51
|
Baurecht H, Freuer D, Welker C, Tsoi LC, Elder JT, Ehmke B, Leitzmann MF, Holtfreter B, Baumeister SE. Relationship between periodontitis and psoriasis: A two-sample Mendelian randomization study. J Clin Periodontol 2022; 49:573-579. [PMID: 35362630 DOI: 10.1111/jcpe.13620] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 11/30/2022]
Abstract
AIM Observational research suggests that periodontitis affects psoriasis. However, observational studies are prone to reverse causation and confounding, which hampers drawing causal conclusions and the effect direction. We applied the Mendelian randomization (MR) method to comprehensively assess the potential bi-directional association between periodontitis and psoriasis. MATERIALS AND METHODS We used genetic instruments from the largest available genome-wide association study of European descent for periodontitis (17,353 cases, 28,210 controls) to investigate the relationship with psoriasis (13,229 cases, 21,543 controls), and vice versa. Causal Analysis Using Summary Effect (CAUSE) estimates and inverse variance-weighted (IVW) MR analyses were used for the primary analysis. Robust MR approaches were used for sensitivity analyses. RESULTS Both univariable methods, CAUSE and IVW MR analyses, did not reveal any impact of periodontitis on psoriasis (CAUSE odds ratio [OR] = 1.00, p = 1.00; IVW OR = 1.02, p = .6247), or vice versa (CAUSE OR = 1.01, p = .5135; IVW OR = 1.00, p = .7070). The null association was corroborated by pleiotropy-robust methods with ORs close to 1 and p-values >.59. Overall, MR analyses did not suggest any effect of periodontitis on psoriasis. Similarly, there was no evidence to support an effect of psoriasis on periodontitis. CONCLUSIONS Within the limitations of this MR study, the outcomes supported neither periodontitis affecting psoriasis nor psoriasis affecting periodontitis.
Collapse
Affiliation(s)
- Hansjörg Baurecht
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Dennis Freuer
- Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Christine Welker
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - James T Elder
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Ann Arbor Veterans Affairs Hospital, Ann Arbor, Michigan, USA
| | - Benjamin Ehmke
- Clinic for Periodontology and Conservative Dentistry, University of Münster, Münster, Germany
| | - Michael F Leitzmann
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Birte Holtfreter
- Department of Restorative Dentistry, Periodontology, Endodontology, and Preventive and Pediatric Dentistry, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
52
|
Outside the limits of bacterial viability: postbiotics in the management of periodontitis. Biochem Pharmacol 2022; 201:115072. [PMID: 35513043 DOI: 10.1016/j.bcp.2022.115072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 01/17/2023]
Abstract
Periodontitis is a major cause of tooth loss in adults worldwide and is caused by an unbalanced oral microbiota in a susceptible host, ultimately leading to tissue breakdown and bone loss. Traditionally, the treatment for periodontitis is scaling and root planing; however, some cases require adjuvant therapy, such as antibiotics administration or surgery. Various factors are involved in the pathogenesis and interact in an unpredictable way, increasing the complexity of the disease and making it difficult to manage. In this context, the administration of probiotics aimed at resolving bacterial dysbiosis and the associated dysregulation of the immune system has been employed in clinical trials with encouraging results. However, the use of viable microorganisms is not risk-free, and immunocompromised patients may develop adverse effects. Therefore, the use of inactivated microbial cells, cell fractions, or soluble products and metabolites of probiotics, known as postbiotics, has gained increasing attention. In this commentary, we present the current literature assessing the impact of postbiotics on the growth and metabolism of periodontal pathogens, as well as on the progression of periodontitis in rodents and humans. We also discuss the limitations of the available data and what the scientific community should consider in order to transfer this innovative therapeutic modality from the bench to the bedside.
Collapse
|
53
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
54
|
The Role of Epigenetic and Biological Biomarkers in the Diagnosis of Periodontal Disease: A Systematic Review Approach. Diagnostics (Basel) 2022; 12:diagnostics12040919. [PMID: 35453967 PMCID: PMC9029524 DOI: 10.3390/diagnostics12040919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 11/28/2022] Open
Abstract
The aim of this systemic review was to collate and analyze existing data from published literature sources to identify the current understanding of the role of epigenetic and biological biomarkers in periodontal disease and diagnostics. A comprehensive searching strategy was undertaken in Embase, Medline, The Dentistry and Oral Sciences and CINAHL databases. Grey literature searching strategies were also employed. Articles published in the English language between 2017−2020 were included. A total of 1014 studies were returned of which 15 studies were included. All included articles were cross-sectional, case−control studies. Relevant data were extracted according to various demographic and methodological factors including cohort size, oral biofluid sampled, number of examiners, smoking status and reported outcomes. A measure of the biomarker levels and corresponding significance were documented where possible. This review identified that exRNA has the greatest diagnostic potential, with four biomarkers (SPRR1A, lnc-TET3-2:1, FAM25A, CRCT1) displaying sensitivity of >71% and specificity of 100% in the assessed samples (p < 0.001) for gingivitis. This work also identifies the need for a unified approach to future research to draw meaningful comparison. Further investigations are warranted to definitively validate exRNA data and for the development of an exRNA-specific point-of-care diagnostic test.
Collapse
|
55
|
Tan MS, Liu Y, Hu H, Tan CC, Tan L. Inhibition of caspase-1 ameliorates tauopathy and rescues cognitive impairment in SAMP8 mice. Metab Brain Dis 2022; 37:1197-1205. [PMID: 35143023 DOI: 10.1007/s11011-022-00914-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
The inflammasome assembles leading to increased cleavage and activity of caspase-1 and downstream IL-1β release, which plays a significant role in the pathogenesis of Alzheimer's disease (AD). Previous studies have shown that caspase-1-mediated neuroinflammation occurs early in AD process. However, the detailed role of caspase-1 in aging-related AD-like neuropathology is still unclear so far. In this study, by using SAMP8 mice, an animal model of accelerated aging, we detected the levels of caspase-1 in brains of 3-, 7-, and 11-month-old mice and observed that caspase-1 was activated during aging process. More importantly, we provided the evidence that VX-765, a selective inhibitor of caspase-1, significantly rescued spatial learning and memory impairments and reduced tau hyperphosphorylation in brains of SAMP8 mice at early stages of the disease. This amelioration might be attributed to IL-1β-induced hypoactivation of tau kinases. Our results imply that caspase-1 may represent as a potential therapeutic target for neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Meng-Shan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China.
| | - Yi Liu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
56
|
Mohamed DI, Alaa El-Din Aly El-Waseef D, Nabih ES, El-Kharashi OA, Abd El-Kareem HF, Abo Nahas HH, Abdel-Wahab BA, Helmy YA, Alshawwa SZ, Saied EM. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics 2022; 14:529. [PMID: 35335908 PMCID: PMC8948796 DOI: 10.3390/pharmaceutics14030529] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain-like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | | | - Enas S. Nabih
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | | | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71111, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40503, USA;
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
57
|
Effect of Dextranase and Dextranase-and-Nisin-Containing Mouthwashes on Oral Microbial Community of Healthy Adults—A Pilot Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study analyzed the alteration of oral microbial composition in healthy subjects after using dextranase-containing mouthwash (DMW; Mouthwash formulation I) and dextranase-and-nisin-containing mouthwash (DNMW; Mouthwash formulation II). Eighteen participants were recruited and were randomly allocated to two groups: G1 (DMW user; n = 8) and G2 (DNMW user; n = 10). The subjects were instructed to use the provided mouthwash regularly twice a day for 30 days. The bleeding on probing (BOP), plaque index (PI), probing depth (PBD), and gingival index (GI) were analyzed, and saliva samples were collected before (day 0) and after (day 30) the use of mouthwashes. The saliva metagenomic DNA was extracted and sequenced (next-generation sequencing, Miseq paired-end Illumina 2 × 250 bp platform). The oral microbial community in the pre-and post-treated samples were annotated using QIIME 2™. The results showed the PI and PBD values were significantly reduced in G2 samples. The BOP and GI values of both groups were not significantly altered. The post-treated samples of both groups yielded a reduced amount of microbial DNA. The computed phylogenetic diversity, species richness, and evenness were reduced significantly in the post-treated samples of G2 compared to the post-treated G1 samples. The mouthwash formulations also supported some pathogens’ growth, which indicated that formulations required further improvement. The study needs further experiments to conclude the results. The study suggested that the improved DNMW could be an adjuvant product to improve oral hygiene.
