51
|
Flögel U, Temme S, Jacoby C, Oerther T, Keul P, Flocke V, Wang X, Bönner F, Nienhaus F, Peter K, Schrader J, Grandoch M, Kelm M, Levkau B. Multi-targeted 1H/ 19F MRI unmasks specific danger patterns for emerging cardiovascular disorders. Nat Commun 2021; 12:5847. [PMID: 34615876 PMCID: PMC8494909 DOI: 10.1038/s41467-021-26146-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/20/2021] [Indexed: 12/28/2022] Open
Abstract
Prediction of the transition from stable to acute coronary syndromes driven by vascular inflammation, thrombosis with subsequent microembolization, and vessel occlusion leading to irreversible myocardial damage is still an unsolved problem. Here, we introduce a multi-targeted and multi-color nanotracer platform technology that simultaneously visualizes evolving danger patterns in the development of progressive coronary inflammation and atherothrombosis prior to spontaneous myocardial infarction in mice. Individual ligand-equipped perfluorocarbon nanoemulsions are used as targeting agents and are differentiated by their specific spectral signatures via implementation of multi chemical shift selective 19F MRI. Thereby, we are able to identify areas at high risk of and predictive for consecutive development of myocardial infarction, at a time when no conventional parameter indicates any imminent danger. The principle of this multi-targeted approach can easily be adapted to monitor also a variety of other disease entities and constitutes a technology with disease-predictive potential.
Collapse
Affiliation(s)
- Ulrich Flögel
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany.
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany.
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany.
| | - Sebastian Temme
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
- Department of Anesthesiology, Heinrich Heine University, Düsseldorf, Germany
| | - Christoph Jacoby
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Petra Keul
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| | - Vera Flocke
- Experimental Cardiovascular Imaging, Institute for Molecular Cardiology, Heinrich Heine University, Düsseldorf, Germany
| | - Xiaowei Wang
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Florian Bönner
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Fabian Nienhaus
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Jürgen Schrader
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Maria Grandoch
- Department of Pharmacology and Clinical Pharmacology, Heinrich Heine University, Düsseldorf, Germany
| | - Malte Kelm
- Cardiovascular Research Institute Düsseldorf (CARID), Heinrich Heine University, Düsseldorf, Germany
- Department of Cardiology, Pneumology and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bodo Levkau
- Institute of Molecular Medicine III, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
52
|
Kettisen K, Bülow L. Introducing Negatively Charged Residues on the Surface of Fetal Hemoglobin Improves Yields in Escherichia coli. Front Bioeng Biotechnol 2021; 9:721794. [PMID: 34552916 PMCID: PMC8450383 DOI: 10.3389/fbioe.2021.721794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 11/14/2022] Open
Abstract
Fetal hemoglobin (HbF) has been developed into an important alternative protein for oxygen therapeutics. Such applications require extensive amounts of proteins, which only can be achieved via recombinant means. However, the expression of vertebrate hemoglobins in heterologous hosts is far from trivial. There are several issues that need to be dealt with. These include, among others, the solubility of the globin chains, equimolar expression of the globin chains, and access to high levels of free heme. In this study, we examined the impact of introducing negative charges on the surface of HbF. Three different HbF mutants were examined, carrying four additional negative charges on the α-subunit (rHbFα4), two additional negative charges on the γ-subunit (rHbFγ2) or a combination of these (rHbFα4/γ2). The increase in negative surface charge in these HbF mutants required the development of an alternate initial capture step in the downstream purification procedures. For the rHbFα4 mutant, we achieved a significantly enhanced yield of purified HbF with no apparent adverse effects on Hb functionality. However, the presence of non-functional Hb portions in the rHbFγ2 and rHbFα4/γ2 samples reduced the yields significantly for those mutants and indicated an imbalanced expression/association of globin chains. Furthermore, the autoxidation studies indicated that the rHbFγ2 and rHbFα4/γ2 mutants also were less oxidatively stable than rHbFα4 and wt rHbF. The study further verified the need for an improved flask culture protocol by optimizing cultivation parameters to enable yield-improving qualities of surface-located mutations.
Collapse
Affiliation(s)
- Karin Kettisen
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Leif Bülow
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund, Sweden
| |
Collapse
|
53
|
Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. Int J Mol Sci 2021; 22:ijms22189808. [PMID: 34575977 PMCID: PMC8472628 DOI: 10.3390/ijms22189808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.
Collapse
|
54
|
Arni S, Necati C, Maeyashiki T, Opitz I, Inci I. Perfluorocarbon-Based Oxygen Carriers and Subnormothermic Lung Machine Perfusion Decrease Production of Pro-Inflammatory Mediators. Cells 2021; 10:cells10092249. [PMID: 34571898 PMCID: PMC8466246 DOI: 10.3390/cells10092249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/20/2022] Open
Abstract
The quality of marginal donor lungs is clinically assessed with normothermic machine perfusion. Although subnormothermic temperature and perfluorocarbon-based oxygen carriers (PFCOC) have proven favourable for other organ transplants, their beneficial use for ex vivo lung perfusion (EVLP) still requires further investigation. In a rat model, we evaluated on a 4 h EVLP time the effects of PFCOC with either 28 °C or 37 °C perfusion temperatures. During EVLP at 28 °C with PFCOC, we recorded significantly lower lung pulmonary vascular resistance (PVR), higher dynamic compliance (Cdyn), significantly lower potassium and lactate levels, higher lung tissue ATP content, and significantly lower myeloperoxidase tissue activity when compared to the 37 °C EVLP with PFCOC. In the subnormothermic EVLP with or without PFCOC, the pro-inflammatory mediator TNFα, the cytokines IL-6 and IL-7, the chemokines MIP-3α, MIP-1α, MCP-1, GRO/KC as well as GM-CSF, G-CSF and the anti-inflammatory cytokines IL-4 and IL-10 were significantly lower. The 28 °C EVLP improved both Cdyn and PVR and decreased pro-inflammatory cytokines and pCO2 levels compared to the 37 °C EVLP. In addition, the 28 °C EVLP with PFCOC produced a significantly lower level of myeloperoxidase activity in lung tissue. Subnormothermic EVLP with PFCOC significantly improves lung donor physiology and ameliorates lung tissue biochemical and inflammatory parameters.
Collapse
Affiliation(s)
| | | | | | | | - Ilhan Inci
- Correspondence: ; Tel.: +41-(0)-44-255-85-43
| |
Collapse
|
55
|
Lu S, Rodrigues RM, Huang S, Estabrook DA, Chapman JO, Guan X, Sletten EM, Liu C. Perfluorocarbon Nanoemulsions Create a Beneficial O 2 Microenvironment in N 2-fixing Biological | Inorganic Hybrid. CHEM CATALYSIS 2021; 1:704-720. [PMID: 34693393 PMCID: PMC8530205 DOI: 10.1016/j.checat.2021.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Powered by renewable electricity, biological | inorganic hybrids employ water-splitting electrocatalysis and generate H2 as reducing equivalents for microbial catalysis. The approach integrates the beauty of biocatalysis with the energy efficiency of inorganic materials for sustainable chemical production. Yet a successful integration requires delicate control of the hybrid's extracellular chemical environment. Such an argument is evident in the exemplary case of O2 because biocatalysis has a stringent requirement of O2 but the electrocatalysis may inadvertently perturb the oxidative pressure of biological moieties. Here we report the addition of perfluorocarbon (PFC) nanoemulsions promote a biocompatible O2 microenvironment in a O2-sensitive N2-fixing biological | inorganic hybrid. Langmuir-type nonspecific binding between bacteria and nanoemulsions facilitates O2 transport in bacterial microenvironment and leads to a 250% increase in efficiency for organic fertilizers within 120 hours. Controlling the biological microenvironment with nanomaterials heralds a general approach accommodating the compatibility in biological | inorganic hybrids.
Collapse
Affiliation(s)
- Shengtao Lu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Roselyn M. Rodrigues
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shuyuan Huang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel A. Estabrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John O. Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Xun Guan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chong Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Lead contact: Chong Liu
| |
Collapse
|
56
|
Cheng X, Gao J, Ding Y, Lu Y, Wei Q, Cui D, Fan J, Li X, Zhu E, Lu Y, Wu Q, Li L, Huang W. Multi-Functional Liposome: A Powerful Theranostic Nano-Platform Enhancing Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100876. [PMID: 34085415 PMCID: PMC8373168 DOI: 10.1002/advs.202100876] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/11/2021] [Indexed: 05/05/2023]
Abstract
Although photodynamic therapy (PDT) has promising advantages in almost non-invasion, low drug resistance, and low dark toxicity, it still suffers from limitations in the lipophilic nature of most photosensitizers (PSs), short half-life of PS in plasma, poor tissue penetration, and low tumor specificity. To overcome these limitations and enhance PDT, liposomes, as excellent multi-functional nano-carriers for drug delivery, have been extensively studied in multi-functional theranostics, including liposomal PS, targeted drug delivery, controllable drug release, image-guided therapy, and combined therapy. This review provides researchers with a useful reference in liposome-based drug delivery.
Collapse
Affiliation(s)
- Xiamin Cheng
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jing Gao
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yang Ding
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yao Lu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiancheng Wei
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Dezhi Cui
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Jiali Fan
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Xiaoman Li
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Ershu Zhu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Yongna Lu
- Institute of Advanced SynthesisSchool of Chemistry and Molecular EngineeringNanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)Nanjing Tech University (NanjingTech)Nanjing211816P. R. China
| |
Collapse
|
57
|
Tseng TH, Chen CY, Wu WC, Chen CY. Targeted and oxygen-enriched polymeric micelles for enhancing photodynamic therapy. NANOTECHNOLOGY 2021; 32:365102. [PMID: 34137736 DOI: 10.1088/1361-6528/ac020d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) has been emerged as an alternative therapeutic modality in treatment of several malignant tumors. However, the therapeutic efficacy of PDT is often limited by the solubility of photosensitizers, tumor hypoxia and lack of target specificity to cancer cells. In this study, we developed a folate-conjugated fluorinated polymeric micelle (PFFA) to deliver the hydrophobic photosensitizer (chlorin e6, Ce6) to overcome these limitations. The fluorinated micelles exhibit the low critical micelle concentration, good long-term stability, higher oxygen-carrying capacity and better singlet oxygen generation efficiency compared to non-fluorinated micelles, indicating the potential to improve the PDT efficacy in hypoxic conditions. Cytotoxicity of PDT effect and cellular uptake demonstrate the higher cell growth inhibition to HeLa cells upon irradiation attributed to the selective internalization of Ce6-loaded PFFA micelles (PFFA-Ce6). All results demonstrate the PFFA-Ce6 micelles with targeting function and oxygen-carrying capacity can serve as a promising drug delivery system for hydrophobic photosensitizers and improvement on PDT efficacy.
