular strength returned to baseline 2 days earlier than the placebo. Astragalosides supplementation shortens the duration of inflammation, enhances the regeneration process and restores muscle strength following eccentric exercise-induced injury.
Collapse
Affiliation(s)
- Tzu-Shao Yeh
- School of Public Health, Nantong University, Nantong 226019, China
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| | - Tze-Huan Lei
- College of Physical Education, Hubei Normal University, Huangshi 435002, China
| | - Matthew J. Barnes
- School of Sport, Exercise and Nutrition, Massey University, Palmerston North 4410, New Zealand
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
72
|
Abd Elrahim Abd Elkader HT, Essawy AE, Al-Shami AS. Astragalus species: Phytochemistry, biological actions and molecular mechanisms underlying their potential neuroprotective effects on neurological diseases. PHYTOCHEMISTRY 2022; 202:113293. [PMID: 35780924 DOI: 10.1016/j.phytochem.2022.113293] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/02/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Neurodegenerative and neuropsychiatric illnesses are prevalent and life-threatening disorders characterized by a wide range of clinical syndromes and comorbidities, all of which have complex origins and share common molecular pathomechanisms. Although the pathophysiology of neurological illnesses is not completely understood, researchers have discovered that several ion channels and signalling pathways may have played a role in disease pathogenesis. Active substances from Astragalus sp. are being employed for nutrition, and their usefulness in the treatment of neurological illnesses is receiving more attention. Because their extracts and active components exert different pharmacological effects on a variety of ailments, they have a long history of usage as a cure for various diseases. This review summarizes the research work on Astragalus and their biologically active constituents as potential candidates for the protection against and treatment of neurodegenerative and neuropsychiatric disorders to show the potential efficacy of Astragalus sp. and its active ingredients in treating some neurological diseases. Simultaneously, the chemical structures of these active compounds, their sources, biological properties, and mechanisms are also listed. In ethnopharmacological applications, Astragalus membranaceus and spinosus have been studied as traditional medicines worldwide. The chemical constituents of Astragalus species mainly comprise terpenoids, flavonoids, and polysaccharides. The extracts and phytochemical compounds of Astragalus species exhibit various pharmacological activities, including antioxidant, anti-inflammatory, anticancer, antitumor, anticonvulsive, immunomodulatory, and other activities. Based on the current literature, we conclude that Astragalus is a promising dietary herb with multiple potential signal modulating applications that mainly include the modulation of neurotransmitters and receptors, anti-inflammatory activities, inhibition of amyloid aggregation, induction of myelin sheath repair and neurogenesis, as well as activation of the signalling pathways relevant to neurological diseases.
Collapse
Affiliation(s)
| | - Amina E Essawy
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed S Al-Shami
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt; Biotechnology Department, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| |
Collapse
|
73
|
Zheng Y, Li R, Fan X. Targeting Oxidative Stress in Intracerebral Hemorrhage: Prospects of the Natural Products Approach. Antioxidants (Basel) 2022; 11:1811. [PMID: 36139885 PMCID: PMC9495708 DOI: 10.3390/antiox11091811] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH), the second most common subtype of stroke, remains a significant cause of morbidity and mortality worldwide. The pathological mechanism of ICH is very complex, and it has been demonstrated that oxidative stress (OS) plays an important role in the pathogenesis of ICH. Previous studies have shown that OS is a therapeutic target after ICH, and antioxidants have also achieved some benefits in the treatment of ICH. This review aimed to explore the promise of natural products therapy to target OS in ICH. We searched PubMed using the keywords "oxidative stress in intracerebral hemorrhage" and "natural products in intracerebral hemorrhage". Numerous animal and cell studies on ICH have demonstrated the potent antioxidant properties of natural products, including polyphenols and phenolic compounds, terpenoids, alkaloids, etc. In summary, natural products such as antioxidants offer the possibility of treatment of OS after ICH. However, researchers still have a long way to go to apply these natural products for the treatment of ICH more widely in the clinic.
Collapse
Affiliation(s)
| | | | - Xiang Fan
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
74
|
Xin-Ji-Er-Kang Alleviates Isoproterenol-Induced Myocardial Hypertrophy in Mice through the Nrf2/HO-1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7229080. [PMID: 36045660 PMCID: PMC9423967 DOI: 10.1155/2022/7229080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Xin-Ji-Er-Kang (XJEK) inhibited cardiovascular remodeling in hypertensive mice in our previous studies. We hypothesized that XJEK may prevent isoproterenol (ISO)-induced myocardial hypertrophy (MH) in mice by ameliorating oxidative stress (OS) through a mechanism that may be related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathways. Forty SPF male Kunming mice were randomized into 5 groups (n = 8 mice per group): control group, MH group, MH + different doses of XJEK (7.5 g/kg/day and 10 g/kg/day), and MH + metoprolol (60 mg/kg/day). On the eighth day after drug treatment, electrocardiogram (ECG) and echocardiography were performed, the mice were sacrificed, and blood and heart tissues were collected for further analysis. XJEK administration markedly ameliorated cardiovascular remodeling (CR), as manifested by a decreased HW/BW ratio and CSA and less collagen deposition after MH. XJEK administration also improved MH, as evidenced by decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) levels. XJEK also suppressed the decreased superoxide dismutase (SOD) and catalase (CAT) activities and increased malondialdehyde (MDA) levels in serum of mice with MH. XJEK-induced oxidative stress may be related to potentiating Nrf2 nuclear translocation and HO-1 expression compared with the MH groups. XJEK ameliorates MH by activating the Nrf2/HO-1 signaling pathway, suggesting that XJEK is a potential treatment for MH.
Collapse
|
75
|
Yuan S, Li Y, Li J, Xue JC, Wang Q, Hou XT, Meng H, Nan JX, Zhang QG. Traditional Chinese Medicine and Natural Products: Potential Approaches for Inflammatory Bowel Disease. Front Pharmacol 2022; 13:892790. [PMID: 35873579 PMCID: PMC9301246 DOI: 10.3389/fphar.2022.892790] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a rare, recurrent, and intractable inflammation obstruction of the stomach tract, usually accompanied by inflammation of cell proliferation and inflammation of the colon and carries a particular cause of inflammation. The clinical use of drugs in western countries affects IBD treatment, but various adverse effects and high prices limit their application. For these reasons, Traditional Chinese Medicine (TCM) is more advantageous in treating IBD. This paper reviews the mechanism and research status of TCM and natural products in IBD treatment by analyzing the relevant literature to provide a scientific and theoretical basis for IBD treatment.
