51
|
Kapos P, Devendrakumar KT, Li X. Plant NLRs: From discovery to application. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:3-18. [PMID: 30709490 DOI: 10.1016/j.plantsci.2018.03.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 05/09/2023]
Abstract
Plants require a complex immune system to defend themselves against a wide range of pathogens which threaten their growth and development. The nucleotide-binding leucine-rich repeat proteins (NLRs) are immune sensors that recognize effectors delivered by pathogens. The first NLR was cloned more than twenty years ago. Since this initial discovery, NLRs have been described as key components of plant immunity responsible for pathogen recognition and triggering defense responses. They have now been described in most of the well-studied mulitcellular plant species, with most having large NLR repertoires. As research has progressed so has the understanding of how NLRs interact with their recognition substrates and how they in turn activate downstream signalling. It has also become apparent that NLR regulation occurs at the transcriptional, post-transcriptional, translational, and post-translational levels. Even before the first NLR was cloned, breeders were utilising such genes to increase crop performance. Increased understanding of the mechanistic details of the plant immune system enable the generation of plants resistant against devastating pathogens. This review aims to give an updated summary of the NLR field.
Collapse
Affiliation(s)
- Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Karen Thulasi Devendrakumar
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
52
|
Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR. Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Funct Integr Genomics 2019; 19:391-407. [PMID: 30618015 DOI: 10.1007/s10142-018-00652-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 11/30/2018] [Accepted: 12/18/2018] [Indexed: 12/18/2022]
Abstract
Cross-kingdom RNAi is a well-documented phenomenon where sRNAs generated by host and pathogens may govern resistance or susceptible phenotypes during host-pathogen interaction. With the first example of the direct involvement of fungal generated sRNAs in virulence of plant pathogenic fungi Botrytis cinerea and recently from Puccinia striiformis f. sp. tritici, we attempted to identify sRNAs in Puccinia triticina (P. triticina). Four sRNA libraries were prepared and sequenced using Illumina sequencing technology and a total of ~ 1-1.28 million potential sRNAs and two microRNA-like small RNA (mil-RNAs) candidates were identified. Computational prediction of targets using a common set of sRNAs and P. triticina mil-RNAs (pt-mil-RNAs) within P. triticina and wheat revealed the majority of the targets as repetitive elements in P. triticina whereas in wheat, the target genes were identified to be involved in many biological processes including defense-related pathways. We found 9 receptor-like kinases (RLKs) and 14 target genes of each related to reactive oxygen species (ROS) pathway and transcription factors respectively, including significant numbers of target genes from various other categories. Expression analysis of twenty selected sRNAs, targeting host genes pertaining to ROS related, disease resistance, metabolic processes, transporter, apoptotic inhibitor, and transcription factors along with two pt-mil-RNAs by qRT-PCR showed distinct patterns of expression of the sRNAs in urediniospore-specific libraries. In this study, for the first time, we report identification of novel sRNAs identified in P. triticina including two pt-mil-RNAs that may play an important role in biotrophic growth and pathogenicity.
Collapse
Affiliation(s)
- Himanshu Dubey
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.,School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Kanti Kiran
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India
| | - Priyanka Jain
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Arvind M Kayastha
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Subhash C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, 171009, India
| | - Tapan Kumar Mondal
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Tilak Raj Sharma
- ICAR-National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India. .,National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 160071, India.
| |
Collapse
|
53
|
Wang L, Wen R, Wang J, Xiang D, Wang Q, Zang Y, Wang Z, Huang S, Li X, Datla R, Fobert PR, Wang H, Wei Y, Xiao W. Arabidopsis UBC13 differentially regulates two programmed cell death pathways in responses to pathogen and low-temperature stress. THE NEW PHYTOLOGIST 2019; 221:919-934. [PMID: 30218535 DOI: 10.1111/nph.15435] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 08/02/2018] [Indexed: 05/17/2023]
Abstract
UBC13 is required for Lys63-linked polyubiquitination and innate immune responses in mammals, but its functions in plant immunity remain to be defined. Here we used genetic and pathological methods to evaluate roles of Arabidopsis UBC13 in response to pathogens and environmental stresses. Loss of UBC13 failed to activate the expression of numerous cold-responsive genes and resulted in hypersensitivity to low-temperature stress, indicating that UBC13 is involved in plant response to low-temperature stress. Furthermore, the ubc13 mutant displayed low-temperature-induced and salicylic acid-dependent lesion mimic phenotypes. Unlike typical lesion mimic mutants, ubc13 did not enhance disease resistance against virulent bacterial and fungal pathogens, but diminished hypersensitive response and compromised effector-triggered immunity against avirulent bacterial pathogens. UBC13 differently regulates two types of programmed cell death in response to low temperature and pathogen. The lesion mimic phenotype in the ubc13 mutant is partially dependent on SNC1. UBC13 interacts with an F-box protein CPR1 that regulates the homeostasis of SNC1. However, the SNC1 protein level was not altered in the ubc13 mutant, implying that UBC13 is not involved in CPR1-regulated SNC1 protein degradation. Taken together, our results revealed that UBC13 is a key regulator in plant response to low temperature and pathogens.
Collapse
Affiliation(s)
- Lipu Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5A8
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Rui Wen
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Jinghe Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Daoquan Xiang
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Qian Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Yuepeng Zang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zheng Wang
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Shuai Huang
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Xin Li
- Department of Botany, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Raju Datla
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Pierre R Fobert
- National Research Council Canada, Saskatoon, SK, Canada, S7N 0W9
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E5
| |
Collapse
|
54
|
Cai Q, Liang C, Wang S, Hou Y, Gao L, Liu L, He W, Ma W, Mo B, Chen X. The disease resistance protein SNC1 represses the biogenesis of microRNAs and phased siRNAs. Nat Commun 2018; 9:5080. [PMID: 30498229 PMCID: PMC6265325 DOI: 10.1038/s41467-018-07516-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Plants evolved an array of disease resistance genes (R genes) to fight pathogens. In the absence of pathogen infection, NBS-LRR genes, which comprise a major subfamily of R genes, are suppressed by a small RNA cascade involving microRNAs (miRNAs) that trigger the biogenesis of phased siRNAs (phasiRNAs) from R gene transcripts. However, whether or how R genes influence small RNA biogenesis is unknown. In this study, we isolate a mutant with global defects in the biogenesis of miRNAs and phasiRNAs in Arabidopsis thaliana and trace the defects to the over accumulation and nuclear localization of an R protein SNC1. We show that nuclear SNC1 represses the transcription of miRNA and phasiRNA loci, probably through the transcriptional corepressor TPR1. Intriguingly, nuclear SNC1 reduces the accumulation of phasiRNAs from three source R genes and concomitantly, the expression of a majority of the ~170R genes is up-regulated. Taken together, this study suggests an R gene-miRNA-phasiRNA regulatory module that amplifies plant immune responses. A small RNA-based signaling cascade prevents the induction of plant resistance genes (R-genes) in the absence of pathogen challenge. Here Cai et al. show that nuclear accumulation of the R protein SNC1 can activate immunity by suppressing small RNA production and releasing R-gene repression.
Collapse
Affiliation(s)
- Qiang Cai
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Suikang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.,Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Yingnan Hou
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Lei Gao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Li Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenrong He
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA
| | - Wenbo Ma
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
55
|
Furniss JJ, Grey H, Wang Z, Nomoto M, Jackson L, Tada Y, Spoel SH. Proteasome-associated HECT-type ubiquitin ligase activity is required for plant immunity. PLoS Pathog 2018; 14:e1007447. [PMID: 30458055 PMCID: PMC6286022 DOI: 10.1371/journal.ppat.1007447] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/07/2018] [Accepted: 10/31/2018] [Indexed: 11/19/2022] Open
Abstract
Regulated degradation of proteins by the 26S proteasome plays important roles in maintenance and signalling in eukaryotic cells. Proteins are marked for degradation by the action of E3 ligases that site-specifically modify their substrates by adding chains of ubiquitin. Innate immune signalling in plants is deeply reliant on the ubiquitin-26S proteasome system. While progress has been made in understanding substrate ubiquitination during plant immunity, how these substrates are processed upon arrival at the proteasome remains unclear. Here we show that specific members of the HECT domain-containing family of ubiquitin protein ligases (UPL) play important roles in proteasomal substrate processing during plant immunity. Mutations in UPL1, UPL3 and UPL5 significantly diminished immune responses activated by the immune hormone salicylic acid (SA). In depth analyses of upl3 mutants indicated that these plants were impaired in reprogramming of nearly the entire SA-induced transcriptome and failed to establish immunity against a hemi-biotrophic pathogen. UPL3 was found to physically interact with the regulatory particle of the proteasome and with other ubiquitin-26S proteasome pathway components. In agreement, we demonstrate that UPL3 enabled proteasomes to form polyubiquitin chains, thereby regulating total cellular polyubiquitination levels. Taken together, our findings suggest that proteasome-associated ubiquitin ligase activity of UPL3 promotes proteasomal processivity and is indispensable for development of plant immunity.