Collapse
|
58
|
Liu N, Pang X, Zhang H, Ji P. The cGAS-STING Pathway in Bacterial Infection and Bacterial Immunity. Front Immunol 2022; 12:814709. [PMID: 35095914 PMCID: PMC8793285 DOI: 10.3389/fimmu.2021.814709] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022] Open
Abstract
Cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) (cGAMP) synthase (cGAS), along with the adaptor stimulator of interferon genes (STING), are crucial components of the innate immune system, and their study has become a research hotspot in recent years. Many biochemical and structural studies that have collectively elucidated the mechanism of activation of the cGAS-STING pathway with atomic resolution have provided insights into the roles of the cGAS-STING pathway in innate immunity and clues to the origin and evolution of the modern cGAS-STING signaling pathway. The cGAS-STING pathway has been identified to protect the host against viral infection. After detecting viral dsDNA, cGAS synthesizes a second messenger to activate STING, eliciting antiviral immune responses by promoting the expression of interferons (IFNs) and hundreds of IFN-stimulated genes (ISGs). Recently, the cGAS-STING pathway has also been found to be involved in response to bacterial infections, including bacterial pneumonia, melioidosis, tuberculosis, and sepsis. However, compared with its functions in viral infection, the cGAS-STING signaling pathway in bacterial infection is more complex and diverse since the protective and detrimental effects of type I IFN (IFN-I) on the host depend on the bacterial species and infection mode. Besides, STING activation can also affect infection prognosis through other mechanisms in different bacterial infections, independent of the IFN-I response. Interestingly, the core protein components of the mammalian cGAS-STING signaling pathway have been found in the bacterial defense system, suggesting that this widespread signaling pathway may have originated in bacteria. Here, we review recent findings related to the structures of major molecules involved in the cGAS-STING pathway and the effects of the cGAS-STING pathway in various bacterial infections and bacterial immunity, which may pave the way for the development of new antibacterial drugs that specifically kill bacteria without harmful effects on the host.
Collapse
Affiliation(s)
- Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Pang
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Hua Zhang
- Department of Obstetrics and Gynaecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
59
|
Hu H, Wang L, Zhao Q. Editorial: Molecular insight of chronic infections. Front Microbiol 2022; 13:1112456. [PMID: 36687589 PMCID: PMC9846801 DOI: 10.3389/fmicb.2022.1112456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Affiliation(s)
- Honghua Hu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang, China
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- *Correspondence: Honghua Hu ✉ ; ✉
| | - Leyi Wang
- Veterinary Diagnostic Laboratory, Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois, Urbana, IL, United States
| | - Qi Zhao
- School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China
- Qi Zhao ✉
| |
Collapse
|
60
|
Isola G, Polizzi A, Santonocito S, Alibrandi A, Williams RC. Periodontitis activates the NLRP3 inflammasome in serum and saliva. J Periodontol 2022; 93:135-145. [PMID: 34008185 DOI: 10.1002/jper.21-0049] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Nod-like receptor family pyrin domain-containing protein-3 (NLRP3) complex inflammasome has potentially been shown to play an important role in the development of periodontitis and diabetes. The objective of this study was to analyze the association between serum and salivary NLRP3 concentrations in patients with periodontitis and type-II diabetes mellitus (DM) and to evaluate whether this association was influenced by potential confounders. METHODS For the present study, a cohort of healthy controls (n = 32), and patients with periodontitis (n = 34), type-II DM (n = 33), and a combination of periodontitis + type-II DM (n = 34) were enrolled. Patients were characterized on the basis of their periodontal status and analyzed for demographic characteristics, serum mediators, and for serum and salivary concentrations of NLRP3. A uni- and multivariate model was established to analyze whether periodontitis, type-II DM, and CRP influenced serum and salivary NLRP3 concentrations. RESULTS In comparison to type-II DM patients and healthy controls, patients with periodontitis (serum, P = 0.003; saliva P = 0.012) and periodontitis + type-II DM (serum, P = 0.028; saliva, P = 0.003) had elevated serum and salivary NLRP3 concentrations. The multivariate regression model showed that periodontitis (P = 0.029) and HDL-cholesterol (P = 0.012) were significant predictors of serum NLRP3 concentrations whereas periodontitis (P = 0.036) and CRP (P = 0.012) were significant predictors of salivary NLRP3. CONCLUSION The results of the present study showed that periodontitis and periodontitis + type-II DM patients had higher serum and salivary NLRP3 concentrations in comparison to healthy controls and patients with type-II DM. Periodontitis was demonstrated to be a significant predictor of both serum and salivary NLRP3 concentrations.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, Unit of Oral Surgery and Periodontology, School of Dentistry, University of Catania, Catania, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, Unit of Oral Surgery and Periodontology, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, Unit of Oral Surgery and Periodontology, School of Dentistry, University of Catania, Catania, Italy
| | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Ray C Williams
- Department of Periodontology, UNC-Chapel Hill School of Dentistry, Chapel Hill, North Carolina, USA
| |
Collapse
|
61
|
Alshehri SA, Wahab S, Abullais SS, Das G, Hani U, Ahmad W, Amir M, Ahmad A, Kandasamy G, Vasudevan R. Pharmacological Efficacy of Tamarix aphylla: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2021; 11:118. [PMID: 35009121 PMCID: PMC8747234 DOI: 10.3390/plants11010118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/16/2021] [Accepted: 12/22/2021] [Indexed: 05/19/2023]
Abstract
Tamarix aphylla is a well-known species of the genus Tamarix. T. aphylla (Tamaricaceae) is a perennial tree in Asia, the Middle East, and Central Africa. It is used as a carminative diuretic in tuberculosis, leprosy, and hepatitis. Various pharmacological properties have been shown by T. aphylla, such as antidiabetic, anti-inflammatory, antibacterial, antifungal, anticholinesterase, and wound-healing activity. However, T. aphylla has not received much attention for its secondary metabolites and bioactive constituents. Research has shown that this plant has hidden potential that needs to be explored. This review aims to cover botanical classification, geographical distribution, taxonomy, ethnobotanical uses, and the phytochemical compounds found in T. aphylla. The toxicology and pharmacological effects of T. aphylla are also discussed. We examined various scholarly resources to gather information on T. aphylla, including Google Scholar, Scopus, Science Direct, Springer Link, PubMed, and Web of Science. The finding of this work validates a connection between T. aphylla in conventional medicine and its antidiabetic, antibacterial, anti-inflammatory, wound-healing, antifungal, anticholinesterase, and other biological effects. T. aphylla's entire plant (such as bark, leaves, fruits) and root extracts have been used to treat hypertension, stomach discomfort, hair loss, cough and asthma, abscesses, wounds, rheumatism, jaundice, fever, tuberculosis, and gum and tooth infection. The phytochemical screening revealed that noticeably all extracts were devoid of alkaloids, followed by the presence of tannins. In addition, different parts have revealed the existence of steroids, flavonoids, cardiac glycosides, and byproducts of gallic acid and ellagic acid. T. aphylla has shown many valuable activities against different diseases and supports its traditional uses. Therefore, high-quality preclinical research and well-designated clinical trials are needed to establish the efficacy and safety of this plant in humans.