Collapse
Affiliation(s)
- Shuo Yuan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - You Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Jiao Li
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Jia-Chen Xue
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| | - Qi Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Xiao-Ting Hou
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Huan Meng
- Chronic Disease Research Center, Medical College, Dalian University, Dalian, China
| | - Ji-Xing Nan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China
| | - Qing-Gao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, China.,Chronic Disease Research Center, Medical College, Dalian University, Dalian, China.,Department of Immunology and Pathogenic Biology, Yanbian University College of Basic Medicine, Yanji, China
| |
Collapse
|
76
|
Li C, Zhu H, Zhang S, Meng F, Li S, Li G, Zha J, Wu S, Zhu L, Dai A. Astragaloside IV ameliorates pulmonary vascular remodeling in hypoxia-induced pulmonary hypertension by restraining the T follicular helper cell response and expanding T follicular regulatory cell response. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154171. [PMID: 35636165 DOI: 10.1016/j.phymed.2022.154171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a progressive disorder lacking a validated and effective therapy which characterized by elevated pulmonary arterial pressure, vascular remodeling and eventual death. FDA approved sildenafil is being used as a first-line drug for PH, however, neither survival rates nor quality of life have been improved because of side effects and patient noncompliance. Thus, the exploration of novel therapeutic drugs is urgently needed. Astragaloside IV (ASIV) exhibits a protective effect on HPH, but its mechanisms of action is unclear. HYPOTHESIS CD4+T cell subsets, Tfh and Tfr cells, may contribute to the development of chronic hypoxia-induced PH (HPH). We hypothesized that ASIV could effectively ameliorates pulmonary vascular remodeling of HPH by restraining the Tfh cell response and expanding Tfr cell response. METHODS AND RESULTS HPH mice model was established by exposure to chronic hypoxia for 21 days. Mice were randomly assigned to six groups: NaCl group, model group, SN group (100 mg/kg of sildenafil), low-dose group (20 mg/kg of ASIV), medium-dose group (40 mg/kg of ASIV) and high-dose group (80 mg/kg of ASIV). Primary culture and identification of distal pulmonary artery smooth muscle cells (PASMCs) in mice were established. Here, we demonstrated that ASIV treatment could significantly ameliorate the increase of mean PAP, RV/ (LV+S) ratio and PAMT in HPH mice. ASIV inhibited Tfh cell differentiation and IL-21 production, but promoted Tfr cell differentiation and TGF-β, IL-10 production. Chronic hypoxia promoted germinal center B cell responses, which inhibited by ASIV. ASIV regulated Tfh and Tfr cell differentiation by inhibiting the phosphorylation of mTOR signaling pathway, and the effect of ASIV-H was better than that observed in the SN group. ASIV inhibited the proliferation, migration and adhesion of PASMCs in vitro. Moreover, ASIV significantly downregulated the protein level of RhoA and upregulated the protein level of p27 in PASMCs under hypoxic condition. CONCLUSION Collectively, ASIV may regulate Tfh and Tfr cell responses to subsequently repress pulmonary vascular remodeling and hypoxic pulmonary hypertension.
Collapse
Affiliation(s)
- Cheng Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Hao Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Shaoze Zhang
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Fang Meng
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - San Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Guang Li
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China
| | - Jun Zha
- Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China
| | - Shangjie Wu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Liming Zhu
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China.
| | - Aiguo Dai
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of HunanNormal University, Changsha, Hunan 410016, PR China; Department of Respiratory Diseases, Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
77
|
Astragaloside IV Protects Detrusor from Partial Bladder Outlet Obstruction-Induced Oxidative Stress by Activating Mitophagy through AMPK-ULK1 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5757367. [PMID: 35873803 PMCID: PMC9300277 DOI: 10.1155/2022/5757367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022]
Abstract
Aims Bladder outlet obstruction (BOO) and the consequent low contractility of detrusor are the leading causes of voiding dysfunction. In this study, we aimed to evaluate the pharmacological activity of astragaloside IV (AS-IV), an antioxidant biomolecule that possess beneficial effect in many organs, on detrusor contractility and bladder wall remodeling process. Methods Partial BOO (pBOO) was created by urethral occlusion in female rats, followed by oral gavage of different dose of AS-IV or vehicle. Cystometric evaluation and contractility test were performed. Bladder wall sections were used in morphology staining, and bladder tissue lysate was used for ELISA assay. Primary smooth muscle cells (SMCs) derived from detrusor were used for mechanism studies. Results Seven weeks after pBOO, the bladder compensatory enlarged, and the contractility in response to electrical or chemical stimuli was reduced, while AS-IV treatment reversed this effect dose-dependently. AS-IV also showed beneficial effect on reversing the bladder wall remodeling process, as well as reducing ROS level. In mechanism study, AS-IV activated mitophagy and alleviated oxidative stress via an AMPK-dependent pathway. Conclusion Out data suggested that AS-IV enhanced the contractility of detrusor and protected the bladder from obstruction induced damage, via enhancing the mitophagy and restoring mitochondria function trough an AMPK-dependent way.
Collapse
|
78
|
Huang Y, Yan Q, Jiang M, Guo S, Li H, Lin M, Zhan K, Zhao G, Duan J. Astragalus membranaceus Additive Improves Serum Biochemical Parameters and Reproductive Performance in Postpartum Dairy Cows. Front Vet Sci 2022; 9:952137. [PMID: 35898551 PMCID: PMC9310658 DOI: 10.3389/fvets.2022.952137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 11/13/2022] Open
Abstract
The purpose of the study was to assess the recovery, immune function, and breeding efficiency of postpartum dairy cows fed Astragalus membranaceus (AM) as a feed additive. The experiment used a completely randomized design. Cows were randomly assigned to two groups: (1) Control group fed total mixed ration (TMR; CON group, n = 15); (2) AM group fed TMR and AM (AM group, n = 15). The AM group was fed 675 g/day. The experimental results showed that compared with the CON group. The breeding interval of the AM group of dairy cows had a tendency to shorten (0.05 < p < 0.1). Plasma viscosity (PV), Plasma fibrinogen (FIB), the red cell aggregation index (TRCAI), Calcitonin (CT), Immunoglobulin M (IgM), and Luteinizing hormone (LH) results of AM group showed a time-treatment interaction (p < 0.05). Furthermore, the result of the study revealed that feeding AM as feed additives to dairy cows during the postpartum period had positive effects on wound recovery, immune function, endocrine regulation, and breeding efficiency.