Collapse
Affiliation(s)
- James J. Furniss
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather Grey
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Zhishuo Wang
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Mika Nomoto
- The Center for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Lorna Jackson
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Yasuomi Tada
- The Center for Gene Research, Division of Biological Science, Nagoya University, Nagoya, Japan
| | - Steven H. Spoel
- School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
56
|
Dong OX, Ao K, Xu F, Johnson KCM, Wu Y, Li L, Xia S, Liu Y, Huang Y, Rodriguez E, Chen X, Chen S, Zhang Y, Petersen M, Li X. Individual components of paired typical NLR immune receptors are regulated by distinct E3 ligases. NATURE PLANTS 2018; 4:699-710. [PMID: 30082764 DOI: 10.1038/s41477-018-0216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 07/06/2018] [Indexed: 05/25/2023]
Abstract
In plants and animals, nucleotide-binding leucine-rich repeat (NLR) proteins serve as intracellular immune receptors. Defence signalling by NLRs often requires the formation of NLR heteropairs. Our knowledge of the molecular mechanism regulating this process is limited. In a reverse genetic screen to identify the partner of the Arabidopsis typical NLR, SUPRESSOR OF NPR1, CONSTITUTIVE 1 (SNC1), we discovered three NLRs that are redundantly required for SNC1-mediated defence, which were named SIDEKICK SNC1 1 (SIKIC1), SIKIC2 and SIKIC3. Immunoprecipitation-mass spectrometry analyses revealed that SIKIC2 physically associates with SNC1. We also uncovered that the protein level of SIKIC2 is under the control of two previously uncharacterized redundant E3 ubiquitin ligases MUSE1 and MUSE2. As SNC1 accumulation has previously been shown to be regulated by the E3 ubiquitin ligase SCFCPR1, this report provides evidence that the homeostasis of individual components of partnered typical NLRs is subjected to differential regulation via ubiquitin-mediated protein degradation.
Collapse
Affiliation(s)
- Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Plant Pathology, University of California, Davis, Davis, CA, USA
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, USA
| | - Kaeli C M Johnson
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yuxiang Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- College of Agriculture, Shanxi Agriculture University, Jinzhong, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Shitou Xia
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yanan Liu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- College of Life Science, Sichuan Agricultural University, Ya'an, China
| | - Eleazar Rodriguez
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xuejin Chen
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - She Chen
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Morten Petersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
57
|
Identification of charcoal rot resistance QTLs in sorghum using association and in silico analyses. J Appl Genet 2018; 59:243-251. [PMID: 29876718 DOI: 10.1007/s13353-018-0446-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/30/2018] [Accepted: 05/20/2018] [Indexed: 01/01/2023]
Abstract
Charcoal rot disease, a root and stem disease caused by the soil-borne fungus Macrophomina phaseolina (Tassi) Goid., is a major biotic stress that limits sorghum productivity worldwide. Charcoal rot resistance-related parameters, e.g., pre-emergence damping-off%, post-emergence damping-off%, charcoal rot disease severity, and plant survival rates, were measured in a structured sorghum population consisting of 107 landraces. Analysis of variance of charcoal rot resistance-related parameters revealed significant variations in the response to M. phaseolina infection within evaluated accessions. Continuous phenotypic variations for resistance-related parameters were observed indicating a quantitative inheritance of resistance. The population was genotyped using 181 simple sequence repeat (SSR) markers. Association analysis identified 13 markers significantly associated with quantitative trait genes (QTLs) conferring resistance to charcoal rot disease with an R2 value ranging between 9.47 to 18.87%, nine of which are environment-specific loci. Several QTL-linked markers are significantly associated with more than one resistance-related parameter, suggesting that those QTLs might contain genes involved in the plant defense response. In silico analysis of four novel major QTLs identified 11 putative gene homologs that could be considered as candidate genes for resistance against charcoal rot disease. Cluster analysis using the genotypic data of 181 SSR markers from 107 sorghum accessions identified 12 main clusters. The results provide a basis for further functional characterization of charcoal rot disease resistance or defense genes in sorghum and for further dissection of their molecular mechanisms.
Collapse
|
58
|
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM. Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity. Int J Mol Sci 2018; 19:E1662. [PMID: 29867062 PMCID: PMC6032283 DOI: 10.3390/ijms19061662] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/01/2018] [Accepted: 06/02/2018] [Indexed: 12/12/2022] Open
Abstract
NLR (NOD-like receptor) genes belong to one of the largest gene families in plants. Their role in plants' resistance to pathogens has been clearly described for many members of this gene family, and dysregulation or overexpression of some of these genes has been shown to induce an autoimmunity state that strongly affects plant growth and yield. For this reason, these genes have to be tightly regulated in their expression and activity, and several regulatory mechanisms are described here that tune their gene expression and protein levels. This gene family is subjected to rapid evolution, and to maintain diversity at NLRs, a plethora of genetic mechanisms have been identified as sources of variation. Interestingly, regulation of gene expression and evolution of this gene family are two strictly interconnected aspects. Indeed, some examples have been reported in which mechanisms of gene expression regulation have roles in promotion of the evolution of this gene family. Moreover, co-evolution of the NLR gene family and other gene families devoted to their control has been recently demonstrated, as in the case of miRNAs.
Collapse
Affiliation(s)
- Grazia M Borrelli
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Daniela Marone
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 673, km 25.2, 71122 Foggia, Italy.
| | - Cristina Crosatti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Vania Michelotti
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, via San Protaso 302, 29017 Fiorenzuola d'Arda (PC), Italy.
| | - Giampiero Valè
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, s.s. 11 to Torino, km 2.5, 13100 Vercelli, Italy.
| | - Anna M Mastrangelo
- Council for Agricultural Research and Economics-Research Centre for Cereal and Industrial Crops, via Stezzano 24, 24126 Bergamo, Italy.
| |
Collapse
|
59
|
Serrano I, Campos L, Rivas S. Roles of E3 Ubiquitin-Ligases in Nuclear Protein Homeostasis during Plant Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:139. [PMID: 29472944 PMCID: PMC5809434 DOI: 10.3389/fpls.2018.00139] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 01/24/2018] [Indexed: 05/23/2023]
Abstract
Ubiquitination, the reversible protein conjugation with ubiquitin (Ub), is a post-translational modification that enables rapid and specific cellular responses to stimuli without requirement of de novo protein synthesis. Although ubiquitination also displays non-proteolytic functions, it often acts as a signal for selective protein degradation through the ubiquitin-proteasome system (UPS). In plants, it has become increasingly apparent that the UPS is a central regulator of many key cellular and physiological processes, including responses to biotic and abiotic stresses. In the nucleus, protein regulation via the UPS orchestrates gene expression, genome maintenance, and signal transduction. Here, we focus on E3 Ub-ligase proteins as major components of the ubiquitination cascade that confer specificity of substrate recognition. We provide an overview on how they contribute to nuclear proteome plasticity during plant responses to environmental stress signals.
Collapse
|
60
|
Hammoudi V, Fokkens L, Beerens B, Vlachakis G, Chatterjee S, Arroyo-Mateos M, Wackers PFK, Jonker MJ, van den Burg HA. The Arabidopsis SUMO E3 ligase SIZ1 mediates the temperature dependent trade-off between plant immunity and growth. PLoS Genet 2018; 14:e1007157. [PMID: 29357355 PMCID: PMC5794169 DOI: 10.1371/journal.pgen.1007157] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 02/01/2018] [Accepted: 12/14/2017] [Indexed: 12/21/2022] Open
Abstract
Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1.
Collapse
Affiliation(s)
- Valentin Hammoudi
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Like Fokkens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Bas Beerens
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | - Georgios Vlachakis
- Molecular Plant Pathology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Paul F K Wackers
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | - Martijs J Jonker
- RNA Biology and Applied Bioinformatics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
61
|
Zhou B, Zeng L. Conventional and unconventional ubiquitination in plant immunity. MOLECULAR PLANT PATHOLOGY 2017; 18:1313-1330. [PMID: 27925369 PMCID: PMC6638253 DOI: 10.1111/mpp.12521] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/23/2016] [Accepted: 11/27/2016] [Indexed: 05/16/2023]
Abstract
Ubiquitination is one of the most abundant types of protein post-translational modification (PTM) in plant cells. The importance of ubiquitination in the regulation of many aspects of plant immunity has been increasingly appreciated in recent years. Most of the studies linking ubiquitination to the plant immune system, however, have been focused on the E3 ubiquitin ligases and the conventional ubiquitination that leads to the degradation of the substrate proteins by the 26S proteasome. By contrast, our knowledge about the role of unconventional ubiquitination that often serves as non-degradative, regulatory signal remains a significant gap. We discuss, in this review, the recent advances in our understanding of ubiquitination in the modulation of plant immunity, with a particular focus on the E3 ubiquitin ligases. We approach the topic from a perspective of two broadly defined types of ubiquitination in an attempt to highlight the importance, yet current scarcity, in our knowledge about the regulation of plant immunity by unconventional ubiquitination.
Collapse
Affiliation(s)
- Bangjun Zhou
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
| | - Lirong Zeng
- Center for Plant Science Innovation and Department of Plant PathologyUniversity of NebraskaLincolnNE68583USA
- Southern Regional Collaborative Innovation Center for Grain and Oil CropsHunan Agricultural UniversityChangsha410128China
| |
Collapse
|
62
|
Wang J, Yao W, Wang L, Ma F, Tong W, Wang C, Bao R, Jiang C, Yang Y, Zhang J, Xu Y, Wang X, Zhang C, Wang Y. Overexpression of VpEIFP1, a novel F-box/Kelch-repeat protein from wild Chinese Vitis pseudoreticulata, confers higher tolerance to powdery mildew by inducing thioredoxin z proteolysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 263:142-155. [PMID: 28818370 DOI: 10.1016/j.plantsci.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/11/2023]
Abstract
An F-box protein (VpEIFP1) induced by Erysiphe necator was isolated from Vitis pseudoreticulata, a wild Chinese grapevine species naturally resistant to powdery mildew (PM). It contains an F-box domain and two Kelch-repeat motifs. Expression profiles indicate the VpEIFP1 is strongly induced at both transcriptional and translational levels by PM infection. A subcellular localisation assay showed that VpEIFP1 is predominantly located in the nucleus and cytoplasm. Overexpression of VpEIFP1 accelerated the accumulation of hydrogen peroxide (H2O2) and up-regulated the expressions of ICS2, NPR1 and PR1 involved in defence responses, resulting in suppression of PM germination and growth. As an F-box protein, VpEIFP1 interacts with thioredoxin z (VpTrxz) in the yeast-two-hybrid (Y2H) assay and in the bimolecular fluorescence complementation (BiFC) assay. Decreased amounts of VpTrxz protein in transgenic grapevine leaves overexpressing VpEIFP1 were restored by proteasome inhibitor MG132, implying that VpEIFP1 mediated VpTrxz for degradation through the SCFVpEIFP1 (Skp1-Cullin-F-box) E3 ubiquitin ligase complex. The RNA interference line of VpTrxz showed increased H2O2 accumulation following PM inoculation. We propose VpEIFP1 positively modulates the grapevine defence response to PM by inducing the degradation of VpTrxz via the ubiquitin/26S proteasome system.