Collapse
Affiliation(s)
- Tzu-Han Tseng
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| | - Chieh-Yu Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| | - Wen-Chung Wu
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| |
Collapse
|
58
|
Liu X, Dong X, Yang S, Lai X, Liu H, Gao Y, Feng H, Zhu M, Yuan Y, Lu Q, Lovell JF, Chen H, Fang C. Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003679. [PMID: 33898179 PMCID: PMC8061387 DOI: 10.1002/advs.202003679] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/12/2021] [Indexed: 05/06/2023]
Abstract
Photodynamic therapy (PDT) of cancer is limited by tumor hypoxia. Platinum nanoparticles (nano-Pt) as a catalase-like nanoenzyme can enhance PDT through catalytic oxygen supply. However, the cytotoxic activity of nano-Pt is not comprehensively considered in the existing methods to exert their multifunctional antitumor effects. Here, nano-Pt are loaded into liposomes via reverse phase evaporation. The clinical photosensitizer verteporfin (VP) is loaded in the lipid bilayer to confer PDT activity. Murine macrophage cell membranes are hybridized into the liposomal membrane to confer biomimetic and targeting features. The resulting liposomal system, termed "nano-Pt/VP@MLipo," is investigated for chemophototherapy in vitro and in vivo in mouse tumor models. At the tumor site, oxygen produced by nano-Pt catalyzation improves the VP-mediated PDT, which in turn triggers the release of nano-Pt via membrane permeabilization. The ultrasmall 3-5 nm nano-Pt enables better penetration in tumors, which is also facilitated by the generated oxygen gas, for enhanced chemotherapy. Chemophototherapy with a single injection of nano-Pt/VP@MLipo and light irradiation inhibits the growth of aggressive 4T1 tumors and their lung metastasis, and prolongs animal survival without overt toxicity.
Collapse
Affiliation(s)
- Xue‐Liang Liu
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xiao Dong
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Si‐Cong Yang
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Xing Lai
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hai‐Jun Liu
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yuhao Gao
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hai‐Yi Feng
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Mao‐Hua Zhu
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yihang Yuan
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Qin Lu
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260USA
| | - Hong‐Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical ResearchShuguang HospitalShanghai University of Traditional Chinese MedicineShanghai201203China
| | - Chao Fang
- Hongqiao International Institute of MedicineTongren Hospital and State Key Laboratory of Oncogenes and Related GenesDepartment of Pharmacology and Chemical BiologyShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
59
|
Wang Z, Gong X, Li J, Wang H, Xu X, Li Y, Sha X, Zhang Z. Oxygen-Delivering Polyfluorocarbon Nanovehicles Improve Tumor Oxygenation and Potentiate Photodynamic-Mediated Antitumor Immunity. ACS NANO 2021; 15:5405-5419. [PMID: 33625842 DOI: 10.1021/acsnano.1c00033] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hypoxia is a critical cause of tumor immunosuppression, and it significantly limits the efficacy of many anticancer modalities. Herein, we report an amphiphilic F11-derivative-based oxygen-delivering polyfluorocarbon nanovehicle loading photodynamic DiIC18(5) and reactive oxygen species (ROS)-sensitive prodrug of chemo-immunomodulatory gemcitabine (PF11DG), aimed at relieving tumor hypoxia and boosting antitumor immunity for cancer therapy. We optimized F11-based polyfluorocarbon nanovehicles with a 10-fold enhancement of tumor oxygenation. PF11DG exhibited intriguing capabilities, such as oxygen-dissolving, ROS production, and responsive drug release. In tumors, PF11DG exhibited flexible intratumoral permeation and boosted robust antitumor immune responses upon laser irradiation. Notably, the treatment of PF11DG plus laser irradiation (PF11DG+L) significantly retarded the tumor growth with an 82.96% inhibition in the 4T1 breast cancer model and a 93.6% inhibition in the PANC02 pancreatic cancer model with better therapeutic benefits than non-oxygen-delivering nanovehicles. Therefore, this study presents an encouraging polyfluorocarbon nanovehicle with deep tumor-penetrating and hypoxia-relieving capacity to boost antitumor immunity for cancer treatment.
Collapse
Affiliation(s)
- Zhiwan Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Gong
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxuan Xu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianyi Sha
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhiwen Zhang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
60
|
Sloand JN, Miller MA, Medina SH. Fluorinated peptide biomaterials. Pept Sci (Hoboken) 2021; 113:e24184. [PMID: 34541446 PMCID: PMC8448251 DOI: 10.1002/pep2.24184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Michael A Miller
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
61
|
Zhang C, Yan Q, Li J, Zhu Y, Zhang Y. Nanoenabled Tumor Oxygenation Strategies for Overcoming Hypoxia-Associated Immunosuppression. ACS APPLIED BIO MATERIALS 2021; 4:277-294. [PMID: 35014284 DOI: 10.1021/acsabm.0c01328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cancer immunotherapy, which initiates or strengthens innate immune responses to attack cancer cells, has shown great promise in cancer treatment. However, low immune response impacted by immunosuppressive tumor microenvironment (TME) remains a key challenge, which has been found related to tumor hypoxia. Recently, nanomaterial systems are proving to be excellent platforms for tumor oxygenation, which can reverse hypoxia-associated immunosuppression, strengthen the systemic antitumor immune responses, and thus afford a striking abscopal effect to clear metastatic cancer cells. In this review, we would like to survey recent progress in utilizing nanomaterials for tumor oxygenation through approaches such as in situ O2 generation, O2 delivery, tumor vasculature normalization, and mitochondrial-respiration inhibition. Their effects on tumor hypoxia-associated immunosuppression are highlighted. We also discuss the ongoing challenges and how to further improve the clinical prospect of cancer immunotherapy.
Collapse
Affiliation(s)
- Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qinglong Yan
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Ying Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Zhang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, The Interdisciplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
62
|
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV. Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer 2021; 9:e001926. [PMID: 33431631 PMCID: PMC7802670 DOI: 10.1136/jitc-2020-001926] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
The past decade has witnessed major breakthroughs in cancer immunotherapy. This development has been largely motivated by cancer cell evasion of immunological control and consequent tumor resistance to conventional therapies. Immunogenic cell death (ICD) is considered one of the most promising ways to achieve total tumor cell elimination. It activates the T-cell adaptive immune response and results in the formation of long-term immunological memory. ICD can be triggered by many anticancer treatment modalities, including photodynamic therapy (PDT). In this review, we first discuss the role of PDT based on several classes of photosensitizers, including porphyrins and non-porphyrins, and critically evaluate their potential role in ICD induction. We emphasize the emerging trend of ICD induction by PDT in combination with nanotechnology, which represents third-generation photosensitizers and involves targeted induction of ICD by PDT. However, PDT also has some limitations, including the reduced efficiency of ICD induction in the hypoxic tumor microenvironment. Therefore, we critically evaluate strategies for overcoming this limitation, which is essential for increasing PDT efficiency. In the final part, we suggest several areas for future research for personalized cancer immunotherapy, including strategies based on oxygen-boosted PDT and nanoparticles. In conclusion, the insights from the last several years increasingly support the idea that PDT is a powerful strategy for inducing ICD in experimental cancer therapy. However, most studies have focused on mouse models, but it is necessary to validate this strategy in clinical settings, which will be a challenging research area in the future.
Collapse
Affiliation(s)
- Razan Alzeibak
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Tatiana A Mishchenko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Natalia Y Shilyagina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Irina V Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Maria V Vedunova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| | - Dmitri V Krysko
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
- Cell Death Investigation and Therapy Laboratory (CDIT), Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
63
|
Bai Q, Han K, Dong K, Zheng C, Zhang Y, Long Q, Lu T. Potential Applications of Nanomaterials and Technology for Diabetic Wound Healing. Int J Nanomedicine 2020; 15:9717-9743. [PMID: 33299313 PMCID: PMC7721306 DOI: 10.2147/ijn.s276001] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic wound shows delayed and incomplete healing processes, which in turn exposes patients to an environment with a high risk of infection. This article has summarized current developments of nanoparticles/hydrogels and nanotechnology used for promoting the wound healing process in either diabetic animal models or patients with diabetes mellitus. These nanoparticles/hydrogels promote diabetic wound healing by loading bioactive molecules (such as growth factors, genes, proteins/peptides, stem cells/exosomes, etc.) and non-bioactive substances (metal ions, oxygen, nitric oxide, etc.). Among them, smart hydrogels (a very promising method for loading many types of bioactive components) are currently favored by researchers. In addition, nanoparticles/hydrogels can be combined with some technology (including PTT, LBL self-assembly technique and 3D-printing technology) to treat diabetic wound repair. By reviewing the recent literatures, we also proposed new strategies for improving multifunctional treatment of diabetic wounds in the future.
Collapse
Affiliation(s)
- Que Bai
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Han
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Kai Dong
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Caiyun Zheng
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Yanni Zhang
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| | - Qianfa Long
- Mini-Invasive Neurosurgery and Translational Medical Center, Xi’an Central Hospital, Xi’an Jiaotong University, Xi’an710003, People’s Republic of China
| | - Tingli Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, Shaanxi710072, People’s Republic of China
| |
Collapse
|
64
|
Functional, Metabolic and Morphologic Results of Ex Vivo Donor Lung Perfusion with a Perfluorocarbon-Based Oxygen Carrier Nanoemulsion in a Large Animal Transplantation Model. Cells 2020; 9:cells9112501. [PMID: 33218154 PMCID: PMC7698917 DOI: 10.3390/cells9112501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023] Open
Abstract
Background: Ex vivo lung perfusion (EVLP) is a technology that allows the re-evaluation of questionable donor lung before implantation and it has the potential to repair injured donor lungs that are otherwise unsuitable for transplantation. We hypothesized that perfluorocarbon-based oxygen carrier, a novel reconditioning strategy instilled during EVLP would improve graft function. Methods: We utilized perfluorocarbon-based oxygen carrier (PFCOC) during EVLP to recondition and improve lung graft function in a pig model of EVLP and lung transplantation. Lungs were retrieved and stored for 24 h at 4 °C. EVLP was done for 6 h with or without PFCOC. In the transplantation groups, left lung transplantation was done after EVLP with or without PFCOC. Allograft function was assessed by means of pulmonary gas exchange, lung mechanics and vascular pressures, histology and transmission electron microscopy (TEM). Results: In the EVLP only groups, physiological and biochemical markers during the 6-h perfusion period were comparable. However, perfusate lactate potassium levels were lower and ATP levels were higher in the PFCOC group. Radiologic assessment revealed significantly more lung infiltrates in the controls than in the PFCOC group (p = 0.04). In transplantation groups, perfusate glucose consumption was higher in the control group. Lactate levels were significantly lower in the PFCOC group (p = 0.02). Perfusate flavin mononucleotide (FMN) was significantly higher in the controls (p = 0.008). Post-transplant gas exchange was significantly better during the 4-h reperfusion period in the PFCOC group (p = 0.01). Plasma IL-8 and IL-12 levels were significantly lower in the PFCOC group (p = 0.01, p = 0.03, respectively). ATP lung tissue levels at the end of the transplantation were higher and myeloperoxidase (MPO) levels in lung tissue were lower in the PFCOC group compared to the control group. In the PFCOC group, TEM showed better tissue preservation and cellular viability. Conclusion: PFCOC application is safe during EVLP in lungs preserved 24 h at 4 °C. Although this strategy did not significantly affect the EVLP physiology, metabolic markers of the donor quality such as lactate production, glucose consumption, neutrophil infiltration and preservation of mitochondrial function were better in the PFCOC group. Following transplantation, PFCOC resulted in better graft function and TEM showed better tissue preservation, cellular viability and improved gas transport.