Collapse
Affiliation(s)
- Yinghao Huang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Qi Yan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Maocheng Jiang
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sheng Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huiwei Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Miao Lin
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Kang Zhan
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Guoqi Zhao
- Institute of Animal Culture Collection and Application, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
- *Correspondence: Guoqi Zhao
| | - Jinao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
- Jinao Duan
| |
Collapse
|
79
|
Current Progress on Neuroprotection Induced by Artemisia, Ginseng, Astragalus, and Ginkgo Traditional Chinese Medicines for the Therapy of Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3777021. [PMID: 35746960 PMCID: PMC9213169 DOI: 10.1155/2022/3777021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
Aging is associated with the occurrence of diverse degenerative changes in various tissues and organs and with an increased incidence of neurological disorders, especially neurodegenerative diseases such as Alzheimer's disease (AD). In recent years, the search for effective components derived from medicinal plants in delaying aging and preventing and treating neurodegenerative diseases has been increasing and the number of related publications shows a rising trend. Here, we present a concise, updated review on the preclinical and clinical research progress in the assessment of the therapeutic potential of different traditional Chinese medicines and derived active ingredients and their effect on the signaling pathways involved in AD neuroprotection. Recognized by their multitargeting ability, these natural compounds hold great potential in developing novel drugs for AD.
Collapse
|
80
|
An Overview of Herbal Medicines for Idiopathic Pulmonary Fibrosis. Processes (Basel) 2022. [DOI: 10.3390/pr10061131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung scarring condition with the histological characteristic of typical interstitial pneumonia. Injury to alveolar epithelial cells is a critical precursor in the pathogenesis of this disease. The prevalence of IPF is growing exponentially, with substantial morbidity and mortality rates increasing the burden on economic healthcare costs. A multidisciplinary approach for diagnosis is used to rule out the alternative causes of interstitial lung disease. Pirfenidone and nintedanib, two innovative antifibrotic medicines introduced in recent years, have provided therapeutic benefits to many IPF patients, and several IPF medications are in the early phases of clinical trials. However, available medications can cause unpleasant symptoms such as nausea and diarrhoea. More efforts have been made to uncover alternative treatments towards a more personalised patient-centred care and hence improve the outcomes in the IPF patients. Through a multi-level and multi-target treatment approach, herbal medicines, such as Traditional Chinese Medicine (TCM), have been identified as revolutionary medical treatment for IPF. Due to their natural properties, herbal medicines have shown to possess low adverse effects, stable therapeutic impact, and no obvious drug dependencies. Herbal medicines have also shown anti-inflammatory and anti-fibrotic effects, which make them a promising therapeutic target for IPF. A growing number of formulas, herbal components, and various forms of Chinese herbal medicine extracts are available for IPF patients in China. This review summarises the role of herbal medicines in the prevention and treatment of IPF.
Collapse
|
81
|
Wang L, Wu F, Hong Y, Shen L, Zhao L, Lin X. Research progress in the treatment of slow transit constipation by traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 290:115075. [PMID: 35134487 DOI: 10.1016/j.jep.2022.115075] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/15/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Slow transit constipation (STC) is a common gastrointestinal disorder seriously impacting patients' quality of life. At present, although conventional chemical drugs effectively control STC symptoms in the short term, the long-term effects are poor, and the side effects are significant. In this regard, traditional Chinese medicine (TCM) offers an opportunity for STC treatment. Many pharmacological and clinical studies have confirmed this efficacy of TCM with multiple targets and mechanisms. AIM OF THE STUDY This review attempted to summarize the characteristics of TCM (compound prescriptions, single Chinese herbs, and active ingredients) for STC treatment and discussed their efficacy based on analyzing the pathogenesis of STC. MATERIALS AND METHODS The information was acquired from different databases, including PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang databases. We then focused on the recent research progress in STC treatment by TCM. Finally, the future challenges and trends are proposed. RESULTS TCM has good clinical efficacy in the treatment of STC with multi-mechanisms. Based on the theory of syndrome differentiation, five kinds of dialectical treatment for STC by compound TCM prescriptions were introduced, namely: Nourishing Yin and moistening the intestines; Promoting blood circulation and removing blood stasis; Warming Yang and benefiting Qi; Soothing the liver and regulating Qi; and Benefiting Qi and strengthening the spleen. In addition, six single Chinese herbs and eight active ingredients also show good efficacy in STC treatment. CONCLUSIONS TCM, especially compound prescriptions, has bright prospects in treating STC attributed to its various holistic effects.
Collapse
Affiliation(s)
- LiangFeng Wang
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China; Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - YanLong Hong
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - LiJie Zhao
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China.
| |
Collapse
|
82
|
Miller SJ, Campbell CE, Jimenez-Corea HA, Wu GH, Logan R. Neuroglial Senescence, α-Synucleinopathy, and the Therapeutic Potential of Senolytics in Parkinson’s Disease. Front Neurosci 2022; 16:824191. [PMID: 35516803 PMCID: PMC9063319 DOI: 10.3389/fnins.2022.824191] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/22/2022] [Indexed: 12/02/2022] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and the second most prevalent neurodegenerative disease after Alzheimer’s disease. Despite decades of research, there is still no cure for PD and the complicated intricacies of the pathology are still being worked out. Much of the research on PD has focused on neurons, since the disease is characterized by neurodegeneration. However, neuroglia has become recognized as key players in the health and disease of the central nervous system. This review provides a current perspective on the interactive roles that α-synuclein and neuroglial senescence have in PD. The self-amplifying and cyclical nature of oxidative stress, neuroinflammation, α-synucleinopathy, neuroglial senescence, neuroglial chronic activation and neurodegeneration will be discussed. Finally, the compelling role that senolytics could play as a therapeutic avenue for PD is explored and encouraged.
