51
|
Kantor AB, Akassoglou K, Stavenhagen JB. Fibrin-Targeting Immunotherapy for Dementia. J Prev Alzheimers Dis 2023; 10:647-660. [PMID: 37874085 PMCID: PMC11227370 DOI: 10.14283/jpad.2023.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Blood-brain barrier (BBB) disruption is an early event in the development of Alzheimer's disease. It precedes extracellular deposition of amyloid-β in senile plaques and blood vessel walls, the intracellular accumulation of neurofibrillary tangles containing phosphorylated tau protein, microglial activation, and neuronal cell death. BBB disruption allows the coagulation protein fibrinogen to leak from the blood into the brain, where it is converted by thrombin cleavage into fibrin and deposits in the parenchyma and CNS vessels. Fibrinogen cleavage by thrombin exposes a cryptic epitope termed P2 which can bind CD11b and CD11c on microglia, macrophages and dendritic cells and trigger an inflammatory response toxic to neurons. Indeed, genetic and pharmacological evidence demonstrates a causal role for fibrin in innate immune cell activation and the development of neurodegenerative diseases. The P2 inflammatory epitope is spatially and compositionally distinct from the coagulation epitope on fibrin. Mouse monoclonal antibody 5B8, which targets the P2 epitope without interfering with the clotting process, has been shown to reduce neurodegeneration and neuroinflammation in animal models of Alzheimer's disease and multiple sclerosis. The selectivity and efficacy of this anti-human fibrin-P2 antibody in animal models supports the development of a monoclonal antibody drug targeting fibrin P2 for the treatment of neurodegenerative diseases. THN391 is a humanized, affinity-matured antibody which has a 100-fold greater affinity for fibrin P2 and improved development properties compared to the parental 5B8 antibody. It is currently in a Phase 1 clinical trial.
Collapse
Affiliation(s)
- A B Kantor
- Jeffrey Stavenhagen, PhD, Therini Bio, Inc, Sacramento, CA, USA,
| | | | | |
Collapse
|
52
|
Liu C, Li Y, Nwosu A, Ang TFA, Liu Y, Devine S, Au R, Doraiswamy PM. Sex-specific biomarkers in Alzheimer's disease progression: Framingham Heart Study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12369. [PMID: 36348973 PMCID: PMC9633867 DOI: 10.1002/dad2.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/27/2020] [Accepted: 10/06/2020] [Indexed: 11/06/2022]
Abstract
Background Sex differences in Alzheimer's disease (AD) are not well understood. Methods We performed sex-specific analyses of AD and annualized cognitive decline with clinical and blood biomarker data in participants 60+ years old in the community-based longitudinal Framingham Heart Study Offspring Cohort (n = 1398, mean age 68 years, 55% women). Results During 11 years of follow-up, women were 96% more likely than men to be diagnosed with clinical AD dementia after adjusting for age and education in the younger age group 60 to 70 years (n = 946; 95% confidence interval [CI], 1.08 to 3.56) although not in the older age group (70+) (n = 452; hazard ratio = 0.98; 95% CI, 0.68 to 1.53). Sex-differences in incident AD rates decreased with increasing levels of education. The total contribution of the biomarkers to AD risk variance was 7.6% in women and 11.7% in men. One unit (pg/ml) lower plasma Aβ42 was associated with 0.0095 unit faster memory decline in women (p = 0.0002) but not in men (p = 0.55) after adjusting for age and education. Discussion Our study suggests that both early life and later-life pathological factors may contribute to potential sex differences in incident AD.
Collapse
Affiliation(s)
- Chunyu Liu
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
- Framingham Heart StudyBoston University School of MedicineBostonMassachusettsUSA
| | - Yi Li
- Department of BiostatisticsBoston University School of Public HealthBostonMassachusettsUSA
| | - Adaora Nwosu
- Departments of Psychiatry and MedicineNeurocognitive Disorders ProgramDuke University School of MedicineDurhamNorth CarolinaUSA
| | - Ting Fang Alvin Ang
- Framingham Heart StudyBoston University School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Yulin Liu
- Framingham Heart StudyBoston University School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Sherral Devine
- Framingham Heart StudyBoston University School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Rhoda Au
- Framingham Heart StudyBoston University School of MedicineBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
- Department of NeurologyBoston University School of MedicineBostonMassachusettsUSA
- Department of EpidemiologyBoston University School of Public HealthBostonMassachusettsUSA
| | - P. Murali Doraiswamy
- Departments of Psychiatry and MedicineNeurocognitive Disorders ProgramDuke University School of MedicineDurhamNorth CarolinaUSA
| |
Collapse
|
53
|
Yang Y, Zhao X, Zhu Z, Zhang L. Vascular dementia: A microglia's perspective. Ageing Res Rev 2022; 81:101734. [PMID: 36113763 DOI: 10.1016/j.arr.2022.101734] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/28/2022] [Accepted: 09/11/2022] [Indexed: 01/31/2023]
Abstract
Vascular dementia (VaD) is a second most common form of age-related dementia. It is characterized by cognitive impairment associated with vascular pathology, symptoms mainly caused by cerebral damage due to inadequate blood flow to the brain. The pathogenesis of VaD is complex, and a growing body of literature emphasizes on the involvement of microglia in disease development and progression. Here, we review the current knowledge on the role of microglia in regulating neuroinflammation under the pathogenesis of VaD. The commonly used animal and cell models for understanding the disease pathogenesis were summarized. The mechanisms by which microglia contribute to VaD are multifactorial, and we specifically focus on some of the predominant functions of microglia, including chemotaxis, secretory property, phagocytosis, and its crosstalk with other neurovascular unit cells. Finally, potential therapeutic strategies targeting microglia-modulated neuroinflammation are discussed.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| | - Xinyuan Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Zirui Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lihui Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China; Hangzhou Key Laboratory of Medical Neurobiology, Hangzhou Normal University, Hangzhou 311121, China; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
54
|
Anwar MM, Özkan E, Gürsoy-Özdemir Y. The role of extracellular matrix alterations in mediating astrocyte damage and pericyte dysfunction in Alzheimer's disease: A comprehensive review. Eur J Neurosci 2022; 56:5453-5475. [PMID: 34182602 DOI: 10.1111/ejn.15372] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022]
Abstract
The brain is a highly vascularized tissue protected by the blood-brain barrier (BBB), a complex structure allowing only necessary substances to pass through into the brain while limiting the entrance of harmful toxins. The BBB comprises several components, and the most prominent features are tight junctions between endothelial cells (ECs), which are further wrapped in a layer of pericytes. Pericytes are multitasked cells embedded in a thick basement membrane (BM) that consists of a fibrous extracellular matrix (ECM) and are surrounded by astrocytic endfeet. The primary function of astrocytes and pericytes is to provide essential blood supply and vital nutrients to the brain. In Alzheimer's disease (AD), long-term neuroinflammatory cascades associated with infiltration of harmful neurotoxic proteins may lead to BBB dysfunction and altered ECM components resulting in brain homeostatic imbalance, synaptic damage, and declined cognitive functions. Moreover, BBB structure and functional integrity may be lost due to induced ECM alterations, astrocyte damage, and pericytes dysfunction, leading to amyloid-beta (Aβ) hallmarks deposition in different brain regions. Herein, we highlight how BBB, ECM, astrocytes, and pericytes dysfunction can play a leading role in AD's pathogenesis and discuss their impact on brain functions.
Collapse
Affiliation(s)
- Mai M Anwar
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Biochemistry, National Organization for Drug Control and Research (NODCAR)/Egyptian Drug Authority, Cairo, Egypt
| | - Esra Özkan
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
55
|
Basova LV, Bortell N, Conti B, Fox HS, Milner R, Marcondes MCG. Age-associated changes in microglia activation and Sirtuin-1- chromatin binding patterns. Aging (Albany NY) 2022; 14:8205-8220. [PMID: 36227148 PMCID: PMC9648798 DOI: 10.18632/aging.204329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022]
Abstract
The aging process is associated with changes in mechanisms maintaining physiology, influenced by genetics and lifestyle, and impacting late life quality and longevity. Brain health is critical in healthy aging. Sirtuin 1 (Sirt1), a histone deacetylase with silencing properties, is one of the molecular determinants experimentally linked to health and longevity. We compared brain pathogenesis and Sirt1-chromatin binding dynamics in brain pre-frontal cortex from 2 groups of elder rhesus macaques, divided by age of necropsy: shorter-lived animals (18-20 years old (yo)), equivalent to 60-70 human yo; and longer-lived animals (23-29 yo), corresponding to 80-100 human yo and modeling successful aging. These were compared with young adult brains (4-7 yo). Our findings indicated drastic differences in the microglia marker Iba1, along with factors influencing Sirt1 levels and activity, such as CD38 (an enzyme limiting NAD that controls Sirt1 activity) and mir142 (a microRNA targeting Sirt1 transcription) between the elder groups. Iba1 was lower in shorter-lived animals than in the other groups, while CD38 was higher in both aging groups compared to young. mir142 and Sirt1 levels were inversely correlated in longer-lived brains (>23yo), but not in shorter-lived brains (18-20 yo). We also found that Sirt1 binding showed signs of better efficiency in longer-lived animals compared to shorter-lived ones, in genes associated with nuclear activity and senescence. Overall, differences in neuroinflammation and Sirt1 interactions with chromatin distinguished shorter- and longer-lived animals, suggesting the importance of preserving microglia and Sirt1 functional efficiency for longevity.
Collapse
Affiliation(s)
- Liana V. Basova
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | | - Bruno Conti
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Howard S. Fox
- University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Richard Milner
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | | |
Collapse
|
56
|
Lee DH, Lee JY, Hong DY, Lee EC, Park SW, Lee YK, Oh JS. Pharmacological Treatment for Neuroinflammation in Stress-Related Disorder. Biomedicines 2022; 10:biomedicines10102518. [PMID: 36289780 PMCID: PMC9599149 DOI: 10.3390/biomedicines10102518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 12/03/2022] Open
Abstract
Stress is an organism’s response to a biological or psychological stressor, a method of responding to threats. The autonomic nervous system and hypothalamic–pituitary–adrenal axis (HPA axis) regulate adaptation to acute stress and secrete hormones and excitatory amino acids. This process can induce excessive inflammatory reactions to the central nervous system (CNS) by HPA axis, glutamate, renin-angiotensin system (RAS) etc., under persistent stress conditions, resulting in neuroinflammation. Therefore, in order to treat stress-related neuroinflammation, the improvement effects of several mechanisms of receptor antagonist and pharmacological anti-inflammation treatment were studied. The N-methyl-D-aspartate (NMDA) receptor antagonist, peroxisome proliferator-activated receptor agonist, angiotensin-converting enzyme inhibitor etc., effectively improved neuroinflammation. The interesting fact is that not only can direct anti-inflammation treatment improve neuroinflammation, but so can stress reduction or pharmacological antidepressants. The antidepressant treatments, including selective serotonin reuptake inhibitors (SSRI), also helped improve stress-related neuroinflammation. It presents the direction of future development of stress-related neuroinflammation drugs. Therefore, in this review, the mechanism of stress-related neuroinflammation and pharmacological treatment candidates for it were reviewed. In addition, treatment candidates that have not yet been verified but indicate possibilities were also reviewed.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Ji-Young Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
| | - Dong-Yong Hong
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Eun-Chae Lee
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Sang-Won Park
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
| | - Yun-Kyung Lee
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| | - Jae-Sang Oh
- Department of Neurosurgery, College of Medicine, Soonchunhyang University, Cheonan Hospital, Cheonan 31151, Korea
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soon Chun Hyang University, Cheonan 31151, Korea
- Correspondence: (Y.-K.L.); (J.-S.O.)
| |
Collapse
|
57
|
Li TR, Liu FQ. β-Amyloid promotes platelet activation and activated platelets act as bridge between risk factors and Alzheimer's disease. Mech Ageing Dev 2022; 207:111725. [PMID: 35995275 DOI: 10.1016/j.mad.2022.111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is an evolving challenge that places an enormous burden on families and society. The presence of obvious brain β-amyloid (Aβ) deposition is a premise to diagnose AD, which induces the subsequent tau hyperphosphorylation and neurodegeneration. Platelets are the primary source of circulating amyloid precursor protein (APP). Upon activation, they can secrete significant amounts of Aβ into the blood, which can be actively transported to the brain across the blood-brain barrier and promote amyloid deposition. In this review, we summarized the changes in the platelet APP metabolic pathway in patients with AD and further comprehensively explored the targets and downstream events of Aβ-activated platelets. In addition, we attempted to clarify whether patients with AD are in a state of general platelet activation, with inconsistent results. Considering the increasingly evident bidirectional relationship between AD and vascular events, we speculate that the AD pathology alone seems to be insufficient to induce the general activation of platelets; however, the intervention of third-party factors, such as atherosclerosis, exposes the extracellular matrix and leads to platelet activation, further promoting AD progression. Therefore, we proposed a framework in which the relationship between platelets and AD is indirect and mediated by vascular factors. Therapies targeting platelets and interventions for vascular risk factors are likely to contribute to the prevention and treatment of AD.
