51
|
Azab E, Kebeish R, Hegazy AK. Expression of the human gene CYP1A2 enhances tolerance and detoxification of the phenylurea herbicide linuron in Arabidopsis thaliana plants and Escherichia coli. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:281-290. [PMID: 29573710 DOI: 10.1016/j.envpol.2018.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Revised: 03/05/2018] [Accepted: 03/08/2018] [Indexed: 05/20/2023]
Abstract
The phenylurea herbicide, linuron (LIN), is used to control various types of weeds. Despite its efficient role in controlling weeds, it presents a persistent problem to the environment. In the current study, phytoremediation properties of transgenic CYP1A2 Arabidopsis thaliana plants to LIN were assessed. CYP1A2 gene was firstly cloned and expressed in bacteria before proceeding to plants. In presence of LIN, The growth of CYP1A2 expressing bacteria was superior compared to control bacteria transformed with the empty bacterial expression vector pET22b(+). No clear morphological changes were detected on CYP1A2 transgenic plants. However, significant resistance to LIN herbicide application either via spraying the foliar parts of the plant or via supplementation of the herbicide in the growth medium was observed for CYP1A2 transformants. Plant growth assays under LIN stress provide strong evidence for the enhanced capacity of transgenic lines to grow and to tolerate high concentrations of LIN compared to control plants. HPLC analyses showed that detoxification of LIN by bacterial extracts and/or transgenic plant leaves is improved as compared to the corresponding controls. Our data indicate that over expression of the human CYP1A2 gene increases the phytoremediation capacity and tolerance of Arabidopsis thaliana plants to the phenylurea herbicide linuron.
Collapse
Affiliation(s)
- Ehab Azab
- Taif University, Faculty of Science, Biotechnology Department, Taif, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - Rashad Kebeish
- Taibah University, Faculty of Science Yanbu, Biology Department, King Khalid Rd, Al amoedi, 46423, Yanbu El-Bahr, Saudi Arabia; Zagazig University, Faculty of Science, Botany and Microbiology Department, Plant Biotechnology Laboratory (PBL), El-Gamaa Street 1, 44519, Zagazig, Sharkia, Egypt.
| | - A K Hegazy
- Cairo University, Faculty of Science, Department of Botany and Microbiology, Giza, Egypt
| |
Collapse
|
52
|
Hussain I, Aleti G, Naidu R, Puschenreiter M, Mahmood Q, Rahman MM, Wang F, Shaheen S, Syed JH, Reichenauer TG. Microbe and plant assisted-remediation of organic xenobiotics and its enhancement by genetically modified organisms and recombinant technology: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1582-1599. [PMID: 30045575 DOI: 10.1016/j.scitotenv.2018.02.037] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 05/18/2023]
Abstract
Environmental problems such as the deterioration of groundwater quality, soil degradation and various threats to human, animal and ecosystem health are closely related to the presence of high concentrations of organic xenobiotics in the environment. Employing appropriate technologies to remediate contaminated soils is crucial due to the site-specificity of most remediation methods. The limitations of conventional remediation technologies include poor environmental compatibility, high cost of implementation and poor public acceptability. This raises the call to employ biological methods for remediation. Bioremediation and microbe-assisted bioremediation (phytoremediation) offer many ecological and cost-associated benefits. The overall efficiency and performance of bio- and phytoremediation approaches can be enhanced by genetically modified microbes and plants. Moreover, phytoremediation can also be stimulated by suitable plant-microbe partnerships, i.e. plant-endophytic or plant-rhizospheric associations. Synergistic interactions between recombinant bacteria and genetically modified plants can further enhance the restoration of environments impacted by organic pollutants. Nevertheless, releasing genetically modified microbes and plants into the environment does pose potential risks. These can be minimized by adopting environmental biotechnological techniques and guidelines provided by environmental protection agencies and other regulatory frameworks. The current contribution provides a comprehensive overview on enhanced bioremediation and phytoremediation approaches using transgenic plants and microbes. It also sheds light on the mitigation of associated environmental risks.
Collapse
Affiliation(s)
- Imran Hussain
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria; Department of Molecular Systems Biology, Faculty of Life Sciences, University of Vienna, Austria
| | - Gajender Aleti
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Markus Puschenreiter
- Institute of Soil Research, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Qaisar Mahmood
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shahida Shaheen
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jabir Hussain Syed
- Department of Meteorology, COMSATS Institute of Information Technology, Park Road Tarlai Kalan 45550, Islamabad, Pakistan; Department of Civil and Environmental Engineering, Hong Kong Polytechnic University, Hong Kong.
| | - Thomas G Reichenauer
- AIT Austrian Institute of Technology, Centre for Energy, Environmental Resources and Technologies, Tulln, Austria.
| |
Collapse
|
53
|
Sharma JK, Gautam RK, Nanekar SV, Weber R, Singh BK, Singh SK, Juwarkar AA. Advances and perspective in bioremediation of polychlorinated biphenyl-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16355-16375. [PMID: 28488147 PMCID: PMC6360087 DOI: 10.1007/s11356-017-8995-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 04/04/2017] [Indexed: 05/28/2023]
Abstract
In recent years, microbial degradation and bioremediation approaches of polychlorinated biphenyls (PCBs) have been studied extensively considering their toxicity, carcinogenicity and persistency potential in the environment. In this direction, different catabolic enzymes have been identified and reported for biodegradation of different PCB congeners along with optimization of biological processes. A genome analysis of PCB-degrading bacteria has led in an improved understanding of their metabolic potential and adaptation to stressful conditions. However, many stones in this area are left unturned. For example, the role and diversity of uncultivable microbes in PCB degradation are still not fully understood. Improved knowledge and understanding on this front will open up new avenues for improved bioremediation technologies which will bring economic, environmental and societal benefits. This article highlights on recent advances in bioremediation of PCBs in soil. It is demonstrated that bioremediation is the most effective and innovative technology which includes biostimulation, bioaugmentation, phytoremediation and rhizoremediation and acts as a model solution for pollution abatement. More recently, transgenic plants and genetically modified microorganisms have proved to be revolutionary in the bioremediation of PCBs. Additionally, other important aspects such as pretreatment using chemical/physical agents for enhanced biodegradation are also addressed. Efforts have been made to identify challenges, research gaps and necessary approaches which in future, can be harnessed for successful use of bioremediation under field conditions. Emphases have been given on the quality/efficiency of bioremediation technology and its related cost which determines its ultimate acceptability.
Collapse
Affiliation(s)
- Jitendra K Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Ravindra K Gautam
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
- Environmental Chemistry Research Laboratory, Department of Chemistry, University of Allahabad, Allahabad, 211002, India
| | - Sneha V Nanekar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Roland Weber
- POPs Environmental Consulting, Göppingen, Germany
| | - Brajesh K Singh
- Hawkesbury Institute for the Environment, University of Western Sidney, Sidney, Australia
| | - Sanjeev K Singh
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India
| | - Asha A Juwarkar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur, 440020, India.
| |
Collapse
|
54
|
Wu T, Xu J, Xie W, Yao Z, Yang H, Sun C, Li X. Pseudomonas aeruginosa L10: A Hydrocarbon-Degrading, Biosurfactant-Producing, and Plant-Growth-Promoting Endophytic Bacterium Isolated From a Reed ( Phragmites australis). Front Microbiol 2018; 9:1087. [PMID: 29887849 PMCID: PMC5980988 DOI: 10.3389/fmicb.2018.01087] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Bacterial endophytes with the capacity to degrade petroleum hydrocarbons and promote plant growth may facilitate phytoremediation for the removal of petroleum hydrocarbons from contaminated soils. A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium, Pseudomonas aeruginosa L10, was isolated from the roots of a reed, Phragmites australis, in the Yellow River Delta, Shandong, China. P. aeruginosa L10 efficiently degraded C10-C26n-alkanes from diesel oil, as well as common polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, and pyrene. In addition, P. aeruginosa L10 could produce biosurfactant, which was confirmed by the oil spreading method, and surface tension determination of inocula. Moreover, P. aeruginosa L10 had plant growth-stimulating attributes, including siderophore and indole-3-acetic acid (IAA) release, along with 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. To explore the mechanisms underlying the phenotypic traits of endophytic P. aeruginosa L10, we sequenced its complete genome. From the genome, we identified genes related to petroleum hydrocarbon degradation, such as putative genes encoding monooxygenase, dioxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase. Genome annotation revealed that P. aeruginosa L10 contained a gene cluster involved in the biosynthesis of rhamnolipids, rhlABRI, which should be responsible for the observed biosurfactant activity. We also identified two clusters of genes involved in the biosynthesis of siderophore (pvcABCD and pchABCDREFG). The genome also harbored tryptophan biosynthetic genes (trpAB, trpDC, trpE, trpF, and trpG) that are responsible for IAA synthesis. Moreover, the genome contained the ACC deaminase gene essential for ACC deaminase activity. This study will facilitate applications of endophytic P. aeruginosa L10 to phytoremediation by advancing the understanding of hydrocarbon degradation, biosurfactant synthesis, and mutualistic interactions between endophytes and host plants.