Collapse
Affiliation(s)
- Sean J. Miller
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
| | | | | | - Guan-Hui Wu
- Department of Neurology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Robert Logan
- Pluripotent Diagnostics Corp. (PDx), Molecular Medicine Research Institute, Sunnyvale, CA, United States
- Department of Biology, Eastern Nazarene College, Quincy, MA, United States
- *Correspondence: Robert Logan,
| |
Collapse
|
83
|
Astragalus membranaceus Enhances Myotube Hypertrophy through PI3K-Mediated Akt/mTOR Signaling Phosphorylation. Nutrients 2022; 14:nu14081670. [PMID: 35458232 PMCID: PMC9028211 DOI: 10.3390/nu14081670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Astragalus membranaceus (AM) is classified as a high-class traditional herbal medicine, which has strengthened vitality and multifunctional pharmacological activities, but limited empirical evidence is available to support its effects in muscular hypertrophy. It evokes skeletal muscle hypertrophy by increasing anabolic pathway, which is essential to prevent sarcopenia in elderly population. In this study, we examined the effects of AM on skeletal muscle hypertrophy by focusing on the molecular mechanism. We employed an in vitro model to investigate whether AM-treated skeletal muscle, as represented by myotube C2C12 cells, was hypertrophic, and to further investigate the efficacy of AM-activated phosphorylation of PI3K/Akt/mTOR signaling that must occur prior to myotube hypertrophy. The results showed that the myotubes formed larger multinucleated myotubes with increased diameter and thickness (1.16-fold relative to control group, p < 0.05). Administration of PI3K and mTOR inhibitors abolished AM-induced muscular hypertrophy. Moreover, AM-induced PI3K-mediated myotube hypertrophy was accompanied by the activation of Akt and mTOR signaling. We concluded that the AM is a nutritional activator to enhance muscular hypertrophy by increasing PI3K/Akt/mTOR signaling phosphorylation. As the AM is effective in myotube hypertrophy, AM and its derivatives may be promising candidates for ergogenic aid to prevent sarcopenia.
Collapse
|
84
|
Kong S, Ou S, Liu Y, Xie M, Mei T, Zhang Y, Zhang J, Wang Q, Yang B. Surface-Enhanced Raman Spectroscopy Analysis of Astragalus Saponins and Identification of Metabolites After Oral Administration in Rats by Ultrahigh-Performance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry Analysis. Front Pharmacol 2022; 13:828449. [PMID: 35370646 PMCID: PMC8965511 DOI: 10.3389/fphar.2022.828449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Astragalus mongholicus Bunge (Fabaceae) is an ancient Chinese herbal medicine, and Astragalus saponins are the main active components, which have a wide range of biological activities, such as immunomodulation, antioxidation, and neuroprotection. In this study, silver nanoparticles obtained by sodium borohydride reduction were used as the enhanced substrate to detect astragaloside I (1), astragaloside II (2), astragaloside III (3), astragaloside IV (4), isoastragaloside I (5), and isoastragaloside II (6) in the phloem, xylem, and cork by surface-enhanced Raman spectroscopy (SERS). In the SERS spectrum of Astragalus slices, the characteristic peaks were observed at 562, 671, 732, 801, 836, 950, 1,026, 1,391, and 1,584 cm−1, among which 950 cm−1 and 1,391 cm−1 were strong SERS signals. Subsequently, the metabolites of the six kinds of Astragalus saponins were identified by UPLC/ESI/Q-TOF-MS. Totally, 80, 89, and 90 metabolites were identified in rat plasma, urine, and feces, respectively. The metabolism of saponins mainly involves dehydration, deacetylation, dihydroxylation, dexylose reaction, deglycosylation, methylation, deacetylation, and glycol dehydration. Ten metabolites (1-M2, 1-M11, 2-M3, 2-M12, 3-M14, 4-M9, 5-M2, 5-M17, 6-M3, and 6-M12) were identified by comparison with reference standards. Interestingly, Astragalus saponins 1, 2, 5, and 6 were deacetylated to form astragaloside IV (4), which has been reported to have good pharmacological neuroprotective, liver protective, anticancer, and antidiabetic effects. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectroscopy. Six kinds of active Astragalus saponins from different parts of Astragalus mongholicus were identified by SERS spectrum, and the metabolites were characterized by UPLC/ESI/Q-TOF-MS, which not only provided a new method for the identification of traditional Chinese medicine but also provided a theoretical basis for the study of the pharmacodynamic substance basis of Astragalus mongholicus saponins.
Collapse
Affiliation(s)
- Shengnan Kong
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Shan Ou
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting Mei
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yingshuo Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jincheng Zhang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin, China
| |
Collapse
|
85
|
Li L, Wang Q, He Y, Sun L, Yang Y, Pang X. Astragaloside IV suppresses migration and invasion of TGF-β 1-induced human hepatoma HuH-7 cells by regulating Nrf2/HO-1 and TGF-β 1/Smad3 pathways. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:397-405. [PMID: 35092472 DOI: 10.1007/s00210-021-02199-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/23/2021] [Indexed: 11/30/2022]
Abstract
Astragaloside IV (AS-IV), one of the major compounds extract from Astragalus membranaceus, has shown attractive anti-cancer effects in certain malignancies. Oxidative stress (OS) is considered as a crucial factor in promoting the progression of hepatocellular carcinoma (HCC). In response to OS, nuclear factor erythroid 2-related factor 2 (Nrf2) upregulates and induces heme oxygenase 1 (HO-1) to combat oxidative damages. The phosphorylation of the COOH-terminal of Smad3 (pSmad3C) activates p21 to resist HCC progression, while the phosphorylation of the linker region of Smad3 (pSmad3L) up-regulates c-Myc transcription to exert promoting effect towards HCC. This study aimed to explore whether AS-IV suppresses migration and invasion of human hepatoma HuH-7 cells by regulating Nrf2/HO-1 and TGF-β1/Smad3 pathways. HuH-7 cells were induced with TGF-β1 (9 or 40 pM) to establish HCC model in vitro and pretreated with AS-IV at different concentration (5, 10, and 20 μM) for 24 h. Cell proliferation, migration, invasion, and intracellular reactive oxygen species (ROS) of HuH-7 cells were measured. The expression of Nrf2, pSmad3C, Nrf2/pNrf2, HO-1, pSmad3C/3L, c-Myc, and p21 were detected. Exposure of HuH-7 cells to TGF-β1 enhanced the cell proliferation, migration, invasion, and ROS production. Pretreatment with AS-IV (5, 10, and 20 μM) significantly reduced the cell proliferation, migration, invasion, and ROS production in HuH-7 cells. Furthermore, AS-IV increased the expressions of Nrf2/pNrf2, HO-1, pSmad3C, and p21, meanwhile reduced the expressions of pSmad3L and c-Myc. In conclusion, our study suggested that AS-IV inhibit HuH-7 cells migration and invasion, which related to activate Nrf2/HO-1 pathway, up-regulation pSmad3C/p21 pathway, and down-regulation pSmad3L/c-Myc pathway. The present research supports the notion that AS-IV may be a latent agent for the treatment of HCC.