Collapse
Affiliation(s)
- Tao-Ran Li
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Feng-Qi Liu
- Department of Hematology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
58
|
Wiera G, Brzdąk P, Lech AM, Lebida K, Jabłońska J, Gmerek P, Mozrzymas JW. Integrins Bidirectionally Regulate the Efficacy of Inhibitory Synaptic Transmission and Control GABAergic Plasticity. J Neurosci 2022; 42:5830-5842. [PMID: 35701161 PMCID: PMC9337602 DOI: 10.1523/jneurosci.1458-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 01/29/2023] Open
Abstract
For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by β1 or β3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of β3 integrin with fibrinogen induced a stable depression, whereas inhibition of β1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of β1 or β3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of β3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of β1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.
Collapse
Affiliation(s)
- Grzegorz Wiera
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Anna Maria Lech
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jadwiga Jabłońska
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Przemysław Gmerek
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
- Department of Molecular Physiology and Neurobiology, University of Wroclaw, 50-335 Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
59
|
Jagadapillai R, Qiu X, Ojha K, Li Z, El-Baz A, Zou S, Gozal E, Barnes GN. Potential Cross Talk between Autism Risk Genes and Neurovascular Molecules: A Pilot Study on Impact of Blood Brain Barrier Integrity. Cells 2022; 11:2211. [PMID: 35883654 PMCID: PMC9315816 DOI: 10.3390/cells11142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/10/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a common pediatric neurobiological disorder with up to 80% of genetic etiologies. Systems biology approaches may make it possible to test novel therapeutic strategies targeting molecular pathways to alleviate ASD symptoms. A clinical database of autism subjects was queried for individuals with a copy number variation (CNV) on microarray, Vineland, and Parent Concern Questionnaire scores. Pathway analyses of genes from pathogenic CNVs yielded 659 genes whose protein-protein interactions and mRNA expression mapped 121 genes with maximal antenatal expression in 12 brain regions. A Research Domain Criteria (RDoC)-derived neural circuits map revealed significant differences in anxiety, motor, and activities of daily living skills scores between altered CNV genes and normal microarrays subjects, involving Positive Valence (reward), Cognition (IQ), and Social Processes. Vascular signaling was identified as a biological process that may influence these neural circuits. Neuroinflammation, microglial activation, iNOS and 3-nitrotyrosine increase in the brain of Semaphorin 3F- Neuropilin 2 (Sema 3F-NRP2) KO, an ASD mouse model, agree with previous reports in the brain of ASD individuals. Signs of platelet deposition, activation, release of serotonin, and albumin leakage in ASD-relevant brain regions suggest possible blood brain barrier (BBB) deficits. Disruption of neurovascular signaling and BBB with neuroinflammation may mediate causative pathophysiology in some ASD subgroups. Although preliminary, these data demonstrate the potential for developing novel therapeutic strategies based on clinically derived data, genomics, cognitive neuroscience, and basic neuroscience methods.
Collapse
Affiliation(s)
- Rekha Jagadapillai
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Xiaolu Qiu
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Kshama Ojha
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
| | - Zhu Li
- Department of Neurology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville Speed School, Louisville, KY 40292, USA;
| | - Shipu Zou
- Department of Child Health, Jiangxi Provincial Children’s Hospital, Donghu District, Nanchang 330006, China;
| | - Evelyne Gozal
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Gregory N. Barnes
- Department of Neurology, Pediatric Research Institute, Louisville, KY 40202, USA; (R.J.); (X.Q.); (K.O.)
- University of Louisville Autism Center, Louisville, KY 40217, USA
- Department of Pediatrics, Pediatric Research Institute, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
60
|
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier. NEUROPHOTONICS 2022; 9:031914. [PMID: 35581998 PMCID: PMC9107322 DOI: 10.1117/1.nph.9.3.031914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Brain barriers are crucial sites for cerebral energy supply, waste removal, immune cell migration, and solute exchange, all of which maintain an appropriate environment for neuronal activity. At the capillary level, where the largest area of brain-vascular interface occurs, pericytes adjust cerebral blood flow (CBF) by regulating capillary diameter and maintain the blood-brain barrier (BBB) by suppressing endothelial cell (EC) transcytosis and inducing tight junction expression between ECs. Pericytes also limit the infiltration of circulating leukocytes into the brain where resident microglia confine brain injury and provide the first line of defence against invading pathogens. Brain "waste" is cleared across the BBB into the blood, phagocytosed by microglia and astrocytes, or removed by the flow of cerebrospinal fluid (CSF) through perivascular routes-a process driven by respiratory motion and the pulsation of the heart, arteriolar smooth muscle, and possibly pericytes. "Dirty" CSF exits the brain and is probably drained around olfactory nerve rootlets and via the dural meningeal lymphatic vessels and possibly the skull bone marrow. The brain is widely regarded as an immune-privileged organ because it is accessible to few antigen-primed leukocytes. Leukocytes enter the brain via the meninges, the BBB, and the blood-CSF barrier. Advances in genetic and imaging tools have revealed that neurological diseases significantly alter immune-brain barrier interactions in at least three ways: (1) the brain's immune-privileged status is compromised when pericytes are lost or lymphatic vessels are dysregulated; (2) immune cells release vasoactive molecules to regulate CBF, modulate arteriole stiffness, and can plug and eliminate capillaries which impairs CBF and possibly waste clearance; and (3) immune-vascular interactions can make the BBB leaky via multiple mechanisms, thus aggravating the influx of undesirable substances and cells. Here, we review developments in these three areas and briefly discuss potential therapeutic avenues for restoring brain barrier functions.
Collapse
Affiliation(s)
- Anna Barkaway
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - David Attwell
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Nils Korte
- University College London, Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| |
Collapse
|
61
|
Qin W, Li F, Jia L, Wang Q, Li Y, Wei Y, Li Y, Jin H, Jia J. Phosphorylated Tau 181 Serum Levels Predict Alzheimer’s Disease in the Preclinical Stage. Front Aging Neurosci 2022; 14:900773. [PMID: 35769604 PMCID: PMC9234327 DOI: 10.3389/fnagi.2022.900773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
Background There is an urgent need for cost-effective, easy-to-measure biomarkers to identify subjects who will develop Alzheimer’s disease (AD), especially at the pre-symptomatic stage. This stage can be determined in autosomal dominant AD (ADAD) which offers the opportunity to observe the dynamic biomarker changes during the life-course of AD stages. This study aimed to investigate serum biomarkers during different AD stages and potential novel protein biomarkers of presymptomatic AD. Methods In the first stage, 32 individuals [20 mutation carriers including 10 with AD, and 10 with mild cognitive impairment (MCI), and 12 healthy controls] from ADAD families were analyzed. All subjects underwent a complete clinical evaluation and a comprehensive neuropsychological battery. Serum samples were collected from all subjects, and antibody arrays were used to analyze 170 proteins in these samples. The most promising biomarkers were identified during this screening and were then measured in serum samples of 12 subjects with pre-MCI and 20 controls. Results The serum levels of 13 proteins were significantly different in patients with AD or MCI compared to controls. Of the 13 proteins, cathepsin D, immunoglobulin E, epidermal growth factor receptor (EGFR), matrix metalloproteinase-9 (MMP-9), von Willebrand factor (vWF), haptoglobin, and phosphorylated Tau-181 (p-Tau181) correlated with all cognitive measures (R2 = −0.69–0.76). The areas under the receiver operating characteristic curve of these seven proteins were 0.71–0.93 for the classification of AD and 0.57–0.95 for the classification of MCI. Higher levels of p-Tau181 were found in the serum of pre-MCI subjects than in the serum of controls. The p-Tau181 serum level might detect AD before symptoms occur (area under the curve 0.85, sensitivity 75%, specificity 81.67%). Conclusions A total of 13 serum proteins showed significant differences between subjects with AD and MCI and healthy controls. The p-Tau181 serum level might be a broadly available and cost-effective biomarker to identify individuals with preclinical AD and assess the severity of AD.
Collapse
Affiliation(s)
- Wei Qin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Fangyu Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ying Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Yan Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Hongmei Jin
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Capital Medical University, Beijing, China
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
- *Correspondence: Jianping Jia
| |
Collapse
|
62
|
Rydbirk R, Østergaard O, Folke J, Hempel C, DellaValle B, Andresen TL, Løkkegaard A, Hejl AM, Bode M, Blaabjerg M, Møller M, Danielsen EH, Salvesen L, Starhof CC, Bech S, Winge K, Rungby J, Pakkenberg B, Brudek T, Olsen JV, Aznar S. Brain proteome profiling implicates the complement and coagulation cascade in multiple system atrophy brain pathology. Cell Mol Life Sci 2022; 79:336. [PMID: 35657417 PMCID: PMC9164190 DOI: 10.1007/s00018-022-04378-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Multiple system atrophy (MSA) is a rare, progressive, neurodegenerative disorder presenting glia pathology. Still, disease etiology and pathophysiology are unknown, but neuro-inflammation and vascular disruption may be contributing factors to the disease progression. Here, we performed an ex vivo deep proteome profiling of the prefrontal cortex of MSA patients to reveal disease-relevant molecular neuropathological processes. Observations were validated in plasma and cerebrospinal fluid (CSF) of novel cross-sectional patient cohorts. METHODS Brains from 45 MSA patients and 30 normal controls (CTRLs) were included. Brain samples were homogenized and trypsinized for peptide formation and analyzed by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). Results were supplemented by western blotting, immuno-capture, tissue clearing and 3D imaging, immunohistochemistry and immunofluorescence. Subsequent measurements of glial fibrillary acid protein (GFAP) and neuro-filament light chain (NFL) levels were performed by immunoblotting in plasma of 20 MSA patients and 20 CTRLs. Finally, we performed a proteome profiling of 144 CSF samples from MSA and CTRLs, as well as other parkinsonian disorders. Data were analyzed using relevant parametric and non-parametric two-sample tests or linear regression tests followed by post hoc tests corrected for multiple testing. Additionally, high-throughput bioinformatic analyses were applied. RESULTS We quantified more than 4,000 proteins across samples and identified 49 differentially expressed proteins with significantly different abundances in MSA patients compared with CTRLs. Pathway analyses showed enrichment of processes related to fibrinolysis and complement cascade activation. Increased fibrinogen subunit β (FGB) protein levels were further verified, and we identified an enriched recognition of FGB by IgGs as well as intra-parenchymal accumulation around blood vessels. We corroborated blood-brain barrier leakage by a significant increase in GFAP and NFL plasma levels in MSA patients that correlated to disease severity and/or duration. Proteome profiling of CSF samples acquired during the disease course, confirmed increased total fibrinogen levels and immune-related components in the soluble fraction of MSA patients. This was also true for the other atypical parkinsonian disorders, dementia with Lewy bodies and progressive supra-nuclear palsy, but not for Parkinson's disease patients. CONCLUSION Our results implicate activation of the fibrinolytic cascade and immune system in the brain as contributing factors in MSA associated with a more severe disease course.