Collapse
Affiliation(s)
- Tao Wu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China.,Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Jie Xu
- Department of Bioengineering, Binzhou Vocational College, Binzhou, China
| | - Wenjun Xie
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China.,Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Zhigang Yao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China.,Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Hongjun Yang
- Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Chunlong Sun
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China.,Shandong Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
| | - Xiaobin Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
55
|
Anyasi RO, Atagana HI. Profiling of plants at petroleum contaminated site for phytoremediation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:352-361. [PMID: 29584469 DOI: 10.1080/15226514.2017.1393386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The paucity of information in the literature on the characteristics of plants that could be used for phytoremediation of petroleum hydrocarbons (PHC)-contaminated sites was the principal reason for this study. The aim of the study was to identify indigenous plants growing in PHC-impacted soil in Umuahia in eastern-Nigeria that have the ability to phytoremediate soils contaminated with hydrocarbons under tropical monsoon climate conditions. A total of 28 native plant species from different families growing in and around hydrocarbon-impacted soil in the vicinity of vandalized pipelines carrying petroleum products were collected and studied for their ability to grow in a hydrocarbon-impacted soil and remove the PHC from the impacted soil. Some of the plants demonstrated the ability to grow in soil with high levels of the total petroleum hydrocarbons (TPH), which shows that they may be tolerant to hydrocarbons in soil and could potentially phytoremediate a hydrocarbon-contaminated soil. Chromolaena odorata, Aspilia africana, Chloris barbata, Pasparlum vaginatum, Bryophyllum pinnatum, Paspalum scrobiculatum, Cosmos bipinnatus, Eragrostis atrovirens, Cyperus rotundus, and Uvaria chamae showed tendencies to phytoremediate contaminated soil. By using bioaccumulation coefficient (BAC) as a measure of phytoremediation, results showed that C. odorata, A. africana, and U. chamae demonstrated the highest potentials to phytodegrade hydrocarbons in soil.
Collapse
Affiliation(s)
- Raymond Oriebe Anyasi
- a Department of Environmental Sciences , University of South Africa , Pretoria , South Africa
| | | |
Collapse
|
56
|
Feng NX, Yu J, Mo CH, Zhao HM, Li YW, Wu BX, Cai QY, Li H, Zhou DM, Wong MH. Biodegradation of di-n-butyl phthalate (DBP) by a novel endophytic Bacillus megaterium strain YJB3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:117-127. [PMID: 29112835 DOI: 10.1016/j.scitotenv.2017.10.298] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/27/2017] [Accepted: 10/29/2017] [Indexed: 05/10/2023]
Abstract
Phthalic acid esters (PAEs) are a group of recalcitrant and hazardous organic compounds that pose a great threat to both ecosystem and human beings. A novel endophytic strain YJB3 that could utilize a wide range of PAEs as the sole carbon and energy sources for cell growth was isolated from Canna indica root tissue. It was identified as Bacillus megaterium based on morphological characteristics and 16S rDNA sequence homology analysis. The degradation capability of the strain YJB3 was investigated by incubation in mineral salt medium containing di-n-butyl-phthalate (DBP), one of important PAEs under different environmental conditions, showing 82.5% of the DBP removal in 5days of incubation under the optimum conditions (acetate 1.2g·L-1, inocula 1.8%, and temperature 34.2°C) achieved by two-step sequential optimization technologies. The DBP metabolites including mono-butyl phthalate (MBP), phthalic acid (PA), protocatechuic acid (PCA), etc. were determined by GC-MS. The PCA catabolic genes responsible for the aromatic ring cleavage of PCA in the strain YJB3 were excavated by whole-genome sequencing. Thus, a degradation pathway of DBP by the strain YJB3 was proposed that MBP was formed, followed by PA, and then the intermediates were further utilized till complete degradation. To our knowledge, this is the first study to show the biodegradation of PAEs using endophyte. The results in the present study suggest that the strain YJB3 is greatly promising to act as a competent inoculum in removal of PAEs in both soils and crops.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Jiao Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China.
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Bing-Xiao Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China
| | - Dong-Mei Zhou
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, PR China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, PR China
| |
Collapse
|
57
|
Gao T, Shi XY. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Arch Microbiol 2018; 200:869-876. [PMID: 29455240 DOI: 10.1007/s00203-018-1493-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/09/2018] [Indexed: 12/30/2022]
Abstract
The present study investigated the endophytic bacterial communities in the seeds of mature, natural common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.). Additionally, seed endophytic bacterial communities were compared with rhizospheric and root endophytic bacterial communities using Illumina-based sequencing. Seed endophytic bacterial communities were dominated by Proteobacteria (reed, 41.24%; cattail, 45.51%), followed by Bacteroidetes (reed, 12.01%; cattail, 10.41%), Planctomycetes (reed, 10.36%; cattail, 9.09%), Chloroflexi (reed, 8.72%; cattail, 6.45%), Thermotogae (reed, 5.43%; cattail, 6.11%), Tenericutes (reed, 3.63%; cattail, 3.97%) and Spirochaetes (reed, 3.32%; cattail, 3.90%). The dominant genera were Desulfobacter (reed, 8.02%; cattail, 8.96%), Geobacter (reed, 2.74%; cattail, 2.81%), Thiobacillus (reed, 2.71%; cattail, 2.41%), Sulfurimonas (reed, 2.47%; cattail, 2.31%), Methyloversatilis (reed, 2.29%; cattail, 2.05%) and Dechloromonas (reed, 1.13%; cattail, 1.48%). Obvious distinctions were observed among the respective rhizospheric, root endophytic and seed endophytic bacterial communities. Principal coordinate analysis with weighted UniFrac distance and the heat map analysis demonstrated that the seed endophytic bacterial communities were distinct assemblages rather than a subgroup of rhizobacterial communities or root endophytic bacterial communities. These results provide new information regarding endophytic bacteria associated with seeds of wetland plants and demonstrate a variety of genera that have a strong potential to enhance phytoremediation in the wetland ecosystem.
Collapse
Affiliation(s)
- Ting Gao
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China
| | - Xian-Yang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China.
| |
Collapse
|
58
|
Wang L, Lin H, Dong Y, He Y, Liu C. Isolation of vanadium-resistance endophytic bacterium PRE01 from Pteris vittata in stone coal smelting district and characterization for potential use in phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2018; 341:1-9. [PMID: 28759788 DOI: 10.1016/j.jhazmat.2017.07.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/29/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
This study investigates the V-resistant endophytic bacteria isolated from V-accumulator Pteris vittata grown on stone coal smelting district. Among all the ten isolates, the strain PRE01 identified as Serratia marcescens ss marcescens by Biolog GEN III MicroPlate™ was screened out by ranking first in terms of heavy metal resistance and plant growth promoting traits. The S. marcescens PRE01 had strong V, Cr and Cd resistance especially for V up to 1500mg/L. In addition, it exhibited ACC deaminase activity, siderophore production and high indoleacetic acid production (60.14mg/L) and solubilizing P potential (336.41mg/L). For heavy metal detoxification tests, PRE01 could specifically assimilate 97.6%, 21.7% and 6.6% of Cd(II), Cr(VI) and V(V) within 72h incubation. Despite the poor absorption of the two anions, most V(V) and Cr(VI) were detoxified and reduced to lower valence states by the strain. Furthermore, the isolate had the potential to facilitate the metals uptake of their hosts by changing heavy metal speciation. Our research may open up further scope of utilizing the endophyte for enhancing phytoextraction of vanadium industry contaminated soils.
Collapse
Affiliation(s)
- Liang Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yinhai He
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
59
|
Majumder A, Ray S, Jha S. Hairy Roots and Phytoremediation. REFERENCE SERIES IN PHYTOCHEMISTRY 2018. [DOI: 10.1007/978-3-319-54600-1_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
60
|
Castro RA, Dourado MN, Almeida JRD, Lacava PT, Nave A, Melo ISD, Azevedo JLD, Quecine MC. Mangrove endophyte promotes reforestation tree (Acacia polyphylla) growth. Braz J Microbiol 2018; 49:59-66. [PMID: 28774638 PMCID: PMC5790640 DOI: 10.1016/j.bjm.2017.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 03/24/2017] [Accepted: 04/19/2017] [Indexed: 11/30/2022] Open
Abstract
Mangroves are ecosystems located in the transition zone between land and sea that serve as a potential source of biotechnological resources. Brazil's extensive coast contains one of the largest mangrove forests in the world (encompassing an area of 25,000km2 along all the coast). Endophytic bacteria were isolated from the following three plant species: Rhizophora mangle, Laguncularia racemosa and Avicennia nitida. A large number of these isolates, 115 in total, were evaluated for their ability to fix nitrogen and solubilize phosphorous. Bacteria that tested positive for both of these tests were examined further to determine their level of indole acetic acid production. Two strains with high indole acetic acid production were selected for use as inoculants for reforestation trees, and then the growth of the plants was evaluated under field conditions. The bacterium Pseudomonas fluorescens (strain MCR1.10) had a low phosphorus solubilization index, while this index was higher in the other strain used, Enterobacter sp. (strain MCR1.48). We used the reforestation tree Acacia polyphylla. The results indicate that inoculation with the MCR1.48 endophyte increases Acacia polyphylla shoot dry mass, demonstrating that this strain effectively promotes the plant's growth and fitness, which can be used in the seedling production of this tree. Therefore, we successfully screened the biotechnological potential of endophyte isolates from mangrove, with a focus on plant growth promotion, and selected a strain able to provide limited nutrients and hormones for in plant growth.