Collapse
Affiliation(s)
- Lili Li
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Qin Wang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yinghao He
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Liangjie Sun
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yan Yang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| | - Xiaonan Pang
- Department of Pharmacology, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
86
|
Natural Compounds Targeting Cancer-Associated Fibroblasts against Digestive System Tumor Progression: Therapeutic Insights. Biomedicines 2022; 10:biomedicines10030713. [PMID: 35327514 PMCID: PMC8945097 DOI: 10.3390/biomedicines10030713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are critical for cancer occurrence and progression in the tumor microenvironment (TME), due to their versatile roles in extracellular matrix remodeling, tumor–stroma crosstalk, immunomodulation, and angiogenesis. CAFs are the most abundant stromal component in the TME and undergo epigenetic modification and abnormal signaling cascade activation, such as transforming growth factor-β (TGF-β) and Wnt pathways that maintain the distinct phenotype of CAFs, which differs from normal fibroblasts. CAFs have been considered therapeutic targets due to their putative oncogenic functions. Current digestive system cancer treatment strategies often result in lower survival outcomes and fail to prevent cancer progression; therefore, comprehensive characterization of the tumor-promoting and -restraining CAF activities might facilitate the design of new therapeutic approaches. In this review, we summarize the enormous literature on natural compounds that mediate the crosstalk of CAFs with digestive system cancer cells, discuss how the biology and the multifaceted functions of CAFs contribute to cancer progression, and finally, pave the way for CAF-related antitumor therapies.
Collapse
|
87
|
Xiao X, Zheng Y, Mo Y, Wang W, Li X, Wang J. Astragaloside IV alleviates oxidative stress‑related damage via inhibiting NLRP3 inflammasome in a MAPK signaling dependent pathway in human lens epithelial cells. Drug Dev Res 2022; 83:1016-1023. [PMID: 35253245 DOI: 10.1002/ddr.21929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Xili Xiao
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Yanlin Zheng
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Ya Mo
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Wanjie Wang
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Xiang Li
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Juan Wang
- Department of Ophthalmology Hospital of Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| |
Collapse
|
88
|
Wang H, Wu Z, Liu Y, Wang M, Stalin A, Guo S, Li J, Wu C, Zhang J, Tan Y, Huang Z, Lu S, Fan X, Wu J. A novel strategy to reveal clinical advantages and molecular mechanism of aidi injection in the treatment of pancreatic cancer based on network meta-analysis and network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114852. [PMID: 34838619 DOI: 10.1016/j.jep.2021.114852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pancreatic cancer is a common malignancy worldwide due to its poor prognosis and high mortality rate. It is clinically proven that the combination of chemotherapeutic drugs and Traditional Chinese Medicine injections (TCMIs) significantly improves the therapeutic effect. AIM OF THE STUDY To evaluate the efficacy and clinical benefits of TCMIs in combination with chemotherapy in the treatment of pancreatic cancer and to explore the mechanism of clinical advantage of Aidi injection. METHODS Randomized controlled trials (RCTs) were searched in databases by NMA before December 29, 2020. WinBUGS 1.4, Stata 14.0, and R 4.0.4 software were used for calculations. All results were expressed as odds ratios and 95% credible intervals. Through the network pharmacology method, the chemical components and their targets, as well as the disease targets were further analyzed. And then, biological experiments were integrated to verify the results of network pharmacology analysis. (PROSPERO ID: CRD42021283559). RESULTS A total of 33 RCTs with 8 TCMIs and 2011 patients were included. The results of NMA showed that Aidi injection can significantly improve the clinical efficacy (OR = 0.34, 95%CI: 0.16-0.74), and the clinical advantage was that it can significantly alleviate the leukopenia and thrombocytopenia caused by chemotherapy (OR = 5.65, 95%CI: 1.18-28.13). A total of 23 chemical compounds and 280 potential targets for Aidi injection were obtained from the online databases. Among them, there were 22 compounds, 50 targets and 211 signaling pathways closely related to leukopenia. Five genes were predicted to be core targets of ADI in alleviating leukopenia, and 2 of them (TP53 and VEGFA) were confirmed by biological experiments as regulatory targets of ADI in the treatment of PC. CONCLUSIONS In conclusion, TCMIs in combination with chemotherapy, can improve clinical efficacy and safety in the treatment of pancreatic cancer. However, the overall evidence base is low, and large samples with multi-center RCTs are still needed to support further research findings. Aidi injection can alleviate leukopenia mainly by intervening in oxidative stress, regulating cell proliferation and apoptosis, and regulating the inflammatory response. The combined application of NMA, network pharmacology, and biological experiments provides a reference for clinical evaluation and mechanism of action exploration of other drugs.
Collapse
Affiliation(s)
- Haojia Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yingying Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Miaomiao Wang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Siyu Guo
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jialin Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Xiaotian Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
89
|
|
90
|
Yao T, Su W, Han S, Lu Y, Xu Y, Chen M, Wang Y. Recent Advances in Traditional Chinese Medicine for Treatment of Podocyte Injury. Front Pharmacol 2022; 13:816025. [PMID: 35281899 PMCID: PMC8914202 DOI: 10.3389/fphar.2022.816025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/12/2022] [Indexed: 12/03/2022] Open
Abstract
Podocyte is also called glomerular epithelial cell, which has been considered as the final gatekeeper of glomerular filtration barrier (GFB). As a major contributor to proteinuria, podocyte injury underlies a variety of glomerular diseases and becomes the challenge to patients and their families in general. At present, the therapeutic methods of podocyte injury mainly include angiotensin-converting enzyme inhibitors or angiotensin receptor blockers, steroid and immunosuppressive medications. Nevertheless, the higher cost and side effects seriously disturb patients with podocyte injury. Promisingly, traditional Chinese medicine (TCM) has received an increasing amount of attention from different countries in the treatment of podocyte injury by invigorating spleen and kidney, clearing heat and eliminating dampness, as well enriching qi and activating blood. Therefore, we searched articles published in peer-reviewed English-language journals through Google Scholar, PubMed, Web of Science, and Science Direct. The protective effects of active ingredients, herbs, compound prescriptions, acupuncture and moxibustion for treatment of podocyte injury were further summarized and analyzed. Meanwhile, we discussed feasible directions for future development, and analyzed existing deficiencies and shortcomings of TCM in the treatment of podocyte injury. In conclusion, this paper shows that TCM treatments can serve as promising auxiliary therapeutic methods for the treatment of podocyte injury.