Collapse
Affiliation(s)
- Rasmus Rydbirk
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Biotech Research and Innovation Centre, Faculty of Health, University of Copenhagen, Copenhagen, Denmark
| | - Ole Østergaard
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Jonas Folke
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Casper Hempel
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Brian DellaValle
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- GLX Analytix ApS, 2200, Copenhagen N, Denmark
| | - Thomas L Andresen
- Department of Health Technology, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Annemette Løkkegaard
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Anne-Mette Hejl
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Matthias Bode
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Morten Blaabjerg
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Mette Møller
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Erik H Danielsen
- Department of Neurology, Aarhus University Hospital, 8200, Aarhus, Denmark
| | - Lisette Salvesen
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Charlotte C Starhof
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Sara Bech
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
| | - Kristian Winge
- Department of Neurology, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, 2400, Copenhagen NW, Denmark
- Department of Neurology, Odense University Hospital, J.B. Winsløws Vej 4, 5000, Odense, Denmark
| | - Jørgen Rungby
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Endocrinology, Copenhagen University Hospital, Bispebjerg-Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Bente Pakkenberg
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Tomasz Brudek
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark
| | - Jesper V Olsen
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark.
| | - Susana Aznar
- Centre for Neuroscience and Stereology, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
- Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, 2400, Copenhagen NW, Denmark.
| |
Collapse
|
63
|
Nehra G, Bauer B, Hartz AMS. Blood-brain barrier leakage in Alzheimer's disease: From discovery to clinical relevance. Pharmacol Ther 2022; 234:108119. [PMID: 35108575 PMCID: PMC9107516 DOI: 10.1016/j.pharmthera.2022.108119] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. AD brain pathology starts decades before the onset of clinical symptoms. One early pathological hallmark is blood-brain barrier dysfunction characterized by barrier leakage and associated with cognitive decline. In this review, we summarize the existing literature on the extent and clinical relevance of barrier leakage in AD. First, we focus on AD animal models and their susceptibility to barrier leakage based on age and genetic background. Second, we re-examine barrier dysfunction in clinical and postmortem studies, summarize changes that lead to barrier leakage in patients and highlight the clinical relevance of barrier leakage in AD. Third, we summarize signaling mechanisms that link barrier leakage to neurodegeneration and cognitive decline in AD. Finally, we discuss clinical relevance and potential therapeutic strategies and provide future perspectives on investigating barrier leakage in AD. Identifying mechanistic steps underlying barrier leakage has the potential to unravel new targets that can be used to develop novel therapeutic strategies to repair barrier leakage and slow cognitive decline in AD and AD-related dementias.
Collapse
Affiliation(s)
- Geetika Nehra
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Bjoern Bauer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, College of Medicine, University of Kentucky, Lexington, KY, USA; Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
64
|
McManus RM. The Role of Immunity in Alzheimer's Disease. Adv Biol (Weinh) 2022; 6:e2101166. [PMID: 35254006 DOI: 10.1002/adbi.202101166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/03/2022] [Indexed: 01/27/2023]
Abstract
With the increase in the aging population, age-related conditions such as dementia and Alzheimer's disease will become ever more prevalent in society. As there is no cure for dementia and extremely limited therapeutic options, researchers are examining the mechanisms that contribute to the progression of cognitive decline in hopes of developing better therapies and even an effective, long-lasting treatment for this devastating condition. This review will provide an updated perspective on the role of immunity in triggering the changes that lead to the development of dementia. It will detail the latest findings on Aβ- and tau-induced microglial activation, including the role of the inflammasome. The contribution of the adaptive immune system, specifically T cells, will be discussed. Finally, whether the innate and adaptive immune system can be modulated to protect against dementia will be examined, along with an assessment of the prospective candidates for these that are currently in clinical trials.
Collapse
Affiliation(s)
- Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, Germany
| |
Collapse
|
65
|
Nelson AR. Peripheral Pathways to Neurovascular Unit Dysfunction, Cognitive Impairment, and Alzheimer’s Disease. Front Aging Neurosci 2022; 14:858429. [PMID: 35517047 PMCID: PMC9062225 DOI: 10.3389/fnagi.2022.858429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia. It was first described more than a century ago, and scientists are acquiring new data and learning novel information about the disease every day. Although there are nuances and details continuously being unraveled, many key players were identified in the early 1900’s by Dr. Oskar Fischer and Dr. Alois Alzheimer, including amyloid-beta (Aβ), tau, vascular abnormalities, gliosis, and a possible role of infections. More recently, there has been growing interest in and appreciation for neurovascular unit dysfunction that occurs early in mild cognitive impairment (MCI) before and independent of Aβ and tau brain accumulation. In the last decade, evidence that Aβ and tau oligomers are antimicrobial peptides generated in response to infection has expanded our knowledge and challenged preconceived notions. The concept that pathogenic germs cause infections generating an innate immune response (e.g., Aβ and tau produced by peripheral organs) that is associated with incident dementia is worthwhile considering in the context of sporadic AD with an unknown root cause. Therefore, the peripheral amyloid hypothesis to cognitive impairment and AD is proposed and remains to be vetted by future research. Meanwhile, humans remain complex variable organisms with individual risk factors that define their immune status, neurovascular function, and neuronal plasticity. In this focused review, the idea that infections and organ dysfunction contribute to Alzheimer’s disease, through the generation of peripheral amyloids and/or neurovascular unit dysfunction will be explored and discussed. Ultimately, many questions remain to be answered and critical areas of future exploration are highlighted.
Collapse
|
66
|
Zhou H, Gao F, Yang X, Lin T, Li Z, Wang Q, Yao Y, Li L, Ding X, Shi K, Liu Q, Bao H, Long Z, Wu Z, Vassar R, Cheng X, Li R, Shen Y. Endothelial BACE1 Impairs Cerebral Small Vessels via Tight Junctions and eNOS. Circ Res 2022; 130:1321-1341. [PMID: 35382554 DOI: 10.1161/circresaha.121.320183] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cerebral small vessel injury, including loss of endothelial tight junctions, endothelial dysfunction, and blood-brain barrier breakdown, is an early and typical pathology for Alzheimer disease, cerebral amyloid angiopathy, and hypertension-related cerebral small vessel disease. Whether there is a common mechanism contributing to these cerebrovascular alterations remains unclear. Studies have shown an elevation of BACE1 (β-site amyloid precursor protein cleaving enzyme 1) in cerebral vessels from cerebral amyloid angiopathy or Alzheimer disease patients, suggesting that vascular BACE1 may involve in cerebral small vessel injury. METHODS To understand the contribution of vascular BACE1 to cerebrovascular impairments, we combined cellular and molecular techniques, mass spectrometry, immunostaining approaches, and functional testing to elucidate the potential pathological mechanisms. RESULTS We observe a 3.71-fold increase in BACE1 expression in the cerebral microvessels from patients with hypertension. Importantly, we discover that an endothelial tight junction protein, occludin, is a completely new substrate for endothelial BACE1. BACE1 cleaves occludin with full-length occludin reductions and occludin fragment productions. An excessive cleavage by elevated BACE1 induces membranal accumulation of caveolin-1 and subsequent caveolin-1-mediated endocytosis, resulting in lysosomal degradation of other tight junction proteins. Meanwhile, membranal caveolin-1 increases the binding to eNOS (endothelial nitric oxide synthase), together with raised circulating Aβ (β-amyloid peptides) produced by elevated BACE1, leading to an attenuation of eNOS activity and resultant endothelial dysfunction. Furthermore, the initial endothelial damage provokes chronic reduction of cerebral blood flow, blood-brain barrier leakage, microbleeds, tau hyperphosphorylation, synaptic loss, and cognitive impairment in endothelial-specific BACE1 transgenic mice. Conversely, inhibition of aberrant BACE1 activity ameliorates tight junction loss, endothelial dysfunction, and memory deficits. CONCLUSIONS Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.
Collapse
Affiliation(s)
- Haoyue Zhou
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Feng Gao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Xiaoli Yang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Tingting Lin
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Zhenxing Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Qiong Wang
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Yang Yao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (Y.Y.)
| | - Lei Li
- Wadsworth Center, New York State Department of Health, Albany (L.L., X.D.)
| | - Xinxin Ding
- Wadsworth Center, New York State Department of Health, Albany (L.L., X.D.).,Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ (X.D.)
| | - Kaibin Shi
- Tianjin Medical University General Hospital, China (K.S., Q.L.)
| | - Qiang Liu
- Tianjin Medical University General Hospital, China (K.S., Q.L.)
| | - Hong Bao
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Zhenyu Long
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Zujun Wu
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.)
| | - Robert Vassar
- Department of Cell Biology, Medical School, Department of Neurology, Feinberg School of Medicine Northwestern University, Chicago, IL (R.V.)
| | - Xin Cheng
- Department of Neurology, National Clinical Research Center for Aging and Medicine, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China (X.C.)
| | - Rena Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, China. (R.L.).,Advanced Innovation Center for Human Brain Protection, Capital Medical University, China. (R.L.).,Beijing Institute for Brain Disorders, Capital Medical University, China. (R.L.)
| | - Yong Shen
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC and Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei. (H.Z., F.G., X.Y., T.L., Z. Li, Q.W., H.B., Z. Long, Z.W., Y.S.).,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China (Y.S.)
| |
Collapse
|
67
|
Current trends in blood biomarker detection and imaging for Alzheimer’s disease. Biosens Bioelectron 2022; 210:114278. [DOI: 10.1016/j.bios.2022.114278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/21/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022]
|
68
|
Gueniot F, Rubin S, Bougaran P, Abelanet A, Morel JL, Bontempi B, Proust C, Dufourcq P, Couffinhal T, Duplàa C. Targeting Pdzrn3 maintains adult blood-brain barrier and central nervous system homeostasis. J Cereb Blood Flow Metab 2022; 42:613-629. [PMID: 34644209 PMCID: PMC9051145 DOI: 10.1177/0271678x211048981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Blood brain barrier (BBB) disruption is a critical component of the pathophysiology of cognitive impairment of vascular etiology (VCI) and associated with Alzheimer's disease (AD). The Wnt pathway plays a crucial role in BBB maintenance, but there is limited data on its role in cognitive pathologies. The E3 ubiquitin ligase PDZRN3 is a regulator of the Wnt pathway. In a murine model of VCI, overexpressing Pdzrn3 in endothelial cell (EC) exacerbated BBB hyperpermeability and accelerated cognitive decline. We extended these observations, in both VCI and AD models, showing that EC-specific depletion of Pdzrn3, reinforced the BBB, with a decrease in vascular permeability and a subsequent spare in cognitive decline. We found that in cerebral vessels, Pdzrn3 depletion protects against AD-induced Wnt target gene alterations and enhances endothelial tight junctional proteins. Our results provide evidence that Wnt signaling could be a molecular link regulating BBB integrity and cognitive decline under VCI and AD pathologies.