Collapse
Affiliation(s)
- Saad Ali Alshehri
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Gotam Das
- Department of Prosthodontics, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia;
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Wasim Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia; (W.A.); (A.A.)
| | - Mohd Amir
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Ayaz Ahmad
- Department of Pharmacy, Mohammed Al-Mana College for Medical Sciences, Safaa, Dammam 34222, Saudi Arabia; (W.A.); (A.A.)
| | - Geetha Kandasamy
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| | - Rajalakshimi Vasudevan
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Saudi Arabia;
| |
Collapse
|
62
|
Chen Y, Chen X, Huang X, Duan Y, Gao H, Gao X. Analysis of Salivary Microbiome and Its Association With Periodontitis in Patients With Obstructive Sleep Apnea. Front Cell Infect Microbiol 2021; 11:752475. [PMID: 34950605 PMCID: PMC8688821 DOI: 10.3389/fcimb.2021.752475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 12/30/2022] Open
Abstract
Objectives This study aimed to analyze the periodontal conditions of patients with obstructive sleep apnea (OSA) in relation to the salivary microbiome. Materials and Methods In total, 54 male adults (27 with OSA, 27 controls) completed this cross-sectional study. All participants were monitored by overnight polysomnography (PSG) and underwent full-mouth periodontal examination. Saliva samples were then collected, and the microbial 16S ribosomal RNA gene was sequenced. The data were analyzed to determine the microbial distribution and the community structure of the two groups. Results Demonstrated by alpha and beta diversity, the OSA group had a lower microbial richness and a lower observed species than the controls. There was no significant difference in the microbial species diversity or evenness between the OSA and the non-OSA groups. The OSA group had fewer operational taxonomic units (OTUs), and the distribution of microbiome showed that several gram-positive bacteria had higher abundance in the OSA group. As for periodontal pathogens, the relative abundance of Prevotella was significantly increased in the OSA group. No significant difference was observed in the relative abundance of other pathogens at either the genus or species level. Conclusions The salivary microbial community structure was altered in patients with OSA in terms of species richness and trans-habitat diversity, along with an increase in Prevotella, a specific periodontal pathogen. These findings might explain the high prevalence of periodontitis in OSA patients.
Collapse
Affiliation(s)
- Yanlong Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Chen
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xin Huang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ying Duan
- Department of Sleep Medicine, Airforce Medical Center, Beijing, China
| | - He Gao
- Department of Sleep Medicine, Airforce Medical Center, Beijing, China
| | - Xuemei Gao
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
63
|
NLRP3 Inflammasome Expression in Gingival Crevicular Fluid of Patients with Periodontitis and Chronic Hepatitis C. Mediators Inflamm 2021; 2021:6917919. [PMID: 34840527 PMCID: PMC8626199 DOI: 10.1155/2021/6917919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The study is aimed at assessing the impact that periodontal disease and chronic hepatitis C could have on gingival crevicular fluid levels of the NLRP3 inflammasome, caspase-1 (CASP-1), and interleukin-18 (IL-18) and at evaluating whether the increased local inflammatory reaction with clinical periodontal consequences is correlated to their upregulation. Patients were divided into four groups, according to their periodontal status and previously diagnosed hepatitis C, as follows: (i) CHC group, chronic hepatitis C patients; (ii) P group, periodontal disease patients, systemically healthy; (iii) CHC + P group, patients suffering from both conditions; and (iv) H group, systemically and periodontally healthy controls. Gingival crevicular samples were collected for quantitative analysis of the NLRP3 inflammasome, CASP-1, and IL-18. CHC + P patients expressed the worse periodontal status and the highest NLRP3, CASP-1, and IL-18 levels, the difference being statistically significant (p < 0.05). The P group patients also expressed significantly more elevated NLRP3, CASP-1, and IL-18 levels, as compared to nonperiodontal patients (CHC and H groups). Chronic hepatitis C and periodontal disease could have a significant influence on the upregulation of NLRP3 inflammasome and its components, possibly contributing to an increased local inflammatory reaction and clinical periodontal consequences.
Collapse
|
64
|
Marchesan J, Moss K, Morelli T, Teles F, Divaris K, Styner M, Ribeiro A, Webster-Cyriaque J, Beck J. Distinct Microbial Signatures between Periodontal Profile Classes. J Dent Res 2021; 100:1405-1413. [PMID: 33906500 PMCID: PMC8529299 DOI: 10.1177/00220345211009767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Precise classification of periodontal disease has been the objective of concerted efforts and has led to the introduction of new consensus-based and data-driven classifications. The purpose of this study was to characterize the microbiological signatures of a latent class analysis (LCA)-derived periodontal stratification system, the Periodontal Profile Class (PPC) taxonomy. We used demographic, microbial (subgingival biofilm composition), and immunological data (serum IgG antibody levels, obtained with checkerboard immunoblotting technique) for 1,450 adult participants of the Dental Atherosclerosis Risk in Communities (ARIC) study, with already generated PPC classifications. Analyses relied on t tests and generalized linear models with Bonferroni correction. Men and African Americans had higher systemic antibody levels against most microorganisms compared to women and Caucasians (P < 0.05). Healthy individuals (PPC-I) had low levels of biofilm bacteria and serum IgG levels against most periodontal pathogens (P < 0.05). Subjects with mild to moderate disease (PPC-II to PPC-III) showed mild/moderate colonization of multiple biofilm pathogens. Individuals with severe disease (PPC-IV) had moderate/high levels of biofilm pathogens and antibody levels for orange/red complexes. High gingival index individuals (PPC-V) showed moderate/high levels of biofilm Campylobacter rectus and Aggregatibacter actinomycetemcomitans. Biofilm composition in individuals with reduced periodontium (PPC-VI) was similar to health but showed moderate to high antibody responses. Those with severe tooth loss (PPC-VII) had significantly high levels of multiple biofilm pathogens, while the systemic antibody response to these microorganisms was comparable to health. The results support a biologic basis for elevated risk for periodontal disease in men and African Americans. Periodontally healthy individuals showed a low biofilm pathogen and low systemic antibody burden. In the presence of PPC disease, a microbial-host imbalance characterized by higher microbial biofilm colonization and/or systemic IgG responses was identified. These results support the notion that subgroups identified by the PPC system present distinct microbial profiles and may be useful in designing future precise biological treatment interventions.
