51
|
Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. THE NEW PHYTOLOGIST 2019; 223:1127-1142. [PMID: 30843207 DOI: 10.1111/nph.15775] [Citation(s) in RCA: 185] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 02/20/2019] [Indexed: 05/08/2023]
Abstract
Arbuscular mycorrhiza (AM) symbiosis occurs between obligate biotrophic fungi of the phylum Glomeromycota and most land plants. The exchange of nutrients between host plants and AM fungi (AMF) is presumed to be the main benefit for the two symbiotic partners. In this review article, we outline the current concepts of nutrient exchanges within this symbiosis (mechanisms and regulation). First, we focus on phosphorus and nitrogen transfer from the fungal partner to the host plant, and on the reciprocal transfer of carbon compounds, with a highlight on a possible interplay between nitrogen and phosphorus nutrition during AM symbiosis. We further discuss potential mechanisms of regulation of these nutrient exchanges linked to membrane dynamics. The review finally addresses the common mycorrhizal networks formed AMF, which interconnect plants from similar and/or different species. Finally the best way to integrate this knowledge and the ensuing potential benefits of AM into sustainable agriculture is discussed.
Collapse
Affiliation(s)
- Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Franziska Krajinski
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Diederik van Tuinen
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Ghislaine Recorbet
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Pierre-Emmanuel Courty
- Agroécologie, AgroSup Dijon, CNRS, Univ. Bourgogne, INRA, Univ. Bourgogne Franche-Comté, F-21000, Dijon, France
| |
Collapse
|
52
|
Fernández I, Cosme M, Stringlis IA, Yu K, de Jonge R, van Wees SM, Pozo MJ, Pieterse CMJ, van der Heijden MGA. Molecular dialogue between arbuscular mycorrhizal fungi and the nonhost plant Arabidopsis thaliana switches from initial detection to antagonism. THE NEW PHYTOLOGIST 2019; 223:867-881. [PMID: 30883790 DOI: 10.1111/nph.15798] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Approximately 29% of all vascular plant species are unable to establish an arbuscular mycorrhizal (AM) symbiosis. Despite this, AM fungi (Rhizophagus spp.) are enriched in the root microbiome of the nonhost Arabidopsis thaliana, and Arabidopsis roots become colonized when AM networks nurtured by host plants are available. Here, we investigated the nonhost-AM fungus interaction by analyzing transcriptional changes in Rhizophagus, Arabidopsis and the host plant Medicago truncatula while growing in the same mycorrhizal network. In early interaction stages, Rhizophagus activated the Arabidopsis strigolactone biosynthesis genes CCD7 and CCD8, suggesting that detection of AM fungi is not completely impaired. However, in colonized Arabidopsis roots, fungal nutrient transporter genes GintPT, GintAMT2, GintMST2 and GintMST4, essential for AM symbiosis, were not activated. RNA-seq transcriptome analysis pointed to activation of costly defenses in colonized Arabidopsis roots. Moreover, Rhizophagus colonization caused a 50% reduction in shoot biomass, but also led to enhanced systemic immunity against Botrytis cinerea. This suggests that early signaling between AM fungi and Arabidopsis is not completely impaired and that incompatibility appears at later interaction stages. Moreover, Rhizophagus-mediated defenses coincide with reduced Arabidopsis growth, but also with systemic disease resistance, highlighting the multifunctional role of AM fungi in host and nonhost interactions.
Collapse
Affiliation(s)
- Iván Fernández
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marco Cosme
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ioannis A Stringlis
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ke Yu
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - SaskiaC M van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Maria J Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, 18008, Spain
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
| | - Marcel G A van der Heijden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, 3508 TB, Utrecht, the Netherlands
- Plant-Soil-Interactions, Agroscope, Zürich, 8046, Switzerland
| |
Collapse
|
53
|
Sakamoto K, Ogiwara N, Kaji T, Sugimoto Y, Ueno M, Sonoda M, Matsui A, Ishida J, Tanaka M, Totoki Y, Shinozaki K, Seki M. Transcriptome analysis of soybean (Glycine max) root genes differentially expressed in rhizobial, arbuscular mycorrhizal, and dual symbiosis. JOURNAL OF PLANT RESEARCH 2019; 132:541-568. [PMID: 31165947 DOI: 10.1007/s10265-019-01117-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 05/25/2019] [Indexed: 05/11/2023]
Abstract
Soybean (Glycine max) roots establish associations with nodule-inducing rhizobia and arbuscular mycorrhizal (AM) fungi. Both rhizobia and AM fungi have been shown to affect the activity of and colonization by the other, and their interactions can be detected within host plants. Here, we report the transcription profiles of genes differentially expressed in soybean roots in the presence of rhizobial, AM, or rhizobial-AM dual symbiosis, compared with those in control (uninoculated) roots. Following inoculation, soybean plants were grown in a glasshouse for 6 weeks; thereafter their root transcriptomes were analyzed using an oligo DNA microarray. Among the four treatments, the root nodule number and host plant growth were highest in plants with dual symbiosis. We observed that the expression of 187, 441, and 548 host genes was up-regulated and 119, 1,439, and 1,298 host genes were down-regulated during rhizobial, AM, and dual symbiosis, respectively. The expression of 34 host genes was up-regulated in each of the three symbioses. These 34 genes encoded several membrane transporters, type 1 metallothionein, and transcription factors in the MYB and bHLH families. We identified 56 host genes that were specifically up-regulated during dual symbiosis. These genes encoded several nodulin proteins, phenylpropanoid metabolism-related proteins, and carbonic anhydrase. The nodulin genes up-regulated by the AM fungal colonization probably led to the observed increases in root nodule number and host plant growth. Some other nodulin genes were down-regulated specifically during AM symbiosis. Based on the results above, we suggest that the contribution of AM fungal colonization is crucial to biological N2-fixation and host growth in soybean with rhizobial-AM dual symbiosis.
Collapse
Affiliation(s)
- Kazunori Sakamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan.
| | - Natsuko Ogiwara
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Tomomitsu Kaji
- JA ZEN-NOH Research and Development Center, 4-18-1 Higashiyawata, Hiratsuka, Kanagawa, 254-0016, Japan
| | - Yurie Sugimoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Mitsuru Ueno
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Masatoshi Sonoda
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, 271-8510, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Junko Ishida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yasushi Totoki
- Division of Cancer Genomics, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
54
|
Hestrin R, Hammer EC, Mueller CW, Lehmann J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun Biol 2019; 2:233. [PMID: 31263777 PMCID: PMC6588552 DOI: 10.1038/s42003-019-0481-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Nitrogen availability often restricts primary productivity in terrestrial ecosystems. Arbuscular mycorrhizal fungi are ubiquitous symbionts of terrestrial plants and can improve plant nitrogen acquisition, but have a limited ability to access organic nitrogen. Although other soil biota mineralize organic nitrogen into bioavailable forms, they may simultaneously compete for nitrogen, with unknown consequences for plant nutrition. Here, we show that synergies between the mycorrhizal fungus Rhizophagus irregularis and soil microbial communities have a highly non-additive effect on nitrogen acquisition by the model grass Brachypodium distachyon. These multipartite microbial synergies result in a doubling of the nitrogen that mycorrhizal plants acquire from organic matter and a tenfold increase in nitrogen acquisition compared to non-mycorrhizal plants grown in the absence of soil microbial communities. This previously unquantified multipartite relationship may contribute to more than 70 Tg of annually assimilated plant nitrogen, thereby playing a critical role in global nutrient cycling and ecosystem function.
Collapse
Affiliation(s)
- Rachel Hestrin
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Edith C. Hammer
- Department of Biology, Lund University, Box 118, 22100 Lund, Sweden
| | - Carsten W. Mueller
- Lehrstuhl für Bodenkunde, TU München, 85356 Freising-Weihenstephan, Germany
| | - Johannes Lehmann
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
- Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY 14853 USA
- Institute for Advanced Studies, TU München, 85748 Garching, Germany
| |
Collapse
|
55
|
Abstract
Phosphorous is important for life but often limiting for plants. The symbiotic pathway of phosphate uptake via arbuscular mycorrhizal fungi (AMF) is evolutionarily ancient and today occurs in natural and agricultural ecosystems alike. Plants capable of this symbiosis can obtain up to all of the phosphate from symbiotic fungi, and this offers potential means to develop crops less dependent on unsustainable P fertilizers. Here, we review the mechanisms and insights gleaned from the fine-tuned signal exchanges that orchestrate the intimate mutualistic symbiosis between plants and AMF. As the currency of trade, nutrients have signaling functions beyond being the nutritional goal of mutualism. We propose that such signaling roles and metabolic reprogramming may represent commitments for a mutualistic symbiosis that act across the stages of symbiosis development.