Collapse
Affiliation(s)
- Renata Assis Castro
- University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Department of Genetics, Piracicaba, SP, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture (CENA), Piracicaba, SP, Brazil
| | - Manuella Nóbrega Dourado
- University of São Paulo, Biomedical Science Institute, Department of Microbiology, São Paulo, SP, Brazil.
| | - Jaqueline Raquel de Almeida
- University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Department of Genetics, Piracicaba, SP, Brazil
| | - Paulo Teixeira Lacava
- Federal University of São Carlos (UFSCar), Center for Biological and Health Sciences, Department of Morphology and Pathology, São Carlos, SP, Brazil
| | - André Nave
- BIOFLORA Comercial LTDA, Piracicaba, SP, Brazil
| | - Itamar Soares de Melo
- EMBRAPA Environment, Laboratory of Environmental Microbiology, Jaguariuna, SP, Brazil
| | - João Lucio de Azevedo
- University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Department of Genetics, Piracicaba, SP, Brazil; University of São Paulo, Center for Nuclear Energy in Agriculture (CENA), Piracicaba, SP, Brazil
| | - Maria Carolina Quecine
- University of São Paulo, Escola Superior de Agricultura "Luiz de Queiroz", Department of Genetics, Piracicaba, SP, Brazil
| |
Collapse
|
61
|
Wang Y, Lv N, Mao X, Yan Z, Wang J, Tan W, Li X, Liu H, Wang L, Xi B. Cadmium tolerance and accumulation characteristics of wetland emergent plants under hydroponic conditions. RSC Adv 2018; 8:33383-33390. [PMID: 35548110 PMCID: PMC9086468 DOI: 10.1039/c8ra04015j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/27/2018] [Indexed: 11/24/2022] Open
Abstract
For the purpose of screening a potential Cd-hyperaccumulator for Cd-contaminated soil in paddy fields, four kinds of wetland emergent plants (Iris sibirica L., Acorus calamus L., Typha orientalis Presl and Cyperus alternifolius L.) were investigated for their cadmium tolerance and accumulation characteristics under hydroponic conditions. The physiological responses of plants, Cd concentration in tissues, Cd accumulation, bioaccumulation factor (BCF) and translocation factor (TCF) were investigated to evaluate the abilities of wetland emergent plants to absorb and accumulate Cd. In comparison with the other selected emergent plants, Iris sibirica L. has the strongest Cd-tolerance for the absence of Cd toxic symptoms and a Cd concentration as high as 127.3 mg kg−1 in shoots. Due to its large biomass, the Cd accumulation could reach up to 9.4 mg per plant in roots and 5.7 mg per plant in shoots, respectively. Iris sibirica L. possesses the highest TCF, and its BCF for Cd increased with increasing concentration of spiked Cd in the hydroponic solutions. The results indicate that Iris sibirica L. is a potential Cd-hyperaccumulator that may have a strong capacity for extracting Cd from Cd-contaminated paddy soils. Four kinds of wetland emergent plants (Iris sibirica L., Acorus calamus L., Typha orientalis Presl and Cyperus alternifolius L.) were investigated for their cadmium tolerance and accumulation characteristics under hydroponic conditions.![]()
Collapse
Affiliation(s)
- Yangyang Wang
- Key Laboratory of Clean Energy of Liaoning
- College of Energy and Environment
- Shenyang Aerospace University
- Shenyang 110136
- P. R. China
| | - Ningqing Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| | - Xuhui Mao
- School of Resources and Environmental Science
- Wuhan University
- Wuhan 430070
- P. R. China
| | - Zheng Yan
- Chinese Society for Environmental Sciences
- Beijing 100012
- P. R. China
| | - Jinsheng Wang
- Shenzhen Long Cheng High-tech Environmental Protection Co., Ltd
- Shenzhen
- China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| | - Xiang Li
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| | - Hui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| | - Lei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Beijing 100012
- P. R. China
| |
Collapse
|
62
|
Jia W, Miao F, Lv S, Feng J, Zhou S, Zhang X, Wang D, Li S, Li Y. Identification for the capability of Cd-tolerance, accumulation and translocation of 96 sorghum genotypes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 145:391-397. [PMID: 28759768 DOI: 10.1016/j.ecoenv.2017.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/16/2017] [Accepted: 07/03/2017] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) pollution is a worldwide environmental problem which heavily threatens human health and food security. Sorghum, as one of the most promising energy crop, has been considered to be the source of high-quality feedstock for ethanol fuel. Ninety-six sorghum genotypes were investigated under hydroponic conditions to compare their capabilities of Cd-tolerance, accumulation and translocation for their potential in remediation of Cd contamination. Different genotypes varied largely in the tolerance to Cd stress with tolerance indexes ranked from 0.107 to 0.933. Great difference was also found in Cd uptake and accumulation with concentrations ranging from 19.0 to 202.4mg/kg in shoots and 277.0-898.3mg/kg in roots. The total amounts of Cd ranked from 6.1 to 25.8μg per plant and the highest translocation factor was over 4 times higher than the lowest one. The correlation analysis demonstrated that Cd concentration in shoot reflected the ability of Cd translocation and tolerance of sorghum, and the path coefficient analysis indicated that root biomass could be taken as a biomarker to evaluate Cd extraction ability of sorghum. The results in this study can facilitate the restoring of Cd contaminated areas by sorghum.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangfang Miao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China
| | - Shufeng Zhou
- Maize Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan, PR China
| | - Xuan Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Duoliya Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shizhong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing 100084, PR China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, PR China.
| |
Collapse
|
63
|
Tahir U, Sohail S, Khan UH. Concurrent uptake and metabolism of dyestuffs through bio-assisted phytoremediation: a symbiotic approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:22914-22931. [PMID: 28875431 DOI: 10.1007/s11356-017-0029-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 08/24/2017] [Indexed: 06/07/2023]
Abstract
Manipulation of bio-technological processes in treatment of dyestuffs has attracted considerable attention, because a large proportion of these synthetic dyes enter into natural environment during synthesis and dyeing operations that contaminates different ecosystems. Moreover, these dyestuffs are toxic and difficult to degrade because of their synthetic origin, durability, and complex aromatic molecular structures. Hence, bio-assisted phytoremediation has recently emerged as an innovative cleanup approach in which microorganisms and plants work together to transform xenobiotic dyestuffs into nontoxic or less harmful products. This manuscript will focus on competence and potential of plant-microbe synergistic systems for treatment of dyestuffs, their mixtures and real textile effluents, and effects of symbiotic relationship on plant performances during remediation process and will highlight their metabolic activities during bio-assisted phytodegradation and detoxification.
Collapse
Affiliation(s)
- Uruj Tahir
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan.
| | - Sana Sohail
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi, 46000, Pakistan
| | - Umair Hassan Khan
- Department of Microbiology, University of Agriculture Faisalabad, Sub-Campus, Toba Tek Singh, Pakistan
| |
Collapse
|
64
|
Doty SL, Freeman JL, Cohu CM, Burken JG, Firrincieli A, Simon A, Khan Z, Isebrands JG, Lukas J, Blaylock MJ. Enhanced Degradation of TCE on a Superfund Site Using Endophyte-Assisted Poplar Tree Phytoremediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10050-10058. [PMID: 28737929 DOI: 10.1021/acs.est.7b01504] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Trichloroethylene (TCE) is a widespread environmental pollutant common in groundwater plumes associated with industrial manufacturing areas. We had previously isolated and characterized a natural bacterial endophyte, Enterobacter sp. strain PDN3, of poplar trees, that rapidly metabolizes TCE, releasing chloride ion. We now report findings from a successful three-year field trial of endophyte-assisted phytoremediation on the Middlefield-Ellis-Whisman Superfund Study Area TCE plume in the Silicon Valley of California. The inoculated poplar trees exhibited increased growth and reduced TCE phytotoxic effects with a 32% increase in trunk diameter compared to mock-inoculated control poplar trees. The inoculated trees excreted 50% more chloride ion into the rhizosphere, indicative of increased TCE metabolism in planta. Data from tree core analysis of the tree tissues provided further supporting evidence of the enhanced rate of degradation of the chlorinated solvents in the inoculated trees. Test well groundwater analyses demonstrated a marked decrease in concentration of TCE and its derivatives from the tree-associated groundwater plume. The concentration of TCE decreased from 300 μg/L upstream of the planted area to less than 5 μg/L downstream of the planted area. TCE derivatives were similarly removed with cis-1,2-dichloroethene decreasing from 160 μg/L to less than 5 μg/L and trans-1,2-dichloroethene decreasing from 3.1 μg/L to less than 0.5 μg/L downstream of the planted trees. 1,1-dichloroethene and vinyl chloride both decreased from 6.8 and 0.77 μg/L, respectively, to below the reporting limit of 0.5 μg/L providing strong evidence of the ability of the endophytic inoculated trees to effectively remove TCE from affected groundwater. The combination of native pollutant-degrading endophytic bacteria and fast-growing poplar tree systems offers a readily deployable, cost-effective approach for the degradation of TCE, and may help mitigate potential transfer up the food chain, volatilization to the atmosphere, as well as direct phytotoxic impacts to plants used in this type of phytoremediation.
Collapse
Affiliation(s)
- Sharon L Doty
- University of Washington , Seattle, Washington 98195-2100, United States
| | - John L Freeman
- Intrinsyx Technologies Corporation, NASA Ames Research Park, Moffett Field, California 94035-1000, United States
| | - Christopher M Cohu
- Phytoremediation and Phytomining Consultants United, Grand Junction, Colorado 81507, United States
| | - Joel G Burken
- Department of Civil, Architectural, and Environmental Engineering, Missouri University of Science and Technology , Rolla, Missouri 65409, United States
| | - Andrea Firrincieli
- Dept. for Innovation in Biological, Agro-Food, and Forest Systems, University of Tuscia , Viterbo, Italy
| | - Andrew Simon
- Edenspace Systems Corporation , Purcellville, Virginia 20134, United States
| | - Zareen Khan
- University of Washington , Seattle, Washington 98195-2100, United States
| | - J G Isebrands
- Environmental Forestry Consultants LLC, New London, Wisconsin 54961, United States
| | - Joseph Lukas
- Earth Resources Technology, Inc., Moffett Field, California 94035, United States
| | - Michael J Blaylock
- Edenspace Systems Corporation , Purcellville, Virginia 20134, United States
| |
Collapse
|
65
|
Megharaj M, Naidu R. Soil and brownfield bioremediation. Microb Biotechnol 2017; 10:1244-1249. [PMID: 28834380 PMCID: PMC5609233 DOI: 10.1111/1751-7915.12840] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/22/2017] [Indexed: 11/26/2022] Open
Abstract
Soil contamination with petroleum hydrocarbons, persistent organic pollutants, halogenated organic chemicals and toxic metal(loid)s is a serious global problem affecting the human and ecological health. Over the past half‐century, the technological and industrial advancements have led to the creation of a large number of brownfields, most of these located in the centre of dense cities all over the world. Restoring these sites and regeneration of urban areas in a sustainable way for beneficial uses is a key priority for all industrialized nations. Bioremediation is considered a safe economical, efficient and sustainable technology for restoring the contaminated sites. This brief review presents an overview of bioremediation technologies in the context of sustainability, their applications and limitations in the reclamation of contaminated sites with an emphasis on brownfields. Also, the use of integrated approaches using the combination of chemical oxidation and bioremediation for persistent organic pollutants is discussed.