Collapse
|
65
|
Qin Y, Cao B, Li J, Liao S, Lin C, Qing X, Zhang Q, Yu X. An Oxygen-Enriched Photodynamic Nanospray for Postsurgical Tumor Regression. ACS Biomater Sci Eng 2020; 6:6415-6423. [PMID: 33449640 DOI: 10.1021/acsbiomaterials.0c01099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Postoperative local recurrence and metastasis are non-negligible challenges in clinical cancer treatment. Photodynamic therapy (PDT) has presented a great potential in preventing cancer recurrence owing to its noninvasiveness and high specificity for local irradiation of tumor sites. However, the application of conventional PDT is often limited by insufficient oxygen supply, making it difficult to achieve high PDT efficacy. Herein, we combined liposomes with photosensitizer indocyanine green (ICG) and perfluorooctyl bromide (PFOB) to develop a new oxygen-enriched photodynamic nanospray (Lip-PFOB-ICG) for cancer postoperative treatment. The Lip-PFOB-ICG not only has good biocompatibility but also enhanced the PDT effect under near-infrared light. More importantly, PFOB can continuously absorb oxygen, thus improving the collision energy transfer between the ICG photosensitizer and oxygen, and significantly inhibit local tumor recurrence in the subcutaneous tumor recurrence model. This oxygen-enriched photodynamic nanospray strategy may open up new avenues for effective postoperative cancer therapy in the clinic.
Collapse
Affiliation(s)
- Yi Qin
- Department of Spine Orthopedics, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Boling Cao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Jiamin Li
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Shuting Liao
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Chuxin Lin
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| | - Xueqin Qing
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Xiangrong Yu
- Department of Medical imaging, Zhuhai People's Hospital, Zhuhai Hospital affiliated with Jinan University, Zhuhai 519000, P.R. China
| |
Collapse
|
66
|
Chen S, Huang B, Pei W, Wang L, Xu Y, Niu C. Mitochondria-Targeting Oxygen-Sufficient Perfluorocarbon Nanoparticles for Imaging-Guided Tumor Phototherapy. Int J Nanomedicine 2020; 15:8641-8658. [PMID: 33177823 PMCID: PMC7652575 DOI: 10.2147/ijn.s281649] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022] Open
Abstract
Background Although photothermal therapy (PTT) and photodynamics therapy (PDT) have both made excellent progress in tumor therapy, the effectiveness of using PTT or PDT alone is dissatisfactory due to the limitations of the penetration depth in PTT and the hypoxic microenvironment of tumors for PDT. Combination phototherapy has currently become a burgeoning cancer treatment. Methods and Materials In this work, a mitochondria-targeting liquid perfluorocarbon (PFC)-based oxygen delivery system was developed for the synergistic PDT/photothermal therapy (PTT) of cancer through image guiding. Results Importantly, these nanoparticles (NPs) can effectively and accurately accumulate in the target tumor via the enhanced permeability and retention (EPR) effect. Conclusion This approach offers a novel technique to achieve outstanding antitumor efficacy by an unprecedented design with tumor mitochondria targeting, oxygen delivery, and synergistic PDT/PTT with dual-imaging guidance.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Department of Ultrasound Diagnosis, Changsha Central Hospital, Nanhua University, Changsha, Hunan 410014, People's Republic of China
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Long Wang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, People's Republic of China
| | - Yan Xu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| | - Chengcheng Niu
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China.,Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, People's Republic of China
| |
Collapse
|
67
|
Hoogendijk E, Swider E, Staal AHJ, White PB, van Riessen NK, Glaßer G, Lieberwirth I, Musyanovych A, Serra CA, Srinivas M, Koshkina O. Continuous-Flow Production of Perfluorocarbon-Loaded Polymeric Nanoparticles: From the Bench to Clinic. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49335-49345. [PMID: 33086007 PMCID: PMC7645868 DOI: 10.1021/acsami.0c12020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/08/2020] [Indexed: 05/05/2023]
Abstract
Perfluorocarbon-loaded nanoparticles are powerful theranostic agents, which are used in the therapy of cancer and stroke and as imaging agents for ultrasound and 19F magnetic resonance imaging (MRI). Scaling up the production of perfluorocarbon-loaded nanoparticles is essential for clinical translation. However, it represents a major challenge as perfluorocarbons are hydrophobic and lipophobic. We developed a method for continuous-flow production of perfluorocarbon-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles using a modular microfluidic system, with sufficient yields for clinical use. We combined two slit interdigital micromixers with a sonication flow cell to achieve efficient mixing of three phases: liquid perfluorocarbon, PLGA in organic solvent, and aqueous surfactant solution. The production rate was at least 30 times higher than with the conventional formulation. The characteristics of nanoparticles can be adjusted by changing the flow rates and type of solvent, resulting in a high PFC loading of 20-60 wt % and radii below 200 nm. The nanoparticles are nontoxic, suitable for 19F MRI and ultrasound imaging, and can dissolve oxygen. In vivo 19F MRI with perfluoro-15-crown-5 ether-loaded nanoparticles showed similar biodistribution as nanoparticles made with the conventional method and a fast clearance from the organs. Overall, we developed a continuous, modular method for scaled-up production of perfluorocarbon-loaded nanoparticles that can be potentially adapted for the production of other multiphase systems. Thus, it will facilitate the clinical translation of theranostic agents in the future.
Collapse
Affiliation(s)
- Esmee Hoogendijk
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Edyta Swider
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Alexander H. J. Staal
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Paul B. White
- Institute for Molecules and Materials, Radboud University, 6525
AJ Nijmegen, The Netherlands
| | - N. Koen van Riessen
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Gunnar Glaßer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ingo Lieberwirth
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Christophe A. Serra
- Université de Strasbourg,
CNRS, Institut Charles Sadron, 23 rue du Loess, F-67000 Strasbourg, France
| | - Mangala Srinivas
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
| | - Olga Koshkina
- Department of Tumor
Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 26/28, 6525GA Nijmegen, The Netherlands
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
68
|
Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Arch 2020; 473:139-150. [PMID: 33141239 PMCID: PMC7607370 DOI: 10.1007/s00424-020-02482-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/29/2022]
Abstract
Developing biocompatible, synthetic oxygen carriers is a consistently challenging task that researchers have been pursuing for decades. Perfluorocarbons (PFC) are fascinating compounds with a huge capacity to dissolve gases, where the respiratory gases are of special interest for current investigations. Although largely chemically and biologically inert, pure PFCs are not suitable for injection into the vascular system. Extensive research created stable PFC nano-emulsions that avoid (i) fast clearance from the blood and (ii) long organ retention time, which leads to undesired transient side effects. PFC-based oxygen carriers (PFOCs) show a variety of application fields, which are worthwhile to investigate. To understand the difficulties that challenge researchers in creating formulations for clinical applications, this review provides the physical background of PFCs’ properties and then illuminates the reasons for instabilities of PFC emulsions. By linking the unique properties of PFCs and PFOCs to physiology, it elaborates on the response, processing and dysregulation, which the body experiences through intravascular PFOCs. Thereby the reader will receive a scientific and easily comprehensible overview why PFOCs are precious tools for so many diverse application areas from cancer therapeutics to blood substitutes up to organ preservation and diving disease.
Collapse
|
69
|
Lim I, Vian A, van de Wouw HL, Day RA, Gomez C, Liu Y, Rheingold AL, Campàs O, Sletten EM. Fluorous Soluble Cyanine Dyes for Visualizing Perfluorocarbons in Living Systems. J Am Chem Soc 2020; 142:16072-16081. [PMID: 32808518 PMCID: PMC8366720 DOI: 10.1021/jacs.0c07761] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The bioorthogonal nature of perfluorocarbons provides a unique platform for introducing dynamic nano- and microdroplets into cells and organisms. To monitor the localization and deformation of the droplets, fluorous soluble fluorophores that are compatible with standard fluorescent protein markers and applicable to cells, tissues, and small organisms are necessary. Here, we introduce fluorous cyanine dyes that represent the most red-shifted fluorous soluble fluorophores to date. We study the effect of covalently appended fluorous tags on the cyanine scaffold and evaluate the changes in photophysical properties imparted by the fluorous phase. Ultimately, we showcase the utility of the fluorous soluble pentamethine cyanine dye for tracking the localization of perfluorocarbon nanoemulsions in macrophage cells and for measurements of mechanical forces in multicellular spheroids and zebrafish embryonic tissues. These studies demonstrate that the red-shifted cyanine dyes offer spectral flexibility in multiplexed imaging experiments and enhanced precision in force measurements.
Collapse
Affiliation(s)
- Irene Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Antoine Vian
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Heidi L. van de Wouw
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Rachael A. Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Carlos Gomez
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Arnold L. Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093-0505, United States
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, California 93106-5200, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
70
|
Bandyopadhyay S, Jones A, McLean A, Sterner M, Robbins C, Cunningham M, Walters M, Doddapaneni K, Keitel I, Gallagher C. Slippery liquid infused fluoropolymer coating for central lines to reduce catheter associated clotting and infections. Sci Rep 2020; 10:14973. [PMID: 32917923 PMCID: PMC7486915 DOI: 10.1038/s41598-020-71711-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/18/2020] [Indexed: 11/08/2022] Open
Abstract
Thrombosis and infections are two grave, interrelated problems associated with the use of central venous catheters (CVL). Currently used antibiotic coated CVL has limited clinical success in resisting blood stream infection and may increase the risk of emerging antibiotic resistant strains. We report an antibiotic-free, fluoropolymer-immobilized, liquid perfluorocarbon-coated peripherally inserted central catheter (PICC) line and its effectiveness in reducing catheter associated thrombosis and pathogen colonization, as an alternative to antibiotic coated CVL. Commercially available polyurethane PICC catheter was modified by a three-step lamination process, with thin fluoropolymer layers to yield fluoropolymer-polyurethane-fluoropolymer composite structure before applying the liquid perfluorocarbon (LP). This high throughput process of modifying commercial PICC catheters with fluoropolymer is quicker, safer and shows higher thromboresistance than fluorinated, omniphobic catheter surfaces, produced by previously reported self-assembled monolayer deposition techniques. The LP immobilized on the fluoropolymer is highly durable in physiological flow conditions for over 60 days and continue to resist Staphylococcus colonization.