Collapse
Affiliation(s)
- Chai Hao Chiu
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| | - Uta Paszkowski
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom
| |
Collapse
|
56
|
Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, Ndikumana S, Beaudet D, Hainaut M, Drula E, Kuo A, Tang N, Roy S, Viala J, Henrissat B, Grigoriev IV, Corradi N, Roux C, Martin FM. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. THE NEW PHYTOLOGIST 2019; 222:1584-1598. [PMID: 30636349 DOI: 10.1111/nph.15687] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/28/2018] [Indexed: 05/21/2023]
Abstract
Glomeromycotina is a lineage of early diverging fungi that establish arbuscular mycorrhizal (AM) symbiosis with land plants. Despite their major ecological role, the genetic basis of their obligate mutualism remains largely unknown, hindering our understanding of their evolution and biology. We compared the genomes of Glomerales (Rhizophagus irregularis, Rhizophagus diaphanus, Rhizophagus cerebriforme) and Diversisporales (Gigaspora rosea) species, together with those of saprotrophic Mucoromycota, to identify gene families and processes associated with these lineages and to understand the molecular underpinning of their symbiotic lifestyle. Genomic features in Glomeromycotina appear to be very similar with a very high content in transposons and protein-coding genes, extensive duplications of protein kinase genes, and loss of genes coding for lignocellulose degradation, thiamin biosynthesis and cytosolic fatty acid synthase. Most symbiosis-related genes in R. irregularis and G. rosea are specific to Glomeromycotina. We also confirmed that the present species have a homokaryotic genome organisation. The high interspecific diversity of Glomeromycotina gene repertoires, affecting all known protein domains, as well as symbiosis-related orphan genes, may explain the known adaptation of Glomeromycotina to a wide range of environmental settings. Our findings contribute to an increasingly detailed portrait of genomic features defining the biology of AM fungi.
Collapse
Affiliation(s)
- Emmanuelle Morin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Shingo Miyauchi
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Adrian Pelin
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | | | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Mathieu Hainaut
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Elodie Drula
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
| | - Alan Kuo
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Sébastien Roy
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Julie Viala
- Agronutrition- rue Pierre et Marie Curie, Immeuble BIOSTEP, 31670, Labège, France
| | - Bernard Henrissat
- CNRS, UMR 7257, Aix-Marseille Université, 13007, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, 13007, Marseille, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute (JGI), Walnut Creek, CA, 94598, USA
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS, 24 Chemin de Borde Rouge-Auzeville, 31320, Castanet-Tolosan, France
| | - Francis M Martin
- Institut National de la Recherche Agronomique, Université de Lorraine, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forest University, 100080, Beijing, China
| |
Collapse
|
57
|
Mateus ID, Masclaux FG, Aletti C, Rojas EC, Savary R, Dupuis C, Sanders IR. Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. THE ISME JOURNAL 2019; 13:1226-1238. [PMID: 30647457 PMCID: PMC6474227 DOI: 10.1038/s41396-018-0342-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/05/2018] [Accepted: 12/11/2018] [Indexed: 01/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) impact plant growth and are a major driver of plant diversity and productivity. We quantified the contribution of intra-specific genetic variability in cassava (Manihot esculenta) and Rhizophagus irregularis to gene reprogramming in symbioses using dual RNA-sequencing. A large number of cassava genes exhibited altered transcriptional responses to the fungus but transcription of most of these plant genes (72%) responded in a different direction or magnitude depending on the plant genotype. Two AMF isolates displayed large differences in their transcription, but the direction and magnitude of the transcriptional responses for a large number of these genes was also strongly influenced by the genotype of the plant host. This indicates that unlike the highly conserved plant genes necessary for the symbiosis establishment, most of the plant and fungal gene transcriptional responses are not conserved and are greatly influenced by plant and fungal genetic differences, even at the within-species level. The transcriptional variability detected allowed us to identify an extensive gene network showing the interplay in plant-fungal reprogramming in the symbiosis. Key genes illustrated that the two organisms jointly program their cytoskeleton organization during growth of the fungus inside roots. Our study reveals that plant and fungal genetic variation has a strong role in shaping the genetic reprograming in response to symbiosis, indicating considerable genotype × genotype interactions in the mycorrhizal symbiosis. Such variation needs to be considered in order to understand the molecular mechanisms between AMF and their plant hosts in natural communities.
Collapse
Affiliation(s)
- Ivan D Mateus
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Frédéric G Masclaux
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
- Vital-IT, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Consolée Aletti
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Edward C Rojas
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Romain Savary
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Cindy Dupuis
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland.
| |
Collapse
|
58
|
Silvestri A, Fiorilli V, Miozzi L, Accotto GP, Turina M, Lanfranco L. In silico analysis of fungal small RNA accumulation reveals putative plant mRNA targets in the symbiosis between an arbuscular mycorrhizal fungus and its host plant. BMC Genomics 2019; 20:169. [PMID: 30832582 PMCID: PMC6399891 DOI: 10.1186/s12864-019-5561-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/22/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Small RNAs (sRNAs) are short non-coding RNA molecules (20-30 nt) that regulate gene expression at transcriptional or post-transcriptional levels in many eukaryotic organisms, through a mechanism known as RNA interference (RNAi). Recent studies have highlighted that they are also involved in cross-kingdom communication: sRNAs can move across the contact surfaces from "donor" to "receiver" organisms and, once in the host cells of the receiver, they can target specific mRNAs, leading to a modulation of host metabolic pathways and defense responses. Very little is known about RNAi mechanism and sRNAs occurrence in Arbuscular Mycorrhizal Fungi (AMF), an important component of the plant root microbiota that provide several benefits to host plants, such as improved mineral uptake and tolerance to biotic and abiotic stress. RESULTS Taking advantage of the available genomic resources for the AMF Rhizophagus irregularis we described its putative RNAi machinery, which is characterized by a single Dicer-like (DCL) gene and an unusual expansion of Argonaute-like (AGO-like) and RNA-dependent RNA polymerase (RdRp) gene families. In silico investigations of previously published transcriptomic data and experimental assays carried out in this work provided evidence of gene expression for most of the identified sequences. Focusing on the symbiosis between R. irregularis and the model plant Medicago truncatula, we characterized the fungal sRNA population, highlighting the occurrence of an active sRNA-generating pathway and the presence of microRNA-like sequences. In silico analyses, supported by host plant degradome data, revealed that several fungal sRNAs have the potential to target M. truncatula transcripts, including some specific mRNA already shown to be modulated in roots upon AMF colonization. CONCLUSIONS The identification of RNAi-related genes, together with the characterization of the sRNAs population, suggest that R. irregularis is equipped with a functional sRNA-generating pathway. Moreover, the in silico analysis predicted 237 plant transcripts as putative targets of specific fungal sRNAs suggesting that cross-kingdom post-transcriptional gene silencing may occur during AMF colonization.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Massimo Turina
- Institute for Sustainable Plant Protection – CNR Torino, Strada delle Cacce 73, 10131 Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Viale P.A. Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
59
|
Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Review: Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:441-447. [PMID: 30824024 DOI: 10.1016/j.plantsci.2018.11.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 05/23/2023]
Abstract
Phosphorus (P) is a poorly available macronutrient essential for plant growth and development and consequently for successful crop yield and ecosystem productivity. To cope with P limitations plants have evolved strategies for enhancing P uptake and/or improving P efficiency use. The universal 450-million-yr-old arbuscular mycorrhizal (AM) (fungus-root) symbioses are one of the most successful and widespread strategies to maximize access of plants to available P. AM fungi biotrophically colonize the root cortex of most plant species and develop an extraradical mycelium which overgrows the nutrient depletion zone of the soil surrounding plant roots. This hyphal network is specialized in the acquisition of low mobility nutrients from soil, particularly P. During the last years, molecular biology techniques coupled to novel physiological approaches have provided fascinating contributions to our understanding of the mechanisms of symbiotic P transport. Mycorrhiza-specific plant phosphate transporters, which are required not only for symbiotic P transfer but also for maintenance of the symbiosis, have been identified. The present review provides an overview of the contribution of AM fungi to plant P acquisition and an update of recent findings on the physiological, molecular and regulatory mechanisms of P transport in the AM symbiosis.
Collapse
Affiliation(s)
- Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain.
| | - Concepción Azcón-Aguilar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| | - Jacob Pérez-Tienda
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, C. Profesor Albareda 1, 18008, Granada, Spain
| |
Collapse
|
60
|
Xie X, Mori N, Yoneyama K, Nomura T, Uchida K, Yoneyama K, Akiyama K. Lotuslactone, a non-canonical strigolactone from Lotus japonicus. PHYTOCHEMISTRY 2019; 157:200-205. [PMID: 30439621 DOI: 10.1016/j.phytochem.2018.10.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/07/2018] [Accepted: 10/28/2018] [Indexed: 05/23/2023]
Abstract
Root exudates from Lotus japonicus were found to contain at least three different hyphal branching-inducing compounds for the arbuscular mycorrhizal (AM) fungus Gigaspora margarita, one of which had been previously identified as (+)-5-deoxystrigol (5DS), a canonical strigolactone (SL). One of the two remaining unknown hyphal branching inducers was purified and named lotuslactone. Its structure was determined as methyl (E)-2-(3-acetoxy-2-hydroxy-7-methyl-1-oxo-1,2,3,4,5,6-hexahydroazulen-2-yl)-3-(((R)-4-methyl-5-oxo-2,5-dihydrofuran-2-yl)oxy)acrylate, by 1D and 2D NMR spectroscopy, and HR-ESI- and EI-MS. Although lotuslactone, a non-canonical SL, contains the AB-ring and the enol ether-bridged D-ring, it lacks the C-ring and has a seven-membered cycloheptadiene in the A-ring part as in medicaol, a major SL of Medicago truncatula. Lotuslactone was much less active than 5DS, but showed comparable activity to methyl carlactonoate (MeCLA) in inducing hyphal branching of G. margarita. Other natural non-canonical SLs including avenaol, heliolactone, and zealactone (methyl zealactonoate) were also found to be moderate to weak inducers of hyphal branching in the AM fungus. Lotuslactone strongly elicited seed germination in Phelipanche ramosa and Orobanche minor, but Striga hermonthica seeds were 100-fold less sensitive to this stimulant.