Collapse
Affiliation(s)
- Jie Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenkong Yao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lei Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Fuli Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Weihuo Tong
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chen Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Rui Bao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changyue Jiang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yazhou Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianxia Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Xu
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xiping Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Yuejin Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
63
|
You Q, Zhai K, Yang D, Yang W, Wu J, Liu J, Pan W, Wang J, Zhu X, Jian Y, Liu J, Zhang Y, Deng Y, Li Q, Lou Y, Xie Q, He Z. An E3 Ubiquitin Ligase-BAG Protein Module Controls Plant Innate Immunity and Broad-Spectrum Disease Resistance. Cell Host Microbe 2017; 20:758-769. [PMID: 27978435 DOI: 10.1016/j.chom.2016.10.023] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/29/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
Abstract
Programmed cell death (PCD) and immunity in plants are tightly controlled to promote antimicrobial defense while preventing autoimmunity. However, the mechanisms contributing to this immune homeostasis are poorly understood. Here, we isolated a rice mutant ebr1 (enhanced blight and blast resistance 1) that shows enhanced broad-spectrum bacterial and fungal disease resistance, but displays spontaneous PCD, autoimmunity, and stunted growth. EBR1 encodes an E3 ubiquitin ligase that interacts with OsBAG4, which belongs to the BAG (Bcl-2-associated athanogene) family that functions in cell death, growth arrest, and immune responses in mammals. EBR1 directly targets OsBAG4 for ubiquitination-mediated degradation. Elevated levels of OsBAG4 in rice are necessary and sufficient to trigger PCD and enhanced disease resistance to pathogenic infection, most likely by activating pathogen-associated molecular patterns-triggered immunity (PTI). Together, our study suggests that an E3-BAG module orchestrates innate immune homeostasis and coordinates the trade-off between defense and growth in plants.
Collapse
Affiliation(s)
- Quanyuan You
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Keran Zhai
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Donglei Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jingni Wu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhong Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wenbo Pan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianjun Wang
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xudong Zhu
- China National Rice Research Institute, Hangzhou 310006, China
| | - Yikun Jian
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Jiyun Liu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yingying Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yonggen Lou
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310029, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Collaborative Innovation Center of Genetics and Development, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
64
|
Liu J, Sniezko RA, Zamany A, Williams H, Wang N, Kegley A, Savin DP, Chen H, Sturrock RN. Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1149-1162. [PMID: 28176454 PMCID: PMC5552481 DOI: 10.1111/pbi.12705] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 01/11/2017] [Accepted: 02/02/2017] [Indexed: 05/17/2023]
Abstract
Molecular breeding incorporates efficient tools to increase rust resistance in five-needle pines. Susceptibility of native five-needle pines to white pine blister rust (WPBR), caused by the non-native invasive fungus Cronartium ribicola (J.C. Fisch.), has significantly reduced wild populations of these conifers in North America. Major resistance (R) genes against specific avirulent pathotypes have been found in several five-needle pine species. In this study, we screened genic SNP markers by comparative transcriptome and genetic association analyses and constructed saturated linkage maps for the western white pine (Pinus monticola) R locus (Cr2). Phenotypic segregation was measured by a hypersensitive reaction (HR)-like response on the needles and disease symptoms of cankered stems post inoculation by the C. ribicola avcr2 race. SNP genotypes were determined by HRM- and TaqMan-based SNP genotyping. Saturated maps of the Cr2-linkage group (LG) were constructed in three seed families using a total of 34 SNP markers within 21 unique genes. Cr2 was consistently flanked by contig_2142 (encoding a ruvb-like protein) and contig_3772 (encoding a delta-fatty acid desaturase) across the three seed families. Cr2 was anchored to the Pinus consensus LG-1, which differs from LGs where other R loci of Pinus species were mapped. GO annotation identified a set of NBS-LRR and other resistance-related genes as R candidates in the Cr2 region. Association of one nonsynonymous SNP locus of an NBS-LRR gene with Cr2-mediated phenotypes provides a valuable tool for marker-assisted selection (MAS), which will shorten the breeding cycle of resistance screening and aid in the restoration of WPBR-disturbed forest ecosystems.
Collapse
Affiliation(s)
- Jun‐Jun Liu
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | | - Arezoo Zamany
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Holly Williams
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | - Ning Wang
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
- Academy of Agriculture and Forestry ScienceQinghai UniversityXiningChina
| | - Angelia Kegley
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Douglas P. Savin
- Dorena Genetic Resource CenterUSDA Forest ServiceCottage GroveORUSA
| | - Hao Chen
- Canadian Forest ServiceNatural Resources CanadaVictoriaCanada
| | | |
Collapse
|
65
|
Gou M, Huang Q, Qian W, Zhang Z, Jia Z, Hua J. Sumoylation E3 Ligase SIZ1 Modulates Plant Immunity Partly through the Immune Receptor Gene SNC1 in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:334-342. [PMID: 28409535 DOI: 10.1094/mpmi-02-17-0041-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The small ubiqutin-like modifier E3 ligase SIZ1 regulates multiple processes in Arabidopsis, including salicylic-acid-dependent immune responses. However, the targets of SIZ1 in plant immunity are not known. Here, we provide evidence that the plant immune receptor nucleotide-binding leucine-rich repeat gene SNC1 partially mediates the regulation of plant immunity by SIZ1. The siz1 loss-of-function mutant has an autoimmune phenotype that is dependent on SNC1 and temperature. Overexpression of SIZ1 partially rescues autoimmune mutant phenotypes induced by activation or overaccumulation of SNC1, and the SNC1 protein amount is attenuated by SIZ1 overexpression. In addition, overexpression of the F-box protein CPR1 that degrades the SNC1 protein inhibits the growth defects and disease resistance of the siz1 mutant. Furthermore, we found that the SNC1 protein is sumoylated in planta. Although it remains to be determined whether SIZ1 primarily modulates the SNC1 protein via sumoylation or affects SNC1 transcript level, our data indicate that SNC1 is a major mediator of defense response modulated by SIZ1 and that SNC1 is a crucial target for fine-tuning plant defense responses.
Collapse
Affiliation(s)
- Mingyue Gou
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Quansheng Huang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 2 Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumuqi 830091, China
| | - Weiqiang Qian
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Zemin Zhang
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 3 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; and
| | - Zhenhua Jia
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 4 Institute of Biology, Hebei Academy of Sciences, Shijiazhuang, Hebei, 050081, China
| | - Jian Hua
- 1 Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| |
Collapse
|
66
|
Wu Z, Huang S, Zhang X, Wu D, Xia S, Li X. Regulation of plant immune receptor accumulation through translational repression by a glycine-tyrosine-phenylalanine (GYF) domain protein. eLife 2017; 6:e23684. [PMID: 28362261 PMCID: PMC5403212 DOI: 10.7554/elife.23684] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 03/14/2017] [Indexed: 01/12/2023] Open
Abstract
Plant immunity is tightly regulated to ensure proper defense against surrounding microbial pathogens without triggering autoimmunity, which negatively impacts plant growth and development. Immune receptor levels are intricately controlled by RNA processing and post-translational modification events, such as ubiquitination. It remains unknown whether, and if yes, how, plant immune receptor homeostasis is regulated at the translational level. From a mutant, snc1-enhancing (muse) forward genetic screen, we identified MUSE11/EXA1, which negatively regulates nucleotide-binding leucine-rich repeat (NLR) receptor mediated defence. EXA1 contains an evolutionarily conserved glycine-tyrosine-phenylalanine (GYF) domain that binds proline-rich sequences. Genetic and biochemical analysis revealed that loss of EXA1 leads to heightened NLR accumulation and enhanced resistance against virulent pathogens. EXA1 also associates with eIF4E initiation factors and the ribosome complex, likely contributing to the proper translation of target proteins. In summary, our study reveals a previously unknown mechanism of regulating NLR homeostasis through translational repression by a GYF protein.
Collapse
Affiliation(s)
- Zhongshou Wu
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Xiaobo Zhang
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Di Wu
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones, Hunan Agricultural University, Changsha, China
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, Canada
- Department of Botany, University of British Columbia, Vancouver, Canada
| |
Collapse
|
67
|
Kim YY, Cui MH, Noh MS, Jung KW, Shin JS. The FBA motif-containing protein AFBA1 acts as a novel positive regulator of ABA response in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:574-586. [PMID: 28184867 DOI: 10.1093/pcp/pcx003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
ABA plays a critical role in regulating seed germination and stomatal movement in response to drought stress. Screening ABA-responsive genes led to the identification of a novel Arabidopsis gene encoding a protein which contained a conserved F-box-associated (FBA) domain, subsequently named ABA-responsive FBA domain-containing protein 1 (AFBA1). Expression of ProAFBA1:GUS revealed that this gene was mainly expressed in guard cells. Expression of AFBA1 increased following the application of exogenous ABA and exposure to salt (NaCl) and drought stresses. Seed germination of the loss-of-function mutant (afba1) was insensitive to ABA, salt or mannitol, whereas AFBA1-overexpressing (Ox) seeds were more sensitive to these stresses than the wild-type seeds. The afba1 plants showed decreased drought tolerance, increased water loss rate and ABA-insensitive stomatal movement compared with the wild-type. In contrast, AFBA1-Ox plants exhibited enhanced drought tolerance and a rapid ABA-induced stomatal closure response. The expression of genes encoding serine/threonine protein phosphatases that are known negative regulators of ABA signaling increased in afba1 plants but decreased in AFBA1-Ox plants. AFBA1 was also found to be localized in the nucleus and to interact with an R2R3-type transcription factor, MYB44, leading to the suggestion that it functions in the stabilization of MYB44. Based on these results, we suggest that AFBA1 functions as a novel positive regulator of ABA responses, regulating the expression of genes involved in ABA signal transduction in Arabidopsis through its interaction with positive regulators of ABA signaling including MYB44, and increasing their stability during ABA-mediated responses.