Collapse
Affiliation(s)
| | - Andrew Jones
- FreeFlow Medical Devices LLC, Lancaster, PA, USA
| | | | | | | | | | - Mark Walters
- Shared Material Instrumentation Facility, Duke University, Durham, NC, USA
| | | | - Isaac Keitel
- FreeFlow Medical Devices LLC, Lancaster, PA, USA
| | | |
Collapse
|
71
|
Day RA, Estabrook DA, Wu C, Chapman JO, Togle AJ, Sletten EM. Systematic Study of Perfluorocarbon Nanoemulsions Stabilized by Polymer Amphiphiles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38887-38898. [PMID: 32706233 PMCID: PMC8341393 DOI: 10.1021/acsami.0c07206] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Perfluorocarbon (PFC) nanoemulsions, droplets of fluorous solvent stabilized by surfactants dispersed in water, are simple yet versatile nanomaterials. The orthogonal nature of the fluorous phase promotes the formation of nanoemulsions through a simple, self-assembly process while simultaneously encapsulating fluorous-tagged payloads for various applications. The size, stability, and surface chemistry of PFC nanoemulsions are controlled by the surfactant. Here, we systematically study the effect of the hydrophilic portion of polymer surfactants on PFC nanoemulsions. We find that the hydrophilic block length and identity, the overall polymer hydrophilic/lipophilic balance, and the polymer architecture are all important factors. The ability to modulate these parameters enables control over initial size, stability, payload retention, cellular internalization, and protein adsorption of PFC nanoemulsions. With the insight obtained from this systematic study of polymer amphiphiles stabilizing PFC nanoemulsions, design features required for the optimal material are obtained.
Collapse
Affiliation(s)
- Rachael A Day
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Estabrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Carolyn Wu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - John O Chapman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Alyssa J Togle
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
72
|
Sun Y, Zhao D, Wang G, Wang Y, Cao L, Sun J, Jiang Q, He Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: opportunities, challenges, and future development. Acta Pharm Sin B 2020; 10:1382-1396. [PMID: 32963938 PMCID: PMC7488364 DOI: 10.1016/j.apsb.2020.01.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/12/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Hypoxia, a salient feature of most solid tumors, confers invasiveness and resistance to the tumor cells. Oxygen-consumption photodynamic therapy (PDT) suffers from the undesirable impediment of local hypoxia in tumors. Moreover, PDT could further worsen hypoxia. Therefore, developing effective strategies for manipulating hypoxia and improving the effectiveness of PDT has been a focus on antitumor treatment. In this review, the mechanism and relationship of tumor hypoxia and PDT are discussed. Moreover, we highlight recent trends in the field of nanomedicines to modulate hypoxia for enhancing PDT, such as oxygen supply systems, down-regulation of oxygen consumption and hypoxia utilization. Finally, the opportunities and challenges are put forward to facilitate the development and clinical transformation of PDT.
Collapse
Key Words
- 3O2, molecular oxygen
- APCs, antigen-presenting cells
- AQ4N, banoxantrone
- CaO2, calcium dioxide
- Cancer
- Ce6, chlorin e6
- CeO2, cerium oxide
- DC, dendritic cells
- DDS, drug delivery system
- DOX, doxorubicin
- EPR, enhanced permeability and retention
- FDA, U.S. Food and Drug Administration
- H2O, water
- H2O2, hydrogen peroxide
- HIF, hypoxia-inducible factor
- HIF-1α, hypoxia-inducible factor-1α
- HSA, human serum albumin
- Hb, hemoglobin
- Hypoxia
- MB, methylene blue
- MDR1, multidrug resistance 1
- MDSC, myeloid derived suppressive cells
- Mn-CDs, magnetofluorescent manganese-carbon dots
- MnO2, manganese dioxide
- NMR, nuclear magnetic resonance
- Nanomedicine delivery systems
- O2.−, superoxide anion
- OH., hydroxyl radical
- Oxygen
- PDT, photodynamic therapy
- PFC, perfluorocarbon
- PFH, perfluoroethane
- PS, photosensitizers
- Photodynamic therapy
- RBCs, red blood cells
- ROS, reactive oxygen species
- TAM, tumor-associated macrophages
- TPZ, tirapazamine
Collapse
Affiliation(s)
- Yixin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Dongyang Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Linlin Cao
- Department of Pharmaceutics, the Second Hospital of Dalian Medical University, Dalian 116023, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
73
|
Wang S, Qiu J, Guo A, Ren R, He W, Liu S, Liu Y. Nanoscale perfluorocarbon expediates bone fracture healing through selectively activating osteoblastic differentiation and functions. J Nanobiotechnology 2020; 18:84. [PMID: 32493334 PMCID: PMC7271395 DOI: 10.1186/s12951-020-00641-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND RATIONALE Fracture incidence increases with ageing and other contingencies. However, the strategy of accelerating fracture repair in clinical therapeutics remain a huge challenge due to its complexity and a long-lasting period. The emergence of nano-based drug delivery systems provides a highly efficient, targeted and controllable drug release at the diseased site. Thus far, fairly limited studies have been carried out using nanomedicines for the bone repair applications. Perfluorocarbon (PFC), FDA-approved clinical drug, is received increasing attention in nanomedicine due to its favorable chemical and biologic inertness, great biocompatibility, high oxygen affinity and serum-resistant capability. In the premise, the purpose of the current study is to prepare nano-sized PFC materials and to evaluate their advisable effects on promoting bone fracture repair. RESULTS Our data unveiled that nano-PFC significantly enhanced the fracture repair in the rabbit model with radial fractures, as evidenced by increased soft callus formation, collagen synthesis and accumulation of beneficial cytokines (e.g., vascular endothelial growth factor (VEGF), matrix metalloprotein 9 (MMP-9) and osteocalcin). Mechanistic studies unraveled that nano-PFC functioned to target osteoblasts by stimulating their differentiation and activities in bone formation, leading to accelerated bone remodeling in the fractured zones. Otherwise, osteoclasts were not affected upon nano-PFC treatment, ruling out the potential target of nano-PFC on osteoclasts and their progenitors. CONCLUSIONS These results suggest that nano-PFC provides a potential perspective for selectively targeting osteoblast cell and facilitating callus generation. This study opens up a new avenue for nano-PFC as a promising agent in therapeutics to shorten healing time in treating bone fracture.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Anyi Guo
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Ruanzhong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei He
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 8 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yajun Liu
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, No. 31 East Street, Xinjiekou, Xicheng District, Beijing, 100035, China.
| |
Collapse
|
74
|
Sloand JN, Nguyen TT, Zinck SA, Cook EC, Zimudzi TJ, Showalter SA, Glick AB, Simon JC, Medina SH. Ultrasound-Guided Cytosolic Protein Delivery via Transient Fluorous Masks. ACS NANO 2020; 14:4061-4073. [PMID: 32134630 DOI: 10.1021/acsnano.9b08745] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The inability to spatiotemporally guide proteins in tissues and efficiently deliver them into cells remains a key barrier to realizing their full potential in precision medicine. Here, we report ultrasound-sensitive fluoro-protein nanoemulsions which can be acoustically tracked, guided, and activated for on-demand cytosolic delivery of proteins, including antibodies, using clinically relevant diagnostic ultrasound. This advance is accessed through the discovery of a family of fluorous tags, or FTags, that transiently mask proteins to mediate their efficient dispersion into ultrasound-sensitive liquid perfluorocarbons, a phenomenon akin to dissolving an egg in liquid Teflon. We identify the biochemical basis for protein fluorous masking and confirm FTag coatings are shed during delivery, without disrupting the protein structure or function. Harnessing the ultrasound sensitivity of fluorous emulsions, real-time imaging is used to simultaneously monitor and activate FTag-protein complexes to enable controlled cytosolic antibody delivery in vitro and in vivo. These findings may advance the development of image-guided, protein-based biosensing and therapeutic modalities.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Theodore T Nguyen
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Zinck
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Erik C Cook
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Tawanda J Zimudzi
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott A Showalter
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adam B Glick
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Julianna C Simon
- Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott H Medina
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
75
|
Mercel A, Tsihlis ND, Maile R, Kibbe MR. Emerging therapies for smoke inhalation injury: a review. J Transl Med 2020; 18:141. [PMID: 32228626 PMCID: PMC7104527 DOI: 10.1186/s12967-020-02300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 03/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Smoke inhalation injury increases overall burn mortality by up to 20 times. Current therapy remains supportive with a failure to identify an optimal or targeted treatment protocol for smoke inhalation injury. The goal of this review is to describe emerging therapies that are being developed to treat the pulmonary pathology induced by smoke inhalation injury with or without concurrent burn injury. Main body A comprehensive literature search was performed using PubMed (1995–present) for therapies not approved by the U.S. Food and Drug Administration (FDA) for smoke inhalation injury with or without concurrent burn injury. Therapies were divided based on therapeutic strategy. Models included inhalation alone with or without concurrent burn injury. Specific animal model, mechanism of action of medication, route of administration, therapeutic benefit, safety, mortality benefit, and efficacy were reviewed. Multiple potential therapies for smoke inhalation injury with or without burn injury are currently under investigation. These include stem cell therapy, anticoagulation therapy, selectin inhibition, inflammatory pathway modulation, superoxide and peroxynitrite decomposition, selective nitric oxide synthase inhibition, hydrogen sulfide, HMG-CoA reductase inhibition, proton pump inhibition, and targeted nanotherapies. While each of these approaches shows a potential therapeutic benefit to treating inhalation injury in animal models, further research including mortality benefit is needed to ensure safety and efficacy in humans. Conclusions Multiple novel therapies currently under active investigation to treat smoke inhalation injury show promising results. Much research remains to be conducted before these emerging therapies can be translated to the clinical arena.
Collapse
Affiliation(s)
- Alexandra Mercel
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Nick D Tsihlis
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA
| | - Rob Maile
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA.,Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Melina R Kibbe
- Department of Surgery, University of North Carolina at Chapel Hill, 4041 Burnett Womack, 101 Manning Drive, CB# 7050, Chapel Hill, NC, 27599-7050, USA. .,Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
76
|
Khan F, Singh K, Friedman MT. Artificial Blood: The History and Current Perspectives of Blood Substitutes. Discoveries (Craiova) 2020; 8:e104. [PMID: 32309621 PMCID: PMC7086064 DOI: 10.15190/d.2020.1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/07/2020] [Accepted: 03/07/2020] [Indexed: 01/09/2023] Open
Abstract
Blood transfusions are one of the most common procedures performed in hospitalized patients. Yet, despite all of the measures taken to ensure the safety of the blood supply, there are known risks associated with transfusions, including infectious and noninfectious complications. Meanwhile, issues with blood product availability, the need for compatibility testing, and the storage and transport requirements of blood products, have presented challenges for the administration of blood transfusions. Additionally, there are individuals who do not accept blood transfusions (e.g., Jehovah's Witnesses). Therefore, there is a need to develop alternative agents that can reliably and safely replace blood. However, although there have been many attempts to develop blood substitutes over the years, there are currently no such products available that have been approved by the United States Food and Drug Administration (FDA). However, a more-recently developed hemoglobin-based oxygen carrier has shown promise in early clinical trials and has achieved the status of "Orphan Drug" under the FDA.