Collapse
Affiliation(s)
- Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan.
| | - Narumi Mori
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan.
| | - Kaori Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan; Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime, 790-8566, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan.
| | - Kenichi Uchida
- Department of Biosciences, Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551, Japan; Advanced Instrumental Analysis Center of Teikyo University, 1-1 Toyosatodai, Utsunomiya, 320-8551, Japan.
| | - Koichi Yoneyama
- Center for Bioscience Research and Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan.
| | - Kohki Akiyama
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0112, Japan.
| |
Collapse
|
61
|
Bui VC, Franken P. Acclimatization of Rhizophagus irregularis Enhances Zn Tolerance of the Fungus and the Mycorrhizal Plant Partner. Front Microbiol 2018; 9:3156. [PMID: 30619220 PMCID: PMC6305351 DOI: 10.3389/fmicb.2018.03156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi confer heavy metal tolerance to plants, but this characteristic differs between different AM fungal strains. We tested the hypotheses if acclimatization of an AM fungus to Zn stress is possible and if this leads also to higher Zn tolerance of mycorrhizal plants. The AM fungus Rhizophagus irregularis was acclimatized in root organ cultures (Daucus carota L.) to Zn resulting in an acclimatized (Acc+) strain. The non-acclimatized (Acc-) strain remained untreated. Fungal development and RNA accumulation of a set of stress-related genes were analyzed in root organ cultures and the capacity of conferring Zn tolerance to maize plants was investigated in pot cultures. Development of Acc+ strain was significantly higher than Acc- strain, when strains were grown in Zn-enriched root organ cultures, whereas the growth of the Acc+ strain was reduced on normal medium probably due to a higher Zn demand compared to the Acc- strain. RNA accumulation analyses revealed different expression patterns of genes encoding glutathione S-transferase (RiGST), superoxide dismutase (RiSOD) and glutaredoxin (RiGRX) between the two strains. Plants inoculated with the Acc+ strain showed higher biomass and lower Zn content than those inoculated with the Acc- strain. The results showed that R. irregularis can be acclimatized to increased amounts of Zn. This acclimatization leads not only to improved fungal development in Zn-stress conditions, but also to an increase of mycorrhiza-induced Zn tolerance of colonized plants.
Collapse
Affiliation(s)
- Van Cuong Bui
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Philipp Franken
- Leibniz-Institute of Vegetable and Ornamental Crops, Großbeeren, Germany
- Plant Physiology Department, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
62
|
Ezawa T, Saito K. How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. THE NEW PHYTOLOGIST 2018; 220:1116-1121. [PMID: 29701874 DOI: 10.1111/nph.15187] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/22/2018] [Indexed: 05/09/2023]
Abstract
Contents Summary 1116 I. Introduction 1116 II. Foraging for phosphate 1117 III. Fine-tuning of phosphate homeostasis 1117 IV. The frontiers: phosphate translocation and export 1119 V. Conclusions and outlook 1120 Acknowledgements 1120 References 1120 SUMMARY: Arbuscular mycorrhizal fungi form symbiotic associations with most land plants and deliver mineral nutrients, in particular phosphate, to the host. Therefore, understanding the mechanisms of phosphate acquisition and delivery in the fungi is critical for full appreciation of the mutualism in this association. Here, we provide updates on physical, chemical, and biological strategies of the fungi for phosphate acquisition, including interactions with phosphate-solubilizing bacteria, and those on the regulatory mechanisms of phosphate homeostasis based on resurveys of published genome sequences and a transcriptome with reference to the latest findings in a model fungus. For the mechanisms underlying phosphate translocation and export to the host, which are major research frontiers in this field, not only recent advances but also testable hypotheses are proposed. Lastly, we briefly discuss applicability of the latest tools to gene silencing in the fungi, which will be breakthrough techniques for comprehensive understanding of the molecular basis of fungal phosphate metabolism.
Collapse
Affiliation(s)
- Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
- Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304 Minamiminowa, Nagano, 399-4598, Japan
| |
Collapse
|
63
|
Lee SJ, Kong M, Harrison P, Hijri M. Conserved Proteins of the RNA Interference System in the Arbuscular Mycorrhizal Fungus Rhizoglomus irregulare Provide New Insight into the Evolutionary History of Glomeromycota. Genome Biol Evol 2018; 10:328-343. [PMID: 29329439 PMCID: PMC5786227 DOI: 10.1093/gbe/evy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2018] [Indexed: 11/26/2022] Open
Abstract
Horizontal gene transfer (HGT) is an important mechanism in the evolution of many living organisms particularly in Prokaryotes where genes are frequently dispersed between taxa. Although, HGT has been reported in Eukaryotes, its accumulative effect and its frequency has been questioned. Arbuscular mycorrhizal fungi (AMF) are an early diverged fungal lineage belonging to phylum Glomeromycota, whose phylogenetic position is still under debate. The history of AMF and land plant symbiosis dates back to at least 460 Ma. However, Glomeromycota are estimated to have emerged much earlier than land plants. In this study, we surveyed genomic and transcriptomic data of the model arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis) and its relatives to search for evidence of HGT that occurred during AMF evolution. Surprisingly, we found a signature of putative HGT of class I ribonuclease III protein-coding genes that occurred from autotrophic cyanobacteria genomes to R. irregulare. At least one of two HGTs was conserved among AMF species with high levels of sequence similarity. Previously, an example of intimate symbiosis between AM fungus and cyanobacteria was reported in the literature. Ribonuclease III family enzymes are important in small RNA regulation in Fungi together with two additional core proteins (Argonaute/piwi and RdRP). The eukaryotic RNA interference system found in AMF was conserved and showed homology with high sequence similarity in Mucoromycotina, a group of fungi closely related to Glomeromycota. Prior to this analysis, class I ribonuclease III has not been identified in any eukaryotes. Our results indicate that a unique acquisition of class I ribonuclease III in AMF is due to a HGT event that occurred from cyanobacteria to Glomeromycota, at the latest before the divergence of the two Glomeromycota orders Diversisporales and Glomerales.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Mengxuan Kong
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| | - Paul Harrison
- Department of Biology, McGill University, Montréal, Quebec, Canada
| | - Mohamed Hijri
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, QC, H1X 2B2, Canada
| |
Collapse
|
64
|
Beaudet D, Chen ECH, Mathieu S, Yildirir G, Ndikumana S, Dalpé Y, Séguin S, Farinelli L, Stajich JE, Corradi N. Ultra-low input transcriptomics reveal the spore functional content and phylogenetic affiliations of poorly studied arbuscular mycorrhizal fungi. DNA Res 2018; 25:217-227. [PMID: 29211832 PMCID: PMC5909441 DOI: 10.1093/dnares/dsx051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/09/2017] [Indexed: 11/24/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are a group of soil microorganisms that establish symbioses with the vast majority of land plants. To date, generation of AMF coding information has been limited to model genera that grow well axenically; Rhizoglomus and Gigaspora. Meanwhile, data on the functional gene repertoire of most AMF families is non-existent. Here, we provide primary large-scale transcriptome data from eight poorly studied AMF species (Acaulospora morrowiae, Diversispora versiforme, Scutellospora calospora, Racocetra castanea, Paraglomus brasilianum, Ambispora leptoticha, Claroideoglomus claroideum and Funneliformis mosseae) using ultra-low input ribonucleic acid (RNA)-seq approaches. Our analyses reveals that quiescent spores of many AMF species harbour a diverse functional diversity and solidify known evolutionary relationships within the group. Our findings demonstrate that RNA-seq data obtained from low-input RNA are reliable in comparison to conventional RNA-seq experiments. Thus, our methodology can potentially be used to deepen our understanding of fungal microbial function and phylogeny using minute amounts of RNA material.
Collapse
Affiliation(s)
- Denis Beaudet
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Eric C H Chen
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stephanie Mathieu
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Gokalp Yildirir
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Steve Ndikumana
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Yolande Dalpé
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada
| | - Sylvie Séguin
- Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, Ontario K1A 0C6, Canada
| | - Laurent Farinelli
- Fasteris SA, Chemin du Pont-du-Centenaire 109, Geneva 1228, Switzerland
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Nicolas Corradi
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
65
|
Keymer A, Gutjahr C. Cross-kingdom lipid transfer in arbuscular mycorrhiza symbiosis and beyond. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:137-144. [PMID: 29729528 DOI: 10.1016/j.pbi.2018.04.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhiza (AM) is a widespread symbiosis between most land plants and fungi of the Glomeromycotina, which has existed for more than 400million years. AM fungi (AMF) improve plant nutrition with mineral nutrients and conversely, their growth and development is fueled by organic carbon supplied from their host. Recent studies demonstrated independently and with different experimental approaches that lipids are transferred from plants to fungi in addition to sugars, and that AMF are dependent on this lipid supply because they lack genes encoding fatty acid synthase I subunits. Dependence on host lipids or lipid parasitism occur in a range of interorganismic associations with participants from almost all kingdoms. Thus, these phenomena seem rather common in mutualistic and parasitic interactions.