Collapse
Affiliation(s)
- Mallavarapu Megharaj
- Global Centre for Environmental Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, Faculty of Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
66
|
Liu J, Zhang X, Mo L, Yao S, Wang Y. Decapitation improves the efficiency of Cd phytoextraction by Celosia argentea Linn. CHEMOSPHERE 2017; 181:382-389. [PMID: 28458213 DOI: 10.1016/j.chemosphere.2017.04.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 06/07/2023]
Abstract
The effect of decapitation on enhancing plant growth and Cd accumulation in Celosia argentea Linn. was evaluated using a pot experiment. Decapitation significantly enhanced the growth of C. argentea. The numbers of branch and leaf in the decapitated plants (DP) were significantly higher than those in undecapitated plants (UDP, p < 0.05). Decapitation increased the biomass by 75%-105% for roots, 108%-152% for stems, and 80%-107% for leaves. Although the transpiration and photosynthesis rates were not significantly different between DP and UPD, decapitation significantly increased the total leaf area and total transpiration per plant (p < 0.05). The higher total transpiration per plant resulted in a higher leaf Cd concentration in DP. DP accumulated Cd in shoots (197, 275, and 425 μg plant-1) that were 2.5-2.8 times higher than UDP (78, 108, and 152 μg plant-1), with the soils containing 1, 5, and 10 mg kg-1 Cd. Results suggested that decapitation is a novel and convenient method to improve the phytoextraction efficiency of C. argentea in Cd contaminated soils.
Collapse
Affiliation(s)
- Jie Liu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Xuehong Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Lingyun Mo
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Shiyin Yao
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Yixuan Wang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
67
|
Legault EK, James CA, Stewart K, Muiznieks I, Doty SL, Strand SE. A Field Trial of TCE Phytoremediation by Genetically Modified Poplars Expressing Cytochrome P450 2E1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6090-6099. [PMID: 28463483 DOI: 10.1021/acs.est.5b04758] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A controlled field study was performed to evaluate the effectiveness of transgenic poplars for phytoremediation. Three hydraulically contained test beds were planted with 12 transgenic poplars, 12 wild type (WT) poplars, or left unplanted, and dosed with equivalent concentrations of trichloroethylene (TCE). Removal of TCE was enhanced in the transgenic tree bed, but not to the extent of the enhanced removal observed in laboratory studies. Total chlorinated ethene removal was 87% in the CYP2E1 bed, 85% in the WT bed, and 34% in the unplanted bed in 2012. Evapotranspiration of TCE from transgenic leaves was reduced by 80% and diffusion of TCE from transgenic stems was reduced by 90% compared to WT. Cis-dichloroethene and vinyl chloride levels were reduced in the transgenic tree bed. Chloride ion accumulated in the planted beds corresponding to the TCE loss, suggesting that contaminant dehalogenation was the primary loss fate.
Collapse
Affiliation(s)
- Emily K Legault
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| | - C Andrew James
- Center for Urban Waters, University of Washington Tacoma , Tacoma, Washington, United States
| | - Keith Stewart
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| | - Indulis Muiznieks
- College of the Environment, School of Environmental and Forest Sciences, UW Box 352100, University of Washington , Seattle, Washington, United States
| | - Sharon L Doty
- College of the Environment, School of Environmental and Forest Sciences, UW Box 352100, University of Washington , Seattle, Washington, United States
| | - Stuart E Strand
- Department of Civil and Environmental Engineering, UW Box 355014, University of Washington , Seattle, Washington, United States
| |
Collapse
|
68
|
Morillo E, Villaverde J. Advanced technologies for the remediation of pesticide-contaminated soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 586:576-597. [PMID: 28214125 DOI: 10.1016/j.scitotenv.2017.02.020] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 01/30/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
The occurrence of pesticides in soil has become a highly significant environmental problem, which has been increased by the vast use of pesticides worldwide and the absence of remediation technologies that have been tested at full-scale. The aim of this review is to give an overview on technologies really studied and/or developed during the last years for remediation of soils contaminated by pesticides. Depending on the nature of the decontamination process, these techniques have been included into three categories: containment-immobilization, separation or destruction. The review includes some considerations about the status of emerging technologies as well as their advantages, limitations, and pesticides treated. In most cases, emerging technologies, such as those based on oxidation-reduction or bioremediation, may be incorporated into existing technologies to improve their performance or overcome limitations. Research and development actions are still needed for emerging technologies to bring them for full-scale implementation.
Collapse
Affiliation(s)
- E Morillo
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain.
| | - J Villaverde
- Institute of Natural Resources and Agrobiology of Seville (IRNAS-CSIC), Av. Reina Mercedes, 10, Sevilla E-41012, Spain
| |
Collapse
|
69
|
Rozp¹dek P, Domka A, Turnau K. Chapter 29 Mycorrhizal Fungi and Accompanying Microorganisms in Improving Phytoremediation Techniques. Mycology 2017. [DOI: 10.1201/9781315119496-30] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
70
|
Navarro-Torre S, Barcia-Piedras JM, Caviedes MA, Pajuelo E, Redondo-Gómez S, Rodríguez-Llorente ID, Mateos-Naranjo E. Bioaugmentation with bacteria selected from the microbiome enhances Arthrocnemum macrostachyum metal accumulation and tolerance. MARINE POLLUTION BULLETIN 2017; 117:340-347. [PMID: 28190522 DOI: 10.1016/j.marpolbul.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 02/01/2017] [Accepted: 02/05/2017] [Indexed: 06/06/2023]
Abstract
A glasshouse experiment was designed to investigate the role of bacterial consortia isolated from the endosphere (CE) and rhizosphere (CR) of Arthrocnemum macrostachyum on its metal uptake capacity and tolerance in plants grown in metal polluted sediments. A. macrostachyum plants were randomly assigned to three bioaugmentation treatments (CE, CR and without inoculation) during 120days. Bioaugmentation with both bacterial consortia enhanced A. macrostachyum capacity to accumulate ions in its roots, while shoot ions concentration only increased with CE treatment. Furthermore bioaugmentation ameliorated the phytotoxicity levels, which was reflected in an increment of plant growth of 59 and 113% for shoots and 52 and 98% for roots with CE and CR treatments, respectively. This effect was supported by bacteria beneficial effect on photochemical apparatus and the modulation of its oxidative stress machinery. These findings indicated that bacteria selected from the microbiome can be claimed to improve A. macrostachyum metal remediation efficiency.
Collapse
Affiliation(s)
- Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - José M Barcia-Piedras
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41012 Sevilla, Spain; IFAPA Centro Las Torres -Tomejil, Ctra Sevilla-Cazalla, km 12,200, 41200 Alcalá del Río, Sevilla, Spain
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41012 Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, Calle Profesor García González, 2, 41012 Sevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, 1095, 41012 Sevilla, Spain.
| |
Collapse
|
71
|
Feng NX, Yu J, Zhao HM, Cheng YT, Mo CH, Cai QY, Li YW, Li H, Wong MH. Efficient phytoremediation of organic contaminants in soils using plant-endophyte partnerships. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:352-368. [PMID: 28117167 DOI: 10.1016/j.scitotenv.2017.01.075] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 05/20/2023]
Abstract
Soil pollution with organic contaminants is one of the most intractable environmental problems today, posing serious threats to humans and the environment. Innovative strategies for remediating organic-contaminated soils are critically needed. Phytoremediation, based on the synergistic actions of plants and their associated microorganisms, has been recognized as a powerful in situ approach to soil remediation. Suitable combinations of plants and their associated endophytes can improve plant growth and enhance the biodegradation of organic contaminants in the rhizosphere and/or endosphere, dramatically expediting the removal of organic pollutants from soils. However, for phytoremediation to become a more widely accepted and predictable alternative, a thorough understanding of plant-endophyte interactions is needed. Many studies have recently been conducted on the mechanisms of endophyte-assisted phytoremediation of organic contaminants in soils. In this review, we highlight the superiority of organic pollutant-degrading endophytes for practical applications in phytoremediation, summarize alternative strategies for improving phytoremediation, discuss the fundamental mechanisms of endophyte-assisted phytoremediation, and present updated information regarding the advances, challenges, and new directions in the field of endophyte-assisted phytoremediation technology.
Collapse
Affiliation(s)
- Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jiao Yu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yu-Ting Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China.
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ming-Hung Wong
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, School of Environment, Jinan University, Guangzhou 510632, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| |
Collapse
|
72
|
Gerhardt KE, Gerwing PD, Greenberg BM. Opinion: Taking phytoremediation from proven technology to accepted practice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:170-185. [PMID: 28167031 DOI: 10.1016/j.plantsci.2016.11.016] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/29/2016] [Indexed: 05/22/2023]
Abstract
Phytoremediation is the use of plants to extract, immobilize, contain and/or degrade contaminants from soil, water or air. It can be an effective strategy for on site and/or in situ removal of various contaminants from soils, including petroleum hydrocarbons (PHC), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), solvents (e.g., trichloroethylene [TCE]), munitions waste (e.g., 2,4,6-trinitrotoluene [TNT]), metal(loid)s, salt (NaCl) and radioisotopes. Commercial phytoremediation technologies appear to be underutilized globally. The primary objective of this opinion piece is to discuss how to take phytoremediation from a proven technology to an accepted practice. An overview of phytoremediation of soil is provided, with the focus on field applications, to provide a frame of reference for the subsequent discussion on better utilization of phytoremediation. We consider reasons why phytoremediation is underutilized, despite clear evidence that, under many conditions, it can be applied quite successfully in the field. We offer suggestions on how to gain greater acceptance for phytoremediation by industry and government. A new paradigm of phytomanagement, with a specific focus on using phytoremediation as a "gentle remediation option" (GRO) within a broader, long-term management strategy, is also discussed.