Collapse
Affiliation(s)
- Yun Young Kim
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Mei Hua Cui
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
- School of Life Sciences and Biotechnology, Shanghai JiaoTong University, Shanghai 200240, China
| | - Min Soo Noh
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| | - Kwang Wook Jung
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
- DuPont Pioneer Hi-Bred, DuPont (Korea) Inc., Gangnam-gu, Seoul 135-719, Korea
| | - Jeong Sheop Shin
- Division of Life Sciences, Korea University, Seoul 136-701, Korea
| |
Collapse
|
68
|
Hedtmann C, Guo W, Reifschneider E, Heiber I, Hiltscher H, van Buer J, Barsch A, Niehaus K, Rowan B, Lortzing T, Steppuhn A, Baier M. The Plant Immunity Regulating F-Box Protein CPR1 Supports Plastid Function in Absence of Pathogens. FRONTIERS IN PLANT SCIENCE 2017; 8:1650. [PMID: 29018463 PMCID: PMC5615928 DOI: 10.3389/fpls.2017.01650] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/08/2017] [Indexed: 05/04/2023]
Abstract
The redox imbalanced 6 mutant (rimb6) of Arabidopsis thaliana was isolated in a genetic screening approach for mutants with defects in chloroplast-to-nucleus redox signaling. It has an atypically low activation status of the 2-Cys peroxiredoxin-A promoter in the seedling stage. rimb6 shows wildtype-like germination, seedling development and greening, but slower growth and reduced biomass in the rosette stage. Mapping of the casual mutation revealed that rimb6 carries a single nucleotide polymorphism in the gene encoding CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED (PR) GENES 1, CPR1 (At4g12560), leading to a premature stop codon. CPR1 is known as a repressor of pathogen signaling and regulator of microtubule organization. Allelism of rimb6 and cpr1 revealed a function of CPR1 in chloroplast stress protection. Expression studies in pathogen signaling mutants demonstrated that CPR1-mediated activation of genes for photosynthesis and chloroplast antioxidant protection is, in contrast to activation of pathogen responses, regulated independently from PAD4-controlled salicylic acid (SA) accumulation. We conclude that the support of plastid function is a basic, SA-independent function of CPR1.
Collapse
Affiliation(s)
- Christiane Hedtmann
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Wei Guo
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Elena Reifschneider
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Isabelle Heiber
- Plant Physiology and Biochemistry, Bielefeld UniversityBielefeld, Germany
| | - Heiko Hiltscher
- Plant Sciences, Heinrich Heine University of DüsseldorfDüsseldorf, Germany
| | - Jörn van Buer
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
| | - Aiko Barsch
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Karsten Niehaus
- Proteom- und Metabolomforschung, Bielefeld UniversityBielefeld, Germany
| | - Beth Rowan
- Department of Molecular Biology, Max Planck Institute for Developmental BiologyTübingen, Germany
| | - Tobias Lortzing
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Anke Steppuhn
- Department of Molecular Ecology, Free University of BerlinBerlin, Germany
| | - Margarete Baier
- Plant Physiology, Dahlem Centre of Plant Sciences, Free University of BerlinBerlin, Germany
- *Correspondence: Margarete Baier
| |
Collapse
|
69
|
He Z, Huang T, Ao K, Yan X, Huang Y. Sumoylation, Phosphorylation, and Acetylation Fine-Tune the Turnover of Plant Immunity Components Mediated by Ubiquitination. FRONTIERS IN PLANT SCIENCE 2017; 8:1682. [PMID: 29067028 PMCID: PMC5641357 DOI: 10.3389/fpls.2017.01682] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Ubiquitination-mediated protein degradation plays a crucial role in the turnover of immune proteins through rapid alteration of protein levels. Specifically, the over-accumulation of immune proteins and consequent activation of immune responses in uninfected cells is prevented through degradation. Protein post-translational modifications can influence and affect ubiquitination. There is accumulating evidence that suggests sumoylation, phosphorylation, and acetylation differentially affect the stability of immune-related proteins, so that control over the accumulation or degradation of proteins is fine-tuned. In this paper, we review the function and mechanism of sumoylation, phosphorylation, acetylation, and ubiquitination in plant disease resistance responses, focusing on how ubiquitination reacts with sumoylation, phosphorylation, and acetylation to regulate plant disease resistance signaling pathways. Future research directions are suggested in order to provide ideas for signaling pathway studies, and to advance the implementation of disease resistance proteins in economically important crops.
Collapse
Affiliation(s)
- Zhouqing He
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Tingting Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Kevin Ao
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Xiaofang Yan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yan Huang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
- *Correspondence: Yan Huang,
| |
Collapse
|
70
|
Lovelock DA, Šola I, Marschollek S, Donald CE, Rusak G, van Pée KH, Ludwig-Müller J, Cahill DM. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1237-51. [PMID: 26719902 PMCID: PMC6638340 DOI: 10.1111/mpp.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction.
Collapse
Affiliation(s)
- David A Lovelock
- Deakin University, Faculty of Science, Engineering and Built Environment, School of Life and Environmental Science, Geelong Campus at Waurn Ponds, Vic. 3217, Australia.
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Sabine Marschollek
- Institute of Botany, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Caroline E Donald
- Department of Primary Industries, Private bag 15, Ferntree Gully DC, Vic., 3156, Australia
| | - Gordana Rusak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Karl-Heinz van Pée
- Department of Chemistry, Biochemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, D-01062, Dresden, Germany
| | - David M Cahill
- Deakin University, Faculty of Science, Engineering and Built Environment, School of Life and Environmental Science, Geelong Campus at Waurn Ponds, Vic. 3217, Australia
| |
Collapse
|
71
|
Li S, Williams JS, Sun P, Kao TH. All 17 S-locus F-box proteins of the S2 - and S3 -haplotypes of Petunia inflata are assembled into similar SCF complexes with a specific function in self-incompatibility. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:606-616. [PMID: 27233616 DOI: 10.1111/tpj.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/23/2016] [Indexed: 06/05/2023]
Abstract
The collaborative non-self-recognition model for S-RNase-based self-incompatibility predicts that multiple S-locus F-box proteins (SLFs) produced by pollen of a given S-haplotype collectively mediate ubiquitination and degradation of all non-self S-RNases, but not self S-RNases, in the pollen tube, thereby resulting in cross-compatible pollination but self-incompatible pollination. We had previously used pollen extracts containing GFP-fused S2 -SLF1 (SLF1 with an S2 -haplotype) of Petunia inflata for co-immunoprecipitation (Co-IP) and mass spectrometry (MS), and identified PiCUL1-P (a pollen-specific Cullin1), PiSSK1 (a pollen-specific Skp1-like protein) and PiRBX1 (a conventional Rbx1) as components of the SCF(S) (2-) (SLF) (1) complex. Using pollen extracts containing PiSSK1:FLAG:GFP for Co-IP/MS, we identified two additional SLFs (SLF4 and SLF13) that were assembled into SCF(SLF) complexes. As 17 SLF genes (SLF1 to SLF17) have been identified in S2 and S3 pollen, here we examined whether all 17 SLFs are assembled into similar complexes and, if so, whether these complexes are unique to SLFs. We modified the previous Co-IP/MS procedure, including the addition of style extracts from four different S-genotypes to pollen extracts containing PiSSK1:FLAG:GFP, to perform four separate experiments. The results taken together show that all 17 SLFs and an SLF-like protein, SLFLike1 (encoded by an S-locus-linked gene), co-immunoprecipitated with PiSSK1:FLAG:GFP. Moreover, of the 179 other F-box proteins predicted by S2 and S3 pollen transcriptomes, only a pair with 94.9% identity and another pair with 99.7% identity co-immunoprecipitated with PiSSK1:FLAG:GFP. These results suggest that SCF(SLF) complexes have evolved specifically to function in self-incompatibility.
Collapse
Affiliation(s)
- Shu Li
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Justin S Williams
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Penglin Sun
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Teh-Hui Kao
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
72
|
Dong OX, Tong M, Bonardi V, El Kasmi F, Woloshen V, Wünsch LK, Dangl JL, Li X. TNL-mediated immunity in Arabidopsis requires complex regulation of the redundant ADR1 gene family. THE NEW PHYTOLOGIST 2016; 210:960-973. [PMID: 27074399 DOI: 10.1111/nph.13821] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
Nucleotide-binding leucine-rich repeat proteins (NLRs) serve as intracellular immune receptors in animals and plants. Sensor NLRs perceive pathogen-derived effector molecules and trigger robust host defense. Recent studies revealed the role of three coiled-coil-type NLRs (CNLs) of the ADR1 family - ADR1, ADR1-L1 and ADR1-L2 - as redundant helper NLRs, whose function is required for defense mediated by multiple sensor NLRs. From a mutant snc1-enhancing (MUSE) forward genetic screen in Arabidopsis targeted to identify negative regulators of snc1 that encodes a TIR-type NLR (TNL), we isolated two alleles of muse15, both carrying mutations in ADR1-L1. Interestingly, loss of ADR1-L1 also enhances immunity-related phenotypes in other autoimmune mutants including cpr1, bal and lsd1. This immunity-enhancing effect is not mediated by increased SNC1 protein stability, nor is it fully dependent on the accumulation of the defense hormone salicylic acid (SA). Transcriptional analysis revealed an upregulation of ADR1 and ADR1-L2 in the adr1-L1 background, which may overcompensate the loss of ADR1-L1, resulting in enhanced immunity. Interestingly, autoimmunity of snc1 and chs2, which encode typical TNLs, is fully suppressed by the adr1 triple mutant, suggesting that the ADRs are required for TNL downstream signaling. This study extends our knowledge on the interplay among ADRs and reveals their complexity in defense regulation.