Collapse
Affiliation(s)
- Fahad Khan
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| | - Kunwar Singh
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| | - Mark T. Friedman
- Mount Sinai Health System, Department of Pathology and Laboratory Medicine, Icahn School of Medicine, New York, NY, USA
| |
Collapse
|
77
|
Cheng Y, Kong X, Chang Y, Feng Y, Zheng R, Wu X, Xu K, Gao X, Zhang H. Spatiotemporally Synchronous Oxygen Self-Supply and Reactive Oxygen Species Production on Z-Scheme Heterostructures for Hypoxic Tumor Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1908109. [PMID: 32022983 DOI: 10.1002/adma.201908109] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Photodynamic therapy (PDT) efficacy has been severely limited by oxygen (O2 ) deficiency in tumors and the electron-hole separation inefficiency in photosensitizers, especially the long-range diffusion of O2 toward photosensitizers during the PDT process. Herein, novel bismuth sulfide (Bi2 S3 )@bismuth (Bi) Z-scheme heterostructured nanorods (NRs) are designed to realize the spatiotemporally synchronous O2 self-supply and production of reactive oxygen species for hypoxic tumor therapy. Both narrow-bandgap Bi2 S3 and Bi components can be excited by a near-infrared laser to generate abundant electrons and holes. The Z-scheme heterostructure endows Bi2 S3 @Bi NRs with an efficient electron-hole separation ability and potent redox potentials, where the hole on the valence band of Bi2 S3 can react with water to supply O2 for the electron on the conduction band of Bi to produce reactive oxygen species. The Bi2 S3 @Bi NRs overcome the major obstacles of conventional photosensitizers during the PDT process and exhibit a promising phototherapeutic effect, supplying a new strategy for hypoxic tumor elimination.
Collapse
Affiliation(s)
- Yan Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Xiangpeng Kong
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330000, Jiangxi, China
| | - Yun Chang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
| | - Yanlin Feng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Keqiang Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330000, Jiangxi, China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, China
- University of Science and Technology of China, Hefei, 230026, Anhui, China
| |
Collapse
|
78
|
Wang J, Zhang B, Sun J, Wang Y, Wang H. Nanomedicine-Enabled Modulation of Tumor Hypoxic Microenvironment for Enhanced Cancer Therapy. ADVANCED THERAPEUTICS 2020; 3:1900083. [PMID: 34277929 PMCID: PMC8281934 DOI: 10.1002/adtp.201900083] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Indexed: 01/21/2023]
Abstract
Hypoxia is a common condition of solid tumors that is mainly caused by enhanced tumor proliferative activity and dysfunctional vasculature. In the treatment of hypoxic human solid tumors, many conventional therapeutic approaches (e.g., oxygen-dependent photodynamic therapy, anticancer drug-based chemotherapy or X-ray induced radiotherapy) become considerably less effective or ineffective. In recent years, various strategies have been explored to deliver or generate oxygen inside solid tumors to overcome tumorous hypoxia and show promising evidence to improve the antitumor efficiency. In this review, the extrinsic regulation of tumor hypoxia via nanomaterial delivery is discussed followed by a summary of the mechanisms through which the modulated tumor hypoxic microenvironment improves therapeutic efficacy. The review concludes with future perspectives, to specifically address the translation of nanomaterial-based therapeutic strategies for clinical applications.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Yuhao Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
79
|
Guo B, Bai Y, Ma Y, Liu C, Wang S, Zhao R, Dong J, Ji HL. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury: update on both pathogenesis and innovative therapy. Ther Adv Respir Dis 2019; 13:1753466619847901. [PMID: 31068086 PMCID: PMC6515845 DOI: 10.1177/1753466619847901] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Smoke-inhalation-induced acute lung injury (SI-ALI) is a leading cause of morbidity and mortality in victims of fire tragedies. SI-ALI contributes to an estimated 30% of burn-caused patient deaths, and recently, more attention has been paid to the specific interventions for this devastating respiratory illness. In the last decade, much progress has been made in the understanding of SI-ALI patho-mechanisms and in the development of new therapeutic strategies in both preclinical and clinical studies. This article reviews the recent progress in the treatment of SI-ALI, based on pathophysiology, thermal damage, airway obstruction, the nuclear-factor kappa-B signaling pathway, and oxidative stress. Preclinical therapeutic strategies include use of mesenchymal stem cells, hydrogen sulfide, peroxynitrite decomposition catalysts, and proton-pump inhibitors. Clinical interventions include high-frequency percussive ventilation, perfluorohexane, inhaled anticoagulants, and nebulized epinephrine. The animal model, dose, clinical application, and pharmacology of these medications are summarized. Future directions and further needs for developing innovative therapies are discussed.
Collapse
Affiliation(s)
- Bingxin Guo
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yichun Bai
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Yana Ma
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Cong Liu
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Song Wang
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Runzhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| | - Jiaxing Dong
- Institute of Lung and Molecular Therapy, Xinxiang Medical University, Xinxiang Henan, China
| | - Hong-Long Ji
- Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, TX, USA
| |
Collapse
|
80
|
El Chaer F, Ballen KK. Treatment of acute leukaemia in adult Jehovah's Witnesses. Br J Haematol 2019; 190:696-707. [PMID: 31693175 DOI: 10.1111/bjh.16284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/18/2019] [Indexed: 01/28/2023]
Abstract
Since Jehovah's Witness (JW) patients diagnosed with leukaemia refuse blood transfusions, they are often denied intensive chemotherapy for fear they could not survive myeloablation without blood transfusion support. Treatment of JW patients with acute leukaemia is challenging and carries a higher morbidity and mortality; however, the refusal of blood products should not be an absolute contraindication to offer multiple treatment modalities including haematopoietic stem cell transplantation. In this review we discuss their optimal management and describe alternative modalities to blood transfusions to provide sufficient oxygenation and prevent bleeding.
Collapse
Affiliation(s)
- Firas El Chaer
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Karen K Ballen
- Department of Medicine, Division of Hematology and Oncology, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
81
|
Mayer D, Ferenz KB. Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice. Eur J Appl Physiol 2019; 119:2421-2433. [PMID: 31686213 PMCID: PMC6858394 DOI: 10.1007/s00421-019-04252-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 10/28/2019] [Indexed: 12/16/2022]
Abstract
Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.
Collapse
Affiliation(s)
- Dirk Mayer
- Department of Gastroenterology, REGIOMED Klinikum Coburg, 96450, Coburg, Germany
| | - Katja Bettina Ferenz
- Institute of Physiology, CENIDE, University of Duisburg-Essen, University Hospital Essen, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
82
|
Zhang F, Zhuang J, Esteban Fernández de Ávila B, Tang S, Zhang Q, Fang RH, Zhang L, Wang J. A Nanomotor-Based Active Delivery System for Intracellular Oxygen Transport. ACS NANO 2019; 13:11996-12005. [PMID: 31556988 PMCID: PMC6832785 DOI: 10.1021/acsnano.9b06127] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Active transport of gas molecules is critical to preserve the physiological functions of organisms. Oxygen, as the most essential gas molecule, plays significant roles in maintaining the metabolism and viability of cells. Herein, we report a nanomotor-based delivery system that combines the fast propulsion of acoustically propelled gold nanowire nanomotors (AuNW) with the high oxygen carrying capacity of red blood cell membrane-cloaked perfluorocarbon nanoemulsions (RBC-PFC) for active intracellular delivery of oxygen. The oxygen delivery capacity and kinetics of the AuNW nanomotors carrying RBC-PFC (denoted as "Motor-PFC") are examined under ultrasound field. Specifically, the fast movement of the Motor-PFC under an acoustic field accelerates intracellular delivery of oxygen to J774 macrophage cells. Upon entering the cells, the oxygen loaded in the Motor-PFC is sustainably released, which maintains the cell viability when cultured under hypoxic conditions. The acoustically propelled Motor-PFC leads to significantly higher cell viability (84.4%) over a 72 h period, compared to control samples with free RBC-PFC (44.4%) or to passive Motor-PFC (32.7%). These results indicate that the Motor-PFC can act as an effective delivery vehicle for active intracellular oxygen transport. While oxygen is used here as a model gas molecule, the Motor-PFC platform can be readily expanded to the active delivery of other gas molecules to various target cells.
Collapse
|
83
|
Wang S, Yin C, Han X, Guo A, Chen X, Liu S, Liu Y. Improved Healing of Diabetic Foot Ulcer upon Oxygenation Therapeutics through Oxygen-Loading Nanoperfluorocarbon Triggered by Radial Extracorporeal Shock Wave. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5738368. [PMID: 31485296 PMCID: PMC6710755 DOI: 10.1155/2019/5738368] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/22/2019] [Accepted: 06/24/2019] [Indexed: 12/15/2022]
Abstract
Diabetic foot ulcers (DFUs), the most serious complication of diabetes mellitus, can induce high morbidity, the need to amputate lower extremities, and even death. Although many adjunctive strategies have been applied for the treatment of DFUs, the low treatment efficiency, potential side effects, and high cost are still huge challenges. Recently, nanomaterial-based drug delivery systems (NDDSs) have achieved targeted drug delivery and controlled drug release, offering great promises in various therapeutics for diverse disorders. Additionally, the radial extracorporeal shock wave (rESW) has been shown to function as a robust trigger source for the NDDS to release its contents, as the rESW harbors a potent capability in generating pressure waves and in creating the cavitation effect. Here, we explored the performance of oxygen-loaded nanoperfluorocarbon (Nano-PFC) combined with the rESW as a treatment for DFUs. Prior to in vivo assessment, we first demonstrated the high oxygen affinity in vitro and great biocompatibility of Nano-PFC. Moreover, the rESW-responsive oxygen release behavior from oxygen-saturated Nano-PFC was also successfully verified in vitro and in vivo. Importantly, the wound healing of DFUs was significantly accelerated due to improved blood microcirculation, which was a result of rESW therapy (rESWT), and the targeted release of oxygen into the wound from oxygen-loaded Nano-PFC, which was triggered by the rESW. Collectively, the oxygen-saturated Nano-PFC and rESW provide a completely new approach to treat DFUs, and this study highlights the advantages of combining nanotechnology with rESW in therapeutics.