Collapse
Affiliation(s)
- Karen E Gerhardt
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Perry D Gerwing
- Earthmaster Environmental Strategies Inc., Calgary, AB, Canada
| | - Bruce M Greenberg
- Department of Biology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
73
|
Arslan M, Imran A, Khan QM, Afzal M. Plant-bacteria partnerships for the remediation of persistent organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4322-4336. [PMID: 26139403 DOI: 10.1007/s11356-015-4935-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 05/22/2023]
Abstract
High toxicity, bioaccumulation factor and widespread dispersal of persistent organic pollutants (POPs) cause environmental and human health hazards. The combined use of plants and bacteria is a promising approach for the remediation of soil and water contaminated with POPs. Plants provide residency and nutrients to their associated rhizosphere and endophytic bacteria. In return, the bacteria support plant growth by the degradation and detoxification of POPs. Moreover, they improve plant growth and health due to their innate plant growth-promoting mechanisms. This review provides a critical view of factors that affect absorption and translocation of POPs in plants and the limitations that plant have to deal with during the remediation of POPs. Moreover, the synergistic effects of plant-bacteria interactions in the phytoremediation of organic pollutants with special reference to POPs are discussed.
Collapse
Affiliation(s)
- Muhammad Arslan
- Earth Sciences Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Asma Imran
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Qaiser Mahmood Khan
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Afzal
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
74
|
Hernández-Vega JC, Cady B, Kayanja G, Mauriello A, Cervantes N, Gillespie A, Lavia L, Trujillo J, Alkio M, Colón-Carmona A. Detoxification of polycyclic aromatic hydrocarbons (PAHs) in Arabidopsis thaliana involves a putative flavonol synthase. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:268-280. [PMID: 27637093 PMCID: PMC5373802 DOI: 10.1016/j.jhazmat.2016.08.058] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental contaminants with cytotoxic, teratogenic and carcinogenic properties. Bioremediation studies with bacteria have led to the identification of dioxygenases (DOXs) in the first step to degrade these recalcitrant compounds. In this study, we characterized the role of the Arabidopsis thaliana AT5G05600, a putative DOX of the flavonol synthase family, in the transformation of PAHs. Phenotypic analysis of loss-of-function mutant lines showed that these plant lines were less sensitive to the toxic effects of phenanthrene, suggesting possible roles of this gene in PAH degradation in vivo. Interestingly, these mutant lines showed less accumulation of H2O2 after PAH exposure. Transgenic lines over-expressing At5g05600 showed a hypersensitive response and more oxidative stress after phenanthrene treatments. Moreover, fluorescence spectra results of biochemical assays with the recombinant His-tagged protein AT5G05600 detected chemical modifications of phenanthrene. Taken together, these results support the hypothesis that AT5G05600 is involved in the catabolism of PAHs and the accumulation of toxic intermediates during PAH biotransformation in plants. This research represents the first step in the design of transgenic plants with the potential to degrade PAHs, leading to the development of vigorous plant varieties that can reduce the levels of these pollutants in the environment.
Collapse
Affiliation(s)
- Juan C Hernández-Vega
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Brian Cady
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Gilbert Kayanja
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Anthony Mauriello
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Natalie Cervantes
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Andrea Gillespie
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Lisa Lavia
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | - Joshua Trujillo
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA
| | | | - Adán Colón-Carmona
- Department of Biology, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA 02125, USA.
| |
Collapse
|
75
|
Yadav R, Yadav N, Goutam U, Kumar S, Chaudhury A. Genetic Engineering of Poplar: Current Achievements and Future Goals. PLANT BIOTECHNOLOGY: RECENT ADVANCEMENTS AND DEVELOPMENTS 2017:361-390. [DOI: 10.1007/978-981-10-4732-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
76
|
Biotransformation of 2,4-dinitroanisole by a fungal Penicillium sp. Biodegradation 2016; 28:95-109. [PMID: 27913891 DOI: 10.1007/s10532-016-9780-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/26/2016] [Indexed: 01/28/2023]
Abstract
Insensitive munitions explosives are new formulations that are less prone to unintended detonation compared to traditional explosives. While these formulations have safety benefits, the individual constituents, such as 2,4-dinitroanisole (DNAN), have an unknown ecosystem fate with potentially toxic impacts to flora and fauna exposed to DNAN and/or its metabolites. Fungi may be useful in remediation and have been shown to degrade traditional nitroaromatic explosives, such as 2,4,6-trinitrotoluene and 2,4-dinitrotoluene, that are structurally similar to DNAN. In this study, a fungal Penicillium sp., isolated from willow trees and designated strain KH1, was shown to degrade DNAN in solution within 14 days. Stable-isotope labeled DNAN and an untargeted metabolomics approach were used to discover 13 novel transformation products. Penicillium sp. KH1 produced DNAN metabolites resulting from ortho- and para-nitroreduction, demethylation, acetylation, hydroxylation, malonylation, and sulfation. Incubations with intermediate metabolites such as 2-amino-4-nitroanisole and 4-amino-2-nitroanisole as the primary substrates confirmed putative metabolite isomerism and pathways. No ring-cleavage products were observed, consistent with other reports that mineralization of DNAN is an uncommon metabolic outcome. The production of metabolites with unknown persistence and toxicity suggests further study will be needed to implement remediation with Penicillium sp. KH1. To our knowledge, this is the first report on the biotransformation of DNAN by a fungus.
Collapse
|
77
|
Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J. The Interaction between Plants and Bacteria in the Remediation of Petroleum Hydrocarbons: An Environmental Perspective. Front Microbiol 2016; 7:1836. [PMID: 27917161 PMCID: PMC5116465 DOI: 10.3389/fmicb.2016.01836] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022] Open
Abstract
Widespread pollution of terrestrial ecosystems with petroleum hydrocarbons (PHCs) has generated a need for remediation and, given that many PHCs are biodegradable, bio- and phyto-remediation are often viable approaches for active and passive remediation. This review focuses on phytoremediation with particular interest on the interactions between and use of plant-associated bacteria to restore PHC polluted sites. Plant-associated bacteria include endophytic, phyllospheric, and rhizospheric bacteria, and cooperation between these bacteria and their host plants allows for greater plant survivability and treatment outcomes in contaminated sites. Bacterially driven PHC bioremediation is attributed to the presence of diverse suites of metabolic genes for aliphatic and aromatic hydrocarbons, along with a broader suite of physiological properties including biosurfactant production, biofilm formation, chemotaxis to hydrocarbons, and flexibility in cell-surface hydrophobicity. In soils impacted by PHC contamination, microbial bioremediation generally relies on the addition of high-energy electron acceptors (e.g., oxygen) and fertilization to supply limiting nutrients (e.g., nitrogen, phosphorous, potassium) in the face of excess PHC carbon. As an alternative, the addition of plants can greatly improve bioremediation rates and outcomes as plants provide microbial habitats, improve soil porosity (thereby increasing mass transfer of substrates and electron acceptors), and exchange limiting nutrients with their microbial counterparts. In return, plant-associated microorganisms improve plant growth by reducing soil toxicity through contaminant removal, producing plant growth promoting metabolites, liberating sequestered plant nutrients from soil, fixing nitrogen, and more generally establishing the foundations of soil nutrient cycling. In a practical and applied sense, the collective action of plants and their associated microorganisms is advantageous for remediation of PHC contaminated soil in terms of overall cost and success rates for in situ implementation in a diversity of environments. Mechanistically, there remain biological unknowns that present challenges for applying bio- and phyto-remediation technologies without having a deep prior understanding of individual target sites. In this review, evidence from traditional and modern omics technologies is discussed to provide a framework for plant-microbe interactions during PHC remediation. The potential for integrating multiple molecular and computational techniques to evaluate linkages between microbial communities, plant communities and ecosystem processes is explored with an eye on improving phytoremediation of PHC contaminated sites.
Collapse
Affiliation(s)
- Panagiotis Gkorezis
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Matteo Daghio
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
- Department of Biological Sciences, Thompson Rivers University, KamloopsBC, Canada
| | - Andrea Franzetti
- Department of Environmental Sciences, University of Milano-BicoccaMilano, Italy
| | | | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| |
Collapse
|
78
|
Luo ZB, He J, Polle A, Rennenberg H. Heavy metal accumulation and signal transduction in herbaceous and woody plants: Paving the way for enhancing phytoremediation efficiency. Biotechnol Adv 2016; 34:1131-1148. [DOI: 10.1016/j.biotechadv.2016.07.003] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 05/24/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
|
79
|
Weir E, Doty S. Social acceptability of phytoremediation: The role of risk and values. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1029-36. [PMID: 27167719 DOI: 10.1080/15226514.2016.1183571] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A former gas production site that was converted to a public park was chosen as the research location for the present study. Some of the contaminants at the site have been remediated; however, much of the soil is still contaminated with polycyclic aromatic hydrocarbons (PAHs). PAHs are toxic pollutants that have been shown to have numerous negative health effects. The primary form of remediation at the site has been capping, which is usually considered a temporary remediation strategy since it does not remove contaminants from the site but simply covers them, and this requires repeated re-capping efforts. Endophyte-assisted phytoremediation using willow shrubs is an alternative remediation strategy that could improve soil quality and permanently reduce contaminant levels in the soil. The goal of the present study was to explore the social acceptability of utilizing phytoremediation strategies. Surveys were used to explore public perceptions of the park and of using phytoremediation to clean up existing contamination. Results indicated a high level of social acceptability of phytoremediation at the park. Additionally, ecocentrism was shown to be a significant predictor of phytoremediation acceptability. Risk and anthropocentrism were not significant predictors of acceptability. Results suggest that messages intended to encourage the use and acceptability of phytoremediation should focus on the environmental benefits of phytoremediation.