Collapse
Affiliation(s)
- Oliver Xiaoou Dong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Meixuezi Tong
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Vera Bonardi
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Farid El Kasmi
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Virginia Woloshen
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Lisa K Wünsch
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Jeffery L Dangl
- Department of Biology, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
- Howard Hughes Medical Institute, University of North Carolina, Chapel Hill, NC, 27599-3280, USA
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
73
|
Park CH, Shirsekar G, Bellizzi M, Chen S, Songkumarn P, Xie X, Shi X, Ning Y, Zhou B, Suttiviriya P, Wang M, Umemura K, Wang GL. The E3 Ligase APIP10 Connects the Effector AvrPiz-t to the NLR Receptor Piz-t in Rice. PLoS Pathog 2016; 12:e1005529. [PMID: 27031246 PMCID: PMC4816579 DOI: 10.1371/journal.ppat.1005529] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/05/2016] [Indexed: 11/19/2022] Open
Abstract
Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.
Collapse
Affiliation(s)
- Chan Ho Park
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gautam Shirsekar
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Maria Bellizzi
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Songbiao Chen
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China
| | - Pattavipha Songkumarn
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Xin Xie
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuetao Shi
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuese Ning
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bo Zhou
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Pavinee Suttiviriya
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Mo Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
| | - Kenji Umemura
- Meiji Seika Kaisha Ltd, Health & Bioscience Laboratories, Tokyo, Japan
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- State Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
74
|
Pečenková T, Sabol P, Kulich I, Ortmannová J, Žárský V. Constitutive Negative Regulation of R Proteins in Arabidopsis also via Autophagy Related Pathway? FRONTIERS IN PLANT SCIENCE 2016; 7:260. [PMID: 26973696 PMCID: PMC4777726 DOI: 10.3389/fpls.2016.00260] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/18/2016] [Indexed: 05/29/2023]
Abstract
Even though resistance (R) genes are among the most studied components of the plant immunity, there remain still a lot of aspects to be explained about the regulation of their function. Many gain-of-function mutants of R genes and loss-of-function of their regulators often demonstrate up-regulated defense responses in combination with dwarf stature and/or spontaneous leaf lesions formation. For most of these mutants, phenotypes are a consequence of an ectopic activation of R genes. Based on the compilation and comparison of published results in this field, we have concluded that the constitutively activated defense phenotypes recurrently arise by disruption of tight, constitutive and multilevel negative control of some of R proteins that might involve also their targeting to the autophagy pathway. This mode of R protein regulation is supported also by protein-protein interactions listed in available databases, as well as in silico search for autophagy machinery interacting motifs. The suggested model could resolve some explanatory discrepancies found in the studies of the immunity responses of autophagy mutants.
Collapse
Affiliation(s)
- Tamara Pečenková
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Peter Sabol
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Ivan Kulich
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Jitka Ortmannová
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Academy of Sciences of Czech RepublicPrague, Czech Republic
- Laboratory of Cell Morphogenesis, Department of Experimental Plant Biology, Faculty of Science, Charles University in PraguePrague, Czech Republic
| |
Collapse
|
75
|
Reiner T, Hoefle C, Hückelhoven R. A barley SKP1-like protein controls abundance of the susceptibility factor RACB and influences the interaction of barley with the barley powdery mildew fungus. MOLECULAR PLANT PATHOLOGY 2016; 17:184-95. [PMID: 25893638 PMCID: PMC6638371 DOI: 10.1111/mpp.12271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In an increasing number of plant-microbe interactions, it has become evident that the abundance of immunity-related proteins is controlled by the ubiquitin-26S proteasome system. In the interaction of barley with the biotrophic barley powdery mildew fungus Blumeria graminis f.sp. hordei (Bgh), the RAC/ROP [RAT SARCOMA-related C3 botulinum toxin substrate/RAT SARCOMA HOMOLOGUE (RHO) of plants] guanosine triphosphatase (GTPase) HvRACB supports the fungus in a compatible interaction. By contrast, barley HvRBK1, a ROP-binding receptor-like cytoplasmic kinase that interacts with and can be activated by constitutively activated HvRACB, limits fungal infection success. We have identified a barley type II S-phase kinase 1-associated (SKP1)-like protein (HvSKP1-like) as a molecular interactor of HvRBK1. SKP1 proteins are subunits of the SKP1-cullin 1-F-box (SCF)-E3 ubiquitin ligase complex that acts in the specific recognition and ubiquitination of protein substrates for subsequent proteasomal degradation. Transient induced gene silencing of either HvSKP1-like or HvRBK1 increased protein abundance of constitutively activated HvRACB in barley epidermal cells, whereas abundance of dominant negative RACB only weakly increased. In addition, silencing of HvSKP1-like enhanced the susceptibility of barley to haustorium establishment by Bgh. In summary, our results suggest that HvSKP1-like, together with HvRBK1, controls the abundance of HvRACB and, at the same time, modulates the outcome of the barley-Bgh interaction. A possible feedback mechanism from RAC/ROP-activated HvRBK1 on the susceptibility factor HvRACB is discussed.
Collapse
Affiliation(s)
- Tina Reiner
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Lehrstuhl für Phytopathologie, Technische Universität München, Emil-Ramann Straße 2, D-85350, Freising-Weihenstephan, Germany
| |
Collapse
|
76
|
van Wersch R, Li X, Zhang Y. Mighty Dwarfs: Arabidopsis Autoimmune Mutants and Their Usages in Genetic Dissection of Plant Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1717. [PMID: 27909443 PMCID: PMC5112265 DOI: 10.3389/fpls.2016.01717] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 11/01/2016] [Indexed: 05/17/2023]
Abstract
Plants lack the adaptive immune system possessed by mammals. Instead they rely on innate immunity to defend against pathogen attacks. Genomes of higher plants encode a large number of plant immune receptors belonging to different protein families, which are involved in the detection of pathogens and activation of downstream defense pathways. Plant immunity is tightly controlled to avoid activation of defense responses in the absence of pathogens, as failure to do so can lead to autoimmunity that compromises plant growth and development. Many autoimmune mutants have been reported, most of which are associated with dwarfism and often spontaneous cell death. In this review, we summarize previously reported Arabidopsis autoimmune mutants, categorizing them based on their functional groups. We also discuss how their obvious morphological phenotypes make them ideal tools for epistatic analysis and suppressor screens, and summarize genetic screens that have been carried out in various autoimmune mutant backgrounds.
Collapse
Affiliation(s)
- Rowan van Wersch
- Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Xin Li
- Department of Botany, University of British Columbia, VancouverBC, Canada
- The Michael Smith Laboratories, University of British Columbia, VancouverBC, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, VancouverBC, Canada
- *Correspondence: Yuelin Zhang,
| |
Collapse
|
77
|
Disch EM, Tong M, Kotur T, Koch G, Wolf CA, Li X, Hoth S. Membrane-Associated Ubiquitin Ligase SAUL1 Suppresses Temperature- and Humidity-Dependent Autoimmunity in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:69-80. [PMID: 26505534 DOI: 10.1094/mpmi-07-15-0146-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plants have evolved elaborate mechanisms to regulate pathogen defense. Imbalances in this regulation may result in autoimmune responses that are affecting plant growth and development. In Arabidopsis, SAUL1 encodes a plant U-box ubiquitin ligase and regulates senescence and cell death. Here, we show that saul1-1 plants exhibit characteristics of an autoimmune mutant. A decrease in relative humidity or temperature resulted in reduced growth and systemic lesioning of saul1-1 rosettes. These physiological changes are associated with increased expression of salicylic acid-dependent and pathogenesis-related (PR) genes. Consistently, resistance of saul1-1 plants against Pseudomonas syringae pv. maculicola ES4326, P. syringae pv. tomato DC3000, or Hyaloperonospora arabidopsidis Noco2 was enhanced. Transmission electron microscopy revealed alterations in saul1-1 chloroplast ultrastructure and cell-wall depositions. Confocal analysis on aniline blue-stained leaf sections and cellular universal micro spectrophotometry further showed that these cell-wall depositions contain callose and lignin. To analyze signaling downstream of SAUL1, we performed epistasis analyses between saul1-1 and mutants in the EDS1/PAD4/SAG101 hub. All phenotypes observed in saul1-1 plants at low temperature were dependent on EDS1 and PAD4 but not SAG101. Taken together, SAUL1 negatively regulates immunity upstream of EDS1/PAD4, likely through the degradation of an unknown activator of the pathway.
Collapse
Affiliation(s)
- Eva-Maria Disch
- 1 Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Meixuezi Tong
- 2 Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Tanja Kotur
- 1 Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Gerald Koch
- 3 Thünen-Institute of Wood Technology and Wood Biology, Hamburg, Germany
| | - Carl-Asmus Wolf
- 1 Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| | - Xin Li
- 2 Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stefan Hoth
- 1 Molekulare Pflanzenphysiologie, Biozentrum Klein Flottbek, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
78
|
Sharma B, Joshi D, Yadav PK, Gupta AK, Bhatt TK. Role of Ubiquitin-Mediated Degradation System in Plant Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:806. [PMID: 27375660 PMCID: PMC4897311 DOI: 10.3389/fpls.2016.00806] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 05/05/2023]
Abstract
Ubiquitin-mediated proteasomal degradation is an important mechanism to control protein load in the cells. Ubiquitin binds to a protein on lysine residue and usually promotes its degradation through 26S proteasome system. Abnormal proteins and regulators of many processes, are targeted for degradation by the ubiquitin-proteasome system. It allows cells to maintain the response to cellular level signals and altered environmental conditions. The ubiquitin-mediated proteasomal degradation system plays a key role in the plant biology, including abiotic stress, immunity, and hormonal signaling by interfering with key components of these pathways. The involvement of the ubiquitin system in many vital processes led scientists to explore more about the ubiquitin machinery and most importantly its targets. In this review, we have summarized recent discoveries of the plant ubiquitin system and its involvement in critical processes of plant biology.