Collapse
Affiliation(s)
- Shunhao Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoguang Han
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| | - Anyi Guo
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| | - Xiaodong Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajun Liu
- Beijing Jishuitan Hospital, The 4th Clinical Hospital of Peking University Health Science Center, Beijing 100035, China
| |
Collapse
|
84
|
Song R, Peng S, Lin Q, Luo M, Chung HY, Zhang Y, Yao S. pH-Responsive Oxygen Nanobubbles for Spontaneous Oxygen Delivery in Hypoxic Tumors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10166-10172. [PMID: 30698448 DOI: 10.1021/acs.langmuir.8b03650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Tumor hypoxia is a significant factor leading to the resistance of tumors to treatment, especially for photodynamic therapy and radiotherapy where oxygen is needed to kill cancer cells. Oxygen delivery agents such as oxygen-saturated perfluorocarbon nanoemulsions and lipid oxygen microbubbles have been employed to supply oxygen to hypoxic tumors with ultrasound activation. Such oxygen delivery systems are still associated with several drawbacks, including premature oxygen release and the dependence of external stimuli. To address these limitations, we developed oxygen nanobubbles that were enclosed by the acetalated dextran polymer shells for spontaneous oxygeneration in response to a minor pH drop in the tumor microenvironment. The acetalated dextran polymer shell serves as a robust barrier against gas dissolution in the circulating blood to retain the majority of the oxygen payload, and its pH-responsive property enables an abrupt burst release of oxygen in the mild acidic tumor microenvironment. The acetalated dextran oxygen nanobubbles exhibited excellent stability and biocompatibility. In vitro and in vivo experiments were conducted to investigate the pH-responsive oxygen release. The external stimuli-free supply of oxygen by the acetalated dextran oxygen nanobubbles was evaluated on CNE2 tumor-bearing mice, and the intratumoral oxygen level increased by 6-fold after the administration of the oxygen nanobubbles, manifesting that our pH-responsive oxygen nanobubbles hold great potential as a potent oxygen delivery agent to overcome the hypoxia-induced resistance.
Collapse
|
85
|
Xia Q, Zhang Y, Li Z, Hou X, Feng N. Red blood cell membrane-camouflaged nanoparticles: a novel drug delivery system for antitumor application. Acta Pharm Sin B 2019; 9:675-689. [PMID: 31384529 PMCID: PMC6663920 DOI: 10.1016/j.apsb.2019.01.011] [Citation(s) in RCA: 360] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/30/2018] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
Erythrocytes (red blood cells, RBCs) are the most abundant circulating cells in the blood and have been widely used in drug delivery systems (DDS) because of their features of biocompatibility, biodegradability, and long circulating half-life. Accordingly, a "camouflage" comprised of erythrocyte membranes renders nanoparticles as a platform that combines the advantages of native erythrocyte membranes with those of nanomaterials. Following injection into the blood of animal models, the coated nanoparticles imitate RBCs and interact with the surroundings to achieve long-term circulation. In this review, the biomimetic platform of erythrocyte membrane-coated nano-cores is described with regard to various aspects, with particular focus placed on the coating mechanism, preparation methods, verification methods, and the latest anti-tumor applications. Finally, further functional modifications of the erythrocyte membranes and attempts to fuse the surface properties of multiple cell membranes are discussed, providing a foundation to stimulate extensive research into multifunctional nano-biomimetic systems.
Collapse
Key Words
- ABC, accelerated blood clearance
- APCs, antigen presenting cells
- Antitumor
- AuNCs, gold nanocages
- AuNPs, gold nanoparticles
- Biomimetic nanoparticles
- C8bp, C8 binding protein
- CR1, complement receptor 1
- DAF, decay accelerating factor
- DDS, drug delivery systems
- DLS, dynamic light scattering
- Dox, doxorubicin
- Drug delivery
- ECM, extracellular matrix
- EPR, enhanced permeability and retention
- ETA, endothelin A
- EpCam, epithelial cell adhesion molecule
- FA, folic acid
- GA, gambogic acid
- H&E, hematoxylin and eosin
- HRP, homologous restriction protein
- MCP, membrane cofactor protein
- MNCs, magnetic nanoclusters
- MNs, magnetic nanoparticles
- MPS, mononuclear phagocyte system
- MRI, magnetic resonance imaging
- MSNs, mesoporous silica nanoparticles
- Membrane
- NIR, near-infrared radiation
- Nanoparticles
- PAI, photoacoustic imaging
- PBS, phosphate buffered saline
- PCL, poly(caprolactone)
- PDT, photodynamic therapy
- PEG, polyethylene glycol
- PFCs, perfluorocarbons
- PLA, poly(lactide acid)
- PLGA, poly(d,l-lactide-co-glycolide)
- PPy, polypyrrole
- PS, photosensitizers
- PTT, photothermal therapy
- PTX, paclitaxel
- RBCM-NPs, RBCM-coated nanoparticles
- RBCMs, RBC membranes
- RBCs, red blood cells
- RES, reticuloendothelial system
- ROS, reactive oxygen species
- RVs, RBCM-derived vesicles
- Red blood cells
- SEM, scanning electron microscopy
- SIRPα, signal-regulatory protein alpha
- TEM, transmission electron microscopy
- TEMPO, 2,2,6,6-tetramethylpiperidin-1-yl oxyl
- TPP, triphenylphosphonium
- UCNPs, upconversion nanoparticles
- UV, ultraviolet
- rHuPH20, recombinant hyaluronidase, PH20
Collapse
Affiliation(s)
| | | | | | | | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
86
|
Perfluorocarbon regulates the intratumoural environment to enhance hypoxia-based agent efficacy. Nat Commun 2019; 10:1580. [PMID: 30952842 PMCID: PMC6450981 DOI: 10.1038/s41467-019-09389-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/06/2019] [Indexed: 12/18/2022] Open
Abstract
Hypoxia-based agents (HBAs), such as anaerobic bacteria and bioreductive prodrugs, require both a permeable and hypoxic intratumoural environment to be fully effective. To solve this problem, herein, we report that perfluorocarbon nanoparticles (PNPs) can be used to create a long-lasting, penetrable and hypoxic tumour microenvironment for ensuring both the delivery and activation of subsequently administered HBAs. In addition to the increased permeability and enhanced hypoxia caused by the PNPs, the PNPs can be retained to further achieve the long-term inhibition of intratumoural O2 reperfusion while enhancing HBA accumulation for over 24 h. Therefore, perfluorocarbon materials may have great potential for reigniting clinical research on hypoxia-based drugs. Hypoxia-based agents need permeable and hypoxic intratumour environment to be effective. Here, the authors show that perfluorocarbon nanoparticles promote increased permeability and sustained hypoxia to improve accumulation of hypoxia-based agents, and inhibit intratumour oxygen reperfusion.
Collapse
|
87
|
Martin AL, Homenick CM, Xiang Y, Gillies E, Matsuura N. Polyelectrolyte Coatings Can Control Charged Fluorocarbon Nanodroplet Stability and Their Interaction with Macrophage Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4603-4612. [PMID: 30757902 DOI: 10.1021/acs.langmuir.8b04051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fluorocarbon nanodroplets, ∼100 to ∼400 nm in diameter, are of immense interest in a variety of medical applications including the imaging and therapy of cancer and inflammatory diseases. However, fluorocarbon molecules are both hydrophobic and lipophobic; therefore, it is challenging to synthesize fluorocarbon nanodroplets with the optimal stability and surface properties without the use of highly specialized surfactants. Here, we hypothesize that we can decouple the control of fluorocarbon nanodroplet size and stability from its surface properties. We use a simple, two-step procedure where standard, easily available anionic fluorosurfactants are used to first stabilize the fluorocarbon nanodroplets, followed by electrostatically attaching functionalized polyelectrolytes to the nanodroplet surfaces to independently control their surface properties. Herein, we demonstrate that PEGylated polyelectrolyte coatings can effectively alter the fluorocarbon nanodroplet surface properties to reduce coalescence and its uptake into phagocytic cells in comparison with non-PEGylated polyelectrolyte coatings and uncoated nanodroplets, as measured by flow cytometry and fluorescence microscopy. In this study, perfluorooctyl bromide (PFOB) was used as a representative fluorocarbon material, and PEGylated PFOB nanodroplets with diameters between 250 and 290 nm, depending on the poly(ethylene glycol) block length, were prepared. The PEGylated PFOB nanodroplets had superior size stability in comparison with uncoated and non-PEGylated polyelectrolyte nanodroplets in saline and within macrophage cells. Of significance, non-PEGylated nanodroplets were rapidly internalized by macrophage cells, whereas PEGylated nanodroplets were predominantly colocalized on the cell membrane. This suggests that the PEGylated-polyelectrolyte coating on the charged PFOB nanodroplets may afford adjustable shielding from cells of the reticuloendothelial system. This report shows that using the same fluorosurfactant as a base layer, modularly assembled PFOB nanodroplets tailored for a variety of end applications can be created by selecting different polyelectrolyte coatings depending on their unique requirements for stability and interaction with phagocytic cells.
Collapse
Affiliation(s)
- Amanda L Martin
- Physical Sciences , Sunnybrook Research Institute , Toronto , Ontario M4N 3M5 , Canada
| | - Christa M Homenick
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | | - Elizabeth Gillies
- Department of Chemistry and Department of Chemical and Biochemical Engineering , The University of Western Ontario , London , Ontario N6A 5B7 , Canada
| | | |
Collapse
|
88
|
Fu X, Ohta S, Kamihira M, Sakai Y, Ito T. Size-Controlled Preparation of Microsized Perfluorocarbon Emulsions as Oxygen Carriers via the Shirasu Porous Glass Membrane Emulsification Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:4094-4100. [PMID: 30791688 DOI: 10.1021/acs.langmuir.9b00194] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We have developed microsized perfluorocarbon (PFC) emulsions with different sizes as artificial oxygen carriers (OCs) via Shirasu porous glass membrane emulsification. Monodispersed PFC emulsions with narrow size distribution were obtained. By changing the membrane pore size, we were able to precisely control the size of emulsions and fabricate emulsions similar in size to human red blood cells. Behaviors of Pluronics with different physiochemical properties (F127, F68, P85, and P103) as surfactants were also investigated, which evidenced that the type and concentration of Pluronics have a major impact on the size of emulsions and the response to different thermal conditions. The F127-stabilized microsized PFC emulsions were stable even during autoclave sterilization. The emulsions were loaded with Ru(ddp)-an oxygen-sensitive probe-on their surfaces to indicate oxygen concentration. Finally, incubations with HeLa cells that show fluorescence in response to hypoxia cultured in 2D and 3D suggested promising potential of our emulsions for OCs.