Collapse
Affiliation(s)
- Ellen Weir
- a School of Environmental and Forest Sciences, University of Washington , Seattle , WA , USA
| | - Sharon Doty
- a School of Environmental and Forest Sciences, University of Washington , Seattle , WA , USA
| |
Collapse
|
80
|
Plant-assisted bioremediation of a historically PCB and heavy metal-contaminated area in Southern Italy. N Biotechnol 2016; 38:65-73. [PMID: 27686395 DOI: 10.1016/j.nbt.2016.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 09/06/2016] [Accepted: 09/23/2016] [Indexed: 11/22/2022]
Abstract
A plant-assisted bioremediation strategy was applied in an area located in Southern Italy, close to the city of Taranto, historically contaminated by polychlorinated biphenyls (PCBs) and heavy metals. A specific poplar clone (Monviso) was selected for its ability to promote organic pollutant degradation in the rhizosphere, as demonstrated elsewhere. Chemical and microbiological analyses were performed at the time of poplar planting in selected plots at different distances from the trunk (0.25-1m) and at different soil depths (0-20 and 20-40cm), at day 420. A significant decrease in PCB congeners and a reduction in all heavy metals was observed where the poplar trees were present. No evidence of PCB and heavy metal reduction was observed in the non poplar-vegetated soil. Microbial analyses (dehydrogenase activity, cell viability, microbial abundance) of the autochthonous microbial community showed an improvement in soil quality. In particular, microbial activity generally increased in the poplar-rhizosphere and a positive effect was observed in some cases at up to 1m distance from the trunk and up to 40cm depth. The Monviso clone was effective in promoting both a general decrease in contaminant occurrence and an increase in microbial activity in the chronically polluted area a little more than one year after planting.
Collapse
|
81
|
Ibañez S, Talano M, Ontañon O, Suman J, Medina MI, Macek T, Agostini E. Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N Biotechnol 2016; 33:625-635. [DOI: 10.1016/j.nbt.2015.11.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 11/25/2015] [Indexed: 01/16/2023]
|
82
|
Jia W, Lv S, Feng J, Li J, Li Y, Li S. Morphophysiological characteristic analysis demonstrated the potential of sweet sorghum (Sorghum bicolor (L.) Moench) in the phytoremediation of cadmium-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18823-31. [PMID: 27318481 DOI: 10.1007/s11356-016-7083-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/13/2016] [Indexed: 05/26/2023]
Abstract
Cadmium (Cd) contamination is a worldwide environmental problem, and remediation of Cd pollution is of great significance for food production as well as human health. Here, the responses of sweet sorghum cv. 'M-81E' to cadmium stress were studied for its potential as an energy plant in restoring soils contaminated by cadmium. In hydroponic experiments, the biomass of 'M-81E' showed no obvious change under 10 μM cadmium treatment. Cadmium concentration was the highest in roots of seedlings as well as mature plants, but in agricultural practice, the valuable and harvested parts of sweet sorghum are shoots, so promoting the translocation of cadmium to shoots is of great importance in order to improve its phytoremediation capacity. Further histochemical assays with dithizone staining revealed that cadmium was mainly concentrated in the stele of roots and scattered in intercellular space of caulicles. Moreover, the correlation analysis showed that Cd had a negative relationship with iron (Fe), zinc (Zn), and manganese (Mn) in caulicles and leaves and a positive relationship with Fe in roots. These results implied that cadmium might compete with Fe, Zn, and Mn for the transport binding sites and further prevent their translocation to shoots. In addition, transmission electron microscopic observations showed that under 100 μM cadmium treatment, the structure of chloroplast was impaired and the cell wall of vascular bundle cells in leaves and xylem and phloem cells in roots turned thicker compared to control. In summary, morphophysiological characteristic analysis demonstrated sweet sorghum can absorb cadmium and the growth is not negatively affected by mild level cadmium stress; thus, it is a promising material for the phytoremediation of cadmium-contaminated soils considering its economic benefit. This study also points out potential strategies to improve the phytoremediation capacity of sweet sorghum through genetic modification of transporters and cell wall components.
Collapse
Affiliation(s)
- Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Sulian Lv
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jihong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084, China
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Shizhong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
83
|
Ma Y, Rajkumar M, Zhang C, Freitas H. Beneficial role of bacterial endophytes in heavy metal phytoremediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 174:14-25. [PMID: 26989941 DOI: 10.1016/j.jenvman.2016.02.047] [Citation(s) in RCA: 222] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 02/20/2016] [Accepted: 02/26/2016] [Indexed: 05/10/2023]
Abstract
Phytoremediation is an emerging technology that uses plants and their associated microbes to clean up pollutants from the soil, water and air. In recent years, phytoremediation assisted by bacterial endophytes has been highly recommended for cleaning up of metal polluted soils since endophytic bacteria can alleviate metal toxicity in plant through their own metal resistance system and facilitate plant growth under metal stress. Endophytic bacteria improve plant growth in metal polluted soils in two different ways: 1) directly by producing plant growth beneficial substances including solubilization/transformation of mineral nutrients (phosphate, nitrogen and potassium), production of phytohormones, siderophores and specific enzymes; and 2) indirectly through controlling plant pathogens or by inducing a systemic resistance of plants against pathogens. Besides, they also alter metal accumulation capacity in plants by excreting metal immobilizing extracellular polymeric substances, as well as metal mobilizing organic acids and biosurfactants. The present work aims to review the progress of recent research on the isolation, identification and diversity of metal resistant endophytic bacteria and illustrate various mechanisms responsible for plant growth promotion and heavy metal detoxification/phytoaccumulation/translocation in plants.
Collapse
Affiliation(s)
- Ying Ma
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Mani Rajkumar
- Department of Life Sciences, Central University of Tamil Nadu, Tiruvarur, 610101, India
| | | | - Helena Freitas
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
84
|
Upadhyay AK, Bankoti NS, Rai UN. Studies on sustainability of simulated constructed wetland system for treatment of urban waste: Design and operation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 169:285-292. [PMID: 26773432 DOI: 10.1016/j.jenvman.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/04/2016] [Accepted: 01/05/2016] [Indexed: 06/05/2023]
Abstract
New system configurations and wide range of treatability make constructed wetland (CW) as an eco-sustainable on-site approach of waste management. Keeping this view into consideration, a novel configured three-stage simulated CW was designed to study its performance efficiency and relative importance of plants and substrate in purification processes. Two species of submerged plant i.e., Potamogeton crispus and Hydrilla verticillata were selected for this study. After 6 months of establishment, operation and maintenance of simulated wetland, enhanced reduction in physicochemical parameters was observed, which was maximum in the planted CW. The percentage removal (%) of the pollutants in three-stage mesocosms was; conductivity (60.42%), TDS (67.27%), TSS (86.10%), BOD (87.81%), NO3-N (81.28%) and PO4-P (83.54%) at 72 h of retention time. Submerged macrophyte used in simulated wetlands showed a significant time dependent accumulation of toxic metals (p ≤ 0.05). P. crispus accumulated the highest Mn (86.36 μg g(-1) dw) in its tissue followed by Cr (54.16 μg g(-1) dw), Pb (31.56 μg g(-1) dw), Zn (28.06 μg g(-1) dw) and Cu (25.76 μg g(-1) dw), respectively. In the case of H. verticillata, it was Zn (45.29), Mn (42.64), Pb (22.62), Cu (18.09) and Cr (16.31 μg g(-1) dw). Thus, results suggest that the application of simulated CW tackles the water pollution problem more efficiently and could be exploited in small community level as alternative and cost effective tools of phytoremediation.
Collapse
Affiliation(s)
- A K Upadhyay
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, India
| | - N S Bankoti
- Department of Botany, L.S.M. Govt. P.G. College, Pithoragarh, Kumaun University, Nainital, 262501, India
| | - U N Rai
- Plant Ecology and Environmental Science Division, CSIR-National Botanical Research Institute, Lucknow, 226 001, India.
| |
Collapse
|
85
|
Schöftner P, Watzinger A, Holzknecht P, Wimmer B, Reichenauer TG. Transpiration and metabolisation of TCE by willow plants - a pot experiment. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:686-692. [PMID: 26684839 DOI: 10.1080/15226514.2015.1131228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Willows were grown in glass cylinders filled with compost above water-saturated quartz sand, to trace the fate of TCE in water and plant biomass. The experiment was repeated once with the same plants in two consecutive years. TCE was added in nominal concentrations of 0, 144, 288, and 721 mg l(-1). Unplanted cylinders were set-up and spiked with nominal concentrations of 721 mg l(-1) TCE in the second year. Additionally, (13)C-enriched TCE solution (δ(13)C = 110.3 ‰) was used. Periodically, TCE content and metabolites were analyzed in water and plant biomass. The presence of TCE-degrading microorganisms was monitored via the measurement of the isotopic ratio of carbon ((13)C/(12)C) in TCE, and the abundance of (13)C-labeled microbial PLFAs (phospholipid fatty acids). More than 98% of TCE was lost via evapotranspiration from the planted pots within one month after adding TCE. Transpiration accounted to 94 to 78% of the total evapotranspiration loss. Almost 1% of TCE was metabolized in the shoots, whereby trichloroacetic acid (TCAA) and dichloroacetic acid (DCAA) were dominant metabolites; less trichloroethanol (TCOH) and TCE accumulated in plant tissues. Microbial degradation was ruled out by δ(13)C measurements of water and PLFAs. TCE had no detected influence on plant stress status as determined by chlorophyll-fluorescence and gas exchange.