Collapse
|
79
|
Liu J, Yang H, Bao F, Ao K, Zhang X, Zhang Y, Yang S. IBR5 Modulates Temperature-Dependent, R Protein CHS3-Mediated Defense Responses in Arabidopsis. PLoS Genet 2015; 11:e1005584. [PMID: 26451844 PMCID: PMC4599859 DOI: 10.1371/journal.pgen.1005584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 09/16/2015] [Indexed: 12/18/2022] Open
Abstract
Plant responses to low temperature are tightly associated with defense responses. We previously characterized the chilling-sensitive mutant chs3-1 resulting from the activation of the Toll and interleukin 1 receptor-nucleotide binding-leucine-rich repeat (TIR-NB-LRR)-type resistance (R) protein harboring a C-terminal LIM (Lin-11, Isl-1 and Mec-3 domains) domain. Here we report the identification of a suppressor of chs3, ibr5-7 (indole-3-butyric acid response 5), which largely suppresses chilling-activated defense responses. IBR5 encodes a putative dual-specificity protein phosphatase. The accumulation of CHS3 protein at chilling temperatures is inhibited by the IBR5 mutation. Moreover, chs3-conferred defense phenotypes were synergistically suppressed by mutations in HSP90 and IBR5. Further analysis showed that IBR5, with holdase activity, physically associates with CHS3, HSP90 and SGT1b (Suppressor of the G2 allele of skp1) to form a complex that protects CHS3. In addition to the positive role of IBR5 in regulating CHS3, IBR5 is also involved in defense responses mediated by R genes, including SNC1 (Suppressor of npr1-1, Constitutive 1), RPS4 (Resistance to P. syringae 4) and RPM1 (Resistance to Pseudomonas syringae pv. maculicola 1). Thus, the results of the present study reveal a role for IBR5 in the regulation of multiple R protein-mediated defense responses. Resistance (R) genes play central roles in recognizing pathogens and triggering plant defense responses. CHS3 encodes a TIR-NB-LRR-type R protein harboring a C-terminal LIM domain. A point mutation in CHS3 activates the defense response under chilling stress. Here we identified and characterized ibr5-7, a mutant that suppresses the chilling-induced defense responses of chs3-1. We observed that the enhanced defense responses and cell death in the chs3-1 mutant are synergistically dependent on IBR5 and HSP90. IBR5 physically interacts with CHS3, forming a complex with SGT1b/ HSP90. Moreover, IBR5 is also involved in the R-gene resistance mediated by SNC1, RPS4 and RPM1. Thus, IBR5 plays key roles in regulating defense responses mediated by multiple R proteins.
Collapse
Affiliation(s)
- Jingyan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Haibian Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Fei Bao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Kevin Ao
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, National Plant Gene Research Center, China Agricultural University, Beijing, China
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shuhua Yang
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
80
|
Wu L, Chen H, Curtis C, Fu ZQ. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected]. Virulence 2015; 5:710-21. [PMID: 25513772 PMCID: PMC4189877 DOI: 10.4161/viru.29755] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Plant resistance (R) proteins perceive specific pathogen effectors from diverse plant pathogens to initiate defense responses, designated effector-triggered immunity (ETI). Plant R proteins are mostly nucleotide binding-leucine rich repeat (NB-LRR) proteins, which recognize pathogen effectors directly or indirectly through sophisticated mechanisms. Upon activation by effector proteins, R proteins elicit robust defense responses, including a rapid burst of reactive oxygen species (ROS), induced biosynthesis and accumulation of salicylic acid (SA), a rapid programmed cell death (PCD) called hypersensitive response (HR) at the infection sites, and increased expression of pathogenesis-related (PR) genes. Initiation of ETI is correlated with a complex network of defense signaling pathways, resulting in defensive cellular responses and large-scale transcriptional reprogramming events. In this review, we highlight important recent advances on the recognition of effectors, regulation and activation of plant R proteins, dynamic intracellular trafficking of R proteins, induction of cell death, and transcriptional reprogramming associated with ETI. Current knowledge gaps and future research directions are also discussed in this review.
Collapse
Affiliation(s)
- Liang Wu
- a Department of Biological Sciences; University of South Carolina; Columbia, SC USA
| | | | | | | |
Collapse
|
81
|
Han B, Chen L, Wang J, Wu Z, Yan L, Hou S. Constitutive Expresser of Pathogenesis Related Genes 1 Is Required for Pavement Cell Morphogenesis in Arabidopsis. PLoS One 2015; 10:e0133249. [PMID: 26193674 PMCID: PMC4508093 DOI: 10.1371/journal.pone.0133249] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/24/2015] [Indexed: 12/28/2022] Open
Abstract
For over 50 years, researchers have focused on the mechanisms underlying the important roles of the cytoskeleton in controlling the cell growth direction and cell expansion. In our study, we performed ethyl methane sulfonate mutagenesis on Col-0 background and identified two new CONSTITUTIVE EXPRESSER OF PATHOGENESIS RELATED GENES 1 (CPR1) alleles with pavement cell (PC) morphogenetic defects. Morphological characterizations showed that polar growth initiation and expansion of PCs are seriously suppressed in cpr1. Closer cytoskeleton investigation showed that the directional arrangement of microtubules (MTs) during PC development is defective and the cortical fine actin filaments cannot be aggregated effectively to form actin cable networks in cpr1 mutants. These results suggest that the abnormal PC morphogenesis in cpr1 is accompanying with the aberrant arrangement of cytoskeleton. Site-directed mutagenesis and knockout within the F-box-associated (FBA) domain, which is reported to be a motif for recognizing particular substrates of CPR1, proved that the FBA domain is indispensable for normal CPR1 regulation of the PC morphogenesis. Further genetic analysis indicated that the defects on PC morphogenesis of cpr1 depend on two lipase-like proteins, ENHANCED DISEASE SUSCEPTIBILITY 1 and PHYTOALEXIN DEFICIENT 4. Our results provide further insights into the relationship between the cytoskeleton and PC morphogenesis, and suggest that the cytoskeleton-mediated PC morphogenesis control might be tightly linked to plant defense responses.
Collapse
Affiliation(s)
- Bing Han
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Liang Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Jing Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Zhongliang Wu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Longfeng Yan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Suiwen Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People’s Republic of China
- * E-mail:
| |
Collapse
|
82
|
Abstract
Intracellular immune receptors with nucleotide-binding, leucine-rich domains (NLRs) are found in both plants and animals. Compared to animals, NLR-encoding gene families are expanded, more prevalent and have enriched diversity in higher plants. Strong host defense triggered by the recognition of specific pathogen effectors constitutes a major part of the plant immune response that has long been exploited to breed crops for enhanced resistance. Although the first plant NLR genes were cloned about 20 years ago, their signaling mechanisms remain obscure. Here we review recent progress in plant NLR studies, focusing on their pathogen recognition, homeostasis control and potential signaling activation mechanisms.
Collapse
|
83
|
Furniss JJ, Spoel SH. Cullin-RING ubiquitin ligases in salicylic acid-mediated plant immune signaling. FRONTIERS IN PLANT SCIENCE 2015; 6:154. [PMID: 25821454 PMCID: PMC4358073 DOI: 10.3389/fpls.2015.00154] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/26/2015] [Indexed: 05/19/2023]
Abstract
Plant immune responses against biotrophic pathogens are regulated by the signaling hormone salicylic acid (SA). SA establishes immunity by regulating a variety of cellular processes, including programmed cell death (PCD) to isolate and kill invading pathogens, and development of systemic acquired resistance (SAR) which provides long-lasting, broad-spectrum resistance throughout the plant. Central to these processes is post-translational modification of SA-regulated signaling proteins by ubiquitination, i.e., the covalent addition of small ubiquitin proteins. Emerging evidence indicates SA-induced protein ubiquitination is largely orchestrated by Cullin-RING ligases (CRLs), which recruit specific substrates for ubiquitination using interchangeable adaptors. Ligation of ubiquitin chains interlinked at lysine 48 leads to substrate degradation by the 26S proteasome. Here we discuss how CRL-mediated degradation of both nucleotide-binding/leucine-rich repeat domain containing immune receptors and SA-induced transcription regulators are critical for functional PCD and SAR responses, respectively. By placing these recent findings in context of knowledge gained in other eukaryotic model species, we highlight potential alternative roles for processive ubiquitination in regulating the activity of SA-mediated immune responses.
Collapse
Affiliation(s)
| | - Steven H. Spoel
- *Correspondence: Steven H. Spoel, Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| |
Collapse
|
84
|
Xu F, Cheng YT, Kapos P, Huang Y, Li X. P-loop-dependent NLR SNC1 can oligomerize and activate immunity in the nucleus. MOLECULAR PLANT 2014; 7:1801-4. [PMID: 25237053 DOI: 10.1093/mp/ssu097] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Affiliation(s)
- Fang Xu
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yu Ti Cheng
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Paul Kapos
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
85
|
Huang S, Monaghan J, Zhong X, Lin L, Sun T, Dong OX, Li X. HSP90s are required for NLR immune receptor accumulation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:427-39. [PMID: 24889324 DOI: 10.1111/tpj.12573] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 05/19/2014] [Accepted: 05/21/2014] [Indexed: 05/08/2023]
Abstract
Heat shock proteins (HSPs) serve as molecular chaperones for diverse client proteins in many biological processes. In plant immunity, cytosolic HSP90s participate in the assembly, stability control and/or activation of immune receptor complexes. In this paper we report that in addition to the well-established positive roles that HSP90 isoforms play in plant immunity, they are also involved in the negative regulation of immune receptor accumulation. Point mutations in two HSP90 genes, HSP90.2 and HSP90.3, were identified from a forward genetic screen designed to isolate mutants with enhanced disease resistance. We found that specific mutations in HSP90.2 and HSP90.3 lead to heightened accumulation of immune receptors, including SNC1, RPS2 and RPS4. HSP90s may assist SGT1 in the formation of SCF E3 ubiquitin ligase complexes that target immune receptors for degradation. Such regulation is critical for maintaining appropriate levels of immune receptor proteins to avoid autoimmunity.