Collapse
Affiliation(s)
- Tianwen Yao
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiang Su
- Department of Nephrology, The People’s Hospital of Mengzi, Mengzi, China
| | - Shisheng Han
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Lu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanqiu Xu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Wang
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Yi Wang,
| |
Collapse
|
91
|
Chen C, Yu LT, Cheng BR, Xu JL, Cai Y, Jin JL, Feng RL, Xie L, Qu XY, Li D, Liu J, Li Y, Cui XY, Lu JJ, Zhou K, Lin Q, Wan J. Promising Therapeutic Candidate for Myocardial Ischemia/Reperfusion Injury: What Are the Possible Mechanisms and Roles of Phytochemicals? Front Cardiovasc Med 2022; 8:792592. [PMID: 35252368 PMCID: PMC8893235 DOI: 10.3389/fcvm.2021.792592] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Percutaneous coronary intervention (PCI) is one of the most effective reperfusion strategies for acute myocardial infarction (AMI) despite myocardial ischemia/reperfusion (I/R) injury, causing one of the causes of most cardiomyocyte injuries and deaths. The pathological processes of myocardial I/R injury include apoptosis, autophagy, and irreversible cell death caused by calcium overload, oxidative stress, and inflammation. Eventually, myocardial I/R injury causes a spike of further cardiomyocyte injury that contributes to final infarct size (IS) and bound with hospitalization of heart failure as well as all-cause mortality within the following 12 months. Therefore, the addition of adjuvant intervention to improve myocardial salvage and cardiac function calls for further investigation. Phytochemicals are non-nutritive bioactive secondary compounds abundantly found in Chinese herbal medicine. Great effort has been put into phytochemicals because they are often in line with the expectations to improve myocardial I/R injury without compromising the clinical efficacy or to even produce synergy. We summarized the previous efforts, briefly outlined the mechanism of myocardial I/R injury, and focused on exploring the cardioprotective effects and potential mechanisms of all phytochemical types that have been investigated under myocardial I/R injury. Phytochemicals deserve to be utilized as promising therapeutic candidates for further development and research on combating myocardial I/R injury. Nevertheless, more studies are needed to provide a better understanding of the mechanism of myocardial I/R injury treatment using phytochemicals and possible side effects associated with this approach.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Tong Yu
- Department of Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bai-Ru Cheng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jiang-Lin Xu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yun Cai
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jia-Lin Jin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Ru-Li Feng
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Long Xie
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yan Qu
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Dong Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jing Liu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Yan Li
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Xiao-Yun Cui
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Jin Lu
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Kun Zhou
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
| | - Qian Lin
- Department of Cardiology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qian Lin
| | - Jie Wan
- Department of Cardiology, Dongfang Hospital Beijing University of Chinese Medicine, Beijing, China
- Jie Wan
| |
Collapse
|
92
|
Wang Z, Wu Y, Pei C, Wang M, Wang X, Shi S, Huang D, Wang Y, Li S, Xiao W, He Y, Wang F. Astragaloside IV pre-treatment attenuates PM2.5-induced lung injury in rats: Impact on autophagy, apoptosis and inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 96:153912. [PMID: 35026504 DOI: 10.1016/j.phymed.2021.153912] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Fine particulate matter (PM2.5) with an aerodynamic diameter of less than 2.5 μm, exerts serious lung toxicity. At present, effective prevention measures and treatment modalities for pulmonary toxicity caused by PM2.5 are lacking. Astragaloside IV (AS-IV) is a natural product that has received increasing attention from researchers for its unique biological functions. PURPOSE To investigate the protective effects of AS-IV on PM2.5-induced pulmonary toxicity and identify its potential mechanisms. METHODS The rat model of PM2.5-induced lung toxicity was created by intratracheal instillation of PM2.5 dust suspension. The investigation was performed with AS-IV or in combination with autophagic flux inhibitor (Chloroquine) or AMP-sensitive protein kinase (AMPK)-specific inhibitor (Compound C). Apoptosis was detected by terminal deoxy-nucleotidyl transferase dUTP nick end labeling (TUNEL) and western blotting. Autophagy was detected by immunofluorescence staining, autophagic flux measurement, western blotting, and transmission electron microscopy. The AMPK/mTOR pathway was analyzed by western blotting. Inflammation was analyzed by western blotting and suspension array. RESULTS AS-IV prevented histopathological injury, inflammation, autophagy dysfunction, apoptosis, and changes in AMPK levels induced by PM2.5. AS-IV increased autophagic flux and inhibited apoptosis and inflammation by activating the AMPK/ mammalian target of rapamycin (mTOR) pathway. However, AS-IV had no protective effect on PM2.5-induced lung injury following treatment with Compound C or Chloroquine. CONCLUSION AS-IV prevented PM2.5-induced lung toxicity by restoring the balance among autophagy, apoptosis, and inflammation in rats by activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yongcan Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Mingjie Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Xiaomin Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Shuiqin Li
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Wei Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China
| | - Yacong He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, No.1166 Liutai Avenue, Chengdu, Sichuan 611137, China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610075, China.