Collapse
Affiliation(s)
- J.T. Marchesan
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - K. Moss
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - T. Morelli
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - F.R. Teles
- Department of Basic and Translational Sciences, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| | - K. Divaris
- Division of Pediatric and Public Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - M. Styner
- Department of Medicine, Division of Endocrinology and Metabolism, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A.A. Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J. Webster-Cyriaque
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - J. Beck
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
65
|
Jain P, Hassan N, Khatoon K, Mirza MA, Naseef PP, Kuruniyan MS, Iqbal Z. Periodontitis and Systemic Disorder-An Overview of Relation and Novel Treatment Modalities. Pharmaceutics 2021; 13:1175. [PMID: 34452136 PMCID: PMC8398110 DOI: 10.3390/pharmaceutics13081175] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Periodontitis, a major oral disease, affects a vast majority of the population but has been often ignored without realizing its long-fetched effects on overall human health. A realization in recent years of its association with severe diseases such as carditis, low birth weight babies, and preeclampsia has instigated dedicated research in this area. In the arena of periodontal medicines, the studies of past decades suggest a link between human periodontal afflictions and certain systemic disorders such as cardiovascular diseases, diabetes mellitus, respiratory disorders, preterm birth, autoimmune disorders, and cancer. Although, the disease appears as a locoregional infection, the periodontal pathogens, in addition their metabolic products and systemic mediators, receive access to the bloodstream, thereby contributing to the development of systemic disorders. Mechanism-based insights into the disease pathogenesis and association are highly relevant and shall be useful in avoiding any systemic complications. This review presents an update of the mechanisms and relationships between chronic periodontal infection and systemic disorders. Attention is also given to highlighting the incidence in support of this relationship. In addition, an attempt is made to propose the various periodonto-therapeutic tools to apprise the readers about the availability of appropriate treatment for the disease at the earliest stage without allowing it to progress and cause systemic adverse effects.
Collapse
Affiliation(s)
- Pooja Jain
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Nazia Hassan
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Karishma Khatoon
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | - Mohd. Aamir Mirza
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia;
| | - Zeenat Iqbal
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India; (P.J.); (N.H.); (K.K.)
| |
Collapse
|
66
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
67
|
Ubiquitination and Deubiquitination in Oral Disease. Int J Mol Sci 2021; 22:ijms22115488. [PMID: 34070986 PMCID: PMC8197098 DOI: 10.3390/ijms22115488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 01/07/2023] Open
Abstract
Oral health is an integral part of the general health and well-being of individuals. The presence of oral disease is potentially indicative of a number of systemic diseases and may contribute to their early diagnosis and treatment. The ubiquitin (Ub) system has been shown to play a role in cellular immune response, cellular development, and programmed cell death. Ubiquitination is a post-translational modification that occurs in eukaryotes. Its mechanism involves a number of factors, including Ub-activating enzymes, Ub-conjugating enzymes, and Ub protein ligases. Deubiquitinating enzymes, which are proteases that reversely modify proteins by removing Ub or Ub-like molecules or remodeling Ub chains on target proteins, have recently been regarded as crucial regulators of ubiquitination-mediated degradation and are known to significantly affect cellular pathways, a number of biological processes, DNA damage response, and DNA repair pathways. Research has increasingly shown evidence of the relationship between ubiquitination, deubiquitination, and oral disease. This review investigates recent progress in discoveries in diseased oral sites and discusses the roles of ubiquitination and deubiquitination in oral disease.
Collapse
|
68
|
Kim WJ, Soh Y, Heo SM. Recent Advances of Therapeutic Targets for the Treatment of Periodontal Disease. Biomol Ther (Seoul) 2021; 29:263-267. [PMID: 33731493 PMCID: PMC8094066 DOI: 10.4062/biomolther.2021.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/26/2022] Open
Abstract
Periodontal disease is primarily associated with bacterial infection such as dental plaque. Dental plaque, an oral biofilm harboring a complex microbial community, can cause various inflammatory reactions in periodontal tissue. In many cases, the local bacterial invasion and host-mediated immune responses lead to severe alveolar bone destruction. To date, plaque control, non-surgical, and surgical interventions have been the conventional periodontal treatment modalities. Although adjuvant therapies including antibiotics or supplements have accompanied these procedures, their usage has been limited by antibiotic resistance, as well as their partial effectiveness. Therefore, new strategies are needed to control local inflammation in the periodontium and host immune responses. In recent years, target molecules that modulate microbial signaling mechanisms, host inflammatory substances, and bone immune responses have received considerable attention by researchers. In this review, we introduce three approaches that suggest a way forward for the development of new treatments for periodontal disease; (1) quorum quenching using quorum sensing inhibitors, (2) inflammasome targeting, and (3) use of FDA-approved anabolic agents, including Teriparatide and sclerostin antibody.
Collapse
Affiliation(s)
- Woo Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Yunjo Soh
- Laboratory of Pharmacology, School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Seok-Mo Heo
- Department of Periodontology, School of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University, Jeonju 54907, Republic of Korea
| |
Collapse
|
69
|
Mekhemar M, Geib M, Kumar M, Radha, Hassan Y, Dörfer C. Salvadora persica: Nature's Gift for Periodontal Health. Antioxidants (Basel) 2021; 10:712. [PMID: 33946353 PMCID: PMC8146554 DOI: 10.3390/antiox10050712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 04/22/2021] [Accepted: 04/25/2021] [Indexed: 12/11/2022] Open
Abstract
Salvadora persica (SP) extract, displays very valuable biotherapeutic capacities such as antimicrobial, antioxidant, antiparasitic and anti-inflammatory effects. Numerous investigations have studied the pharmacologic actions of SP in oral disease therapies but its promising outcomes in periodontal health and treatment are not yet entirely described. The current study has been planned to analyze the reported effects of SP as a support to periodontal therapy to indorse regeneration and healing. In consort with clinical trials, in vitro investigations show the advantageous outcomes of SP adjunctive to periodontal treatment. Yet, comprehensive supplementary preclinical and clinical investigations at molecular and cellular levels are indispensable to reveal the exact therapeutic mechanisms of SP and its elements for periodontal health and therapy.
Collapse
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (Y.H.); (C.D.)
| | - Mathias Geib
- Dr. Geib Private Dental Clinic, Frankfurter Landstraße 79, 61352 Bad Homburg, Germany;
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR—Central Institute for Research on Cotton Technology, Mumbai 400019, India;
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India;
| | - Yasmine Hassan
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (Y.H.); (C.D.)
| | - Christof Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (Y.H.); (C.D.)
| |
Collapse
|
70
|
Deng F, Zheng X, Sharma I, Dai Y, Wang Y, Kanwar YS. Regulated cell death in cisplatin-induced AKI: relevance of myo-inositol metabolism. Am J Physiol Renal Physiol 2021; 320:F578-F595. [PMID: 33615890 PMCID: PMC8083971 DOI: 10.1152/ajprenal.00016.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
Regulated cell death (RCD), distinct from accidental cell death, refers to a process of well-controlled programmed cell death with well-defined pathological mechanisms. In the past few decades, various terms for RCDs were coined, and some of them have been implicated in the pathogenesis of various types of acute kidney injury (AKI). Cisplatin is widely used as a chemotherapeutic drug for a broad spectrum of cancers, but its usage was hampered because of being highly nephrotoxic. Cisplatin-induced AKI is commonly seen clinically, and it also serves as a well-established prototypic model for laboratory investigations relevant to acute nephropathy affecting especially the tubular compartment. Literature reports over a period of three decades have indicated that there are multiple types of RCDs, including apoptosis, necroptosis, pyroptosis, ferroptosis, and mitochondrial permeability transition-mediated necrosis, and some of them are pertinent to the pathogenesis of cisplatin-induced AKI. Interestingly, myo-inositol metabolism, a vital biological process that is largely restricted to the kidney, seems to be relevant to the pathogenesis of certain forms of RCDs. A comprehensive understanding of RCDs in cisplatin-induced AKI and their relevance to myo-inositol homeostasis may yield novel therapeutic targets for the amelioration of cisplatin-related nephropathy.