Collapse
Affiliation(s)
- Andreas Keymer
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Großhaderner Str. 2-4, 82152 Martinsried, Germany; Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany
| | - Caroline Gutjahr
- Plant Genetics, School of Life Sciences Weihenstephan, Technical University of Munich (TUM), Emil Ramann Str. 4, 85354 Freising, Germany.
| |
Collapse
|
66
|
Lee SJ, Kong M, Morse D, Hijri M. Expression of putative circadian clock components in the arbuscular mycorrhizal fungus Rhizoglomus irregulare. MYCORRHIZA 2018; 28:523-534. [PMID: 29931403 DOI: 10.1007/s00572-018-0843-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are obligatory plant symbionts that live underground, so few studies have examined their response to light. Responses to blue light by other fungi can be mediated by White Collar-1 (WC-1) and WC-2 proteins. These wc genes, together with the frequency gene (frq), also form part of the endogenous circadian clock. The clock mechanism has never been studied in AMF, although circadian growth of their hyphae in the field has been reported. Using both genomic and transcriptomic data, we have found homologs of wc-1, wc-2, and frq and related circadian clock genes in the arbuscular mycorrhizal fungus Rhizoglomus irregulare (synonym Rhizophagus irregularis). Gene expression of wc-1, wc-2, and frq was analyzed using RT-qPCR on RNA extracted from germinating spores and from fungal material cultivated in vitro with transformed carrot roots. We found that all three core clock genes were expressed in both pre- and post-mycorrhizal stages of R. irregulare growth. Similar to the model fungus Neurospora crassa, the core circadian oscillator gene frq was induced by brief light stimulation. The presence of circadian clock and output genes in R. irregulare opens the door to the study of circadian clocks in the fungal partner of plant-AMF symbiosis. Our finding also provides new insight into the evolution of the circadian frq gene in fungi.
Collapse
Affiliation(s)
- Soon-Jae Lee
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mengxuan Kong
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - David Morse
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Rue Sherbrooke Est, Montréal, Québec, H1X 2B2, Canada.
| |
Collapse
|
67
|
Kobayashi Y, Maeda T, Yamaguchi K, Kameoka H, Tanaka S, Ezawa T, Shigenobu S, Kawaguchi M. The genome of Rhizophagus clarus HR1 reveals a common genetic basis for auxotrophy among arbuscular mycorrhizal fungi. BMC Genomics 2018; 19:465. [PMID: 29914365 PMCID: PMC6007072 DOI: 10.1186/s12864-018-4853-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/04/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Mycorrhizal symbiosis is one of the most fundamental types of mutualistic plant-microbe interaction. Among the many classes of mycorrhizae, the arbuscular mycorrhizae have the most general symbiotic style and the longest history. However, the genomes of arbuscular mycorrhizal (AM) fungi are not well characterized due to difficulties in cultivation and genetic analysis. In this study, we sequenced the genome of the AM fungus Rhizophagus clarus HR1, compared the sequence with the genome sequence of the model species R. irregularis, and checked for missing genes that encode enzymes in metabolic pathways related to their obligate biotrophy. RESULTS In the genome of R. clarus, we confirmed the absence of cytosolic fatty acid synthase (FAS), whereas all mitochondrial FAS components were present. A KEGG pathway map identified the absence of genes encoding enzymes for several other metabolic pathways in the two AM fungi, including thiamine biosynthesis and the conversion of vitamin B6 derivatives. We also found that a large proportion of the genes encoding glucose-producing polysaccharide hydrolases, that are present even in ectomycorrhizal fungi, also appear to be absent in AM fungi. CONCLUSIONS In this study, we found several new genes that are absent from the genomes of AM fungi in addition to the genes previously identified as missing. Missing genes for enzymes in primary metabolic pathways imply that AM fungi may have a higher dependency on host plants than other biotrophic fungi. These missing metabolic pathways provide a genetic basis to explore the physiological characteristics and auxotrophy of AM fungi.
Collapse
Affiliation(s)
- Yuuki Kobayashi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Taro Maeda
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - Hiromu Kameoka
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Sachiko Tanaka
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
| | - Tatsuhiro Ezawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuji Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Hayama, Japan
| |
Collapse
|
68
|
Racocetra crispa (Glomeromycotina) delimited by integrative evidence based on morphology, long continuous nuclear rDNA sequencing and phylogeny. Mycol Prog 2018. [DOI: 10.1007/s11557-018-1410-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
69
|
Masclaux FG, Wyss T, Mateus-Gonzalez ID, Aletti C, Sanders IR. Variation in allele frequencies at the bg112 locus reveals unequal inheritance of nuclei in a dikaryotic isolate of the fungus Rhizophagus irregularis. MYCORRHIZA 2018; 28:369-377. [PMID: 29675619 DOI: 10.1007/s00572-018-0834-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/05/2018] [Indexed: 05/26/2023]
Abstract
The genetic state of the arbuscular mycorrhizal fungus species Rhizophagus irregularis differs among isolates, including both homokaryotic and dikaryotic isolates. Via the production of multi-nucleate axexual spores, siblings of dikaryotic isolates may inherit unequal frequencies of nucleotypes. Using bg112, a microsatellite marker, previous studies revealed that lines deriving from single spores of the dikaryotic R. irregularis isolate C3 differed in their proportions of different alleles. A genomic study of single nuclei of R. irregularis, however, suggested that this marker was a multi-copy locus and that therefore it was inappropriate to study the inheritance of nuclei in dikaryotic isolates. In this study, we first analysed whole genome data of several R. irregularis isolates and demonstrated that bg112 is indeed a single copy locus in these genomes. Thus, the bg112 locus is a suitable marker to study the relative frequency of nucleotypes in R. irregularis. Second, by using amplicon sequencing, we confirmed the existence of one allele of bg112 in two homokaryotic isolates (DAOM197198 and C2) and two alleles in the dikaryotic isolate (C3). Finally, we found that the relative proportions of two bg112 alleles differed significantly among dikaryotic single-spore lines derived from isolate C3, indicating that genetically different nucleotypes are inherited unequally in this dikaryotic R. irregularis isolate.
Collapse
Affiliation(s)
- Frédéric G Masclaux
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
- Vital-IT Group, Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Tania Wyss
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ivan D Mateus-Gonzalez
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Consolée Aletti
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland
| | - Ian R Sanders
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
70
|
Schirrmann MK, Zoller S, Croll D, Stukenbrock EH, Leuchtmann A, Fior S. Genomewide signatures of selection in Epichloë reveal candidate genes for host specialization. Mol Ecol 2018; 27:3070-3086. [PMID: 29633410 DOI: 10.1111/mec.14585] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 12/31/2022]
Abstract
Host specialization is a key process in ecological divergence and speciation of plant-associated fungi. The underlying determinants of host specialization are generally poorly understood, especially in endophytes, which constitute one of the most abundant components of the plant microbiome. We addressed the genetic basis of host specialization in two sympatric subspecies of grass-endophytic fungi from the Epichloë typhina complex: subsp. typhina and clarkii. The life cycle of these fungi entails unrestricted dispersal of gametes and sexual reproduction before infection of a new host, implying that the host imposes a selective barrier on viability of the progeny. We aimed to detect genes under divergent selection between subspecies, experiencing restricted gene flow due to adaptation to different hosts. Using pooled whole-genome sequencing data, we combined FST and DXY population statistics in genome scans and detected 57 outlier genes showing strong differentiation between the two subspecies. Genomewide analyses of nucleotide diversity (π), Tajima's D and dN/dS ratios indicated that these genes have evolved under positive selection. Genes encoding secreted proteins were enriched among the genes showing evidence of positive selection, suggesting that molecular plant-fungus interactions are strong drivers of endophyte divergence. We focused on five genes encoding secreted proteins, which were further sequenced in 28 additional isolates collected across Europe to assess genetic variation in a larger sample size. Signature of positive selection in these isolates and putative identification of pathogenic function supports our findings that these genes represent strong candidates for host specialization determinants in Epichloë endophytes. Our results highlight the role of secreted proteins as key determinants of host specialization.
Collapse
Affiliation(s)
- Melanie K Schirrmann
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland.,Research Group Molecular Diagnostics, Genomics and Bioinformatics, Agroscope, Wädenswil, Switzerland
| | - Stefan Zoller
- Genetic Diversity Centre (GDC), ETH Zürich, Zürich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.,Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Adrian Leuchtmann
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| | - Simone Fior
- Institute of Integrative Biology (IBZ), ETH Zürich, Zürich, Switzerland
| |
Collapse
|
71
|
Tamayo E, Knight SAB, Valderas A, Dancis A, Ferrol N. The arbuscular mycorrhizal fungus Rhizophagus irregularis
uses a reductive iron assimilation pathway for high-affinity iron uptake. Environ Microbiol 2018; 20:1857-1872. [DOI: 10.1111/1462-2920.14121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/26/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Elisabeth Tamayo
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Simon A. B. Knight
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Ascensión Valderas
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| | - Andrew Dancis
- Department of Medicine, Division of Hematology-Oncology; Perelman School of Medicine, University of Pennsylvania; Philadelphia PA USA
| | - Nuria Ferrol
- Departamento de Microbiología del Suelo y Sistemas Simbióticos; Estación Experimental del Zaidín, CSIC; Granada Spain
| |
Collapse
|
72
|
Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, Řezáčová V, Gutiérrez-Núñez MS, Gryndler M, Jansa J. Utilization of organic nitrogen by arbuscular mycorrhizal fungi-is there a specific role for protists and ammonia oxidizers? MYCORRHIZA 2018; 28:269-283. [PMID: 29455336 DOI: 10.1007/s00572-018-0825-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/07/2018] [Indexed: 05/14/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi can significantly contribute to plant nitrogen (N) uptake from complex organic sources, most likely in concert with activity of soil saprotrophs and other microbes releasing and transforming the N bound in organic forms. Here, we tested whether AM fungus (Rhizophagus irregularis) extraradical hyphal networks showed any preferences towards certain forms of organic N (chitin of fungal or crustacean origin, DNA, clover biomass, or albumin) administered in spatially discrete patches, and how the presence of AM fungal hyphae affected other microbes. By direct 15N labeling, we also quantified the flux of N to the plants (Andropogon gerardii) through the AM fungal hyphae from fungal chitin and from clover biomass. The AM fungal hyphae colonized patches supplemented with organic N sources significantly more than those receiving only mineral nutrients, organic carbon in form of cellulose, or nothing. Mycorrhizal plants grew 6.4-fold larger and accumulated, on average, 20.3-fold more 15N originating from the labeled organic sources than their nonmycorrhizal counterparts. Whereas the abundance of microbes (bacteria, fungi, or Acanthamoeba sp.) in the different patches was primarily driven by patch quality, we noted a consistent suppression of the microbial abundances by the presence of AM fungal hyphae. This suppression was particularly strong for ammonia oxidizing bacteria. Our results indicate that AM fungi successfully competed with the other microbes for free ammonium ions and suggest an important role for the notoriously understudied soil protists to play in recycling organic N from soil to plants via AM fungal hyphae.