Collapse
Affiliation(s)
- Philipp Schöftner
- a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Environmental Resources & Technologies , Konrad-Lorenz-Strasse, Tulln , Austria
| | - Andrea Watzinger
- a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Environmental Resources & Technologies , Konrad-Lorenz-Strasse, Tulln , Austria
| | - Philipp Holzknecht
- a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Environmental Resources & Technologies , Konrad-Lorenz-Strasse, Tulln , Austria
| | - Bernhard Wimmer
- a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Environmental Resources & Technologies , Konrad-Lorenz-Strasse, Tulln , Austria
| | - Thomas G Reichenauer
- a AIT Austrian Institute of Technology GmbH, Health & Environment Department, Environmental Resources & Technologies , Konrad-Lorenz-Strasse, Tulln , Austria
| |
Collapse
|
86
|
Azab E, Hegazy AK, El-Sharnouby ME, Abd Elsalam HE. Phytoremediation of the organic Xenobiotic simazine by p450-1a2 transgenic Arabidopsis thaliana plants. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:738-46. [PMID: 26771455 DOI: 10.1080/15226514.2015.1133559] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The potential use of human P450-transgenic plants for phytoremediation of pesticide contaminated soils was tested in laboratory and greenhouse experiments. The transgenic P450 CYP1A2 gene Arabidopsis thaliana plants metabolize number of herbicides, insecticides and industrial chemicals. The P450 isozymes CYP1A2 expressed in A. thaliana were examined regarding the herbicide simazine (SIM). Transgenic A. thaliana plants expressing CYP1A2 gene showed significant resistance to SIM supplemented either in plant growth medium or sprayed on foliar parts. The results showed that SIM produces harmful effect on both rosette diameter and primary root length of the wild type (WT) plants. In transgenic A. thaliana lines, the rosette diameter and primary root length were not affected by SIM concentrations used in this experiment. The results indicate that CYP1A2 can be used as a selectable marker for plant transformation, allowing efficient selection of transgenic lines in growth medium and/or in soil-grown plants. The transgenic A. thaliana plants exhibited a healthy growth using doses of up to 250 μmol SIM treatments, while the non-transgenic A. thaliana plants were severely damaged with doses above 50 μmol SIM treatments. The transgenic A. thaliana plants can be used as phytoremediator of environmental SIM contaminants.
Collapse
Affiliation(s)
- Ehab Azab
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- b Department of Botany , Faculty of Science, Zagazig University , Zagazig , Egypt
| | - Ahmad K Hegazy
- c Department of Botany and Microbiology , Faculty of Science, Cairo University , Giza , Egypt
| | - Mohamed E El-Sharnouby
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- d National Cent. Rad. Res. and Tech. Depart., Atomic Energy Authority Nasr City , Cairo , Egypt
| | - Hassan E Abd Elsalam
- a Department of Biotechnology , Faculty of Science, Taif University , Taif , Saudi Arabia
- e Soil and Water Technologies Department, Arid Land cultivation Research institute (ALCDI), City for Scientific Research and Technology Applications (CSAT), New Borg El-Arab , Alex , Egypt
| |
Collapse
|
87
|
Fu XY, Zhu B, Han HJ, Zhao W, Tian YS, Peng RH, Yao QH. Enhancement of naphthalene tolerance in transgenic Arabidopsis plants overexpressing the ferredoxin-like protein (ADI1) from rice. PLANT CELL REPORTS 2016; 35:17-26. [PMID: 26581951 DOI: 10.1007/s00299-015-1861-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/14/2015] [Accepted: 08/31/2015] [Indexed: 06/05/2023]
Abstract
The ADI1 Arabidopsis plants enhanced tolerance and degradation efficiency to naphthalene and had great potential for phytoremediation of naphthalene in the plant material before composting or harvesting and removal. Naphthalene is a global environmental concern, because this substance is assumed to contribute considerably to human cancer risk. Cleaning up naphthalene contamination in the environment is crucial. Phytoremediation is an efficient technology to clean up contaminants. However, no gene that can efficiently degrade exogenous recalcitrant naphthalene in plants has yet been discovered. Ferredoxin (Fd) is a key player of biological electron transfer reaction in the PAH degradation process. The biochemical pathway for bacterial degradation of naphthalene has been well investigated. In this study, a rice gene, ADI1, which codes for a putative photosynthetic-type Fd, has been transformed into Arabidopsis thaliana. The transgenic Arabidopsis plants enhanced tolerance and degradation efficiency of naphthalene. Compared with wild-type plants, transgenic plants assimilated naphthalene from the culture media faster and removed more of this substance. When taken together, our findings suggest that breeding plants with overexpressed ADI1 gene is an effective strategy to degrade naphthalene in the environment.
Collapse
Affiliation(s)
- Xiao-Yan Fu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China
| | - Bo Zhu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China
| | - Hong-Juan Han
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China
| | - Wei Zhao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China
| | - Yong-Sheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China
| | - Ri-He Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China.
| | - Quan-Hong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Road, Shanghai, 201106, People's Republic of China.
| |
Collapse
|
88
|
Mesa J, Mateos-Naranjo E, Caviedes MA, Redondo-Gómez S, Pajuelo E, Rodríguez-Llorente ID. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils. Front Microbiol 2015; 6:1450. [PMID: 26733985 PMCID: PMC4686625 DOI: 10.3389/fmicb.2015.01450] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/04/2015] [Indexed: 01/23/2023] Open
Abstract
Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes.
Collapse
Affiliation(s)
- Jennifer Mesa
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | - Enrique Mateos-Naranjo
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de SevillaSevilla, Spain
| | - Miguel A. Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | - Susana Redondo-Gómez
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de SevillaSevilla, Spain
| | - Eloisa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de SevillaSevilla, Spain
| | | |
Collapse
|
89
|
Ji P, Tang X, Jiang Y, Tong Y, Gao P, Han W. Potential of Gibberellic Acid 3 (GA3) for Enhancing the Phytoremediation Efficiency of Solanum nigrum L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:810-814. [PMID: 26471997 DOI: 10.1007/s00128-015-1670-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 10/01/2015] [Indexed: 06/05/2023]
Abstract
A microcosm experiment with artificially contaminated soils was conducted in a greenhouse to evaluate the effect of gibberellic acid 3 (GA3) on phytoremediation efficiency of Solanum nigrum L. The GA3 was applied at three different concentrations (10, 100, 1000 mg L(-1)) to S. nigrum. Results indicated that GA3 can significantly (p < 0.05) increase the biomass of S. nigrum by 56 % at 1000 mg L(-1). Concurrently, GA3 application increased Cd concentrations in the shoot of S. nigrum by 16 %. The combined effects resulted in an increase in the amount of Cd extracted by a single plant by up to 124 %. Therefore, it is possible to use GA3 to promote the Cd phytoremediation efficiency of S. nigrum.
Collapse
Affiliation(s)
- Puhui Ji
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Xiwang Tang
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yongji Jiang
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Yan'an Tong
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China.
| | - Pengcheng Gao
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Wenshe Han
- College of Resources and Environment, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
90
|
Weyens N, Thijs S, Popek R, Witters N, Przybysz A, Espenshade J, Gawronska H, Vangronsveld J, Gawronski SW. The Role of Plant-Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int J Mol Sci 2015; 16:25576-604. [PMID: 26516837 PMCID: PMC4632817 DOI: 10.3390/ijms161025576] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 01/06/2023] Open
Abstract
Since air pollution has been linked to a plethora of human health problems, strategies to improve air quality are indispensable. Despite the complexity in composition of air pollution, phytoremediation was shown to be effective in cleaning air. Plants are known to scavenge significant amounts of air pollutants on their aboveground plant parts. Leaf fall and runoff lead to transfer of (part of) the adsorbed pollutants to the soil and rhizosphere below. After uptake in the roots and leaves, plants can metabolize, sequestrate and/or excrete air pollutants. In addition, plant-associated microorganisms play an important role by degrading, detoxifying or sequestrating the pollutants and by promoting plant growth. In this review, an overview of the available knowledge about the role and potential of plant-microbe interactions to improve indoor and outdoor air quality is provided. Most importantly, common air pollutants (particulate matter, volatile organic compounds and inorganic air pollutants) and their toxicity are described. For each of these pollutant types, a concise overview of the specific contributions of the plant and its microbiome is presented. To conclude, the state of the art and its related future challenges are presented.
Collapse
Affiliation(s)
- Nele Weyens
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Robert Popek
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Nele Witters
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Arkadiusz Przybysz
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Jordan Espenshade
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Helena Gawronska
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan building D, Diepenbeek 3590, Belgium.
| | - Stanislaw W Gawronski
- Faculty of Horticulture, Biotechnology and Landscape Architecture, Warsaw University of Life Sciences, Nowoursynowska 159, Warsaw 02-766, Poland.
| |
Collapse
|
91
|
Gonzalez E, Brereton NJB, Marleau J, Guidi Nissim W, Labrecque M, Pitre FE, Joly S. Meta-transcriptomics indicates biotic cross-tolerance in willow trees cultivated on petroleum hydrocarbon contaminated soil. BMC PLANT BIOLOGY 2015; 15:246. [PMID: 26459343 PMCID: PMC4603587 DOI: 10.1186/s12870-015-0636-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/30/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND High concentrations of petroleum hydrocarbon (PHC) pollution can be hazardous to human health and leave soils incapable of supporting agricultural crops. A cheap solution, which can help restore biodiversity and bring land back to productivity, is cultivation of high biomass yielding willow trees. However, the genetic mechanisms which allow these fast-growing trees to tolerate PHCs are as yet unclear. METHODS Salix purpurea 'Fish Creek' trees were pot-grown in soil from a former petroleum refinery, either lacking or enriched with C10-C50 PHCs. De novo assembled transcriptomes were compared between tree organs and impartially annotated without a priori constraint to any organism. RESULTS Over 45% of differentially expressed genes originated from foreign organisms, the majority from the two-spotted spidermite, Tetranychus urticae. Over 99% of T. urticae transcripts were differentially expressed with greater abundance in non-contaminated trees. Plant transcripts involved in the polypropanoid pathway, including phenylalanine ammonia-lyase (PAL), had greater expression in contaminated trees whereas most resistance genes showed higher expression in non-contaminated trees. CONCLUSIONS The impartial approach to annotation of the de novo transcriptomes, allowing for the possibility for multiple species identification, was essential for interpretation of the crop's response treatment. The meta-transcriptomic pattern of expression suggests a cross-tolerance mechanism whereby abiotic stress resistance systems provide improved biotic resistance. These findings highlight a valuable but complex biotic and abiotic stress response to real-world, multidimensional contamination which could, in part, help explain why crops such as willow can produce uniquely high biomass yields on challenging marginal land.