Collapse
Affiliation(s)
- Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Xiaoping Zheng
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Isha Sharma
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| | - Yingbo Dai
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Urology, The Fifth Affiliated Hospital of Sun Yet-Sen University, Zhuhai, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yashpal S Kanwar
- Department of Pathology, Northwestern University, Chicago, Illinois
- Department of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
71
|
Önal MA, Fentoğlu Ö, Aksoy F, Calapoğlu M, Varol E, Orhan H. Salivary levels of last generation specific pro-resolving lipid mediators (SPMs) (protectin and maresin) in patients with cardiovascular and periodontal disease: A case-control study. J Periodontal Res 2021; 56:606-615. [PMID: 33650687 DOI: 10.1111/jre.12861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontal disease and cardiovascular disease (CVD), which are both deemed to be triggered by inflammation, are recognized as public health problems. Evidence of host modulation via pro-resolving lipid shown in previous studies supports a two-way relationship between periodontitis and CVD. Last generation endogenous specific pro-resolution lipid mediators (SPMs) such as protectins (PDs) and maresins (MaRs) may have potential effects on inflammatory pathogenesis via activation and resolution mechanisms. Currently, there are no data on SPM levels in patients with CVD and periodontal disease. We aimed to evaluate salivary levels of PD and MaR in patients with CVD and periodontal disease. MATERIALS AND METHODS At total of 181 individuals comprising of 79 healthy controls (C) and 102 patients with diagnosed CVD were included cross-sectionally. Unstimulated total salivary samples were obtained, and clinical periodontal parameters were determined. Salivary levels of PD and MaR were evaluated by ELISA. The periodontal status of the study population was classified as gingivitis (g) or periodontitis (p). RESULTS Patients with CVD showed lower sociodemographic characteristics, increased clinical periodontal parameters (p < .05), decreased salivary PD (p < .001), and increased salivary MaR levels (p > .05). In the CVDg group, leukocyte, hemoglobin, hematocrit, and high-density lipoprotein values were higher (p < .05). The CVDp group had a higher neutrophil-to-lymphocyte ratio (p < .05). While the PD level was highest in the Cg group, MaR was highest in the CVDp group. The salivary levels of PD and MaR were independent of other confounders in CVD and periodontal disease (p > .05). CONCLUSION(S) PDs and MaRs may play effective roles in pathogenesis associated with worsening cardiometabolic and periodontal status. These SPMs could also be predictors for conversion from a healthy (systemically and periodontally) to diseased state (CVD and/or periodontitis). Elucidation of the role of SPMs in the relationship between periodontal disease and CVD will enable the development of new host modulation strategies in the prevention and treatment of both diseases, and may also constitute an important public health step by increasing the quality of life of patients with CVD and periodontal disease.
Collapse
Affiliation(s)
- Mehmet Artuğ Önal
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Özlem Fentoğlu
- Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University, Isparta, Turkey
| | - Fatih Aksoy
- Department of Cardiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Mustafa Calapoğlu
- Department of Biochemistry, Faculty of Science, Süleyman Demirel University, Isparta, Turkey
| | - Ercan Varol
- Department of Cardiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Hikmet Orhan
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
72
|
Isola G, Lo Giudice A, Polizzi A, Alibrandi A, Murabito P, Indelicato F. Identification of the different salivary Interleukin-6 profiles in patients with periodontitis: A cross-sectional study. Arch Oral Biol 2021; 122:104997. [PMID: 33291049 DOI: 10.1016/j.archoralbio.2020.104997] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of this study was to analyze and identify the association among salivary interleukin-6 (IL-6) levels and periodontitis (PT) and to determine the significant trend of this association in PT patients. STUDY DESIGN For the present study, 49 patients with PT and 47 healthy subjects (HS) were enrolled and assessed for clinical parameters, blood samples and salivary IL-6 analyses. Clinical differences among groups were recorded and evaluated. The Spearman Correlation and the Jonckheere-Terpstra Test were applied in order to assess the interdependence between salivary IL-6 and PT. RESULTS Patients in the PT group had significantly higher median salivary IL-6 levels [195.4 (184.6-205.9 pg/mL)] compared to the HS group [101.9 (89.5-115.4 pg/mL) (p < 0.001). Salivary IL-6 levels were negatively correlated with C-reactive protein, with the number of teeth and with clinical attachment loss (CAL), probing pocket depth (PPD), and bleeding sites (FMBS) (p < 0.001). Furthermore, in patients with PT, salivary IL-6 levels were inversely associated (P-trend) with the number of teeth (p < 0.001), and directly associated with the proportional extent of PT (CAL, p = 0.006; PPD, p = 0.009; FMBS, p < 0.001). CONCLUSIONS The results of this study showed that PT patients presented significant higher salivary IL-6 levels compared to HS. Moreover, in the analyzed sample a significant p-trend among PT, tooth loss and increased salivary IL-6 levels was found.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy.
| | - Antonino Lo Giudice
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy.
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy.
| | - Angela Alibrandi
- Department of Economical, Business and Environmental Sciences and Quantitative Methods, University of Messina, Messina, Italy.
| | - Paolo Murabito
- Department of General Surgery and Surgical-Medical Specialties, Unit of Anaesthesia and Intensive Care, University of Catania, Catania, Italy.
| | - Francesco Indelicato
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy.
| |
Collapse
|
73
|
Alvarenga MOP, Miranda GHN, Ferreira RO, Saito MT, Fagundes NCF, Maia LC, Lima RR. Association Between Diabetic Retinopathy and Periodontitis-A Systematic Review. Front Public Health 2021; 8:550614. [PMID: 33490007 PMCID: PMC7820190 DOI: 10.3389/fpubh.2020.550614] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 11/03/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Diabetic retinopathy is a common microvascular complication in diabetic patients and is considered the main cause of visual loss worldwide. Periodontitis is a chronic inflammatory condition, which compromises dental supporting tissues. The chronic bacterial challenge in periodontitis is a persistent source of inflammatory mediators that may be associated with insulin resistance, increasing the risk of complications of diabetes mellitus. This systematic review aimed to summarize the evidence in the association between diabetic retinopathy and periodontitis. Methods: This review was registered under the number CRD 42019142267. A search strategy in five electronic databases and a gray literature source was performed based on the PECO acronym. After data extraction, the qualitative synthesis and risk of bias analyses were performed using the Newcastle-Ottawa scale. The level of evidence of all studies taken together was evaluated through the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Results: Out of the 253 citations screened, five cross-sectional studies met the eligibility criteria and were included in the qualitative analysis, in which two were judged to be of good quality, one as fair quality, and two as poor quality. Among the included studies, a significant relationship between the severity of periodontitis (CAL > 5 mm) and the severity of diabetic retinopathy (p < 0.05) was reported by four studies. Also, an association between both diseases in non-obese adults was found after adjustments [OR 2.206 (1.114-4.366); p = 0.0232). However, the analysis of evidence by GRADE assessment was rated as low. Conclusions: Although the results of individual studies suggest an association between diabetic retinopathy and periodontitis, the quality of the body of evidence was judged to be low by the GRADE approach. Further studies with larger sample sizes, adequate models of cofounders' adjustments, and prospective analysis of periodontitis and diabetes conditions ought to be conducted to clarify this association.