Collapse
Affiliation(s)
- Petra Bukovská
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Michael Bonkowski
- Cologne Biocenter, University of Cologne, Zülpicher Strasse 47b, 50674, Köln, Germany
| | - Tereza Konvalinková
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Olena Beskid
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Martina Hujslová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - David Püschel
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Veronika Řezáčová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - María Semiramis Gutiérrez-Núñez
- Institute of Ecosystems and Sustainability Research, National Autonomous University of Mexico, Antigua Carretera a Pátzcuaro, 8701, C.P, 58190, Morelia, Michoacán, Mexico
| | - Milan Gryndler
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic
| | - Jan Jansa
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14220, Praha 4, Czech Republic.
| |
Collapse
|
73
|
Sun Z, Song J, Xin X, Xie X, Zhao B. Arbuscular Mycorrhizal Fungal 14-3-3 Proteins Are Involved in Arbuscule Formation and Responses to Abiotic Stresses During AM Symbiosis. Front Microbiol 2018; 9:91. [PMID: 29556216 PMCID: PMC5844941 DOI: 10.3389/fmicb.2018.00091] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 01/16/2018] [Indexed: 12/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are soil-borne fungi belonging to the ancient phylum Glomeromycota and are important symbionts of the arbuscular mycorrhiza, enhancing plant nutrient acquisition and resistance to various abiotic stresses. In contrast to their significant physiological implications, the molecular basis involved is poorly understood, largely due to their obligate biotrophism and complicated genetics. Here, we identify and characterize three genes termed Fm201, Ri14-3-3 and RiBMH2 that encode 14-3-3-like proteins in the AM fungi Funneliformis mosseae and Rhizophagus irregularis, respectively. The transcriptional levels of Fm201, Ri14-3-3 and RiBMH2 are strongly induced in the pre-symbiotic and symbiotic phases, including germinating spores, intraradical hyphae- and arbuscules-enriched roots. To functionally characterize the Fm201, Ri14-3-3 and RiBMH2 genes, we took advantage of a yeast heterologous system owing to the lack of AM fungal transformation systems. Our data suggest that all three genes can restore the lethal Saccharomyces cerevisiae bmh1 bmh2 double mutant on galactose-containing media. Importantly, yeast one-hybrid analysis suggests that the transcription factor RiMsn2 is able to recognize the STRE (CCCCT/AGGGG) element present in the promoter region of Fm201 gene. More importantly, Host-Induced Gene Silencing of both Ri14-3-3 and RiBMH2 in Rhizophagus irregularis impairs the arbuscule formation in AM symbiosis and inhibits the expression of symbiotic PT4 and MST2 genes from plant and fungal partners, respectively. We further subjected the AM fungus-Medicago truncatula association system to drought or salinity stress. Accordingly, the expression profiles in both mycorrhizal roots and extraradical hyphae reveal that these three 14-3-3-like genes are involved in response to drought or salinity stress. Collectively, our results provide new insights into molecular functions of the AM fungal 14-3-3 proteins in abiotic stress responses and arbuscule formation during AM symbiosis.
Collapse
Affiliation(s)
- Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiabin Song
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xi'an Xin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xianan Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
74
|
Raven JA. Evolution and palaeophysiology of the vascular system and other means of long-distance transport. Philos Trans R Soc Lond B Biol Sci 2018; 373:20160497. [PMID: 29254962 PMCID: PMC5745333 DOI: 10.1098/rstb.2016.0497] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2017] [Indexed: 12/13/2022] Open
Abstract
Photolithotrophic growth on land using atmospheric CO2 inevitably involves H2O vapour loss. Embryophytes greater than or equal to 100 mm tall are homoiohydric and endohydric with mass flow of aqueous solution through the xylem in tracheophytes. Structural details in Rhynie sporophytes enable modelling of the hydraulics of H2O supply to the transpiring surface, and the potential for gas exchange with the Devonian atmosphere. Xylem carrying H2O under tension involves programmed cell death, rigid cell walls and embolism repair; fossils provide little evidence on these functions other than the presence of lignin. The phenylalanine ammonia lyase essential for lignin synthesis came from horizontal gene transfer. Rhynie plants lack endodermes, limiting regulation of the supply of soil nutrients to shoots. The transfer of organic solutes from photosynthetic sites to growing and storage tissues involves mass flow through phloem in extant tracheophytes. Rhynie plants show little evidence of phloem; possible alternatives for transport of organic solutes are discussed. Extant examples of the arbuscular mycorrhizas found in Rhynie plants exchange soil-derived nutrients (especially P) for plant-derived organic matter, involving bidirectional mass flow along the hyphae. The aquatic cyanobacteria and the charalean Palaeonitella at Rhynie also have long-distance (relative to the size of the organism) transport.This article is part of a discussion meeting issue 'The Rhynie cherts: our earliest terrestrial ecosystem revisited'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009, Australia
| |
Collapse
|
75
|
Maldonado-Mendoza IE, Harrison MJ. RiArsB and RiMT-11: Two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol 2018; 122:121-130. [DOI: 10.1016/j.funbio.2017.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
76
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|
77
|
Chen A, Gu M, Wang S, Chen J, Xu G. Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Semin Cell Dev Biol 2018. [DOI: 10.1016/j.semcdb.2017.06.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
78
|
Plett KL. Fresh knowledge for an old relationship: new discoveries in molecular mycorrhizal research. THE NEW PHYTOLOGIST 2018; 217:26-28. [PMID: 29193224 DOI: 10.1111/nph.14875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW 2753, Australia
| |
Collapse
|
79
|
Mondo SJ, Lastovetsky OA, Gaspar ML, Schwardt NH, Barber CC, Riley R, Sun H, Grigoriev IV, Pawlowska TE. Bacterial endosymbionts influence host sexuality and reveal reproductive genes of early divergent fungi. Nat Commun 2017; 8:1843. [PMID: 29184190 PMCID: PMC5705715 DOI: 10.1038/s41467-017-02052-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Many heritable mutualisms, in which beneficial symbionts are transmitted vertically between host generations, originate as antagonisms with parasite dispersal constrained by the host. Only after the parasite gains control over its transmission is the symbiosis expected to transition from antagonism to mutualism. Here, we explore this prediction in the mutualism between the fungus Rhizopus microsporus (Rm, Mucoromycotina) and a beta-proteobacterium Burkholderia, which controls host asexual reproduction. We show that reproductive addiction of Rm to endobacteria extends to mating, and is mediated by the symbiont gaining transcriptional control of the fungal ras2 gene, which encodes a GTPase central to fungal reproductive development. We also discover candidate G-protein-coupled receptors for the perception of trisporic acids, mating pheromones unique to Mucoromycotina. Our results demonstrate that regulating host asexual proliferation and modifying its sexual reproduction are sufficient for the symbiont's control of its own transmission, needed for antagonism-to-mutualism transition in heritable symbioses. These properties establish the Rm-Burkholderia symbiosis as a powerful system for identifying reproductive genes in Mucoromycotina.
Collapse
Affiliation(s)
- Stephen J Mondo
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Olga A Lastovetsky
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, 14853, USA
| | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Nicole H Schwardt
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Colin C Barber
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Riley
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Hui Sun
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Igor V Grigoriev
- US DOE Joint Genome Institute, Walnut Creek, CA, 94598, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
80
|
Trade-Offs in Arbuscular Mycorrhizal Symbiosis: Disease Resistance, Growth Responses and Perspectives for Crop Breeding. AGRONOMY-BASEL 2017. [DOI: 10.3390/agronomy7040075] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
81
|
Santander C, Aroca R, Ruiz-Lozano JM, Olave J, Cartes P, Borie F, Cornejo P. Arbuscular mycorrhiza effects on plant performance under osmotic stress. MYCORRHIZA 2017; 27:639-657. [PMID: 28647757 DOI: 10.1007/s00572-017-0784-x] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 06/05/2017] [Indexed: 05/27/2023]
Abstract
At present, drought and soil salinity are among the most severe environmental stresses that affect the growth of plants through marked reduction of water uptake which lowers water potential, leading to osmotic stress. In general, osmotic stress causes a series of morphological, physiological, biochemical, and molecular changes that affect plant performance. Several studies have found that diverse types of soil microorganisms improve plant growth, especially when plants are under stressful conditions. Most important are the arbuscular mycorrhizal fungi (AMF) which form arbuscular mycorrhizas (AM) with approximately 80% of plant species and are present in almost all terrestrial ecosystems. Beyond the well-known role of AM in improving plant nutrient uptake, the contributions of AM to plants coping with osmotic stress merit analysis. With this review, we describe the principal direct and indirect mechanisms by which AM modify plant responses to osmotic stress, highlighting the role of AM in photosynthetic activity, water use efficiency, osmoprotectant production, antioxidant activities, and gene expression. We also discuss the potential for using AMF to improve plant performance under osmotic stress conditions and the lines of research needed to optimize AM use in plant production.