| |
Collapse
|
93
|
Wang L, Du Z, Guan Y, Wang B, Pei Y, Zhang L, Fang M. Identifying absorbable bioactive constituents of yupingfeng powder acting on COVID-19 through integration of UPLC-Q/TOF-MS and network pharmacology analysis. CHINESE HERBAL MEDICINES 2022; 14:283-293. [PMID: 35165529 PMCID: PMC8828289 DOI: 10.1016/j.chmed.2022.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 12/24/2022] Open
Abstract
Objective Yupingfeng Powder (YPF), a kind of preventative patent medicine, is chosen for treatment of coronavirus disease 2019 (COVID-19) due to its high frequency application in respiratory tract diseases, such as chronic obstructive pulmonary disease, asthma, respiratory tract infections, and pneumonia, with the advantage of reducing the relapse rate and the severity. However, the active components of YPF and the mechanisms of components affecting COVID-19 are unclear. This study aimed to determine active constituents and elucidate its potential mechanisms. Methods Ultra performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q/TOF-MS) and liquid chromatography-triple quadrupole mass spectrometry (LC-QQQ-MS) were used to determine the components and absorbable constituents of YPF. Secondly, TCMSP, Drugbank, Swiss and PharmMapper were used to search the targets of absorbable bioactive constituents of YPF, and the targets of COVID-19 were identified based on GeneCards and OMIM databases. STRING database was used to filter the possible inter-protein interactions. Thirdly, Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis were performed to identify molecular function and systemic involvement of target genes. Results A total of 61 components of YPF and 36 absorbable constituents were identified through UPLC-Q/TOF-MS. Wogonin, prim-O-glucosylcimifugin, 5-O-methylvisamminol, astragaloside IV and 5-O-methylvisamminol (hydroxylation) were vital constituents for the treatment of COVID-19, and RELA, TNF, IL-6, MAPK14 and MAPK8ere recognized as key targets of YPF. The major metabolic reactions of the absorbed constituents of YPF were demethylation, hydroxylation, sulfation and glucuronidation. GO and KEGG pathway analysis further showed that the most important functions of YPF were T cell activation, response to molecule of bacterial origin, cytokine receptor binding, receptor ligand activity, cytokine activity, IL-17 signaling pathway, Chagas disease, lipid and atherosclerosis, etc. Conclusion The approach of combining UPLC-Q/TOF-MS with network pharmacology is an effective tool to identify potentially bioactive constituents of YPF and its key targets on treatment of COVID-19.
Collapse
Affiliation(s)
- Linyan Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Corresponding author.
| | - Zhongyan Du
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yang Guan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Bo Wang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yanling Pei
- Xinminhe Pharmaceutical Research & Development (HeBei) Co., Ltd., Baoding 071200, China
| | - Lizong Zhang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mingsun Fang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
94
|
Sun L, Yang Z, Zhao W, Chen Q, Bai H, Wang S, Yang L, Bi C, Shi Y, Liu Y. Integrated lipidomics, transcriptomics and network pharmacology analysis to reveal the mechanisms of Danggui Buxue Decoction in the treatment of diabetic nephropathy in type 2 diabetes mellitus. JOURNAL OF ETHNOPHARMACOLOGY 2022; 283:114699. [PMID: 34610419 DOI: 10.1016/j.jep.2021.114699] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBT) is classical prescriptions, which contains two Traditional Chinese Medicines of Angelicae sinensis radix and Astragali radix. According to the preliminary work of our laboratory and numerous studies, it has been found that DBT has a therapeutic effect on diabetic nephropathy (DN). However, the mechanisms underlying its action remain unclear. AIM OF THE STUDY The aim of this study was to evaluate the impact of DBT on kidney disease in diabetic mice and further explore its protective mechanism. METHODS DN mice model was induced by high-fat fodder and streptozotocin (STZ). Qualitative and quantitative analysis of 6 compounds in DBT was carried out by HPLC, including calycosin-7-glucoside, ferulic acid, ononin, calycosin, formononetin, and levostilide A. Hematoxylin-Eosin (HE) staining was used to determine the degree of kidney pathological damage. The UPLC-Q Exactive MS technique was used to analyze the lipids metabolism profile of kidneys samples and multiple statistical analysis methods were used to screen and identify biomarkers. Transcriptomics analyses were carried out using RNAseq. The possible molecular mechanism was unraveled by network pharmacology. RESULTS Thirty-one significantly altered lipid metabolites were identified in the model group comparing with the control group. DBT improved aberrant expression of several pathways related to lipidomics, including glycerophospholipid metabolism and sphingolipid metabolism. Comprehensive analysis indicated that DBT intervention reduced the content of Cers, phosphatidylethanolamines and phosphatidylcholines in mouse kidneys by downregulating the transcription level of Degs2 and Cers, reducing lipid accumulation and promoting Akt phosphorylation by upregulating the expression of Acers and Pdk1. Network pharmacology analysis showed that components in DBT, such as kaempferol, ferulic acid and astragaloside IV, could be responsible for the pharmacological activity of DN by regulating the AGE-RAGE, PI3K/Akt, MAPK and NF-κB signaling pathways in diabetic complications. CONCLUSIONS These results showed that DBT may improve DN by affecting insulin resistance, chronic inflammation and lipid accumulation.
Collapse
Affiliation(s)
- Lili Sun
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qin Chen
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Haiying Bai
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Shanshan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Li Yang
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Chunmei Bi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yanbin Shi
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yingqian Liu
- School of Pharmacy, Lanzhou University, Lanzhou, 730000, Gansu, China
| |
Collapse
|
95
|
Protective Effects of Astragaloside IV on Uric Acid-Induced Pancreatic β-Cell Injury through PI3K/AKT Pathway Activation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2429162. [PMID: 35047042 PMCID: PMC8763508 DOI: 10.1155/2022/2429162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/30/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022]
Abstract
Background Elevated uric acid (UA) has been found to damage pancreatic β-cell, promote oxidative stress, and cause insulin resistance in type 2 diabetes (T2D). Astragaloside IV (AS-IV), a major active monomer extracted from Astragalus membranaceus (Fisch.) Bunge. which belongs to TRIB. Galegeae (Br.) Torrey et Gray, Papilionaceae, exhibits various activities in a pathophysiological environment and has been widely employed to treat diseases. However, the effects of AS-IV on UA-induced pancreatic β-cell damage need to be investigated and the associating mechanism needs to be elucidated. This study was designed to determine the protective effects and underlying mechanism of AS-IV on UA-induced pancreatic β-cell dysfunction in T2D. Methods UA-treated Min6 cells were exposed to AS-IV or wortmannin. Thereafter, the 3-(45)-dimethylthiahiazo(-z-y1)-35-di-phenytetrazoliumromide (MTT) assay and flow cytometry were employed to determine the effect of AS-IV on cell proliferation and apoptosis, respectively. Insulin secretion was evaluated using the glucose-stimulated insulin secretion (GSIS) assay. Finally, western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to determine the effect of AS-IV on the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway in UA-treated cells. Results AS-IV had no cytotoxic effects on Min6 cells. UA significantly suppressed Min6 cell growth, promoted cell apoptosis, and enhanced caspase-3 activity; however, AS-IV abolished these effects in a dose-dependent manner. Further, decreased insulin secretion was found in UA-treated Min6 cells compared to control cells, and the production of insulin was enhanced by AS-IV in a dose-dependent manner. AS-IV significantly increased phosphorylated (p)-AKT expression and the ratio of p-AKT/AKT in Min6 cells exposed to UA. No evident change in AKT mRNA level was found in the different groups. However, the effects of AS-IV on UA-stimulated Min6 cells were reversed by 100 nM wortmannin. Conclusion Collectively, our data suggest that AS-IV protected pancreatic β-cells from UA-treated dysfunction by activating the PI3K/AKT pathway. Such findings suggest that AS-IV may be an efficient natural agent against T2D.