Collapse
Affiliation(s)
- María Olimpia Paz Alvarenga
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Giza Hellen Nonato Miranda
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Miki Taketomi Saito
- Faculty of Dentistry, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
74
|
Chen J, Chen YQ, Shi YJ, Ding SQ, Shen L, Wang R, Wang QY, Zha C, Ding H, Hu JG, Lü HZ. VX-765 reduces neuroinflammation after spinal cord injury in mice. Neural Regen Res 2021; 16:1836-1847. [PMID: 33510091 PMCID: PMC8328782 DOI: 10.4103/1673-5374.306096] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Inflammation is a major cause of neuronal injury after spinal cord injury. We hypothesized that inhibiting caspase-1 activation may reduce neuroinflammation after spinal cord injury, thus producing a protective effect in the injured spinal cord. A mouse model of T9 contusive spinal cord injury was established using an Infinite Horizon Impactor, and VX-765, a selective inhibitor of caspase-1, was administered for 7 successive days after spinal cord injury. The results showed that: (1) VX-765 inhibited spinal cord injury-induced caspase-1 activation and interleukin-1β and interleukin-18 secretion. (2) After spinal cord injury, an increase in M1 cells mainly came from local microglia rather than infiltrating macrophages. (3) Pro-inflammatory Th1Th17 cells were predominant in the Th subsets. VX-765 suppressed total macrophage infiltration, M1 macrophages/microglia, Th1 and Th1Th17 subset differentiation, and cytotoxic T cells activation; increased M2 microglia; and promoted Th2 and Treg differentiation. (4) VX-765 reduced the fibrotic area, promoted white matter myelination, alleviated motor neuron injury, and improved functional recovery. These findings suggest that VX-765 can reduce neuroinflammation and improve nerve function recovery after spinal cord injury by inhibiting caspase-1/interleukin-1β/interleukin-18. This may be a potential strategy for treating spinal cord injury. This study was approved by the Animal Care Ethics Committee of Bengbu Medical College (approval No. 2017-037) on February 23, 2017.
Collapse
Affiliation(s)
- Jing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Qing Chen
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| | - Yu-Jiao Shi
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Shu-Qin Ding
- Clinical Laboratory, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Lin Shen
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Rui Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Qi-Yi Wang
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Cheng Zha
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Hai Ding
- Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - Jian-Guo Hu
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, China
| | - He-Zuo Lü
- Clinical Laboratory; Anhui Key Laboratory of Tissue Transplantation, the First Affiliated Hospital of Bengbu Medical College; Department of Immunology, Bengbu Medical College, and Anhui Key Laboratory of Infection and Immunity at Bengbu Medical College, Bengbu, Anhui Province, China
| |
Collapse
|
75
|
Mekhemar M, Hassan Y, Dörfer C. Nigella sativa and Thymoquinone: A Natural Blessing for Periodontal Therapy. Antioxidants (Basel) 2020; 9:E1260. [PMID: 33322636 PMCID: PMC7764221 DOI: 10.3390/antiox9121260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Thymoquinone (TQ), the chief active constituent of Nigella sativa (NS), shows very valuable biomedical properties such as antioxidant, antimicrobial, anticancer, anti-inflammatory, antihypertensive, hypoglycemic, antiparasitic and anti-asthmatic effects. Several studies have examined the pharmacological actions of TQ in the treatment of oral diseases but its potential role in periodontal therapy and regeneration is not yet fully defined. The present investigation has been designed to review the scientific studies about the effects of TQ as an adjunct to periodontal treatment to promote healing and periodontal regeneration. Along with clinical experiments, in vitro studies exhibit the beneficial effects of TQ during periodontal therapy. Nevertheless, additional comprehensive clinical and preclinical studies at cellular and molecular levels are essential to examine the particular action mechanisms of Nigella sativa and its elements, particularly TQ, during periodontal treatment or regeneration.
Collapse
Affiliation(s)
- Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht’s University, 24105 Kiel, Germany; (Y.H.); (C.D.)
| | | | | |
Collapse
|
76
|
Vo TTT, Chu PM, Tuan VP, Te JSL, Lee IT. The Promising Role of Antioxidant Phytochemicals in the Prevention and Treatment of Periodontal Disease via the Inhibition of Oxidative Stress Pathways: Updated Insights. Antioxidants (Basel) 2020; 9:antiox9121211. [PMID: 33271934 PMCID: PMC7760335 DOI: 10.3390/antiox9121211] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
There is growing evidence on the involvement of oxidative stress, which is simply described as the imbalance between oxidants and antioxidants in favor of the former, in the development of periodontal disease that is the most common inflammatory disease in the oral cavity. Thus, the potential of antioxidant phytochemicals as adjunctively preventive and therapeutic agents against the initiation and progression of periodontal disease is a topic of great interest. The current review firstly aims to provide updated insights about the immuno-inflammatory pathway regulated by oxidative stress in periodontal pathology. Then, this work further presents the systemic knowledge of antioxidant phytochemicals, particularly the pharmacological activities, which can be utilized in the prevention and treatment of periodontal disease. Additionally, the challenges and future prospects regarding such a scope are figured out.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung 406, Taiwan;
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City 700000, Vietnam;
| | - Joyce Si-Liang Te
- Department of Medical Education, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Correspondence: ; Tel.: +886-2-27361661 (ext. 5162); Fax: +886-2-27362295
| |
Collapse
|
77
|
Bailly C. The implication of the PD-1/PD-L1 checkpoint in chronic periodontitis suggests novel therapeutic opportunities with natural products. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:90-96. [PMID: 32612718 PMCID: PMC7310691 DOI: 10.1016/j.jdsr.2020.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
An analysis of the implication of the PD-1/PD-L1 immune checkpoint in periodontitis is provided with the objective to propose a novel therapeutic approach. An exhaustive survey of the literature has been performed to answer two questions: (1) Is there a role for PD-1 and/or PD-L1 in the development of periodontitis? (2) Which natural products interfere with the checkpoint activity and show activity against periodontitis? All online published information was collected and analyzed. The pathogenic bacteria Porphyromonas gingivalis, through its membrane-attached peptidoglycans, exploits the PD-1/PD-L1 checkpoint to evade immune response and to amplify the infection. Three anti-inflammatory natural products (and derivatives or plant extracts) active against periodontitis and able to interfere with the checkpoint were identified. Both curcumin and baicalin attenuate periodontitis and induce a down-regulation of PD-L1 in cells. The terpenoid saponin platycodin D inhibits the growth of P. gingivalis responsible for periodontitis and shows a rare capacity to induce the extracellular release of a soluble form of PD-L1, thereby restoring T cell activation. A potential PD-L1 shedding mechanism is discussed. The targeting of the PD-1/PD-L1 immune checkpoint could be considered a suitable approach to improve the treatment of chronic periodontitis. The plant natural products curcumin, baicalin and platycodin D should be further evaluated as PD-1/PD-L1 checkpoint modulators active against periodontitis.