Collapse
Affiliation(s)
- Florian Gueniot
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Sebastien Rubin
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pauline Bougaran
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Alice Abelanet
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | | | | | - Carole Proust
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| | - Pascale Dufourcq
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service de Biochimie clinique, CHU de Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France.,Service des Maladies cardiaques et vasculaires, CHU de Bordeaux, Bordeaux, France
| | - Cecile Duplàa
- Biology of Cardiovascular Diseases, University of Bordeaux U1034, Bordeaux, France
| |
Collapse
|
69
|
Addressing Blood–Brain Barrier Impairment in Alzheimer’s Disease. Biomedicines 2022; 10:biomedicines10040742. [PMID: 35453494 PMCID: PMC9029506 DOI: 10.3390/biomedicines10040742] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a vital role in maintaining the specialized microenvironment of the brain tissue. It facilitates communication while separating the peripheral circulation system from the brain parenchyma. However, normal aging and neurodegenerative diseases can alter and damage the physiological properties of the BBB. In this review, we first briefly present the essential pathways maintaining and regulating BBB integrity, and further review the mechanisms of BBB breakdown associated with normal aging and peripheral inflammation-causing neurodegeneration and cognitive impairments. We also discuss how BBB disruption can cause or contribute to Alzheimer’s disease (AD), the most common form of dementia and a devastating neurological disorder. Next, we document overlaps between AD and vascular dementia (VaD) and briefly sum up the techniques for identifying biomarkers linked to BBB deterioration. Finally, we conclude that BBB breakdown could be used as a biomarker to help diagnose cognitive impairment associated with normal aging and neurodegenerative diseases such as AD.
Collapse
|
70
|
Shippy DC, Watters JJ, Ulland TK. Transcriptional response of murine microglia in Alzheimer’s disease and inflammation. BMC Genomics 2022; 23:183. [PMID: 35247975 PMCID: PMC8898509 DOI: 10.1186/s12864-022-08417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a neurodegenerative disorder and is the most common cause of late-onset dementia. Microglia, the primary innate immune cells of the central nervous system (CNS), have a complex role in AD neuropathology. In the initial stages of AD, microglia play a role in limiting pathology by removing amyloid-β (Aβ) by phagocytosis. In contrast, microglia also release pro-inflammatory cytokines and chemokines to promote neuroinflammation and exacerbate AD neuropathology. Therefore, investigating microglial gene networks could identify new targets for therapeutic strategies for AD. Results We identified 465 differentially expressed genes (DEG) in 5XFAD versus wild-type mice by microarray, 354 DEG in lipopolysaccharide (LPS)-stimulated N9 microglia versus unstimulated control cells using RNA-sequencing (RNA-seq), with 32 DEG common between both datasets. Analyses of the 32 common DEG uncovered numerous molecular functions and pathways involved in Aβ phagocytosis and neuroinflammation associated with AD. Furthermore, multiplex ELISA confirmed the induction of several cytokines and chemokines in LPS-stimulated microglia. Conclusions In summary, AD triggered multiple signaling pathways that regulate numerous genes in microglia, contributing to Aβ phagocytosis and neuroinflammation. Overall, these data identified several regulatory factors and biomarkers in microglia that could be useful in further understanding AD neuropathology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08417-8.
Collapse
|
71
|
Conforti P, Mezey S, Nath S, Chu YH, Malik SC, Martínez Santamaría JC, Deshpande SS, Pous L, Zieger B, Schachtrup C. Fibrinogen regulates lesion border-forming reactive astrocyte properties after vascular damage. Glia 2022; 70:1251-1266. [PMID: 35244976 DOI: 10.1002/glia.24166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/07/2022]
Abstract
Reactive astrocytes at the border of damaged neuronal tissue organize into a barrier surrounding the fibrotic lesion core, separating this central region of inflammation and fibrosis from healthy tissue. Astrocytes are essential to form the border and for wound repair but interfere with neuronal regeneration. However, the mechanisms driving these astrocytes during central nervous system (CNS) disease are unknown. Here we show that blood-derived fibrinogen is enriched at the interface of lesion border-forming elongated astrocytes after cortical brain injury. Anticoagulant treatment depleting fibrinogen reduces astrocyte reactivity, extracellular matrix deposition and inflammation with no change in the spread of inflammation, whereas inhibiting fibrinogen conversion into fibrin did not significantly alter astrocyte reactivity, but changed the deposition of astrocyte extracellular matrix. RNA sequencing of fluorescence-activated cell sorting-isolated astrocytes of fibrinogen-depleted mice after cortical injury revealed repressed gene expression signatures associated with astrocyte reactivity, extracellular matrix deposition and immune-response regulation, as well as increased gene expression signatures associated with astrocyte metabolism and astrocyte-neuron communication. Systemic pharmacologic depletion of fibrinogen resulted in the absence of elongated, border-forming astrocytes and increased the survival of neurons in the lesion core after cortical injury. These results identify fibrinogen as a critical trigger for lesion border-forming astrocyte properties in CNS disease.
Collapse
Affiliation(s)
- Pasquale Conforti
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Szilvia Mezey
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany
| | - Suvra Nath
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yu-Hsuan Chu
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Subash C Malik
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jose C Martínez Santamaría
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sachin S Deshpande
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Lauriane Pous
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Zieger
- Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Christian Schachtrup
- Faculty of Medicine, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, Center for Basics in NeuroModulation (NeuroModulBasics), University of Freiburg, Freiburg, Germany
| |
Collapse
|
72
|
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022; 63:1297-1313. [PMID: 35218208 PMCID: PMC9321014 DOI: 10.1111/epi.17210] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood‐brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross‐talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late‐onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease‐modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti‐ and pro‐inflammatory players. We conclude with an outlook on current pre‐clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, dept. of (Neuro)pathology, Amsterdam, the Netherlands.,University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, the Netherlands
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
73
|
Decourt B, D’Souza GX, Shi J, Ritter A, Suazo J, Sabbagh MN. The Cause of Alzheimer's Disease: The Theory of Multipathology Convergence to Chronic Neuronal Stress. Aging Dis 2022; 13:37-60. [PMID: 35111361 PMCID: PMC8782548 DOI: 10.14336/ad.2021.0529] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
The field of Alzheimer's disease (AD) research critically lacks an all-inclusive etiology theory that would integrate existing hypotheses and explain the heterogeneity of disease trajectory and pathologies observed in each individual patient. Here, we propose a novel comprehensive theory that we named: the multipathology convergence to chronic neuronal stress. Our new theory reconsiders long-standing dogmas advanced by previous incomplete theories. Firstly, while it is undeniable that amyloid beta (Aβ) is involved in AD, in the seminal stage of the disease Aβ is unlikely pathogenic. Instead, we hypothesize that the root cause of AD is neuronal stress in the central nervous system (CNS), and Aβ is expressed as part of the physiological response to protect CNS neurons from stress. If there is no return to homeostasis, then Aβ becomes overexpressed, and this includes the generation of longer forms that are more toxic and prone to oligomerization. Secondly, AD etiology is plausibly not strictly compartmentalized within the CNS but may also result from the dysfunction of other physiological systems in the entire body. This view implies that AD may not have a single cause, but rather needs to be considered as a spectrum of multiple chronic pathological modalities converging to the persistent stressing of CNS neurons. These chronic pathological modalities, which include cardiovascular disease, metabolic disorders, and CNS structural changes, often start individually, and over time combine with other chronic modalities to incrementally escalate the amount of stress applied to CNS neurons. We present the case for considering Aβ as a marker of neuronal stress in response to hypoxic, toxic, and starvation events, rather than solely a marker of AD. We also detail numerous human chronic conditions that can lead to neuronal stress in the CNS, making the link with co-morbidities encountered in daily clinical AD practice. Finally, we explain how our theory could be leveraged to improve clinical care for AD and related dementia in personalized medicine paradigms in the near future.
Collapse
Affiliation(s)
- Boris Decourt
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Gary X D’Souza
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA.
| | - Jiong Shi
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Aaron Ritter
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Jasmin Suazo
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| | - Marwan N Sabbagh
- Translational Neurodegenerative Research Laboratory, Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
- Cleveland Clinic Nevada and Lou Ruvo Center for Brain Health, Las Vegas, NV 89106, USA.
| |
Collapse
|
74
|
Systemic low-grade inflammation and depressive symptomology at chronic phase of ischemic stroke: The chain mediating role of fibrinogen and neutrophil counts. Brain Behav Immun 2022; 100:332-341. [PMID: 34728390 DOI: 10.1016/j.bbi.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/09/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Post-stroke depression (PSD) is the most common psychological consequence of stroke. Increased inflammatory markers resulting from ischemic stroke may played an important role in the pathogenesis of depressive symptomology. The present study was conducted to further elucidate the relationship between stroke severity, systemic low-grade inflammation and chronic phase post-stroke depressive symptomology (CP-PSDS). METHODS A total of 897 stroke patients were consecutively recruited in this multicenter prospective cohort study and followed up for 1 year. The analytical sample consisted of 436 patients with ischemic stroke (23.4% female, median age = 57 years) from this cohort. Serum concentrations of inflammatory markers were measured in all 436 patients with ischemic stroke, from fasting morning venous blood samples on admission. Stroke severity was evaluated using the National Institutes of Health Stroke Scale (NIHSS) on admission and post-stroke depressive symptomology (PSDS) was evaluated by 17-item Hamilton Rating Scale for Depression (HRSD). RESULTS In the fully adjusted models, we observed that 1) NIHSS (Model 2: β = 0.200, 95%CI, 0.057 ∼ 0.332), fibrinogen (Model 2: β = 0.828, 95%CI, 0.269 ∼ 1.435), white blood cell counts (WBC, model 2: β = 0.354, 95%CI, 0.122 ∼ 0.577) and neutrophil counts (Model 2: β = 0.401, 95%CI, 0.126 ∼ 0.655) can independently predict the CP-PSDS after ischemic stroke onset; 2) fibrinogen (Indirect effect = 0.027, 95%CI, 0.007 ∼ 0.063, 13.4% mediated), WBC (Indirect effect = 0.024, 95%CI, 0.005 ∼ 0.058, 11.8% mediated) and neutrophil counts (Indirect effect = 0.030, 95%CI, 0.006 ∼ 0.069, 14.8% mediated) could partially mediate the association between stroke severity and CP-PSDS, and 3) stroke severity might cause CP-PSDS partly through the chain-mediating role of both fibrinogen and neutrophil counts (chain mediated effect = 0.003, 95%CI, 0.000 ∼ 0.011, p = 0.025, 1.6% mediated). CONCLUSIONS Findings revealed that fibrinogen, WBC and neutrophil counts may be independent predictors of CP-PSDS and partial mediators of the relationship between stroke severity and CP-PSDS among patients with ischemic stroke. In addition, the chain mediating effect of fibrinogen and neutrophil counts might play an important role in the occurrence of CP-PSDS. However, no inflammatory markers were associated with CP-PSDS in females.