Collapse
|
96
|
Astragaloside IV Alleviates Cerebral Ischemia-Reperfusion Injury through NLRP3 Inflammasome-Mediated Pyroptosis Inhibition via Activating Nrf2. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:9925561. [PMID: 35003524 PMCID: PMC8739174 DOI: 10.1155/2021/9925561] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/20/2021] [Accepted: 11/25/2021] [Indexed: 12/20/2022]
Abstract
As one of the fundamental components of Astragalus membranaceus, astragaloside IV (AST IV) exerts protective effects against cerebral ischemia-reperfusion injury (CIRI). Nevertheless, the underlying mechanisms have not yet been conclusively elucidated. To do so, here, we report on the regulatory effects of Nrf2 on NLRP3 inflammasome-mediated pyroptosis. CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in Sprague Dawley rats and modeled by oxygen and glucose deprivation/reoxygenation (OGD/R) in SH-SY5Y cells. Cerebral infarct volume and neurological deficit score served as indices to evaluate MCAO/R injury. In addition, the CCK-8 assay was used to assess cell viability, the LDH leakage rate was used as a quantitative index, and propidium iodide (PI) staining was used to visualize cells after OGD/R injury. The NLRP3/Caspase-1/GSDMD pathway, which produces the pores in the cell membrane that are central to the pyroptosis process, was assessed to investigate pyroptosis. Nrf2 activation was assessed by detecting Nrf2 protein levels and immunofluorescence analysis. We show that after MCAO/R of rats, the infarct volume and neurological deficit score of rats were strongly increased, and after OGD/R of cell cultures, cell viability was strongly decreased, and the LDH leakage rate and the proportion of PI-positive cells were strongly increased. In turn, MCAO/R and OGD/R enhanced the protein levels of NLRP3, Caspase-1, IL-1β, GSDMD, and GSDMD-N. Moreover, Nrf2 protein levels increased, and Nrf2 translocation was promoted after CIRI. Interestingly, AST IV (i) reduced the cerebral infarct volume and the neurological deficit score in vivo and (ii) increased the cell viability and reduced the LDH leakage rate and the proportion of PI-positive cells in vitro. AST IV reduced the protein levels of NLRP3, Caspase-1, IL-1β, GSDMD, and GSDMD-N, inhibiting NLRP3 inflammasome-mediated pyroptosis. AST IV also increased the protein levels of Nrf2 and promoted the transfer of Nrf2 to the nucleus, accelerating Nrf2 activation. Particularly revealing was that the Nrf2 inhibitor ML385 partly blocked the above effects of AST IV. Taken together, these results demonstrate that AST IV alleviates CIRI through inhibiting NLRP3 inflammasome-mediated pyroptosis via activating Nrf2.
Collapse
|
97
|
Liu JX, Zheng XY, Zhang YH, Song WT, Chang D. Research progress on the pharmacological mechanisms of chinese medicines that tonify Qi and activate blood against cerebral ischemia/reperfusion injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2022. [DOI: 10.4103/wjtcm.wjtcm_21_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
98
|
GAO J, MENG C, GUAN L, ZHANG H, ZHANG W. Astragaloside IV promotes cardiac remodeling after myocardial infarction by inhibiting DNMT3B-mediated Runx3 methylation via downregulating LncRNA MIRT1 expression. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.44721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jing GAO
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, China
| | - Chunming MENG
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, China
| | - Li GUAN
- The First Affiliated Hospital of Kangda College of Nanjing Medical University, China
| | | | - Wei ZHANG
- Navy Qingdao Special Service Convalescent Center,, China
| |
Collapse
|
99
|
Setiawati A, Candrasari D, Setyajati FDE, Prasetyo V, Setyaningsih D, Hartini Y. Anticancer drug screening of natural products: In vitro cytotoxicity assays, techniques, and challenges. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
100
|
Wang J, Hu K, Cai X, Yang B, He Q, Wang J, Weng Q. Targeting PI3K/AKT signaling for treatment of idiopathic pulmonary fibrosis. Acta Pharm Sin B 2022; 12:18-32. [PMID: 35127370 PMCID: PMC8799876 DOI: 10.1016/j.apsb.2021.07.023] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/13/2021] [Accepted: 07/09/2021] [Indexed: 01/03/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic progressive fibrotic interstitial pneumonia with unknown causes. The incidence rate increases year by year and the prognosis is poor without cure. Recently, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (PKB/AKT) signaling pathway can be considered as a master regulator for IPF. The contribution of the PI3K/AKT in fibrotic processes is increasingly prominent, with PI3K/AKT inhibitors currently under clinical evaluation in IPF. Therefore, PI3K/AKT represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies. This review epitomizes the progress that is being made in understanding the complex interpretation of the cause of IPF, and demonstrates that PI3K/AKT can directly participate to the greatest extent in the formation of IPF or cooperate with other pathways to promote the development of fibrosis. We further summarize promising PI3K/AKT inhibitors with IPF treatment benefits, including inhibitors in clinical trials and pre-clinical studies and natural products, and discuss how these inhibitors mitigate fibrotic progression to explore possible potential agents, which will help to develop effective treatment strategies for IPF in the near future.
Collapse
Affiliation(s)
- Jincheng Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kaili Hu
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuanyan Cai
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bo Yang
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Wang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qinjie Weng
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|