Collapse
Affiliation(s)
- Christian Santander
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Ricardo Aroca
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Juan Manuel Ruiz-Lozano
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Jorge Olave
- Centro de Investigación y Desarrollo en Recursos Hídricos (CIDERH), Universidad Arturo Prat, Vivar 493, 3er piso, Iquique, Chile
| | - Paula Cartes
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Fernando Borie
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile
| | - Pablo Cornejo
- Departamento de Ciencias Químicas y Recursos Naturales, Scientific and Technological Bioresource Nucleus BIOREN-UFRO, Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, P.O. Box 54-D, Temuco, Chile.
| |
Collapse
|
82
|
Pepe A, Sbrana C, Ferrol N, Giovannetti M. An in vivo whole-plant experimental system for the analysis of gene expression in extraradical mycorrhizal mycelium. MYCORRHIZA 2017; 27:659-668. [PMID: 28573458 DOI: 10.1007/s00572-017-0779-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 05/16/2017] [Indexed: 05/09/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish beneficial mutualistic symbioses with land plants, receiving carbon in exchange for mineral nutrients absorbed by the extraradical mycelium (ERM). With the aim of obtaining in vivo produced ERM for gene expression analyses, a whole-plant bi-dimensional experimental system was devised and tested with three host plants and three fungal symbionts. In such a system, Funneliformis mosseae in symbiosis with Cichorium intybus var. foliosum, Lactuca sativa, and Medicago sativa produced ERM whose lengths ranged from 9.8 ± 0.8 to 20.8 ± 1.2 m per plant. Since ERM produced in symbiosis with C. intybus showed the highest values for the different structural parameters assessed, this host was used to test the whole-plant system with F. mosseae, Rhizoglomus irregulare, and Funneliformis coronatus. The whole-plant system yielded 1-7 mg of ERM fresh biomass per plant per harvest, and continued producing new ERM for 6 months. Variable amounts of high-quality and intact total RNA, ranging from 15 to 65 μg RNA/mg ERM fresh weight, were extracted from the ERM of the three AMF isolates. Ammonium transporter gene expression was successfully determined in the cDNAs obtained from ERM of the three fungal symbionts by RT-qPCR using gene-specific primers designed on available (R. irregulare) and new (F. mosseae and F. coronatus) ammonium transporter gene sequences. The whole-plant experimental system represents a useful research tool for large production and easy collection of ERM for morphological, physiological, and biochemical analyses, suitable for a wide variety of AMF species, for a virtually limitless range of host plants and for studies involving diverse symbiotic interactions.
Collapse
Affiliation(s)
- Alessandra Pepe
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Cristiana Sbrana
- CNR, Institute of Agricultural Biology and Biotechnology, UOS Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Nuria Ferrol
- Departamento de Microbiologia del Suelo y Sistemas Simbioticos, Estacion Experimental del Zaidin, CSIC, Profesor Albareda 1, 18008, Granada, Spain
| | - Manuela Giovannetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| |
Collapse
|
83
|
|
84
|
Rich MK, Nouri E, Courty PE, Reinhardt D. Diet of Arbuscular Mycorrhizal Fungi: Bread and Butter? TRENDS IN PLANT SCIENCE 2017. [PMID: 28622919 DOI: 10.1016/j.tplants.2017.05.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Most plants entertain mutualistic interactions known as arbuscular mycorrhiza (AM) with soil fungi (Glomeromycota) which provide them with mineral nutrients in exchange for reduced carbon from the plant. Mycorrhizal roots represent strong carbon sinks in which hexoses are transferred from the plant host to the fungus. However, most of the carbon in AM fungi is stored in the form of lipids. The absence of the type I fatty acid synthase (FAS-I) complex from the AM fungal model species Rhizophagus irregularis suggests that lipids may also have a role in nutrition of the fungal partner. This hypothesis is supported by the concerted induction of host genes involved in lipid metabolism. We explore the possible roles of lipids in the light of recent literature on AM symbiosis.
Collapse
Affiliation(s)
- Mélanie K Rich
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Eva Nouri
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland; Present address: Agroécologie, AgroSupDijon, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Route Albert-Gockel 3, 1700 Fribourg, Switzerland.
| |
Collapse
|
85
|
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Röpenack-Lahaye EV, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 2017. [PMID: 28726631 DOI: 10.7554/elife.29107.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts.
Collapse
Affiliation(s)
- Andreas Keymer
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Priya Pimprikar
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Claudia Huber
- Biochemistry, Technical University Munich, Garching, Germany
| | - Mathias Brands
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Simone L Bucerius
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétale, Centre National de la Recherche Scientifique, Toulouse, France
| | - Verena Klingl
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | | | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| |
Collapse
|
86
|
Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, von Röpenack-Lahaye E, Wang TL, Eisenreich W, Dörmann P, Parniske M, Gutjahr C. Lipid transfer from plants to arbuscular mycorrhiza fungi. eLife 2017; 6:e29107. [PMID: 28726631 PMCID: PMC5559270 DOI: 10.7554/elife.29107] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/13/2017] [Indexed: 12/16/2022] Open
Abstract
Arbuscular mycorrhiza (AM) symbioses contribute to global carbon cycles as plant hosts divert up to 20% of photosynthate to the obligate biotrophic fungi. Previous studies suggested carbohydrates as the only form of carbon transferred to the fungi. However, de novo fatty acid (FA) synthesis has not been observed in AM fungi in absence of the plant. In a forward genetic approach, we identified two Lotus japonicus mutants defective in AM-specific paralogs of lipid biosynthesis genes (KASI and GPAT6). These mutants perturb fungal development and accumulation of emblematic fungal 16:1ω5 FAs. Using isotopolog profiling we demonstrate that 13C patterns of fungal FAs recapitulate those of wild-type hosts, indicating cross-kingdom lipid transfer from plants to fungi. This transfer of labelled FAs was not observed for the AM-specific lipid biosynthesis mutants. Thus, growth and development of beneficial AM fungi is not only fueled by sugars but depends on lipid transfer from plant hosts.
Collapse
Affiliation(s)
- Andreas Keymer
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Priya Pimprikar
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Claudia Huber
- Biochemistry, Technical University Munich, Garching, Germany
| | - Mathias Brands
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Simone L Bucerius
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétale, Centre National de la Recherche Scientifique, Toulouse, France
| | - Verena Klingl
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | | | - Trevor L Wang
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Martin Parniske
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| | - Caroline Gutjahr
- Faculty of Biology, Genetics, LMU Munich, Biocenter Martinsried, Munich, Germany
| |
Collapse
|
87
|
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017; 356:1172-1175. [DOI: 10.1126/science.aam9970] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
88
|
Montes N, Reina R, Ortiz T, Ocampo JA, García-Romera I, Aranda E. Interactions between phenolic compounds present in dry olive residues and the arbuscular mycorrhizal symbiosis. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1293-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
89
|
Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty PE. Transcriptome analysis of the Populus trichocarpa-Rhizophagus irregularis Mycorrhizal Symbiosis: Regulation of Plant and Fungal Transportomes under Nitrogen Starvation. PLANT & CELL PHYSIOLOGY 2017; 58:1003-1017. [PMID: 28387868 DOI: 10.1093/pcp/pcx044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/17/2017] [Indexed: 05/21/2023]
Abstract
Nutrient transfer is a key feature of the arbuscular mycorrhizal (AM) symbiosis. Valuable mineral nutrients are transferred from the AM fungus to the plant, increasing its fitness and productivity, and, in exchange, the AM fungus receives carbohydrates as an energy source from the plant. Here, we analyzed the transcriptome of the Populus trichocarpa-Rhizophagus irregularis symbiosis using RNA-sequencing of non-mycorrhizal or mycorrhizal fine roots, with a focus on the effect of nitrogen (N) starvation. In R. irregularis, we identified 1,015 differentially expressed genes, whereby N starvation led to a general induction of gene expression. Genes of the functional classes of cell growth, membrane biogenesis and cell structural components were highly abundant. Interestingly, N starvation also led to a general induction of fungal transporters, indicating increased nutrient demand upon N starvation. In non-mycorrhizal P. trichocarpa roots, 1,341 genes were differentially expressed under N starvation. Among the 953 down-regulated genes in N starvation, most were involved in metabolic processes including amino acids, carbohydrate and inorganic ion transport, while the 342 up-regulated genes included many defense-related genes. Mycorrhization led to the up-regulation of 549 genes mainly involved in secondary metabolite biosynthesis and transport; only 24 genes were down-regulated. Mycorrhization specifically induced expression of three ammonium transporters and one phosphate transporter, independently of the N conditions, corroborating the hypothesis that these transporters are important for symbiotic nutrient exchange. In conclusion, our data establish a framework of gene expression in the two symbiotic partners under high-N and low-N conditions.