Collapse
|
75
|
Custodia A, Ouro A, Romaus-Sanjurjo D, Pías-Peleteiro JM, de Vries HE, Castillo J, Sobrino T. Endothelial Progenitor Cells and Vascular Alterations in Alzheimer’s Disease. Front Aging Neurosci 2022; 13:811210. [PMID: 35153724 PMCID: PMC8825416 DOI: 10.3389/fnagi.2021.811210] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease representing the most common type of dementia worldwide. The early diagnosis of AD is very difficult to achieve due to its complexity and the practically unknown etiology. Therefore, this is one of the greatest challenges in the field in order to develop an accurate therapy. Within the different etiological hypotheses proposed for AD, we will focus on the two-hit vascular hypothesis and vascular alterations occurring in the disease. According to this hypothesis, the accumulation of β-amyloid protein in the brain starts as a consequence of damage in the cerebral vasculature. Given that there are several vascular and angiogenic alterations in AD, and that endothelial progenitor cells (EPCs) play a key role in endothelial repair processes, the study of EPCs in AD may be relevant to the disease etiology and perhaps a biomarker and/or therapeutic target. This review focuses on the involvement of endothelial dysfunction in the onset and progression of AD with special emphasis on EPCs as a biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Antía Custodia
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Alberto Ouro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- *Correspondence: Alberto Ouro,
| | - Daniel Romaus-Sanjurjo
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Juan Manuel Pías-Peleteiro
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Helga E. de Vries
- Neuroimmunology Research Group, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - José Castillo
- Neuroimaging and Biotechnology Laboratory (NOBEL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Tomás Sobrino
- NeuroAging Group (NEURAL), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Tomás Sobrino,
| |
Collapse
|
76
|
Fighting fire with fire: the immune system might be key in our fight against Alzheimer's disease. Drug Discov Today 2022; 27:1261-1283. [PMID: 35032668 DOI: 10.1016/j.drudis.2022.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/25/2021] [Accepted: 01/06/2022] [Indexed: 12/13/2022]
Abstract
The ultimate cause of Alzheimer's disease (AD) is still unknown and no disease-modifying treatment exists. Emerging evidence supports the concept that the immune system has a key role in AD pathogenesis. This awareness leads to the idea that specific parts of the immune system must be engaged to ward off the disease. Immunotherapy has dramatically improved the management of several previously untreatable cancers and could hold similar promise as a novel therapy for treating AD. However, before potent immunotherapies can be rationally designed as treatment against AD, we need to fully understand the dynamic interplay between AD and the different parts of our immune system. Accordingly, here we review the most important aspects of both the innate and adaptive immune system in relation to AD pathology. Teaser: Emerging results support the concept that Alzheimer's disease is affected by the inability of the immune system to contain the pathology of the brain. Here, we discuss how we can engage our immune system to fight this devastating disease.
Collapse
|
77
|
Sheikh MH, Errede M, d'Amati A, Khan NQ, Fanti S, Loiola RA, McArthur S, Purvis GSD, O'Riordan CE, Ferorelli D, Dell'Erba A, Kieswich J, Reutelingsperger C, Maiorano E, Yaqoob M, Thiemermann C, Baragetti A, Catapano AL, Norata GD, Marelli-Berg F, Virgintino D, Solito E. Impact of metabolic disorders on the structural, functional, and immunological integrity of the blood-brain barrier: Therapeutic avenues. FASEB J 2022; 36:e22107. [PMID: 34939700 DOI: 10.1096/fj.202101297r] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/04/2021] [Accepted: 12/03/2021] [Indexed: 12/23/2022]
Abstract
Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.
Collapse
Affiliation(s)
- Madeeha H Sheikh
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Antonio d'Amati
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy.,Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, University of Bari, Bari, Italy
| | - Noorafza Q Khan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Rodrigo A Loiola
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Laboratoire de la Barrière Hémato-Encéphalique, Faculty Jean Perrin, EA 2465, Université d'Artois, Arras, France
| | - Simon McArthur
- Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth S D Purvis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Caroline E O'Riordan
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Ferorelli
- Department of Interdisciplinary Medicine, Section of Legal Medicine, University of Bari, Bari, Italy
| | - Alessandro Dell'Erba
- Department of Interdisciplinary Medicine, Section of Legal Medicine, University of Bari, Bari, Italy
| | - Julius Kieswich
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Chis Reutelingsperger
- Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Eugenio Maiorano
- Department of Emergency and Organ Transplantation, Section of Anatomic Pathology, University of Bari, Bari, Italy
| | - Magdi Yaqoob
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christoph Thiemermann
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Andrea Baragetti
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Milan University, Milan, Italy.,IRCCS Multimedica, Sesto San Giovanni, Italy.,S.I.S.A. Centre for the Study of Atherosclerosis-Bassini Hospital, Cinisello Balsamo, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Egle Solito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
78
|
Frank CJ, McNay EC. Breakdown of the blood-brain barrier: A mediator of increased Alzheimer's risk in patients with metabolic disorders? J Neuroendocrinol 2022; 34:e13074. [PMID: 34904299 PMCID: PMC8791015 DOI: 10.1111/jne.13074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/12/2021] [Accepted: 11/26/2021] [Indexed: 01/03/2023]
Abstract
Metabolic disorders (MDs), including type 1 and 2 diabetes and chronic obesity, are among the faster growing diseases globally and are a primary risk factor for Alzheimer's disease (AD). The term "type-3 diabetes" has been proposed for AD due to the interrelated cellular, metabolic, and immune features shared by diabetes, insulin resistance (IR), and the cognitive impairment and neurodegeneration found in AD. Patients with MDs and/or AD commonly exhibit altered glucose homeostasis and IR; systemic chronic inflammation encompassing all of the periphery, blood-brain barrier (BBB), and central nervous system; pathological vascular remodeling; and increased BBB permeability that allows transfusion of neurotoxic molecules from the blood to the brain. This review summarizes the components of the BBB, mechanisms through which MDs alter BBB permeability via immune and metabolic pathways, the contribution of BBB dysfunction to the manifestation and progression of AD, and current avenues of therapeutic research that address BBB permeability. In addition, issues with the translational applicability of current animal models of AD regarding BBB dysfunction and proposals for future directions of research that address the relationship between MDs, BBB dysfunction, and AD are discussed.
Collapse
Affiliation(s)
- Corey J Frank
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| | - Ewan C McNay
- Behavioral Neuroscience, University at Albany, SUNY, Albany, NY, USA
| |
Collapse
|
79
|
McLarnon JG. A Leaky Blood–Brain Barrier to Fibrinogen Contributes to Oxidative Damage in Alzheimer’s Disease. Antioxidants (Basel) 2021; 11:antiox11010102. [PMID: 35052606 PMCID: PMC8772934 DOI: 10.3390/antiox11010102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/15/2022] Open
Abstract
The intactness of blood–brain barrier (BBB) is compromised in Alzheimer’s disease (AD). Importantly, evidence suggests that the perturbation and abnormalities appearing in BBB can manifest early in the progression of the disease. The disruption of BBB allows extravasation of the plasma protein, fibrinogen, to enter brain parenchyma, eliciting immune reactivity and response. The presence of amyloid-β (Aβ) peptide leads to the formation of abnormal aggregates of fibrin resistant to degradation. Furthermore, Aβ deposits act on the contact system of blood coagulation, altering levels of thrombin, fibrin clots and neuroinflammation. The neurovascular unit (NVU) comprises an ensemble of brain cells which interact with infiltrating fibrinogen. In particular, interaction of resident immune cell microglia with fibrinogen, fibrin and Aβ results in the production of reactive oxygen species (ROS), a neurotoxic effector in AD brain. Overall, fibrinogen infiltration through a leaky BBB in AD animal models and in human AD tissue is associated with manifold abnormalities including persistent fibrin aggregation and clots, microglial-mediated production of ROS and diminished viability of neurons and synaptic connectivity. An objective of this review is to better understand how processes associated with BBB leakiness to fibrinogen link vascular pathology with neuronal and synaptic damage in AD.
Collapse
Affiliation(s)
- James G McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| |
Collapse
|
80
|
Yoshii D, Ayaki T, Wada T, Ozaki A, Yamamoto T, Miyagi Y, Senzaki H, Takahashi R. An autopsy case of adult‐onset neuronal intranuclear inclusion disease with perivascular preservation in cerebral white matter. Neuropathology 2021; 42:66-73. [DOI: 10.1111/neup.12778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/21/2021] [Accepted: 08/24/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Daisuke Yoshii
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Takashi Ayaki
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| | - Takafumi Wada
- Department of Neurology Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Akihiko Ozaki
- Department of Neurology Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Toru Yamamoto
- Department of Neurology Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Yoshimi Miyagi
- Department of Pathology Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Hideto Senzaki
- Department of Pathology Osaka Saiseikai Nakatsu Hospital Osaka Japan
| | - Ryosuke Takahashi
- Department of Neurology Kyoto University Graduate School of Medicine Kyoto Japan
| |
Collapse
|
81
|
Zhao M, Jiang XF, Zhang HQ, Sun JH, Pei H, Ma LN, Cao Y, Li H. Interactions between glial cells and the blood-brain barrier and their role in Alzheimer's disease. Ageing Res Rev 2021; 72:101483. [PMID: 34610479 DOI: 10.1016/j.arr.2021.101483] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/14/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD), which is an irreversible neurodegenerative disorder characterized by senile plaques and neurofibrillary tangles, is the most common form of dementia worldwide. However, currently, there are no satisfying curative therapies for AD. The blood-brain barrier (BBB) acts as a selective physical barrier and plays protective roles in maintaining brain homeostasis. BBB dysfunction as an upstream or downstream event promotes the onset and progression of AD. Moreover, the pathogenesis of AD caused by BBB injury hasn't been well elucidated. Glial cells, BBB compartments and neurons form a minimal functional unit called the neurovascular unit (NVU). Emerging evidence suggests that glial cells are regulators in maintaining the BBB integrity and neuronal function. Illustrating the regulatory mechanism of glial cells in the BBB assists us in drawing a glial-vascular coupling diagram of AD, which may offer new insight into the pathogenesis of AD and early intervention strategies for AD. This review aims to summarize our current knowledge of glial-BBB interactions and their pathological implications in AD and to provide new therapeutic potentials for future investigations.
Collapse
|
82
|
Murchison AG. Hypothesis: Modulation of microglial phenotype in Alzheimer's disease drives neurodegeneration. Alzheimers Dement 2021; 18:1537-1544. [PMID: 34786841 DOI: 10.1002/alz.12503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
The pathophysiology of Alzheimer's disease (AD) remains to be elucidated. The amyloid hypothesis holds explanatory power but has limitations. This article suggests that amyloid deposition and increased permeability of the blood-brain barrier are independent early events in the disease process, which together fashion a distinct microglial activation phenotype. Downstream events including, phagocytosis of synapses and persistent glutamate signaling through N-methyl-D-aspartate receptors drive neurodegeneration and tau pathology. This hypothesis draws on several strands of evidence and aims to illuminate several of the unexplained temporal and spatial features of AD.
Collapse
|
83
|
Bhattacharjee S, Bhattacharyya R. PRFF Peptide Mimic Interferes with Toxic Fibrin-Aβ 42 Interaction by Emulating the Aβ Binding Interface on Fibrinogen. ACS Chem Neurosci 2021; 12:4144-4152. [PMID: 34669381 DOI: 10.1021/acschemneuro.1c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cerebrovascular dysfunction is a common phenomenon in Alzheimer's patients, where fibrinogen is a major player. With the blood-brain barrier compromised, fibrinogen gains access to the brain, where its interaction with Aβ42 results in plasmin-resistant abnormal blood clots that are deposited in the cerebral blood vessels, a condition commonly encountered in Alzheimer's disease (AD) patients called cerebral amyloid angiopathy (CAA). So far, there have been no effective therapeutics available to combat AD-associated CAA. This study reports a 13-amino acid peptide (Pα-NPGRPEPGSAGTW) as a potential inhibitor of the fibrin-Aβ42 interaction along with the property to dissolve pre-existing plasmin-resistant abnormal clots. Strikingly, the identified sequence was found to be partially similar to a fragment of the fibrinogen α-chain reported to bind Aβ42, the plasmin-resistant fibrinogen fragment (PRFF). Mechanistically, Pα interacts with Aβ42 in place of fibrinogen, thus inhibiting the toxic fibrin-Aβ42 interaction. However, it does not interfere with normal fibrin polymerization.