Collapse
Affiliation(s)
- Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | | | | | | | | | | | | |
Collapse
|
86
|
Mitochondrial AtPAM16 is required for plant survival and the negative regulation of plant immunity. Nat Commun 2014; 4:2558. [PMID: 24153405 DOI: 10.1038/ncomms3558] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 09/04/2013] [Indexed: 12/21/2022] Open
Abstract
Proteins containing nucleotide-binding and leucine-rich repeat domains (NB-LRRs) serve as immune receptors in plants and animals. Negative regulation of immunity mediated by NB-LRR proteins is crucial, as their overactivation often leads to autoimmunity. Here we describe a new mutant, snc1-enhancing (muse) forward genetic screen, targeting unknown negative regulators of NB-LRR-mediated resistance in Arabidopsis. From the screen, we identify MUSE5, which is renamed as AtPAM16 because it encodes the ortholog of yeast PAM16, part of the mitochondrial inner membrane protein import motor. Consistently, AtPAM16-GFP localizes to the mitochondrial inner membrane. AtPAM16L is a paralog of AtPAM16. Double mutant Atpam16-1 Atpam16l is lethal, indicating that AtPAM16 function is essential. Single mutant Atpam16 plants exhibit a smaller size and enhanced resistance against virulent pathogens. They also display elevated reactive oxygen species (ROS) accumulation. Therefore, AtPAM16 seems to be involved in importing a negative regulator of plant immunity into mitochondria, thus protecting plants from over-accumulation of ROS and preventing autoimmunity.
Collapse
|
87
|
Zou B, Yang DL, Shi Z, Dong H, Hua J. Monoubiquitination of histone 2B at the disease resistance gene locus regulates its expression and impacts immune responses in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:309-18. [PMID: 24664204 PMCID: PMC4012590 DOI: 10.1104/pp.113.227801] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/22/2014] [Indexed: 05/17/2023]
Abstract
Disease resistance (R) genes are key components in plant immunity. Here, we show that Arabidopsis (Arabidopsis thaliana) E3 ubiquitin ligase genes HISTONE MONOUBIQUITINATION1 (HUB1) and HUB2 regulate the expression of R genes SUPPRESSOR OF npr1-1, CONSTITUTIVE1 (SNC1) and RESISTANCE TO PERONOSPORA PARASITICA4. An increase of SNC1 expression induces constitutive immune responses in the bonzai1 (bon1) mutant, and the loss of HUB1 or HUB2 function reduces SNC1 up-regulation and suppresses the bon1 autoimmune phenotypes. HUB1 and HUB2 mediate histone 2B (H2B) monoubiquitination directly at the SNC1 R gene locus to regulate its expression. In addition, SNC1 and HUB1 transcripts are moderately up-regulated by pathogen infection, and H2B monoubiquitination at SNC1 is enhanced by pathogen infection. Together, this study indicates that H2B monoubiquitination at the R gene locus regulates its expression and that this histone modification at the R gene locus has an impact on immune responses in plants.
Collapse
|
88
|
Huang Y, Minaker S, Roth C, Huang S, Hieter P, Lipka V, Wiermer M, Li X. An E4 ligase facilitates polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. THE PLANT CELL 2014; 26:485-96. [PMID: 24449689 PMCID: PMC3963591 DOI: 10.1105/tpc.113.119057] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 12/12/2013] [Accepted: 01/08/2014] [Indexed: 05/22/2023]
Abstract
Proteins with nucleotide binding and leucine-rich repeat domains (NLRs) serve as immune receptors in animals and plants that recognize pathogens and activate downstream defense responses. As high accumulation of NLRs can result in unwarranted autoimmune responses, their cellular concentrations must be tightly regulated. However, the molecular mechanisms of this process are poorly detailed. The F-box protein Constitutive expressor of PR genes 1 (CPR1) was previously identified as a component of a Skp1, Cullin1, F-box protein E3 complex that targets NLRs, including Suppressor of NPR1, Constitutive 1 (SNC1) and Resistance to Pseudomonas syringae 2 (RPS2), for ubiquitination and further protein degradation. From a forward genetic screen, we identified Mutant, snc1-enhancing 3 (MUSE3), an E4 ubiquitin ligase involved in polyubiquitination of its protein targets. Knocking out MUSE3 in Arabidopsis thaliana results in increased levels of NLRs, including SNC1 and RPS2, whereas overexpressing MUSE3 together with CPR1 enhances polyubiquitination and protein degradation of these immune receptors. This report on the functional role of an E4 ligase in plants provides insight into the scarcely understood NLR degradation pathway.
Collapse
Affiliation(s)
- Yan Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Sean Minaker
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Charlotte Roth
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Shuai Huang
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Marcel Wiermer
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Goettingen, 37077 Goettingen, Germany
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Address correspondence to
| |
Collapse
|
89
|
Duplan V, Rivas S. E3 ubiquitin-ligases and their target proteins during the regulation of plant innate immunity. FRONTIERS IN PLANT SCIENCE 2014; 5:42. [PMID: 24592270 PMCID: PMC3923142 DOI: 10.3389/fpls.2014.00042] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/28/2014] [Indexed: 05/19/2023]
Abstract
Reversible protein ubiquitination plays a crucial role during the regulation of plant immune signaling. E3 ubiquitin (Ub)-ligase enzymes, which are classified into different families depending on their structural and functional features, confer the specificity of substrate and are the best characterized components of the ubiquitination cascade. E3 Ub-ligases of different families have been shown to be involved in all steps of plant immune responses. Indeed, they have been involved in the first steps of pathogen perception, as they appear to modulate perception of pathogen-associated molecular patterns by pattern-recognition receptors at the plasma membrane and to regulate the accumulation of nucleotide-binding leucine-rich repeat-type intracellular immune receptors. In addition, E3 Ub-ligase proteins are also involved in the regulation of the signaling responses downstream of pathogen perception through targeting vesicle trafficking components or nuclear transcription factors, for instance. Finally, we also discuss the case of microbial effector proteins that are able to target host E3 Ub-ligases, or to act themselves as E3 Ub-ligases, in their attempt to subvert the host proteasome to promote disease.
Collapse
Affiliation(s)
- Vincent Duplan
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594Castanet-Tolosan, France
| | - Susana Rivas
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594Castanet-Tolosan, France
- *Correspondence: Susana Rivas, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS/INRA 2594/441, 24 Chemin de Borde Rouge-Auzeville, CS 52627, 31326 Castanet-Tolosan cedex, France e-mail:
| |
Collapse
|
90
|
Palukaitis P, Groen SC, Carr JP. The Rumsfeld paradox: some of the things we know that we don't know about plant virus infection. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:513-9. [PMID: 23820310 DOI: 10.1016/j.pbi.2013.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/06/2013] [Accepted: 06/07/2013] [Indexed: 05/06/2023]
Abstract
Plant-infecting viruses cause significant crop losses around the world and the majority of emerging threats to crop production have a viral etiology. Significant progress has been made and continues to be made in understanding how viruses induce disease and overcome some forms of resistance-particularly resistance based on RNA silencing. However, it is still not clear how other antiviral mechanisms work, how viruses manage to exploit their hosts so successfully, or how viruses affect the interactions of susceptible plants with other organisms and if this is advantageous to the virus, the host, or both. In this article we explore these questions.
Collapse
Affiliation(s)
- Peter Palukaitis
- Division of Environmental and Life Sciences, Seoul Women's University, Seoul 139-774, Republic of Korea
| | | | | |
Collapse
|
91
|
Marino D, Froidure S, Canonne J, Ben Khaled S, Khafif M, Pouzet C, Jauneau A, Roby D, Rivas S. Arabidopsis ubiquitin ligase MIEL1 mediates degradation of the transcription factor MYB30 weakening plant defence. Nat Commun 2013; 4:1476. [PMID: 23403577 DOI: 10.1038/ncomms2479] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 01/14/2013] [Indexed: 12/31/2022] Open
Abstract
One of the most efficient plant resistance reactions to pathogen attack is the hypersensitive response, a form of programmed cell death at infection sites. The Arabidopsis transcription factor MYB30 is a positive regulator of hypersensitive cell death responses. Here we show that MIEL1 (MYB30-Interacting E3 Ligase1), an Arabidopsis RING-type E3 ubiquitin ligase that interacts with and ubiquitinates MYB30, leads to MYB30 proteasomal degradation and downregulation of its transcriptional activity. In non-infected plants, MIEL1 attenuates cell death and defence through degradation of MYB30. Following bacterial inoculation, repression of MIEL1 expression removes this negative regulation allowing sufficient MYB30 accumulation in the inoculated zone to trigger the hypersensitive response and restrict pathogen growth. Our work underlines the important role played by ubiquitination to control the hypersensitive response and highlights the sophisticated fine-tuning of plant responses to pathogen attack. Overall, this work emphasizes the importance of protein modification by ubiquitination during the regulation of transcriptional responses to stress in eukaryotic cells.