Collapse
|
78
|
Dental Pulp Mesenchymal Stem Cells as a Treatment for Periodontal Disease in Older Adults. Stem Cells Int 2020; 2020:8890873. [PMID: 32908546 PMCID: PMC7450326 DOI: 10.1155/2020/8890873] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/23/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Periodontal disease (PD) is one of the main causes of tooth loss and is related to oxidative stress and chronic inflammation. Although different treatments have been proposed in the past, the vast majority do not regenerate lost tissues. In this sense, the use of dental pulp mesenchymal stem cells (DPMSCs) seems to be an alternative for the regeneration of periodontal bone tissue. A quasi-experimental study was conducted in a sample of 22 adults between 55 and 64 years of age with PD, without uncontrolled systemic chronic diseases. Two groups were formed randomly: (i) experimental group (EG) n = 11, with a treatment based on DPMSCs; and a (ii) control group (CG) n = 11, without a treatment of DPMSCs. Every participant underwent clinical and radiological evaluations and measurement of bone mineral density (BMD) by tomography. Saliva samples were taken as well, to determine the total concentration of antioxidants, superoxide dismutase (SOD), lipoperoxides, and interleukins (IL), before and 6 months after treatment. All subjects underwent curettage and periodontal surgery, the EG had a collagen scaffold treated with DPMSCs, while the CG only had the collagen scaffold placed. The EG with DPMSCs showed an increase in the BMD of the alveolar bone with a borderline statistical significance (baseline 638.82 ± 181.7 vs. posttreatment 781.26 ± 162.2 HU, p = 0.09). Regarding oxidative stress and inflammation markers, salivary SOD levels were significantly higher in EG (baseline 1.49 ± 0.96 vs. 2.14 ± 1.12 U/L posttreatment, p < 0.05) meanwhile IL1β levels had a decrease (baseline 1001.91 ± 675.5vs. posttreatment 722.3 ± 349.4 pg/ml, p < 0.05). Our findings suggest that a DPMSCs treatment based on DPMSCs has both an effect on bone regeneration linked to an increased SOD and decreased levels of IL1β in aging subjects with PD.
Collapse
|
79
|
Wang L, Sun L, Byrd KM, Ko CC, Zhao Z, Fang J. AIM2 Inflammasome's First Decade of Discovery: Focus on Oral Diseases. Front Immunol 2020; 11:1487. [PMID: 32903550 PMCID: PMC7438472 DOI: 10.3389/fimmu.2020.01487] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/08/2020] [Indexed: 02/05/2023] Open
Abstract
A common feature of many acute and chronic oral diseases is microbial-induced inflammation. Innate immune responses are the first line of defense against pathogenic microorganisms and are initiated by pattern recognition receptors (PRRs) that specifically recognize pathogen-associated molecular patterns and danger-associated molecular patterns. The activation of certain PRRs can lead to the assembly of macromolecular oligomers termed inflammasomes, which are responsible for pro-inflammatory cytokine maturation and secretion and thus activate host inflammatory responses. About 10 years ago, the absent in melanoma 2 (AIM2) was independently discovered by four research groups, and among the “canonical” inflammasomes [including AIM2, NLR family pyrin domain (NLRP)1, NLRP3, NLR family apoptosis inhibitory protein (NAIP)/NLR family, caspase activation and recruitment domain (CARD) containing (NLRC)4, and pyrin], AIM2 so far is the only one that simultaneously acts as a cytosolic DNA sensor due to its DNA-binding ability. Undoubtedly, such a double-faceted role gives AIM2 greater mission and more potential in the mediation of innate immune responses. Therefore, AIM2 has garnered much attention from the broad scientific community during its first 10 years of discovery (2009–2019). How the AIM2 inflammasome is related to oral diseases has aroused debate over the past few years and is under active investigation. AIM2 inflammasome may potentially be a key link between oral diseases and innate immunity. In this review, we highlight the current knowledge of the AIM2 inflammasome and its critical role in the pathogenesis of various oral diseases, which might offer future possibilities for disease prevention and targeted therapy utilizing this continued understanding.
Collapse
Affiliation(s)
- Lufei Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Lu Sun
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Kevin M Byrd
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, United States
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, United States
| | - Zhenxing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
80
|
Marchesan JT. Inflammasomes as contributors to periodontal disease. J Periodontol 2020; 91 Suppl 1:S6-S11. [PMID: 32533779 PMCID: PMC7689877 DOI: 10.1002/jper.20-0157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/01/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022]
Abstract
A genome‐wide association study of ≈2.5 million markers identified unique biologically informed periodontal complex traits with distinct microbial communities and interleukin‐1β (IL‐1β) levels. Each trait was associated with different single nucleotide polymorphisms. These variants include genes associated with immune responses, microbial colonization, and the epithelial barrier function. The specific set of variants leads to individual biological paths that converge into an overlapping clinical phenotype of periodontal tissue destruction. This concept suggests that periodontal disease is a group of distinct conditions. We identified polymorphisms in inflammasome genes interferon gamma inducible protein 16 (IFI16) and absent in melanoma 2 (AIM2) that were associated with increased severity of periodontal disease. Inflammasomes respond to pathogen or tissue “danger” signals and assemble into multiprotein “machineries” that are essential for the cleavage of proinflammatory mediator IL‐1β into an active form. Thus, understanding how variants of IFI16 and AIM2 contribute to periodontal disease pathogenesis may lead to treatment options that address individual biological variations and precision therapies for oral health.
Collapse
Affiliation(s)
- Julie T Marchesan
- Department of Comprehensive Oral Health, Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
81
|
Proteome Analysis of Molecular Events in Oral Pathogenesis and Virus: A Review with a Particular Focus on Periodontitis. Int J Mol Sci 2020; 21:ijms21155184. [PMID: 32707841 PMCID: PMC7432693 DOI: 10.3390/ijms21155184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Some systemic diseases are unquestionably related to periodontal health, as periodontal disease can be an extension or manifestation of the primary disease process. One example is spontaneous gingival bleeding, resulting from anticoagulant treatment for cardiac diseases. One important aspect of periodontal therapy is the care of patients with poorly controlled disease who require surgery, such as patients with uncontrolled diabetes. We reviewed research on biomarkers and molecular events for various diseases, as well as candidate markers of periodontal disease. Content of this review: (1) Introduction, (2) Periodontal disease, (3) Bacterial and viral pathogens associated with periodontal disease, (4) Stem cells in periodontal tissue, (5) Clinical applications of mass spectrometry using MALDI-TOF-MS and LC-MS/MS-based proteomic analyses, (6) Proteome analysis of molecular events in oral pathogenesis of virus in GCF, saliva, and other oral Components in periodontal disease, (7) Outlook for the future and (8) Conclusions. This review discusses proteome analysis of molecular events in the pathogenesis of oral diseases and viruses, and has a particular focus on periodontitis.
Collapse
|
82
|
AFF4 regulates osteogenic differentiation of human dental follicle cells. Int J Oral Sci 2020; 12:20. [PMID: 32606293 PMCID: PMC7327054 DOI: 10.1038/s41368-020-0083-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/05/2023] Open
Abstract
As a member of the AFF (AF4/FMR2) family, AFF4 is a transcription elongation factor that is a component of the super elongation complex. AFF4 serves as a scaffolding protein that connects transcription factors and promotes gene transcription through elongation and chromatin remodelling. Here, we investigated the effect of AFF4 on human dental follicle cells (DFCs) in osteogenic differentiation. In this study, we found that small interfering RNA-mediated depletion of AFF4 resulted in decreased alkaline phosphatase (ALP) activity and impaired mineralization. In addition, the expression of osteogenic-related genes (DLX5, SP7, RUNX2 and BGLAP) was significantly downregulated. In contrast, lentivirus-mediated overexpression of AFF4 significantly enhanced the osteogenic potential of human DFCs. Mechanistically, we found that both the mRNA and protein levels of ALKBH1, a critical regulator of epigenetics, changed in accordance with AFF4 expression levels. Overexpression of ALKBH1 in AFF4-depleted DFCs partially rescued the impairment of osteogenic differentiation. Our data indicated that AFF4 promoted the osteogenic differentiation of DFCs by upregulating the transcription of ALKBH1.