Collapse
Affiliation(s)
- Sayan Bhattacharjee
- Structural Biology & Bio-Informatics Division, CSIR − Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rajanya Bhattacharyya
- Structural Biology & Bio-Informatics Division, CSIR − Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
84
|
Ouellette J, Lacoste B. From Neurodevelopmental to Neurodegenerative Disorders: The Vascular Continuum. Front Aging Neurosci 2021; 13:749026. [PMID: 34744690 PMCID: PMC8570842 DOI: 10.3389/fnagi.2021.749026] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022] Open
Abstract
Structural and functional integrity of the cerebral vasculature ensures proper brain development and function, as well as healthy aging. The inability of the brain to store energy makes it exceptionally dependent on an adequate supply of oxygen and nutrients from the blood stream for matching colossal demands of neural and glial cells. Key vascular features including a dense vasculature, a tightly controlled environment, and the regulation of cerebral blood flow (CBF) all take part in brain health throughout life. As such, healthy brain development and aging are both ensured by the anatomical and functional interaction between the vascular and nervous systems that are established during brain development and maintained throughout the lifespan. During critical periods of brain development, vascular networks remodel until they can actively respond to increases in neural activity through neurovascular coupling, which makes the brain particularly vulnerable to neurovascular alterations. The brain vasculature has been strongly associated with the onset and/or progression of conditions associated with aging, and more recently with neurodevelopmental disorders. Our understanding of cerebrovascular contributions to neurological disorders is rapidly evolving, and increasing evidence shows that deficits in angiogenesis, CBF and the blood-brain barrier (BBB) are causally linked to cognitive impairment. Moreover, it is of utmost curiosity that although neurodevelopmental and neurodegenerative disorders express different clinical features at different stages of life, they share similar vascular abnormalities. In this review, we present an overview of vascular dysfunctions associated with neurodevelopmental (autism spectrum disorders, schizophrenia, Down Syndrome) and neurodegenerative (multiple sclerosis, Huntington's, Parkinson's, and Alzheimer's diseases) disorders, with a focus on impairments in angiogenesis, CBF and the BBB. Finally, we discuss the impact of early vascular impairments on the expression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Julie Ouellette
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Ottawa Hospital Research Institute, Neuroscience Program, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
85
|
Application of Mesenchymal Stem Cells in Targeted Delivery to the Brain: Potential and Challenges of the Extracellular Vesicle-Based Approach for Brain Tumor Treatment. Int J Mol Sci 2021; 22:ijms222011187. [PMID: 34681842 PMCID: PMC8538190 DOI: 10.3390/ijms222011187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022] Open
Abstract
Treating brain tumors presents enormous challenges, and there are still poor prognoses in both adults and children. Application of novel targets and potential drugs is hindered by the function of the blood-brain barrier, which significantly restricts therapeutic access to the tumor. Mesenchymal stem cells (MSCs) can cross biological barriers, migrate to sites of injuries to exert many healing effects, and be engineered to incorporate different types of cargo, making them an ideal vehicle to transport anti-tumor agents to the central nervous system. Extracellular vesicles (EVs) produced by MSCs (MSC-EVs) have valuable innate properties from parent cells, and are being exploited as cell-free treatments for many neurological diseases. Compared to using MSCs, targeted delivery via MSC-EVs has a better pharmacokinetic profile, yet avoids many critical issues of cell-based systems. As the field of MSC therapeutic applications is quickly expanding, this article aims to give an overall picture for one direction of EV-based targeting of brain tumors, with updates on available techniques, outcomes of experimental models, and critical challenges of this concept.
Collapse
|
86
|
Becchi S, Buson A, Balleine BW. Inhibition of vascular adhesion protein 1 protects dopamine neurons from the effects of acute inflammation and restores habit learning in the striatum. J Neuroinflammation 2021; 18:233. [PMID: 34654450 PMCID: PMC8520223 DOI: 10.1186/s12974-021-02288-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022] Open
Abstract
Background Changes in dopaminergic neural function can be induced by an acute inflammatory state that, by altering the integrity of the neurovasculature, induces neuronal stress, cell death and causes functional deficits. Effectively blocking these effects of inflammation could, therefore, reduce both neuronal and functional decline. To test this hypothesis, we inhibited vascular adhesion protein 1 (VAP-1), a membrane-bound protein expressed on the endothelial cell surface, that mediates leukocyte extravasation and induces oxidative stress. Method We induced dopaminergic neuronal loss by infusing lipopolysaccharide (LPS) directly into the substantia nigra (SN) in rats and administered the VAP-1 inhibitor, PXS-4681A, daily. Results LPS produced: an acute inflammatory response, the loss of dopaminergic neurons in the SN, reduced the dopaminergic projection to SN target regions, particularly the dorsolateral striatum (DLS), and a deficit in habit learning, a key function of the DLS. In an attempt to protect SN neurons from this inflammatory response we found that VAP-1 inhibition not only reduced neutrophil infiltration in the SN and striatum, but also reduced the associated striatal microglia and astrocyte response. We found VAP-1 inhibition protected dopamine neurons in the SN, their projections to the striatum and promoted the functional recovery of habit learning. Thus, we reversed the loss of habitual actions, a function usually dependent on dopamine release in DLS and sensitive to striatal dysfunction. Conclusions We establish, therefore, that VAP-1 inhibition has an anti-inflammatory profile that may be beneficial in the treatment of dopamine neuron dysfunction caused by an acute inflammatory state in the brain. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02288-8.
Collapse
Affiliation(s)
- Serena Becchi
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Randwick, NSW, 2052, Australia
| | | | - Bernard W Balleine
- Decision Neuroscience Lab, School of Psychology, UNSW Sydney, Randwick, NSW, 2052, Australia.
| |
Collapse
|
87
|
Shi H, Koronyo Y, Rentsendorj A, Fuchs DT, Sheyn J, Black KL, Mirzaei N, Koronyo-Hamaoui M. Retinal Vasculopathy in Alzheimer's Disease. Front Neurosci 2021; 15:731614. [PMID: 34630020 PMCID: PMC8493243 DOI: 10.3389/fnins.2021.731614] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/26/2021] [Indexed: 12/12/2022] Open
Abstract
The retina has been increasingly investigated as a site of Alzheimer’s disease (AD) manifestation for over a decade. Early reports documented degeneration of retinal ganglion cells and their axonal projections. Our group provided the first evidence of the key pathological hallmarks of AD, amyloid β-protein (Aβ) plaques including vascular Aβ deposits, in the retina of AD and mild cognitively impaired (MCI) patients. Subsequent studies validated these findings and further identified electroretinography and vision deficits, retinal (p)tau and inflammation, intracellular Aβ accumulation, and retinal ganglion cell-subtype degeneration surrounding Aβ plaques in these patients. Our data suggest that the brain and retina follow a similar trajectory during AD progression, probably due to their common embryonic origin and anatomical proximity. However, the retina is the only CNS organ feasible for direct, repeated, and non-invasive ophthalmic examination with ultra-high spatial resolution and sensitivity. Neurovascular unit integrity is key to maintaining normal CNS function and cerebral vascular abnormalities are increasingly recognized as early and pivotal factors driving cognitive impairment in AD. Likewise, retinal vascular abnormalities such as changes in vessel density and fractal dimensions, blood flow, foveal avascular zone, curvature tortuosity, and arteriole-to-venule ratio were described in AD patients including early-stage cases. A rapidly growing number of reports have suggested that cerebral and retinal vasculopathy are tightly associated with cognitive deficits in AD patients and animal models. Importantly, we recently identified early and progressive deficiency in retinal vascular platelet-derived growth factor receptor-β (PDGFRβ) expression and pericyte loss that were associated with retinal vascular amyloidosis and cerebral amyloid angiopathy in MCI and AD patients. Other studies utilizing optical coherence tomography (OCT), retinal amyloid-fluorescence imaging and retinal hyperspectral imaging have made significant progress in visualizing and quantifying AD pathology through the retina. With new advances in OCT angiography, OCT leakage, scanning laser microscopy, fluorescein angiography and adaptive optics imaging, future studies focusing on retinal vascular AD pathologies could transform non-invasive pre-clinical AD diagnosis and monitoring.
Collapse
Affiliation(s)
- Haoshen Shi
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Yosef Koronyo
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Altan Rentsendorj
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Dieu-Trang Fuchs
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Julia Sheyn
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Keith L Black
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Nazanin Mirzaei
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Maxine Dunitz Neurosurgical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
88
|
Page MJ, Pretorius E. Platelet Behavior Contributes to Neuropathologies: A Focus on Alzheimer's and Parkinson's Disease. Semin Thromb Hemost 2021; 48:382-404. [PMID: 34624913 DOI: 10.1055/s-0041-1733960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The functions of platelets are broad. Platelets function in hemostasis and thrombosis, inflammation and immune responses, vascular regulation, and host defense against invading pathogens, among others. These actions are achieved through the release of a wide set of coagulative, vascular, inflammatory, and other factors as well as diverse cell surface receptors involved in the same activities. As active participants in these physiological processes, platelets become involved in signaling pathways and pathological reactions that contribute to diseases that are defined by inflammation (including by pathogen-derived stimuli), vascular dysfunction, and coagulation. These diseases include Alzheimer's and Parkinson's disease, the two most common neurodegenerative diseases. Despite their unique pathological and clinical features, significant shared pathological processes exist between these two conditions, particularly relating to a central inflammatory mechanism involving both neuroinflammation and inflammation in the systemic environment, but also neurovascular dysfunction and coagulopathy, processes which also share initiation factors and receptors. This triad of dysfunction-(neuro)inflammation, neurovascular dysfunction, and hypercoagulation-illustrates the important roles platelets play in neuropathology. Although some mechanisms are understudied in Alzheimer's and Parkinson's disease, a strong case can be made for the relevance of platelets in neurodegeneration-related processes.
Collapse
Affiliation(s)
- Martin J Page
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, South Africa
| |
Collapse
|
89
|
VanDusen KW, Li YJ, Cai V, Hall A, Hiles S, Thompson JW, Moseley MA, Cooter M, Acker L, Levy JH, Ghadimi K, Quiñones QJ, Devinney MJ, Chung S, Terrando N, Moretti EW, Browndyke JN, Mathew JP, Berger M. Cerebrospinal Fluid Proteome Changes in Older Non-Cardiac Surgical Patients with Postoperative Cognitive Dysfunction. J Alzheimers Dis 2021; 80:1281-1297. [PMID: 33682719 PMCID: PMC8052629 DOI: 10.3233/jad-201544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Postoperative cognitive dysfunction (POCD), a syndrome of cognitive deficits occurring 1–12 months after surgery primarily in older patients, is associated with poor postoperative outcomes. POCD is hypothesized to result from neuroinflammation; however, the pathways involved remain unclear. Unbiased proteomic analyses have been used to identify neuroinflammatory pathways in multiple neurologic diseases and syndromes but have not yet been applied to POCD. Objective: To utilize unbiased mass spectrometry-based proteomics to identify potential neuroinflammatory pathways underlying POCD. Methods: Unbiased LC-MS/MS proteomics was performed on immunodepleted cerebrospinal fluid (CSF) samples obtained before, 24 hours after, and 6 weeks after major non-cardiac surgery in older adults who did (n = 8) or did not develop POCD (n = 6). Linear mixed models were used to select peptides and proteins with intensity differences for pathway analysis. Results: Mass spectrometry quantified 8,258 peptides from 1,222 proteins in > 50%of patient samples at all three time points. Twelve peptides from 11 proteins showed differences in expression over time between patients with versus without POCD (q < 0.05), including proteins previously implicated in neurodegenerative disease pathophysiology. Additionally, 283 peptides from 182 proteins were identified with trend-level differences (q < 0.25) in expression over time between these groups. Among these, pathway analysis revealed that 50 were from 17 proteins mapping to complement and coagulation pathways (q = 2.44*10–13). Conclusion: These data demonstrate the feasibility of performing unbiased mass spectrometry on perioperative CSF samples to identify pathways associated with POCD. Additionally, they provide hypothesis-generating evidence for CSF complement and coagulation pathway changes in patients with POCD.