Collapse
Affiliation(s)
- Daniel Marino
- INRA, Laboratoire des Interactions Plantes-Microorganismes, UMR441, Castanet-Tolosan F-31326, France
| | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Wang H, Lu Y, Liu P, Wen W, Zhang J, Ge X, Xia Y. The ammonium/nitrate ratio is an input signal in the temperature-modulated, SNC1-mediated and EDS1-dependent autoimmunity of nudt6-2 nudt7. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:262-75. [PMID: 23004358 DOI: 10.1111/tpj.12032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/03/2012] [Accepted: 09/12/2012] [Indexed: 05/27/2023]
Abstract
AtNUDT7 was reported to be a negative regulator of EDS1-mediated immunity in Arabidopsis. However, the underlying molecular and genetic mechanism of the AtNUDT7-regulated defense pathway remains elusive. Here we report that AtNUDT7 and its closest paralog AtNUDT6 function as novel negative regulators of SNC1, a TIR-NB-LRR-type R gene. SNC1 is upregulated at transcriptional and possibly post-transcriptional levels in nudt6-2 nudt7. The nudt6-2 nudt7 double mutant exhibits autoimmune phenotypes that are modulated by temperature and fully dependent on EDS1. The nudt6-2 nudt7 mutation causes EDS1 nuclear accumulation shortly after the establishment of autoimmunity caused by the temperature shift. We found that a low ammonium/nitrate ratio in growth media leads to a higher level of nitrite-dependent nitric oxide (NO) production in nudt6-2 nudt7, and NO acts in a positive feedback loop with EDS1 to promote the autoimmunity. The low ammonium/nitrate ratio also enhances autoimmunity in snc1-1 and cpr1, two other autoimmune mutants in Arabidopsis. Our study indicates that Arabidopsis senses the ammonium/nitrate ratio as an input signal to determine the amplitude of the EDS1-mediated defense response, probably through the modulation of NO production.
Collapse
Affiliation(s)
- Hai Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yuqing Lu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Wei Wen
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaochun Ge
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
93
|
El sistema ubicuitina/proteasoma en la interacción planta-patógeno. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2013. [DOI: 10.1016/s1405-888x(13)72083-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
94
|
Takahashi H, Shoji H, Ando S, Kanayama Y, Kusano T, Takeshita M, Suzuki M, Masuta C. RCY1-mediated resistance to Cucumber mosaic virus is regulated by LRR domain-mediated interaction with CMV(Y) following degradation of RCY1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:1171-85. [PMID: 22852808 DOI: 10.1094/mpmi-04-12-0076-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RCY1, which encodes a coiled coil nucleotide-binding site leucine-rich repeat (LRR) class R protein, confers the hypersensitive response (HR) to a yellow strain of Cucumber mosaic virus (CMV[Y]) in Arabidopsis thaliana. Nicotiana benthamiana transformed with hemagglutinin (HA) epitope-tagged RCY1 (RCY1-HA) also exhibited a defense response accompanied by HR cell death and induction of defense-related gene expression in response to CMV(Y). Following transient expression of RCY1-HA by agroinfiltration, the defense reaction was induced in N. benthamiana leaves infected with CMV(Y) but not in virulent CMV(B2)-infected N. benthamiana leaves transiently expressing RCY1-HA or CMV(Y)-infected N. benthamiana leaves transiently expressing HA-tagged RPP8 (RPP8-HA), which is allelic to RCY1. This result suggests that Arabidopsis RCY1-conferred resistance to CMV(Y) could be reproduced in N. benthamiana leaves in a gene-for-gene manner. Expression of a series of chimeric constructs between RCY1-HA and RPP8-HA in CMV(Y)-infected N. benthamiana indicated that induction of defense responses to CMV(Y) is regulated by the LRR domain of RCY1. Interestingly, in CMV(Y)-infected N. benthamiana manifesting the defense response, the levels of both RCY1 and chimeric proteins harboring the RCY1 LRR domain were significantly reduced. Taken together, these data indicate that the RCY1-conferred resistance response to CMV(Y) is regulated by an LRR domain-mediated interaction with CMV(Y) and seems to be tightly associated with the degradation of RCY1 in response to CMV(Y).
Collapse
|
95
|
Yao C, Wu Y, Nie H, Tang D. RPN1a, a 26S proteasome subunit, is required for innate immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:1015-28. [PMID: 22577987 DOI: 10.1111/j.1365-313x.2012.05048.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Accumulating evidence shows that proper degradation of proteins that affect defense responses in a positive or negative manner is critical in plant immunity. However, the role of plant degradation systems such as the 26S proteasome in plant immunity is not well understood. Loss-of-function mutations in EDR2 (ENHANCED DISEASE RESISTANCE 2) lead to increased resistance to the adapted biotrophic powdery mildew pathogen Golovinomyces cichoracearum. To study the molecular interactions between powdery mildew pathogen and Arabidopsis, we performed a screen for suppressors of edr2 and found that mutation in the gene that encodes RPN1a, a subunit of the 26S proteasome, suppressed edr2-associated disease resistance phenotypes. In addition, RPN1a is required for edr1- and pmr4-mediated powdery mildew resistance and mildew-induced cell death. Furthermore, we show that rpn1a displayed enhanced susceptibility to the fungal pathogen G. cichoracearum and to virulent and avirulent bacterial Pto DC3000 strains, which indicated that rpn1a has defects in basal defense and resistance (R) protein-mediated defense. RPN1a-GFP localizes to both the nucleus and cytoplasm. Accumulation of RPN1a is affected by salicylic acid (SA) and the rpn1a mutant has defects in SA accumulation upon Pto DC3000 infection. Further analysis revealed that two other subunits of the 26S proteasome, RPT2a and RPN8a are also involved in edr2-mediated disease resistance. Based on these results, we conclude that RPN1a is required for basal defense and R protein-mediated defense. Our data provide evidence that some subunits of the 26S proteasome are involved in innate immunity in Arabidopsis.
Collapse
Affiliation(s)
- Chunpeng Yao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
96
|
Marino D, Peeters N, Rivas S. Ubiquitination during plant immune signaling. PLANT PHYSIOLOGY 2012; 160:15-27. [PMID: 22689893 PMCID: PMC3440193 DOI: 10.1104/pp.112.199281] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/09/2012] [Indexed: 05/18/2023]
|
97
|
Takken FLW, Goverse A. How to build a pathogen detector: structural basis of NB-LRR function. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:375-84. [PMID: 22658703 DOI: 10.1016/j.pbi.2012.05.001] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/27/2012] [Accepted: 05/02/2012] [Indexed: 05/20/2023]
Abstract
Many plant disease resistance (R) proteins belong to the family of nucleotide-binding-leucine rich repeat (NB-LRR) proteins. NB-LRRs mediate recognition of pathogen-derived effector molecules and subsequently activate host defence. Their multi-domain structure allows these pathogen detectors to simultaneously act as sensor, switch and response factor. Structure-function analyses and the recent elucidation of the 3D structures of subdomains have provided new insight in how these different functions are combined and what the contribution is of the individual subdomains. Besides interdomain contacts, interactions with chaperones, the proteasome and effector baits are required to keep NB-LRRs in a signalling-competent, yet auto-inhibited state. In this review we explore operational models of NB-LRR functioning based on recent advances in understanding their structure.
Collapse
Affiliation(s)
- Frank L W Takken
- University of Amsterdam, SILS, Molecular Plant Pathology, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| | | |
Collapse
|
98
|
Cheng YT, Li X. Ubiquitination in NB-LRR-mediated immunity. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:392-9. [PMID: 22503756 DOI: 10.1016/j.pbi.2012.03.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/07/2012] [Accepted: 03/21/2012] [Indexed: 05/04/2023]
Abstract
As a common protein modification, ubiquitination is used for regulating the fate of protein targets, notably in terms of stability. In recent years, it has emerged to play key roles in the regulation of plant defense responses. Given its flexibility and critical roles in signaling, primarily in the control of protein turnover, ubiquitination is probably targeting many major immune regulators for modification or degradation. In this review, we summarize the latest findings on how different components of the ubiquitination pathway are involved in NB-LRR R protein-mediated immunity.
Collapse
Affiliation(s)
- Yu Ti Cheng
- Michael Smith Laboratories and the Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | |
Collapse
|
99
|
Heidrich K, Blanvillain-Baufumé S, Parker JE. Molecular and spatial constraints on NB-LRR receptor signaling. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:385-91. [PMID: 22503757 DOI: 10.1016/j.pbi.2012.03.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 03/22/2012] [Accepted: 03/22/2012] [Indexed: 05/24/2023]
Abstract
In plants, a large polymorphic family of intracellular NB-LRR receptors lies at the heart of robust resistance to diverse pathogens and mechanisms by which these versatile molecular switches operate in effector-triggered immunity are beginning to emerge. We outline recent advances in our understanding of NB-LRR receptor signaling leading to disease resistance. Themes covered are (i) NB-LRR molecular constraining forces and their intimate relationship with receptor activation in different parts of the cell, (ii) cooperativity between NB-LRR proteins and the formation of higher order NB-LRR signaling complexes, and (iii) the spatial separation of different resistance branches within cells. Finally, we examine evidence for dynamic signaling across cell compartments in coordinating diverse immune outputs.
Collapse
Affiliation(s)
- Katharina Heidrich
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linne Weg 10, 50829 Cologne, Germany
| | | | | |
Collapse
|
100
|
Gene discovery using mutagen-induced polymorphisms and deep sequencing: application to plant disease resistance. Genetics 2012; 192:139-46. [PMID: 22714407 DOI: 10.1534/genetics.112.141986] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Next-generation sequencing technologies are accelerating gene discovery by combining multiple steps of mapping and cloning used in the traditional map-based approach into one step using DNA sequence polymorphisms existing between two different accessions/strains/backgrounds of the same species. The existing next-generation sequencing method, like the traditional one, requires the use of a segregating population from a cross of a mutant organism in one accession with a wild-type (WT) organism in a different accession. It therefore could potentially be limited by modification of mutant phenotypes in different accessions and/or by the lengthy process required to construct a particular mapping parent in a second accession. Here we present mapping and cloning of an enhancer mutation with next-generation sequencing on bulked segregants in the same accession using sequence polymorphisms induced by a chemical mutagen. This method complements the conventional cloning approach and makes forward genetics more feasible and powerful in molecularly dissecting biological processes in any organisms. The pipeline developed in this study can be used to clone causal genes in background of single mutants or higher order of mutants and in species with or without sequence information on multiple accessions.
Collapse
|