Collapse
|
83
|
Cheng CY, Vo TTT, Lin WN, Huang HW, Chuang CC, Chu PM, Lee IT. Nrf2/HO-1 partially regulates cytoprotective effects of carbon monoxide against urban particulate matter-induced inflammatory responses in oral keratinocytes. Cytokine 2020; 133:155185. [PMID: 32615411 DOI: 10.1016/j.cyto.2020.155185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Exposure to airborne particulate matter (PM) increases the proportion of oral inflammatory diseases. During the formation of inflammatory conditions, the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome activation plays an important regulator. Carbon monoxide (CO) arising from heme degradation, catalyzed particularly by heme oxygenase-1 (HO-1), has been shown to own cytoprotective effects including anti-inflammation and antioxidant. Here, we determined the novel mechanisms of carbon monoxide releasing molecule-2 (CORM-2) on PM-induced inflammatory responses in human oral keratinocytes (HOKs). METHODS The effects of CORM-2 on the expression of various inflammatory proteins induced by PM were determined by Western blot, real-time PCR, promoter assay, and ELISA. The involvement of signaling molecules in these responses was studied by using the selective pharmacological inhibitors and siRNAs. RESULTS We proved that PM enhanced C-reactive protein (CRP) levels, NLRP3 inflammasome and caspase-1 activation, and IL-1β release, which were reduced by preincubation with CORM-2. Transfection with PKCα siRNA and preincubation with the ROS scavenger (N-acetyl-cysteine, NAC), an inhibitor of NADPH oxidase (diphenyleneiodonium, DPI), or the mitochondria-specific superoxide scavenger (MitoTEMPO) inhibited PM-mediated inflammatory responses. In addition, PM-regulated PKCα and NADPH oxidase activation as well as NADPH oxidase- and mitochondria-derived ROS generation were inhibited by CORM-2, but not inactivate CORM-2 (iCORM-2) pretreatment. At the end, we confirmed that CORM-2 improved PM-induced inflammatory responses via the induction of Nrf2 activation and HO-1 expression. CONCLUSION We suggest that CORM-2 inhibits PM-induced inflammatory responses in HOKs via the inhibition of PKCα/ROS/NLRP3 inflammasome activation combined with the induction of Nrf2/HO-1 expression.
Collapse
Affiliation(s)
- Ching-Yi Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine and Research Center for Food and Cosmetic Safety, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of Pulmonary Infection and Immunology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | - Hsiang-Wei Huang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chu-Chun Chuang
- International MS/PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pei-Ming Chu
- School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
84
|
An Evidence-Based Update on the Molecular Mechanisms Underlying Periodontal Diseases. Int J Mol Sci 2020; 21:ijms21113829. [PMID: 32481582 PMCID: PMC7312805 DOI: 10.3390/ijms21113829] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
Several investigators have reported about the intricate molecular mechanism underlying periodontal diseases (PD). Nevertheless, the role of specific genes, cells, or cellular mechanisms involved in the pathogenesis of periodontitis are still unclear. Although periodontitis is one of the most prevalent oral diseases globally, there are no pre-diagnostic markers or therapeutic targets available for such inflammatory lesions. A pivotal role is played by pro- and anti-inflammatory markers in modulating pathophysiological and physiological processes in repairing damaged tissues. In addition, effects on osteoimmunology is ever evolving due to the ongoing research in understanding the molecular mechanism lying beneath periodontal diseases. The aim of the current review is to deliver an evidence-based update on the molecular mechanism of periodontitis with a particular focus on recent developments. Reports regarding the molecular mechanism of these diseases have revealed unforeseen results indicative of the fact that significant advances have been made to the periodontal medicine over the past decade. There is integrated hypothesis-driven research going on. Although a wide picture of association of periodontal diseases with immune response has been further clarified with present ongoing research, small parts of the puzzle remain a mystery and require further investigations.
Collapse
|
85
|
Marchesan JT, Girnary MS, Moss K, Monaghan ET, Egnatz GJ, Jiao Y, Zhang S, Beck J, Swanson KV. Role of inflammasomes in the pathogenesis of periodontal disease and therapeutics. Periodontol 2000 2020; 82:93-114. [PMID: 31850638 PMCID: PMC6927484 DOI: 10.1111/prd.12269] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammasomes are a group of multimolecular intracellular complexes assembled around several innate immune proteins. Recognition of a diverse range of microbial, stress and damage signals by inflammasomes results in direct activation of caspase‐1, which subsequently induces the only known form of secretion of active interleukin‐1β and interleukin‐18. Although the importance of interleukin‐1β in the periodontium is not questioned, the impact of inflammasomes in periodontal disease and its potential for therapeutics in periodontology is still in its very early stages. Increasing evidence in preclinical models and human data strongly implicate the involvement of inflammasomes in a number of inflammatory, autoinflammatory and autoimmune disorders. Here we review: (a) the currently known inflammasome functions, (b) clinical/preclinical data supporting inflammasome involvement in the context of periodontal and comorbid diseases and (c) potential therapies targeting inflammasomes. To clarify further the inflammasome involvement in periodontitis, we present analyses of data from a large clinical study (n = 5809) that measured the gingival crevicular fluid‐interleukin‐1β and grouped the participants based on current periodontal disease classifications. We review data on 4910 European‐Americans that correlate 16 polymorphisms in the interleukin‐1B region with high gingival crevicular fluid‐interleukin‐1β levels. We show that inflammasome components are increased in diseased periodontal tissues and that the caspase‐1 inhibitor, VX‐765, inhibits ~50% of alveolar bone loss in experimental periodontitis. The literature review further supports that although patients clinically present with the same phenotype, the disease that develops probably has different underlying biological pathways. The current data indicate that inflammasomes have a role in periodontal disease pathogenesis. Understanding the contribution of different inflammasomes to disease development and distinct patient susceptibility will probably translate into improved, personalized therapies.
Collapse
Affiliation(s)
- Julie T Marchesan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mustafa Saadat Girnary
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kevin Moss
- Department of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Eugenia Timofeev Monaghan
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Grant Joseph Egnatz
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yizu Jiao
- Department of Periodontology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Shaoping Zhang
- Periodontics Department, College of Dentistry, University of Iowa, Iowa City, Iowa, USA
| | - Jim Beck
- Department of Dental Ecology, Adams School of Dentistry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Karen V Swanson
- Department of Medicine, Infectious Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
86
|
Abstract
The United States continues to be an incubator for new concepts and approaches to the diagnosis, treatment, and prevention of periodontal diseases. This volume of Periodontology 2000 presents some of these newer areas of research and paradigms that have emerged in the United States from both long-established and new investigators. These areas include: (1) more comprehensive approaches to assessing the total periodontal microbiome, including bacteria, viruses, and fungi, and their interactions with both the local and systemic inflammatory and immune responses, as well as with other oral and systemic conditions and diseases; (2) new developments for a more comprehensive characterization of the patient genome, transcriptome, and proteome profiles and the role of these profiles in periodontal disease pathogenesis; (3) new developments in nonsurgical approaches to periodontal diseases, including broad-based lines of attack using natural antimicrobials and host-modulation therapies and more focused approaches that target specific interactions in the host response; and (4) new big data analysis, machine learning, and imaging approaches, both for understanding the pathogenesis of periodontal diseases and for developing improved risk-assessment tools and better treatment outcomes.
Collapse
Affiliation(s)
- Mark I Ryder
- Division of Periodontology, Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|