Collapse
Affiliation(s)
- Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Victor Cai
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ashley Hall
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sarah Hiles
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Will Thompson
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - M Arthur Moseley
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jerrold H Levy
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Kamrouz Ghadimi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Quintin J Quiñones
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Stacey Chung
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Eugene W Moretti
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey N Browndyke
- Department of Psychiatry & Behavioral Sciences, Division of Geriatric Behavioral Health, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
90
|
Singh PK, Chen ZL, Strickland S, Norris EH. Increased Contact System Activation in Mild Cognitive Impairment Patients with Impaired Short-Term Memory. J Alzheimers Dis 2021; 77:59-65. [PMID: 32651324 DOI: 10.3233/jad-200343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An activated plasma contact system is an abnormality observed in many Alzheimer's disease (AD) patients. Since mild cognitive impairment (MCI) patients often develop AD, we analyzed the status of contact system activation in MCI patients. We found that kallikrein activity, high molecular weight kininogen cleavage, and bradykinin levels- measures of contact system activation- were significantly elevated in MCI patient plasma compared to plasma from age- and education-matched healthy individuals. Changes were more pronounced in MCI patients with impaired short-term recall memory, indicating the possible role of the contact system in early cognitive changes.
Collapse
Affiliation(s)
- Pradeep K Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| | - Erin H Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
91
|
Li S, Wang C, Wang Z, Tan J. Involvement of cerebrovascular abnormalities in the pathogenesis and progression of Alzheimer's disease: an adrenergic approach. Aging (Albany NY) 2021; 13:21791-21806. [PMID: 34479211 PMCID: PMC8457611 DOI: 10.18632/aging.203482] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/17/2021] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease (AD), as the most common neurodegenerative disease in elder population, is pathologically characterized by β-amyloid (Aβ) plaques, neurofibrillary tangles composed of highly-phosphorylated tau protein and consequently progressive neurodegeneration. However, both Aβ and tau fails to cover the whole pathological process of AD, and most of the Aβ- or tau-based therapeutic strategies are all failed. Increasing lines of evidence from both clinical and preclinical studies have indicated that age-related cerebrovascular dysfunctions, including the changes in cerebrovascular microstructure, blood-brain barrier integrity, cerebrovascular reactivity and cerebral blood flow, accompany or even precede the development of AD-like pathologies. These findings may raise the possibility that cerebrovascular changes are likely pathogenic contributors to the onset and progression of AD. In this review, we provide an appraisal of the cerebrovascular alterations in AD and the relationship to cognitive impairment and AD pathologies. Moreover, the adrenergic mechanisms leading to cerebrovascular and AD pathologies were further discussed. The contributions of early cerebrovascular factors, especially through adrenergic mechanisms, should be considered and treasured in the diagnostic, preventative, and therapeutic approaches to address AD.
Collapse
Affiliation(s)
- Song Li
- Liaoning Provincial Center for Clinical Research on Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China.,Liaoning Provincial Key Laboratory for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated Hospital, Dalian Medical University, Dalian 116021, China
| | - Che Wang
- Department of Pharmaceutical Chemistry, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Zhen Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Guizhou Medical University, Guiyang 550004, China
| |
Collapse
|
92
|
Tyagi A, Mirita C, Shah I, Reddy PH, Pugazhenthi S. Effects of Lipotoxicity in Brain Microvascular Endothelial Cells During Sirt3 Deficiency-Potential Role in Comorbid Alzheimer's Disease. Front Aging Neurosci 2021; 13:716616. [PMID: 34393764 PMCID: PMC8355826 DOI: 10.3389/fnagi.2021.716616] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Silence information regulator 3 (SIRT3) is an NAD+ dependent deacetylase enzyme that enhances the function of key mitochondrial proteins. We have earlier demonstrated that deletion of Sirt3 gene leads to downregulation of metabolic enzymes, mitochondrial dysfunction and neuroinflammation in the brain, the major causes of Alzheimer’s disease (AD). We also reported recently that Sirt3 gene deletion in Alzheimer’s transgenic mice leads to exacerbation of neuroinflammation, amyloid plaque deposition and microglial activation. AD often coexists with other brain lesions caused by comorbidities which can exert their deleterious effects through the neurovascular unit. This unit consists of brain microvascular endothelial cells (BMECs), end feet of astrocytes, and pericytes. BMECs are uniquely different from other vascular endothelial cells because they are glued together by tight-junction proteins. BMECs are in constant contact with circulating factors as they line the luminal side. Therefore, we hypothesized that vascular endothelial injury caused by comorbidities plays a significant role in neuroinflammation. Herein, we investigated the effects of lipotoxicity in BMECs and how Sirt3 deficiency facilitate the deleterious effects of lipotoxicity on them using in vivo and in vitro models. We observed decreases in the levels of SIRT3 and tight junction proteins in the brain samples of western diet-fed APP/PS1 mice. Similar observations were obtained with Alzheimer’s post-mortem samples. Exposure of BEND3 cells, mouse brain-derived Endothelial cells3, to a combination of high glucose and palmitic acid resulted in significant (P < 0.01-P < 0.001) decreases in the levels of SIRT3, claudin-5 and ZO-1. Induction of inflammatory mediators, including Cox-2, CXCL1, RANTES, and GADD45β was also observed in these treated cells. Interestingly, the induction was more with Sirt3-silenced BEND3 cells, suggesting that Sirt3 deficiency exacerbates inflammatory response. Palmitic acid was more potent in inducing the inflammatory mediators. Significant cytotoxicity and changes in microglial morphology were observed when cocultures of Sirt3-silenced BEND3 and Sirt3-silenced BV2 cells were exposed to palmitic acid. Transendothelial electrical resistance measurement with these cocultures suggested decreased barrier integrity. The findings of this study suggest that hyperlipidemia in comorbidities can compromise blood brain barrier integrity by inducing inflammatory mediators and decreasing tight junction proteins in the vascular endothelial cells of the AD brain, leading to activation of microglia.
Collapse
Affiliation(s)
- Alpna Tyagi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Carol Mirita
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - Iman Shah
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States
| | - P Hemachandra Reddy
- Internal Medicine Department and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Subbiah Pugazhenthi
- Rocky Mountain Regional VA Medical Center, Aurora, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
93
|
Viejo L, Noori A, Merrill E, Das S, Hyman BT, Serrano-Pozo A. Systematic review of human post-mortem immunohistochemical studies and bioinformatics analyses unveil the complexity of astrocyte reaction in Alzheimer's disease. Neuropathol Appl Neurobiol 2021; 48:e12753. [PMID: 34297416 PMCID: PMC8766893 DOI: 10.1111/nan.12753] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/24/2022]
Abstract
AIMS Reactive astrocytes in Alzheimer's disease (AD) have traditionally been demonstrated by increased glial fibrillary acidic protein (GFAP) immunoreactivity; however, astrocyte reaction is a complex and heterogeneous phenomenon involving multiple astrocyte functions beyond cytoskeletal remodelling. To better understand astrocyte reaction in AD, we conducted a systematic review of astrocyte immunohistochemical studies in post-mortem AD brains followed by bioinformatics analyses on the extracted reactive astrocyte markers. METHODS NCBI PubMed, APA PsycInfo and WoS-SCIE databases were interrogated for original English research articles with the search terms 'Alzheimer's disease' AND 'astrocytes.' Bioinformatics analyses included protein-protein interaction network analysis, pathway enrichment, and transcription factor enrichment, as well as comparison with public human -omics datasets. RESULTS A total of 306 articles meeting eligibility criteria rendered 196 proteins, most of which were reported to be upregulated in AD vs control brains. Besides cytoskeletal remodelling (e.g., GFAP), bioinformatics analyses revealed a wide range of functional alterations including neuroinflammation (e.g., IL6, MAPK1/3/8 and TNF), oxidative stress and antioxidant defence (e.g., MT1A/2A, NFE2L2, NOS1/2/3, PRDX6 and SOD1/2), lipid metabolism (e.g., APOE, CLU and LRP1), proteostasis (e.g., cathepsins, CRYAB and HSPB1/2/6/8), extracellular matrix organisation (e.g., CD44, MMP1/3 and SERPINA3), and neurotransmission (e.g., CHRNA7, GABA, GLUL, GRM5, MAOB and SLC1A2), among others. CTCF and ESR1 emerged as potential transcription factors driving these changes. Comparison with published -omics datasets validated our results, demonstrating a significant overlap with reported transcriptomic and proteomic changes in AD brains and/or CSF. CONCLUSIONS Our systematic review of the neuropathological literature reveals the complexity of AD reactive astrogliosis. We have shared these findings as an online resource available at www.astrocyteatlas.org.
Collapse
Affiliation(s)
- Lucía Viejo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Harvard College, Cambridge, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA
| | - Emily Merrill
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,MIND Data Science Lab, Cambridge, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.,MassGeneral Institute for Neurodegenerative Disease (MIND), Charlestown, MA, USA.,Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.,Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
94
|
Shi L, Buckley NJ, Bos I, Engelborghs S, Sleegers K, Frisoni GB, Wallin A, Lléo A, Popp J, Martinez-Lage P, Legido-Quigley C, Barkhof F, Zetterberg H, Visser PJ, Bertram L, Lovestone S, Nevado-Holgado AJ. Plasma Proteomic Biomarkers Relating to Alzheimer's Disease: A Meta-Analysis Based on Our Own Studies. Front Aging Neurosci 2021; 13:712545. [PMID: 34366831 PMCID: PMC8335587 DOI: 10.3389/fnagi.2021.712545] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/21/2021] [Indexed: 01/21/2023] Open
Abstract
Background and Objective: Plasma biomarkers for the diagnosis and stratification of Alzheimer's disease (AD) are intensively sought. However, no plasma markers are well established so far for AD diagnosis. Our group has identified and validated various blood-based proteomic biomarkers relating to AD pathology in multiple cohorts. The study aims to conduct a meta-analysis based on our own studies to systematically assess the diagnostic performance of our previously identified blood biomarkers. Methods: To do this, we included seven studies that our group has conducted during the last decade. These studies used either Luminex xMAP or ELISA to measure proteomic biomarkers. As proteins measured in these studies differed, we selected protein based on the criteria that it must be measured in at least four studies. We then examined biomarker performance using random-effect meta-analyses based on the mean difference between biomarker concentrations in AD and controls (CTL), AD and mild cognitive impairment (MCI), MCI, and CTL as well as MCI converted to dementia (MCIc) and non-converted (MCInc) individuals. Results: An overall of 2,879 subjects were retrieved for meta-analysis including 1,053 CTL, 895 MCI, 882 AD, and 49 frontotemporal dementia (FTD) patients. Six proteins were measured in at least four studies and were chosen for meta-analyses for AD diagnosis. Of them, three proteins had significant difference between AD and controls, among which alpha-2-macroglobulin (A2M) and ficolin-2 (FCN2) increased in AD while fibrinogen gamma chain (FGG) decreased in AD compared to CTL. Furthermore, FGG significantly increased in FTD compared to AD. None of the proteins passed the significance between AD and MCI, or MCI and CTL, or MCIc and MCInc, although complement component 4 (CC4) tended to increase in MCIc individuals compared to MCInc. Conclusions: The results suggest that A2M, FCN2, and FGG are promising biomarkers to discriminate AD patients from controls, which are worthy of further validation.