Collapse
Affiliation(s)
- Xiaoting Fu
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Yasuyuki Sakai
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Taichi Ito
- Department of Bioengineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
- Center for Disease Biology and Integrative Medicine , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8655 , Japan
| |
Collapse
|
89
|
Xiang Y, Bernards N, Hoang B, Zheng J, Matsuura N. Perfluorocarbon nanodroplets can reoxygenate hypoxic tumors in vivo without carbogen breathing. Nanotheranostics 2019; 3:135-144. [PMID: 31008022 PMCID: PMC6470341 DOI: 10.7150/ntno.29908] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/08/2019] [Indexed: 12/15/2022] Open
Abstract
Nanoscale perfluorocarbon (PFC) droplets have enormous potential as clinical theranostic agents. They are biocompatible and are currently used in vivo as contrast agents for a variety of medical imaging modalities, including ultrasound, computed tomography, photoacoustic and 19F-magnetic resonance imaging. PFC nanodroplets can also carry molecular and nanoparticulate drugs and be activated in situ by ultrasound or light for targeted therapy. Recently, there has been renewed interest in using PFC nanodroplets for hypoxic tumor reoxygenation towards radiosensitization based on the high oxygen solubility of PFCs. Previous studies showed that tumor oxygenation using PFC agents only occurs in combination with enhanced oxygen breathing. However, recent studies suggest that PFC agents that accumulate in solid tumors can contribute to radiosensitization, presumably due to tumor reoxygenation without enhanced oxygen breathing. In this study, we quantify the impact of oxygenation due to PFC nanodroplet accumulation in tumors alone in comparison with other reoxygenation methodologies, in particular, carbogen breathing. Methods: Lipid-stabilized, PFC (i.e., perfluorooctyl bromide, CF3(CF2)7Br, PFOB) nanoscale droplets were synthesized and evaluated in xenograft prostate (DU145) tumors in male mice. Biodistribution assessment of the nanodroplets was achieved using a fluorescent lipophilic indocarbocyanine dye label (i.e., DiI dye) on the lipid shell in combination with fluorescence imaging in mice (n≥3 per group). Hypoxia reduction in tumors was measured using PET imaging and a known hypoxia radiotracer, [18F]FAZA (n≥ 3 per group). Results: Lipid-stabilized nanoscale PFOB emulsions (mean diameter of ~250 nm), accumulated in the xenograft prostate tumors in mice 24 hours post-injection. In vivo PET imaging with [18F]FAZA showed that the accumulation of the PFOB nanodroplets in the tumor tissues alone significantly reduced tumor hypoxia, without enhanced oxygen (i.e., carbogen) breathing. This reoxygenation effect was found to be comparable with carbogen breathing alone. Conclusion: Accumulation of nanoscale PFOB agents in solid tumors alone successfully reoxygenated hypoxic tumors to levels comparable with carbogen breathing alone, an established tumor oxygenation method. This study confirms that PFC agents can be used to reoxygenate hypoxic tumors in addition to their current applications as multifunctional theranostic agents.
Collapse
Affiliation(s)
- Yun Xiang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Nicholas Bernards
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Bryan Hoang
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
| | - Jinzi Zheng
- TECHNA Institute for the Advancement of Technology for Health, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
| | - Naomi Matsuura
- Department of Medical Imaging, University of Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Ontario, Canada
- Department of Materials Science and Engineering, University of Toronto, Ontario, Canada
| |
Collapse
|
90
|
Choi M, Park S, Park K, Jeong H, Hong J. Nitric Oxide Delivery Using Biocompatible Perfluorocarbon Microemulsion for Antibacterial Effect. ACS Biomater Sci Eng 2019; 5:1378-1383. [DOI: 10.1021/acsbiomaterials.9b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyungtae Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
91
|
Hu D, Zhong L, Wang M, Li H, Qu Y, Liu Q, Han R, Yuan L, Shi K, Peng J, Qian Z. Perfluorocarbon-Loaded and Redox-Activatable Photosensitizing Agent with Oxygen Supply for Enhancement of Fluorescence/Photoacoustic Imaging Guided Tumor Photodynamic Therapy. ADVANCED FUNCTIONAL MATERIALS 2019. [DOI: 10.1002/adfm.201806199] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- DanRong Hu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Lin Zhong
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - MengYao Wang
- Department of Hematology and Research Laboratory of Hematology; State Key Laboratory of Biotherapy; West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - HaoHuan Li
- Key Laboratory of Drug Targeting and Drug Delivery Systems; Ministry of Education; West China School of Pharmacy; Sichuan University; Chengdu Sichuan 610041 P. R. China
| | - Ying Qu
- Department of Hematology and Research Laboratory of Hematology; State Key Laboratory of Biotherapy; West China Hospital, Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - QingYa Liu
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Ruxia Han
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - LiPing Yuan
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - JinRong Peng
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center; West China Hospital; Sichuan University; Collaborative Innovation Center for Biotherapy; Chengdu Sichuan 610041 P. R. China
| |
Collapse
|
92
|
Sykłowska-Baranek K, Rymaszewski W, Gaweł M, Rokicki P, Pilarek M, Grech-Baran M, Hennig J, Pietrosiuk A. Comparison of elicitor-based effects on metabolic responses of Taxus × media hairy roots in perfluorodecalin-supported two-phase culture system. PLANT CELL REPORTS 2019; 38:85-99. [PMID: 30406280 PMCID: PMC6320355 DOI: 10.1007/s00299-018-2351-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/27/2018] [Indexed: 06/01/2023]
Abstract
Two lines of Taxus × media hairy roots harbouring or not the TXS transgene demonstrated diverse gene expression and taxane yield during cultivation in PFD-supported two liquid-phase culture system. Two lines of Taxus × media hairy roots were subjected to single or twice-repeated supplementation with methyl jasmonate, sodium nitroprusside, L-phenylalanine, and sucrose feeding. One line harboured transgene of taxadiene synthase (ATMA), while the second (KT) did not. Both hairy root lines were cultured in two-phase culture systems containing perfluorodecalin (PFD) in aerated or degassed form. The relationship between TXS (taxadiene synthase), BAPT (baccatin III: 3-amino, 3-phenylpropanoyltransferase), and DBTNBT (3'-N-debenzoyl-2-deoxytaxol-N-benzoyltransferase) genes and taxane production was analysed. The ATMA and KT lines differed in their potential for taxane accumulation, secretion, and taxane profile. In ATMA biomass, both paclitaxel and baccatin III were detected, while in KT roots only paclitaxel. The most suitable conditions for taxane production for ATMA roots were found in single-elicited supported with PFD-degassed cultures (2 473.29 ± 263.85 µg/g DW), whereas in KT roots in single-elicited cultures with PFD-aerated (470.08 ± 25.15 µg/g DW). The extracellular levels of paclitaxel never exceeded 10% for ATMA roots, while for KT increased up to 76%. The gene expression profile was determined in single-elicited cultures supported with PFD-degassed, where in ATMA roots, the highest taxane yield was obtained, while in KT the lowest one. The gene expression pattern in both investigated root lines differed substantially what resulted in taxane yield characterized particular lines. The highest co-expression of TXS, BAPT and DBTNBT genes noted for ATMA roots harvested 48 h after elicitation corresponded with their higher ability for taxane production in comparison with the effects observed for KT roots.
Collapse
Affiliation(s)
- K Sykłowska-Baranek
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland.
| | - W Rymaszewski
- Institute of Biochemistry and Biophysics, Laboratory of Plant Pathogenesis, Polish Academy of Sciences, 5A Pawińskiego Str, 02-106, Warsaw, Poland
| | - M Gaweł
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
| | - P Rokicki
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - M Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645, Warsaw, Poland
| | - M Grech-Baran
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
| | - J Hennig
- Institute of Biochemistry and Biophysics, Laboratory of Plant Pathogenesis, Polish Academy of Sciences, 5A Pawińskiego Str, 02-106, Warsaw, Poland
| | - A Pietrosiuk
- Department of Pharmaceutical Biology and Medicinal Plant Biotechnology, Faculty of Pharmacy with the Laboratory Medicine Division, Medical University of Warsaw, 1 Banacha Str, 02-097, Warsaw, Poland
| |
Collapse
|
93
|
Guerreiro F, Constantino A, Lima‐Costa E, Raposo S. A new combined approach to improved lipid production using a strictly aerobic and oleaginous yeast. Eng Life Sci 2019; 19:47-56. [PMID: 32624955 PMCID: PMC6999502 DOI: 10.1002/elsc.201800115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/12/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022] Open
Abstract
Microbial lipids have potential applications in energy, and food industry, because most of those lipids are triacylglycerol with long-chain fatty-acids that are comparable to conventional vegetable oils and can be obtained without arable land requirement. Rhodosporidium toruloides is a strictly aerobic strain, where oxygen plays a crucial role in growth, maintenance, and metabolite production, such as lipids and carotenoids. Dissolved oxygen concentration is one of the major factors affecting yeast physiological and biochemical characteristics. In this context, different approaches have been developed to increase available oxygen by the increasing the aeration and the addition of an oxygen-vector. The growth of R. toruloides in 2-L mechanical stirred tank reactor equipped with 1 or 2 porous spargers and a 70 C/N ratio, revealed a lipid content of 0.47 and 0.52 g/g and a lipidic productivity of 0.16 and 0.17 g/L day, respectively. The oxygen-vector addition, increased the lipidic productivity for 0.20 g/L day and a lipid contend of 0.51 g of lipids/g of biomass. The combined approach, combining high aeration (AA), and 1% of n-dodecane addition (DA), produced a significant improvement in the lipid accumulation (62%, w/w), when compared with the DA (51%, w/w) and the AA (52%, w/w) approaches. The increasing of lipids accumulation and smaller culture time are key factors for the success of scale-up and profitability of a bioprocess.
Collapse
Affiliation(s)
- Fábio Guerreiro
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Ana Constantino
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Emília Lima‐Costa
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| | - Sara Raposo
- Center for Marine and Environmental Research—CIMAUniversity of Algarve—Campus de GambelasFaroPortugal
| |
Collapse
|
94
|
Howell C, Grinthal A, Sunny S, Aizenberg M, Aizenberg J. Designing Liquid-Infused Surfaces for Medical Applications: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1802724. [PMID: 30151909 DOI: 10.1002/adma.201802724] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/06/2018] [Indexed: 05/21/2023]
Abstract
The development of new technologies is key to the continued improvement of medicine, relying on comprehensive materials design strategies that can integrate advanced therapeutic and diagnostic functions with a variety of surface properties such as selective adhesion, dynamic responsiveness, and optical/mechanical tunability. Liquid-infused surfaces have recently come to the forefront as a unique approach to surface coatings that can resist adhesion of a wide range of contaminants on medical devices. Furthermore, these surfaces are proving highly versatile in enabling the integration of established medical surface treatments alongside the antifouling capabilities, such as drug release or biomolecule organization. Here, the range of research being conducted on liquid-infused surfaces for medical applications is presented, from an understanding of the basics behind the interactions of physiological fluids, microbes, and mammalian cells with liquid layers to current applications of these materials in point-of-care diagnostics, medical tubing, instruments, implants, and tissue engineering. Throughout this exploration, the design parameters of liquid-infused surfaces and how they can be adapted and tuned to particular applications are discussed, while identifying how the range of controllable factors offered by liquid-infused surfaces can be used to enable completely new and dynamic approaches to materials and devices for human health.