Collapse
Affiliation(s)
- Silvia Calabrese
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Annegret Kohler
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Annette Niehl
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Claire Veneault-Fourrey
- INRA, UMR1136 Interactions Arbres-Microorganismes, Champenoux, France
- Université de Lorraine, UMR1136 Interactions Arbres-Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Thomas Boller
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
| | - Pierre-Emmanuel Courty
- Department of Environmental Sciences, Botany, Zurich-Basel Plant Science Center, University of Basel, Hebelstrasse, Basel, Switzerland
- Agroécologie, AgroSupDijon, CNRS, INRA, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
90
|
Bravo A, Brands M, Wewer V, Dörmann P, Harrison MJ. Arbuscular mycorrhiza-specific enzymes FatM and RAM2 fine-tune lipid biosynthesis to promote development of arbuscular mycorrhiza. THE NEW PHYTOLOGIST 2017; 214:1631-1645. [PMID: 28380681 DOI: 10.1111/nph.14533] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/16/2017] [Indexed: 05/04/2023]
Abstract
During arbuscular mycorrhizal symbiosis (AMS), considerable amounts of lipids are generated, modified and moved within the cell to accommodate the fungus in the root, and it has also been suggested that lipids are delivered to the fungus. To determine the mechanisms by which root cells redirect lipid biosynthesis during AMS we analyzed the roles of two lipid biosynthetic enzymes (FatM and RAM2) and an ABC transporter (STR) that are required for symbiosis and conserved uniquely in plants that engage in AMS. Complementation analyses indicated that the biochemical function of FatM overlaps with that of other Fat thioesterases, in particular FatB. The essential role of FatM in AMS was a consequence of timing and magnitude of its expression. Lipid profiles of fatm and ram2 suggested that FatM increases the outflow of 16:0 fatty acids from the plastid, for subsequent use by RAM2 to produce 16:0 β-monoacylglycerol. Thus, during AMS, high-level, specific expression of key lipid biosynthetic enzymes located in the plastid and the endoplasmic reticulum enables the root cell to fine-tune lipid biosynthesis to increase the production of β-monoacylglycerols. We propose a model in which β-monoacylglycerols, or a derivative thereof, are exported out of the root cell across the periarbuscular membrane for ultimate use by the fungus.
Collapse
Affiliation(s)
- Armando Bravo
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Mathias Brands
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Vera Wewer
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten-Strasse 13, 53115, Bonn, Germany
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
91
|
Abstract
Strigolactones are a structurally diverse class of plant hormones that control many aspects of shoot and root growth. Strigolactones are also exuded by plants into the rhizosphere, where they promote symbiotic interactions with arbuscular mycorrhizal fungi and germination of root parasitic plants in the Orobanchaceae family. Therefore, understanding how strigolactones are made, transported, and perceived may lead to agricultural innovations as well as a deeper knowledge of how plants function. Substantial progress has been made in these areas over the past decade. In this review, we focus on the molecular mechanisms, core developmental roles, and evolutionary history of strigolactone signaling. We also propose potential translational applications of strigolactone research to agriculture.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth 6009, Australia;
| | - Caroline Gutjahr
- Genetics, Faculty of Biology, LMU Munich, 82152 Martinsried, Germany;
| | - Tom Bennett
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
92
|
Wang XX, Hoffland E, Feng G, Kuyper TW. Phosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize. FRONTIERS IN PLANT SCIENCE 2017; 8:684. [PMID: 28503185 PMCID: PMC5408084 DOI: 10.3389/fpls.2017.00684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/13/2017] [Indexed: 05/17/2023]
Abstract
Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two maize (Zea mays L.) cultivars, non-inoculated or inoculated with the arbuscular mycorrhizal fungi Funneliformis mosseae or Claroideoglomus etunicatum, were grown for 45 days in two-compartment rhizoboxes, containing a root compartment and a hyphal compartment. The soil in the hyphal compartment was supplemented with 20, 100, and 200 mg P kg-1 soil as calcium phytate. We measured activity of phytase and acid phosphatase in the hyphal compartment, hyphal length density, P uptake, and plant biomass. Our results showed: (1) phytate addition increased phytase and acid phosphatase activity, and resulted in larger P uptake and plant biomass; (2) increases in P uptake and biomass were correlated with phytase activity but not with acid phosphatase activity; (3) lower phytate addition rate increased, but higher addition rate decreased hyphal length density. We conclude that P from phytate can be taken up by arbuscular mycorrhizal plants and that phytase plays a more important role in mineralizing phytate than acid phosphatase.
Collapse
Affiliation(s)
- Xin-Xin Wang
- College of Resources and Environmental Sciences and Centre for Resources, Environment and Food Security, China Agricultural UniversityBeijing, China
- Department of Soil Quality, Wageningen University and ResearchWageningen, Netherlands
| | - Ellis Hoffland
- Department of Soil Quality, Wageningen University and ResearchWageningen, Netherlands
| | - Gu Feng
- College of Resources and Environmental Sciences and Centre for Resources, Environment and Food Security, China Agricultural UniversityBeijing, China
| | - Thomas W. Kuyper
- Department of Soil Quality, Wageningen University and ResearchWageningen, Netherlands
| |
Collapse
|
93
|
Mercy L, Lucic-Mercy E, Nogales A, Poghosyan A, Schneider C, Arnholdt-Schmitt B. A Functional Approach towards Understanding the Role of the Mitochondrial Respiratory Chain in an Endomycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2017; 8:417. [PMID: 28424712 PMCID: PMC5371606 DOI: 10.3389/fpls.2017.00417] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/10/2017] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) are crucial components of fertile soils, able to provide several ecosystem services for crop production. Current economic, social and legislative contexts should drive the so-called "second green revolution" by better exploiting these beneficial microorganisms. Many challenges still need to be overcome to better understand the mycorrhizal symbiosis, among which (i) the biotrophic nature of AMF, constraining their production, while (ii) phosphate acts as a limiting factor for the optimal mycorrhizal inoculum application and effectiveness. Organism fitness and adaptation to the changing environment can be driven by the modulation of mitochondrial respiratory chain, strongly connected to the phosphorus processing. Nevertheless, the role of the respiratory function in mycorrhiza remains largely unexplored. We hypothesized that the two mitochondrial respiratory chain components, alternative oxidase (AOX) and cytochrome oxidase (COX), are involved in specific mycorrhizal behavior. For this, a complex approach was developed. At the pre-symbiotic phase (axenic conditions), we studied phenotypic responses of Rhizoglomus irregulare spores with two AOX and COX inhibitors [respectively, salicylhydroxamic acid (SHAM) and potassium cyanide (KCN)] and two growth regulators (abscisic acid - ABA and gibberellic acid - Ga3). At the symbiotic phase, we analyzed phenotypic and transcriptomic (genes involved in respiration, transport, and fermentation) responses in Solanum tuberosum/Rhizoglomus irregulare biosystem (glasshouse conditions): we monitored the effects driven by ABA, and explored the modulations induced by SHAM and KCN under five phosphorus concentrations. KCN and SHAM inhibited in vitro spore germination while ABA and Ga3 induced differential spore germination and hyphal patterns. ABA promoted mycorrhizal colonization, strong arbuscule intensity and positive mycorrhizal growth dependency (MGD). In ABA treated plants, R. irregulare induced down-regulation of StAOX gene isoforms and up-regulation of genes involved in plant COX pathway. In all phosphorus (P) concentrations, blocking AOX or COX induced opposite mycorrhizal patterns in planta: KCN induced higher Arum-type arbuscule density, positive MGD but lower root colonization compared to SHAM, which favored Paris-type formation and negative MGD. Following our results and current state-of-the-art knowledge, we discuss metabolic functions linked to respiration that may occur within mycorrhizal behavior. We highlight potential connections between AOX pathways and fermentation, and we propose new research and mycorrhizal application perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | - Birgit Arnholdt-Schmitt
- Functional Cell Reprogramming and Organism Plasticity (FunCrop), EU Marie Curie Chair, ICAAM, University of ÉvoraÉvora, Portugal
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Federal University of CearáFortaleza, Brazil
- Science and Technology Park Alentejo (PCTA)Évora, Portugal
| |
Collapse
|
94
|
Tian H, Yuan X, Duan J, Li W, Zhai B, Gao Y. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat (Triticum aestivum L.) roots colonized by arbuscular mycorrhizal fungi. PLoS One 2017; 12:e0172154. [PMID: 28207830 PMCID: PMC5312871 DOI: 10.1371/journal.pone.0172154] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/31/2017] [Indexed: 11/19/2022] Open
Abstract
Arbuscular mycorrhizal (AM) colonization of plant roots causes the down-regulation of expression of phosphate (Pi) or nitrogen (N) transporter genes involved in direct nutrient uptake pathways. The mechanism of this effect remains unknown. In the present study, we sought to determine whether the expression of Pi or N transporter genes in roots of winter wheat colonized by AM fungus responded to (1) Pi or N nutrient signals transferred from the AM extra-radical hyphae, or (2) carbon allocation changes in the AM association. A three-compartment culture system, comprising a root compartment (RC), a root and AM hyphae compartment (RHC), and an AM hyphae compartment (HC), was used to test whether the expression of Pi or N transporter genes responded to nutrients (Pi, NH4+ and NO3-) added only to the HC. Different AM inoculation density treatments (roots were inoculated with 0, 20, 50 and 200 g AM inoculum) and light regime treatments (6 hours light and 18 hours light) were established to test the effects of carbon allocation on the expression of Pi or N transporter genes in wheat roots. The expression of two Pi transporter genes (TaPT4 and TaPHT1.2), five nitrate transporter genes (TaNRT1.1, TaNRT1.2, TaNRT2.1, TaNRT2.2, and TaNRT2.3), and an ammonium transporter gene (TaAMT1.2) was quantified using real-time polymerase chain reaction. The expression of TaPT4, TaNRT2.2, and TaAMT1.2 was down-regulated by AM colonization only when roots of host plants received Pi or N nutrient signals. However, the expression of TaPHT1.2, TaNRT2.1, and TaNRT2.3 was down-regulated by AM colonization, regardless of whether there was nutrient transfer from AM hyphae. The expression of TaNRT1.2 was also down-regulated by AM colonization even when there was no nutrient transfer from AM hyphae. The present study showed that an increase in carbon consumption by the AM fungi did not necessarily result in greater down-regulation of expression of Pi or N transporter genes.