Collapse
Affiliation(s)
- Liu Shi
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Isabelle Bos
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Universitair Ziekenhuis Brussel and Center for Neurociences (C4N), Vrije Universiteit Brussel, Brussels, Belgium
| | - Kristel Sleegers
- Complex Genetics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Institute Born-Bunge, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anders Wallin
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Alberto Lléo
- Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Julius Popp
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland.,Geriatric Psychiatry, Department of Mental Health and Psychiatry, Geneva University Hospitals, Geneva, Switzerland
| | | | - Cristina Legido-Quigley
- Kings College London, London, United Kingdom.,The Systems Medicine Group, Steno Diabetes Center, Gentofte, Denmark
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands.,UCL Institutes of Neurology and Healthcare Engineering, London, United Kingdom
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom
| | - Pieter Jelle Visser
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Alzheimer Centrum Limburg, Maastricht University, Maastricht, Netherlands.,Alzheimer Center, VU University Medical Center, Amsterdam, Netherlands
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics, University of Lübeck, Lübeck, Germany.,Department of Psychology, University of Oslo, Oslo, Norway
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom.,Janssen R&D, High Wycombe, United Kingdom
| | | |
Collapse
|
95
|
Zolotoff C, Bertoletti L, Gozal D, Mismetti V, Flandrin P, Roche F, Perek N. Obstructive Sleep Apnea, Hypercoagulability, and the Blood-Brain Barrier. J Clin Med 2021; 10:jcm10143099. [PMID: 34300265 PMCID: PMC8304023 DOI: 10.3390/jcm10143099] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of intermittent hypoxia (IH) and is recognized as an independent risk factor for vascular diseases that are mediated by a multitude of mechanistic pathophysiological cascades including procoagulant factors. The pro-coagulant state contributes to the development of blood clots and to the increase in the permeability of the blood-brain barrier (BBB). Such alteration of BBB may alter brain function and increase the risk of neurodegenerative diseases. We aim to provide a narrative review of the relationship between the hypercoagulable state, observed in OSA and characterized by increased coagulation factor activity, as well as platelet activation, and the underlying neural dysfunction, as related to disruption of the BBB. We aim to provide a critical overview of the existing evidence about the effect of OSA on the coagulation balance (characterized by increased coagulation factor activity and platelet activation) as on the BBB. Then, we will present the emerging data on the effect of BBB disruption on the risk of underlying neural dysfunction. Finally, we will discuss the potential of OSA therapy on the coagulation balance and the improvement of BBB.
Collapse
Affiliation(s)
- Cindy Zolotoff
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Correspondence: ; Tel.: +33-477-421-452
| | - Laurent Bertoletti
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Médecine Vasculaire et Thérapeutique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, MU Women’s and Children’s Hospital, University of Missouri, Columbia, MO 65201, USA;
| | - Valentine Mismetti
- Service de Pneumologie et d’Oncologie Thoracique, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Pascale Flandrin
- Laboratoire d’Hématologie, Hôpital Nord, CHU Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France;
| | - Frédéric Roche
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
- Service de Physiologie Clinique et de l’Exercice, Centre VISAS, CHU Saint Etienne, F-42270 Saint-Priest-en-Jarez, France
| | - Nathalie Perek
- U1059, Sainbiose, Dysfonction Vasculaire et Hémostase, Université de Lyon, Université Jean Monnet Saint-Étienne, F-42270 Saint-Priest-en-Jarez, France; (L.B.); (F.R.); (N.P.)
| |
Collapse
|
96
|
Chen JL, Chen DM, Luo C, Sun Y, Zhao YX, Huang CQ, Zhao KX, Xiao Q. Fibrinogen, fibrin degradation products and risk of sarcopenia. Clin Nutr 2021; 40:4830-4837. [PMID: 34358823 DOI: 10.1016/j.clnu.2021.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Increasing data suggests that chronic low-grade inflammation plays an important role on development of sarcopenia. The present study was designed to identify the association between fibrinogen, fibrin degradation products (FDP) and sarcopenia risk in hospitalized old patients. METHODS A total of 437 patients were enrolled in this cross-sectional study (148 with sarcopenia and 289 without sarcopenia). Sarcopenia was diagnosed according to the Asian Working Group for Sarcopenia (AWGS) 2019 criteria. Body composition, grip strength and gait speed were performed to participants. Fibrinogen, FDP levels were measured. Logistic regression analyses were carried out to assess the association between fibrinogen and sarcopenia, between FDP and sarcopenia, respectively. RESULTS Compared to non-sarcopenic patients, fibrinogen and FDP levels were found to be higher in the sarcopenic group (3.07 g/L vs 2.79 g/L, 1.75 μg/mL vs 1.00 μg/mL, respectively, p < 0.05). Multiple linear regression analysis showed a significant negative association between fibrinogen and gait speed (β: -0.164, p = 0.008), and muscle strength (β: -0.231, p < 0.001). Multivariable logistic regression analysis showed that fibrinogen and FDP were independently associated with sarcopenia (odds ratio 1.32 [95% confidence interval 1.03, 1.70], p = 0.009; odds ratio 1.07 [95% confidence interval 1.01, 1.19], p = 0.049, respectively). ROC curve revealed that the cutoff values of fibrinogen and FDP to predict sarcopenia risk were 2.54 g/L and 1.15 μg/mL, respectively. CONCLUSIONS In hospitalized old patients, serum fibrinogen and FDP levels are elevated in sarcopenia patients than those without sarcopenia. Fibrinogen and FDP are associated with sarcopenia in a concentration-dependent manner.
Collapse
Affiliation(s)
- Jin-Liang Chen
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Dong-Mei Chen
- Department of Respiratory and Critical Care Medicine, Karamay Central Hospital, No. 67, Zhunger Road, Karamay District, Karamay City, 834000, Xinjiang, China
| | - Cheng Luo
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Yue Sun
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Yu-Xing Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Chang-Quan Huang
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Ke-Xiang Zhao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China
| | - Qian Xiao
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Friendship Road 1, Yuan Jiagang, 400016, Chongqing, China.
| |
Collapse
|
97
|
Ma SX, Seo BA, Kim D, Xiong Y, Kwon SH, Brahmachari S, Kim S, Kam TI, Nirujogi RS, Kwon SH, Dawson VL, Dawson TM, Pandey A, Na CH, Ko HS. Complement and Coagulation Cascades are Potentially Involved in Dopaminergic Neurodegeneration in α-Synuclein-Based Mouse Models of Parkinson's Disease. J Proteome Res 2021; 20:3428-3443. [PMID: 34061533 PMCID: PMC8628316 DOI: 10.1021/acs.jproteome.0c01002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder that results in motor dysfunction and, eventually, cognitive impairment. α-Synuclein protein is known as a central protein to the pathophysiology of PD, but the underlying pathological mechanism still remains to be elucidated. In an effort to understand how α-synuclein underlies the pathology of PD, various PD mouse models with α-synuclein overexpression have been developed. However, systemic analysis of the brain proteome of those mouse models is lacking. In this study, we established two mouse models of PD by injecting α-synuclein preformed fibrils (PFF) or by inducing overexpression of human A53T α-synuclein to investigate common pathways in the two different types of the PD mouse models. For more accurate quantification of mouse brain proteome, the proteins were quantified using the method of stable isotope labeling with amino acids in mammals . We identified a total of 8355 proteins from the two mouse models; ∼6800 and ∼7200 proteins from α-synuclein PFF-injected mice and human A53T α-synuclein transgenic mice, respectively. Through pathway analysis of the differentially expressed proteins common to both PD mouse models, it was discovered that the complement and coagulation cascade pathways were enriched in the PD mice compared to control animals. Notably, a validation study demonstrated that complement component 3 (C3)-positive astrocytes were increased in the ventral midbrain of the intrastriatal α-synuclein PFF-injected mice and C3 secreted from astrocytes could induce the degeneration of dopaminergic neurons. This is the first study that highlights the significance of the complement and coagulation pathways in the pathogenesis of PD through proteome analyses with two sophisticated mouse models of PD.
Collapse
Affiliation(s)
- Shi-Xun Ma
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Bo Am Seo
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Donghoon Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology, Peripheral Neuropathy Research Center, Dong-A University College of Medicine, Busan 49201, South Korea
| | - Yulan Xiong
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Seung-Hwan Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Saurav Brahmachari
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sangjune Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Raja Sekhar Nirujogi
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Sang Ho Kwon
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| | - Akhilesh Pandey
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Laboratory Medicine and Pathology, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota 55905, United States
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
| | - Han Seok Ko
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore 21205-2105, Maryland, United States
- Adrienne Helis Malvin Medical Research Foundation, New Orleans 70130, Louisiana, United States
- Diana Helis Henry Medical Research Foundation, New Orleans 70130, Louisiana, United States
| |
Collapse
|
98
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
99
|
Dickie BR, Boutin H, Parker GJM, Parkes LM. Alzheimer's disease pathology is associated with earlier alterations to blood-brain barrier water permeability compared with healthy ageing in TgF344-AD rats. NMR IN BIOMEDICINE 2021; 34:e4510. [PMID: 33723901 PMCID: PMC11475392 DOI: 10.1002/nbm.4510] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The effects of Alzheimer's disease (AD) and ageing on blood-brain barrier (BBB) breakdown are investigated in TgF344-AD and wild-type rats aged 13, 18 and 21 months. Permeability surface area products of the BBB to water (PSw ) and gadolinium-based contrast agent (PSg ) were measured in grey matter using multiflip angle multiecho dynamic contrast-enhanced MRI. At 13 months of age, there was no significant difference in PSw between TgF344-AD and wild-types (p = 0.82). Between 13 and 18 months, PSw increased in TgF344-AD rats (p = 0.027), but not in wild-types (p = 0.99), leading to significantly higher PSw in TgF344-AD rats at 18 months, as previously reported (p = 0.012). Between 18 and 21 months, PSw values increased in wild-types (p = 0.050), but not in TgF344-AD rats (p = 0.50). These results indicate that BBB water permeability is affected by both AD pathology and ageing, but that changes occur earlier in the presence of AD pathology. There were no significant genotype or ageing effects on PSg (p > 0.05). In conclusion, we detected increases in BBB water permeability with age in TgF344-AD and wild-type rats, and found that changes occurred at an earlier age in rats with AD pathology.
Collapse
Affiliation(s)
- Ben R. Dickie
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
- Wolfson Molecular Imaging Centre, Faculty of Biology, Medicine, and HealthUniversity of ManchesterManchesterUK
| | - Geoff J. M. Parker
- Bioxydyn LtdManchesterUK
- Centre for Medical Image Computing, Department of Computer Science and Department of NeuroinflammationUniversity College LondonLondonUK
| | - Laura M. Parkes
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine, and Health, Stopford BuildingUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreManchester Academic Health Science CentreManchesterUK
| |
Collapse
|
100
|
Jeon MT, Kim KS, Kim ES, Lee S, Kim J, Hoe HS, Kim DG. Emerging pathogenic role of peripheral blood factors following BBB disruption in neurodegenerative disease. Ageing Res Rev 2021; 68:101333. [PMID: 33774194 DOI: 10.1016/j.arr.2021.101333] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/03/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022]
Abstract
The responses of central nervous system (CNS) cells such as neurons and glia in neurodegenerative diseases (NDs) suggest that regulation of neuronal and glial functions could be a strategy for ND prevention and/or treatment. However, attempts to develop such therapeutics for NDs have been hindered by the challenge of blood-brain barrier (BBB) permeability and continued constitutive neuronal loss. These limitations indicate the need for additional perspectives for the prevention/treatment of NDs. In particular, the disruption of the blood-brain barrier (BBB) that accompanies NDs allows brain infiltration by peripheral factors, which may stimulate innate immune responses involved in the progression of neurodegeneration. The accumulation of blood factors like thrombin, fibrinogen, c-reactive protein (CRP) and complement components in the brain has been observed in NDs and may activate the innate immune system in the CNS. Thus, strengthening the integrity of the BBB may enhance its protective role to attenuate ND progression and functional loss. In this review, we describe the innate immune system in the CNS and the contribution of blood factors to the role of the CNS immune system in neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Min-Tae Jeon
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Kyu-Sung Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Eun Seon Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Suji Lee
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Jieun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea; Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333, Techno jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea.
| | - Do-Geun Kim
- Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41062, Republic of Korea.
| |
Collapse
|