Collapse
Affiliation(s)
- Caitlin Howell
- Department of Chemical and Biomedical Engineering and School of Biomedical Science and Engineering, University of Maine, 5737 Jenness Hall, Orono, ME, 04469, USA
| | - Alison Grinthal
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Steffi Sunny
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
| | - Michael Aizenberg
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
| | - Joanna Aizenberg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, MA, 021383, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Cir, Boston, MA, 02115, USA
- Kavli Institute for Bionano Science and Technology, Harvard University, 29 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
95
|
Miller MA, Sletten EM. A General Approach to Biocompatible Branched Fluorous Tags for Increased Solubility in Perfluorocarbon Solvents. Org Lett 2018; 20:6850-6854. [PMID: 30354161 PMCID: PMC6321771 DOI: 10.1021/acs.orglett.8b02976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A modular, cost-effective route to a library of branched fluorous tags with two short, biocompatible, fluorinated chains (C6F13) is reported. These branched fluorous tags provide high fluorous content without the use of long-chain linear perfluorocarbons, which have rising health concerns due to their bioaccumulation. By attaching these tags to a porphyrin, it is demonstrated that high solubility can be achieved in fluorous solvents that are readily cleared from mammals. This work enhances the biocompatibility of perfluorocarbon nanoemulsions for photodynamic therapy.
Collapse
Affiliation(s)
- Margeaux A. Miller
- Department of Chemistry and Biochemistry University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ellen M. Sletten
- Department of Chemistry and Biochemistry University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| |
Collapse
|
96
|
Peng Y, Kheir JN, Polizzotti BD. Injectable Oxygen: Interfacing Materials Chemistry with Resuscitative Science. Chemistry 2018; 24:18820-18829. [DOI: 10.1002/chem.201802054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/11/2018] [Indexed: 12/28/2022]
Affiliation(s)
- Yifeng Peng
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| | - John N. Kheir
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| | - Brian D. Polizzotti
- Translational Research Laboratory, Department of Cardiology; Boston Children's Hospital; Boston MA 02115 USA
- Department of Pediatrics; Harvard Medical School; Boston MA 02115 USA
| |
Collapse
|
97
|
Song R, Hu D, Chung HY, Sheng Z, Yao S. Lipid-Polymer Bilaminar Oxygen Nanobubbles for Enhanced Photodynamic Therapy of Cancer. ACS APPLIED MATERIALS & INTERFACES 2018; 10:36805-36813. [PMID: 30300545 DOI: 10.1021/acsami.8b15293] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hypoxia in solid tumors may be a hindrance to effective treatments of tumors in achieving their therapeutic potential, especially for photodynamic therapy (PDT) which requires oxygen as the supplement substrate. Oxygen delivery using perfluorocarbon emulsions or lipid oxygen microbubbles has been developed as the agents to supply endogenous oxygen to fuel singlet oxygen generation in PDT. However, such methods suffer from premature oxygen release and storage issues. To address these limitations, we designed lipid-polymer bilaminar oxygen nanobubbles with chlorin e6 (Ce6) conjugated to the polymer shell as a novel oxygen self-supplement agent for PDT. The resultant nanobubbles possessed excellent stability to reduce the risk of premature oxygen release and were stored as freeze-dried powders to avoid shelf storage issues. In vitro and in vivo experimental results demonstrated that the nanobubbles exhibited much higher cellular uptake rates and tumor targeting efficiency compared to free Ce6. Using the oxygen nanobubbles for PDT, a significant enhancement of therapeutic efficacy and survival rates was achieved on a C6 glioma-bearing mice model with no noticeable side effects, owing to the greatly enhanced singlet oxygen generation powered by oxygen encapsulated nanobubbles.
Collapse
Affiliation(s)
- Ruyuan Song
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Hong Kong , China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ho Yin Chung
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Hong Kong 999077 , China
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology , Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Shuhuai Yao
- Bioengineering Graduate Program, Department of Chemical and Biological Engineering , The Hong Kong University of Science and Technology , Hong Kong , China
- Department of Mechanical and Aerospace Engineering , The Hong Kong University of Science and Technology , Hong Kong 999077 , China
| |
Collapse
|
98
|
Jia K, Zhang X, Zhang L, Yu L, Wu Y, Li L, Mai Y, Liao B. Photoinduced Reconfiguration of Complex Emulsions Using a Photoresponsive Surfactant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:11544-11552. [PMID: 30184432 DOI: 10.1021/acs.langmuir.8b02456] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Photoresponsive complex emulsions are prepared in a three-phase system consisting of two oils: hexane (H) and perfluorooctane (F). An aqueous solution of a mixed surfactant of fluorosurfactant, F(CF2) x(CH2CH2O) yH (Zonyl FS-300), and a synthesized light-responsive surfactant, 2-(4-(4-butylphenyl)diazenylphenoxy)ethyltrimethylammonium bromide (C4AZOC2TAB) was employed as the continuous phase. Complex emulsions with various geometries were prepared by one-step vortex mixing and a temperature-induced phase-separation method. It was noticed that the topology of the complex emulsion was highly dependent on the mass ratio of Zonyl FS-300/C4AZOC2TAB. Light microscopy images showed that phase inversion from an H/F/W- to an F/H/W-type double emulsion via a Janus emulsion was achieved by gradually increasing the mass ratio of C4AZOC2TAB/Zonyl FS-300. Upon UV/blue light irradiation, the topology of complex emulsions was turned to switch from an F/H/W double emulsion to a Janus emulsion to an entirely inverted H/F/W double emulsion. Dynamic interfacial tension measurements showed that UV irradiation of the interface between an aqueous trans-C4AZOC2TAB solution and hexane brings about an increase in the interfacial tension, suggesting the nature of photoinduced morphological changes in complex emulsions. The reconfiguration process of complex emulsions was illustrated by the Marangoni effect based on heterogeneity in the interfacial tension at the complex emulsion surface induced by controlling the molecular conversion of C4AZOC2TAB using light irradiation. Finally, we used the complex emulsions structure to form an on-off switch to start and shut off the evaporation of one volatile phase to achieve process monitoring. This could be used to initiate and quench a reaction, which offers a novel idea for achieving switchable and reversible reaction control in multiple-phase reactions.
Collapse
Affiliation(s)
- Kangle Jia
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Xiong Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Lei Zhang
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Longfei Yu
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Yuchao Wu
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Li Li
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Yuliang Mai
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| | - Bing Liao
- Guangdong Provincial Key Laboratory of Industrial Surfactant , Guangdong Research Institute of Petrochemical and Fine Chemical Engineering , Guangzhou 510000 , Guangdong P. R. China
| |
Collapse
|
99
|
Zhou Z, Zhang B, Wang H, Yuan A, Hu Y, Wu J. Two-stage oxygen delivery for enhanced radiotherapy by perfluorocarbon nanoparticles. Theranostics 2018; 8:4898-4911. [PMID: 30429876 PMCID: PMC6217071 DOI: 10.7150/thno.27598] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/21/2018] [Indexed: 02/06/2023] Open
Abstract
Tumors are usually hypoxic, which limits the efficacy of current tumor therapies, especially radiotherapy in which oxygen is essential to promote radiation-induced cell damage. Herein, by taking advantage of the ability of perfluorocarbon (PFC) to promote red blood cell penetration, we developed a simple but effective two-stage oxygen delivery strategy to modulate the hypoxic tumor microenvironment using PFC nanoparticles. Methods: We first examined the two-stage oxygen delivery ability of PFC nanoparticles on relieving tumor hypoxia through platelet inhibition. To evaluate the effect of PFC nanoparticles on radiation sensitization, CT26 tumor and SUM49PT tumor model were used. Results: In this study, PFC was encapsulated into albumin and intravenously injected into tumor-bearing mice without hyperoxic breathing. After accumulation in the tumor, PFC nanoparticles rapidly released the oxygen that was physically dissolved in PFC as the first-stage of oxygen delivery. Then, PFC subsequently promoted red blood cell infiltration, which further released O2 as the second-stage of oxygen delivery. Conclusion: The hypoxic tumor microenvironment was rapidly relieved via two-stage oxygen delivery, effectively increasing radiotherapy efficacy. The safety of all substances used in this study has been clinically demonstrated, ensuring that this simple strategy could be rapidly and easily translated into clinical applications to solve the clinical problems associated with tumor hypoxia.
Collapse
Affiliation(s)
- Zaigang Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
| | - Baoli Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing 210093, China
- Institute of Drug R&D, Nanjing University, Nanjing 210093, China
- Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing 210093, China
| |
Collapse
|
100
|
Li X, Sui Z, Li X, Xu W, Guo Q, Sun J, Jing F. Perfluorooctylbromide nanoparticles for ultrasound imaging and drug delivery. Int J Nanomedicine 2018; 13:3053-3067. [PMID: 29872293 PMCID: PMC5975599 DOI: 10.2147/ijn.s164905] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Perfluorooctylbromide nanoparticles (PFOB NPs) are a type of multifunctional nanotechnology that has been studied for various medical applications. Commercial ultrasound contrast agents (UCAs) suffer from the following limitations: short half-lives in vivo, high background signal and restricted distribution in the vascular circulation due to their micrometer dimensions. PFOB NPs are new potential UCAs that persist for long periods in the circulatory system, possess a relatively stable echogenic response without increasing the background signal and exhibit lower acoustic attenuation than commercial UCAs. Furthermore, PFOB NPs may also serve as drug delivery vehicles in which drugs are dissolved in the outer lipid or polymer layer for subsequent delivery to target sites in site-targeted therapy. The use of PFOB NPs as carriers has the potential advantage of selectively delivering payloads to the target site while improving visualization of the site using ultrasound (US) imaging. Unfortunately, the application of PFOB NPs to the field of ultrasonography has been limited because of the low intensity of US reflection. Numerous researchers have realized the potential use of PFOB NPs as UCAs and thus have developed alternative approaches to apply PFOB NPs in ultrasonography. In this article, we review the latest approaches for using PFOB NPs to enhance US imaging in vivo. In addition, this article emphasizes the application of PFOB NPs as promising drug delivery carriers for cancer and atherosclerosis treatments, as PFOB NPs can transport different drug payloads for various applications with good efficacy. We also note the challenges and future study directions for the application of PFOB NPs as both a delivery system for therapeutic agents and a diagnostic agent for ultrasonography.
Collapse
Affiliation(s)
- Xiao Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Zhongguo Sui
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Xin Li
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Wen Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Qie Guo
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Jialin Sun
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| | - Fanbo Jing
- Department of Clinical Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, People's Republic of China
| |
Collapse
|