Collapse
Affiliation(s)
- Emmanuel Gonzalez
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Nicholas J B Brereton
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Julie Marleau
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | | | - Michel Labrecque
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| | - Simon Joly
- Institut de recherche en biologie végétale, University of Montreal, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
- Montreal Botanical Gardens, 4101 Sherbrooke E, Montreal, QC, H1X 2B2, Canada.
| |
Collapse
|
92
|
El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R. "Omics" Insights into PAH Degradation toward Improved Green Remediation Biotechnologies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:11281-91. [PMID: 26352597 DOI: 10.1021/acs.est.5b01740] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This review summarizes recent knowledge of polycyclic aromatic hydrocarbons (PAHs) biotransformation by microorganisms and plants. Whereas most research has focused on PAH degradation either by plants or microorganisms separately, this review specifically addresses the interactions of plants with their rhizosphere microbial communities. Indeed, plant roots release exudates that contain various nutritional and signaling molecules that influence bacterial and fungal populations. The complex interactions of these populations play a pivotal role in the biodegradation of high-molecular-weight PAHs and other complex molecules. Emerging integrative approaches, such as (meta-) genomics, (meta-) transcriptomics, (meta-) metabolomics, and (meta-) proteomics studies are discussed, emphasizing how "omics" approaches bring new insight into decipher molecular mechanisms of PAH degradation both at the single species and community levels. Such knowledge address new pictures on how organic molecules are cometabolically degraded in a complex ecosystem and should help in setting up novel decontamination strategies based on the rhizosphere interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Abdelhak El Amrani
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Anne-Sophie Dumas
- University of Rennes 1 , CNRS/UMR 6553/OSUR, Ecosystems - Biodiversity - Evolution, 35042 Rennes Cedex, France
| | - Lukas Y Wick
- UFZ, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research , Permoserstraße 15, D-04318 Leipzig, Germany
| | - Etienne Yergeau
- National Research Council Canada, Energy, Mining and Environment, Montreal, Quebec Canada
| | - Richard Berthomé
- Plant Genomics Research Unit, UMR INRA 1165 - CNRS 8114 - UEVE , 2, Gaston Crémieux St., CP5708, 91057 Evry Cedex, France
| |
Collapse
|
93
|
Xu XJ, Sun JQ, Nie Y, Wu XL. Spirodela polyrhiza stimulates the growth of its endophytes but differentially increases their fenpropathrin-degradation capabilities. CHEMOSPHERE 2015; 125:33-40. [PMID: 25655443 DOI: 10.1016/j.chemosphere.2014.12.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 12/19/2014] [Accepted: 12/28/2014] [Indexed: 06/04/2023]
Abstract
In situ remediation of organic contaminants via physical, chemical, and biological approaches is a practical technique for cleansing contaminated water and soil. In the present study, we showed that the three bacterial strains Pseudomonas sp. E1, Klebsiella terrigena E42, and Pseudomonas sp. E46, which can infect and colonize the aquatic plant Spirodela polyrhiza, utilize fenpropathrin as the sole carbon source for growth. S. polyrhiza helped enhance fenpropathrin degradation by E46 by 17.5%, only slightly improved fenpropathrin degradation by E42, and had no effect on strain E1. The application of plant exudates and extracts from fenpropathrin-unexposed/induced plants stimulated bacterial growth of the three strains, but resulted in differential fenpropathrin degradation, suggesting that not all plants and their endophytic bacteria are suitable for coupling phytoremediation and microbial-remediation. Moreover, addition of soil sediments to a microcosm not only stimulated the growth of strain E46 but also increased the rate of fenpropathrin degradation.
Collapse
Affiliation(s)
- Xing-Jian Xu
- College of Engineering, Peking University, Beijing 100871, PR China; Shenzhen Techand Ecology & Environment Co., Ltd., 518040, PR China
| | - Ji-Quan Sun
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, PR China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, PR China.
| |
Collapse
|
94
|
|
95
|
Phieler R, Voit A, Kothe E. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 141:211-35. [PMID: 23719709 DOI: 10.1007/10_2013_200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heavy metal contamination of soil as a result of, for example, mining operations, evokes worldwide concern. The use of selected metal-accumulating plants to clean up heavy metal contaminated sites represents a sustainable and inexpensive method for remediation approaches and, at the same time, avoids destruction of soil function. Within this scenario, phytoremediation is the use of plants (directly or indirectly) to reduce the risks of contaminants in soil to the environment and human health. Microbially assisted bioremediation strategies, such as phytoextraction or phytostabilization, may increase the beneficial aspects and can be viewed as potentially useful methods for application in remediation of low and heterogeneously contaminated soil. The plant-microbe interactions in phytoremediation strategies include mutually beneficial symbiotic associations such as mycorrhiza, plant growth promoting bacteria (PGPB), or endophytic bacteria that are discussed with respect to their impact on phytoremediation approaches.
Collapse
Affiliation(s)
- René Phieler
- Institute of Microbiology-Microbial Communication, Friedrich Schiller University, Neugasse 25, 07743, Jena, Germany
| | | | | |
Collapse
|
96
|
Xie J, Liu Y, Zeng G, Liu H, Zheng B, Tang H, Xu W, Sun Z, Tan X, Nie J, Jiang Z, Gan C, Wang S. The effects of P. aeruginosa ATCC 9027 and NTA on phytoextraction of Cd by ramie (Boehmeria nivea (L.) Gaud). RSC Adv 2015. [DOI: 10.1039/c5ra13420j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of Pseudomonas aeruginosa ATCC 9027 and nitrilotriacetic acid (NTA) on Cd phytoextraction from contaminated soil by Boehmeria nivea (L.) Gaud was investigated.
Collapse
|
97
|
Weyens N, Beckers B, Schellingen K, Ceulemans R, van der Lelie D, Newman L, Taghavi S, Carleer R, Vangronsveld J. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2015; 17:40-48. [PMID: 25174423 DOI: 10.1080/15226514.2013.828016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.
Collapse
Affiliation(s)
- Nele Weyens
- a Hasselt University , Centre for Environmental Sciences , Diepenbeek , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Afzal M, Khan QM, Sessitsch A. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants. CHEMOSPHERE 2014; 117:232-42. [PMID: 25078615 DOI: 10.1016/j.chemosphere.2014.06.078] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 05/18/2023]
Abstract
Recently, there has been an increased effort to enhance the efficacy of phytoremediation of contaminated environments by exploiting plant-microbe interactions. The combined use of plants and endophytic bacteria is an emerging approach for the clean-up of soil and water polluted with organic compounds. In plant-endophyte partnerships, plants provide the habitat as well as nutrients to their associated endophytic bacteria. In response, endophytic bacteria with appropriate degradation pathways and metabolic activities enhance degradation of organic pollutants, and diminish phytotoxicity and evapotranspiration of organic pollutants. Moreover, endophytic bacteria possessing plant growth-promoting activities enhance the plant's adaptation and growth in soil and water contaminated with organic pollutants. Overall, the application of endophytic bacteria gives new insights into novel protocols to improve phytoremediation efficiency. However, successful application of plant-endophyte partnerships for the clean-up of an environment contaminated with organic compounds depends on the abundance and activity of the degrading endophyte in different plant compartments. Although many endophytic bacteria have the potential to degrade organic pollutants and improve plant growth, their contribution to enhance phytoremediation efficiency is still underestimated. A better knowledge of plant-endophyte interactions could be utilized to increase the remediation of polluted soil environments and to protect the foodstuff by decreasing agrochemical residues in food crops.
Collapse
Affiliation(s)
- Muhammad Afzal
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan.
| | - Qaiser M Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Jhang Road, Faisalabad, Pakistan
| | - Angela Sessitsch
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, 3430 Tulln, Austria
| |
Collapse
|
99
|
Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ, Xu J, Yao QH. Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12824-12832. [PMID: 25299803 DOI: 10.1021/es5015357] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genes from microbes for degrading polycyclic aromatic hydrocarbons (PAHs) are seldom used to improve the ability of plants to remediate the pollution because the initiation of the microbial degradation of PAHs is catalyzed by a multienzyme system. In this study, for the first time, we have successfully transferred the complex naphthalene dioxygenase system of Pseudomonas into Arabidopsis and rice, the model dicot and monocot plant. As in bacteria, all four genes of the naphthalene dioxygenase system can be simultaneously expressed and assembled to an active enzyme in transgenic plants. The naphthalene dioxygenase system can develop the capacity of plants to tolerate a high concentration of phenanthrene and metabolize phenanthrene in vivo. As a result, transgenic plants showed improved uptake of phenanthrene from the environment over wild-type plants. In addition, phenanthrene concentrations in shoots and roots of transgenic plants were generally lower than that of wild type plants. Transgenic plants with a naphthalene dioxygenase system bring the promise of an efficient and environmental-friendly technology for cleaning up PAHs contaminated soil and water.
Collapse
Affiliation(s)
- Ri-He Peng
- Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences , 2901 Beidi Rd, Shanghai, 201106, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Khan Z, Roman D, Kintz T, delas Alas M, Yap R, Doty S. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:12221-8. [PMID: 25275224 DOI: 10.1021/es503880t] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Endophytes have been isolated from a large diversity of plants and have been shown to enhance the remediation efficiency of plants, but little information is available on the influence of endophytic bacteria on phytoremediation of widespread environmental contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this study we selected a naturally occurring endophyte for its combined ability to colonize plant roots and degrade phenanthrene in vitro. Inoculation of two different willow clones and a grass with Pseudomonas putida PD1 was found to promote root and shoot growth and protect the plants against the phytotoxic effects of phenanthrene. There was an additional 25-40% removal of phenanthrene from soil by the willow and grasses, respectively inoculated with PD1 when compared to the uninoculated controls. Fluorescent microscopy using fluorescent protein tagging of PD1 confirmed the presence of bacteria inside the root tissue. Inoculation of willows with PD1 consistently improved the growth and health when grown in hydroponic systems with high concentrations of phenanthrene. To our knowledge this is the first time that the inoculation of willow plants has been shown to improve the degradation of PAHs and improve the health of the host plants, demonstrating the potential wide benefit to the field of natural endophyte-assisted phytoremediation.
Collapse
Affiliation(s)
- Zareen Khan
- School of Environmental and Forest Sciences, College of the Environment, University of Washington , Seattle 98195-2100, United States
| | | | | | | | | | | |
Collapse
|