Collapse
Affiliation(s)
- Hui Tian
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolei Yuan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianfeng Duan
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhu Li
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Bingnian Zhai
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
- * E-mail:
| | - Yajun Gao
- Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
95
|
Kamel L, Tang N, Malbreil M, San Clemente H, Le Marquer M, Roux C, Frei dit Frey N. The Comparison of Expressed Candidate Secreted Proteins from Two Arbuscular Mycorrhizal Fungi Unravels Common and Specific Molecular Tools to Invade Different Host Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:124. [PMID: 28223991 PMCID: PMC5293756 DOI: 10.3389/fpls.2017.00124] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/20/2017] [Indexed: 05/19/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF), belonging to the fungal phylum Glomeromycota, form mutualistic symbioses with roots of almost 80% of land plants. The release of genomic data from the ubiquitous AMF Rhizophagus irregularis revealed that this species possesses a large set of putative secreted proteins (RiSPs) that could be of major importance for establishing the symbiosis. In the present study, we aimed to identify SPs involved in the establishment of AM symbiosis based on comparative gene expression analyses. We first curated the secretome of the R. irregularis DAOM 197198 strain based on two available genomic assemblies. Then we analyzed the expression patterns of the putative RiSPs obtained from the fungus in symbiotic association with three phylogenetically distant host plants-a monocot, a dicot and a liverwort-in comparison with non-symbiotic stages. We found that 33 out of 84 RiSPs induced in planta were commonly up-regulated in these three hosts. Most of these common RiSPs are small proteins of unknown function that may represent putative host non-specific effector proteins. We further investigated the expressed secretome of Gigaspora rosea, an AM fungal species phylogenetically distant from R. irregularis. G. rosea also presents original symbiotic features, a narrower host spectrum and a restrictive geographic distribution compared to R. irregularis. Interestingly, when analyzing up-regulated G. rosea SPs (GrSPs) in different hosts, a higher ratio of host-specific GrSPs was found compared to RiSPs. Such difference of expression patterns may mirror the restrained host spectrum of G. rosea compared to R. irregularis. Finally, we identified a set of conserved SPs, commonly up-regulated by both fungi in all hosts tested, that could correspond to common keys of AMF to colonize host plants. Our data thus highlight the specificities of two distant AM fungi and help in understanding their conserved and specific strategies to invade different hosts.
Collapse
Affiliation(s)
- Laurent Kamel
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
- Agronutrition, Laboratoire de BiotechnologiesLabege, France
| | - Nianwu Tang
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Mathilde Malbreil
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Morgane Le Marquer
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Christophe Roux
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| | - Nicolas Frei dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université Paul Sabatier - Université de Toulouse, Centre National de la Recherche ScientifiqueCastanet-Tolosan, France
| |
Collapse
|
96
|
Sugimura Y, Saito K. Transcriptional profiling of arbuscular mycorrhizal roots exposed to high levels of phosphate reveals the repression of cell cycle-related genes and secreted protein genes in Rhizophagus irregularis. MYCORRHIZA 2017; 27:139-146. [PMID: 27766430 DOI: 10.1007/s00572-016-0735-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 05/23/2023]
Abstract
The development of arbuscular mycorrhiza (AM) is strongly suppressed under high-phosphate (Pi) conditions. To investigate AM fungal responses during the suppression of AM by high Pi, we performed an RNA-seq analysis of Rhizophagus irregularis colonizing Lotus japonicus roots at different levels of Pi (20, 100, 300, and 500 μM). AM fungal colonization decreased markedly under high-Pi conditions. In total, 163 fungal genes were differentially expressed among the four Pi treatments. Among these genes, a cell cycle-regulatory gene, cyclin-dependent kinase CDK1, and several DNA replication- and mitosis-related genes were repressed under high-Pi conditions. More than 20 genes encoding secreted proteins were also downregulated by high-Pi conditions, including the strigolactone-induced putative secreted protein 1 gene that enhances AM fungal colonization. In contrast, the expression of genes related to aerobic respiration and transport in R. irregularis were largely unaffected. Our data suggest that high Pi suppresses the expression of genes associated with fungal cell cycle progression or that encode secreted proteins that may be required for intercellular hyphal growth and arbuscule formation. However, high Pi has little effect on the transcriptional regulation of the primary metabolism or transport in preformed fungal structures.
Collapse
Affiliation(s)
- Yusaku Sugimura
- Department of Bioscience and Food Production Science, Interdisciplinary Graduate School of Science and Technology, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan
| | - Katsuharu Saito
- Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
- Research Center for Fungal & Microbial Dynamism, Shinshu University, Minamiminowa, Nagano, 399-4598, Japan.
| |
Collapse
|
97
|
Abstract
ABSTRACT
Mycorrhizal fungi belong to several taxa and develop mutualistic symbiotic associations with over 90% of all plant species, from liverworts to angiosperms. While descriptive approaches have dominated the initial studies of these fascinating symbioses, the advent of molecular biology, live cell imaging, and “omics” techniques have provided new and powerful tools to decipher the cellular and molecular mechanisms that rule mutualistic plant-fungus interactions. In this article we focus on the most common mycorrhizal association, arbuscular mycorrhiza (AM), which is formed by a group of soil fungi belonging to Glomeromycota. AM fungi are believed to have assisted the conquest of dry lands by early plants around 450 million years ago and are found today in most land ecosystems. AM fungi have several peculiar biological traits, including obligate biotrophy, intracellular development inside the plant tissues, coenocytic multinucleate hyphae, and spores, as well as unique genetics, such as the putative absence of a sexual cycle, and multiple ecological functions. All of these features make the study of AM fungi as intriguing as it is challenging, and their symbiotic association with most crop plants is currently raising a broad interest in agronomic contexts for the potential use of AM fungi in sustainable production under conditions of low chemical input.
Collapse
|
98
|
Xie X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, Bonfante P, Zhao B. Arbuscular Mycorrhizal Symbiosis Requires a Phosphate Transceptor in the Gigaspora margarita Fungal Symbiont. MOLECULAR PLANT 2016; 9:1583-1608. [PMID: 27688206 DOI: 10.1016/j.molp.2016.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 08/03/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
The majority of terrestrial vascular plants are capable of forming mutualistic associations with obligate biotrophic arbuscular mycorrhizal (AM) fungi from the phylum Glomeromycota. This mutualistic symbiosis provides carbohydrates to the fungus, and reciprocally improves plant phosphate uptake. AM fungal transporters can acquire phosphate from the soil through the hyphal networks. Nevertheless, the precise functions of AM fungal phosphate transporters, and whether they act as sensors or as nutrient transporters, in fungal signal transduction remain unclear. Here, we report a high-affinity phosphate transporter GigmPT from Gigaspora margarita that is required for AM symbiosis. Host-induced gene silencing of GigmPT hampers the development of G. margarita during AM symbiosis. Most importantly, GigmPT functions as a phosphate transceptor in G. margarita regarding the activation of the phosphate signaling pathway as well as the protein kinase A signaling cascade. Using the substituted-cysteine accessibility method, we identified residues A146 (in transmembrane domain [TMD] IV) and Val357 (in TMD VIII) of GigmPT, both of which are critical for phosphate signaling and transport in yeast during growth induction. Collectively, our results provide significant insights into the molecular functions of a phosphate transceptor from the AM fungus G. margarita.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Hui Lin
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaowei Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Congrui Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Zhongfeng Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Kexin Jiang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Antian Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Xiaohui Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Nianwu Tang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China
| | - Alessandra Salvioli
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Viale Mattioli 25, 10125 Torino, Italy
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R.China.
| |
Collapse
|
99
|
Garcia K, Doidy J, Zimmermann SD, Wipf D, Courty PE. Take a Trip Through the Plant and Fungal Transportome of Mycorrhiza. TRENDS IN PLANT SCIENCE 2016; 21:937-950. [PMID: 27514454 DOI: 10.1016/j.tplants.2016.07.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 05/21/2023]
Abstract
Soil nutrient acquisition and exchanges through symbiotic plant-fungus interactions in the rhizosphere are key features for the current agricultural and environmental challenges. Improved crop yield and plant mineral nutrition through a fungal symbiont has been widely described. In return, the host plant supplies carbon substrates to its fungal partner. We review here recent progress on molecular players of membrane transport involved in nutritional exchanges between mycorrhizal plants and fungi. We cover the transportome, from the transport proteins involved in sugar fluxes from plants towards fungi, to the uptake from the soil and exchange of nitrogen, phosphate, potassium, sulfate, and water. Together, these advances in the comprehension of the mycorrhizal transportome will help in developing the future engineering of new agro-ecological systems.
Collapse
Affiliation(s)
- Kevin Garcia
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joan Doidy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Sabine D Zimmermann
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique (CNRS), Institut National de la Recherche Agronomique (INRA), Montpellier SupAgro, Université de Montpellier, 34060 Montpellier, France
| | - Daniel Wipf
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université de Bourgogne Franche-Comté, 21000 Dijon, France
| | - Pierre-Emmanuel Courty
- University of Fribourg, Department of Biology, 3 rue Albert Gockel, 1700 Fribourg, Switzerland.
| |
Collapse
|
100
|
Carrino-Kyker SR, Kluber LA, Coyle KP, Burke DJ. Detection of phosphate transporter genes from arbuscular mycorrhizal fungi in mature tree roots under experimental soil pH manipulation. Symbiosis 2016. [DOI: 10.1007/s13199-016-0448-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|